Sep 1, 2017 - Ultrasensitive and Fast All-Inorganic Perovskite-Based ... photodetector exhibits high R up to 6 Ã 104 A Wâ1 (D* â 1013) with OPE. To the best ...
COMMUNICATION Optoelectronics
www.advmat.de
Ultrasensitive and Fast All-Inorganic Perovskite-Based Photodetector via Fast Carrier Diffusion Bin Yang, Fengying Zhang, Junsheng Chen, Songqiu Yang, Xusheng Xia, Tõnu Pullerits, Weiqiao Deng, and Keli Han* example, AIP quantum dots or bulk thin films-based photodetectors have low R (normally 2 mW cm−2). The linear increasement of R demonstrates that the photocurrent originates from nonlinear absorption. The R value here is about three orders of magnitude higher than the centimeter-size single crystal-based photodetector.[30] The excellent photoresponse is due to the combination of the large TPA coefficient and efficient charge carrier collection. We next studied the response speed of the photodetector. Figure 5a,b shows the transient photocurrents of the devices based on OPE (TPE results are show in Figure S6 in the Supporting Information). The photodetector exhibits well on/off photoswitching behavior (Figure 5a). The rise and fall time is 0.5 and 1.6 ms for OPE, respectively (Figure 5b). With TPE, the fall time was fitted by using a biexponential decay, which gives a fast time constant 80 µs, and a long time constant about 820 µs (Figure S6b, Supporting Information). The response time is faster that most reported values in AIP-based photo detectors (Table S1, Supporting Information).[19,22,33–35] The rapid response indicates the fast separation and efficient extraction of photocarriers, which can be ascribed to the high carrier mobility and low trap-state density in the CsPbBr3 MCs. The spectral dependence of photocurrent follows well the trend of the absorbance of CsPbBr3 MCs with OPE (Figure 5c). The broad spectral response ensures that the device can cover
1703758 (5 of 8)
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
www.advancedsciencenews.com
www.advmat.de
Figure 5. a,b) Transient photocurrent of the photodetector with OPE (bias 3 V, λex = 400 nm). c) Spectral dependent photocurrent with OPE (bias 3 V, 1 mW cm−2) and TPE (bias 3 V, 1 mW cm−2).
spectrum range from 400 to 550 nm. One can see that the photocurrent decreases rapidly at around 550 nm, which is corresponding to the absorption edge of CsPbBr3 MCs (see Figure 1f). Similar spectral response is presented under TPE. The TPE photocurrent decreased rapidly from 1100 nm, which is about 2 times of the linear absorption edge energy (Figure 5c). Photoconductive gain is another important parameter for photodetectors, which is defined by the relation G = τ1/τt,[13] in which τ1 is the charge lifetime and τt is the charge carrier transit time. τt is inversely proportional to the mobility of the semiconductor according to the relation τt = L2/Vμ (where L is sample thickness, V is applied voltage, μ is the carrier mobility). By using the above determined mobility, we obtain G ≈ 105, and the gain-bandwidth product of 108 Hz for OPE (G ≈ 103, and the gain-bandwidth of 106 Hz for TPE). We summarized performance of the AIP-based photodetector in Table S1 in the Supporting Information (Under OPE). The CsPbBr3 MC-based photodetectors show not only high R (D*) but also fast response, in both visible and NIR regions. This indicates that the single-crystalline CsPbBr3 MCs and its device show high performance. We ascribe the high R and fast response to the collective superiority of large absorption coefficient, high carrier mobility, and low trap-state density of the CsPbBr3 MCs.
Experimental Section Materials: PbBr2 (98+%, Alfa Aesar), CsBr (99%, Alfa Aesar), DMSO (>99%, Sinopharm Chemical Reagent Co., Ltd, China), and toluene
Adv. Mater. 2017, 29, 1703758
(analytical pure, Sinopharm Chemical Reagent Co., Ltd, China) were used as received without further purification. XRD Characterization: XRD measurements were performed on an X’pert PRO diffractometer equipped with Cu Kα X-ray (λ = 1.54186 Å) tubes. I–V Measurements: The I–V characteristic (used for the space charge limited current analysis) was measured using a Keithley 2400 SourceMeter. During the measurement, the samples were kept in dark and open air. Absorption and PL Measurements: UV–vis absorption spectra were recorded at room temperature on a JASCO V-550 UV–vis absorption spectrometer with an integrating sphere attachment operating in the 190–900 nm region. Steady-state OPE PL spectra were measured by a fiber optic spectrometer. The excitation source was a femtosecond laser system 1 (Spitfire Pro, Spectra-Physic, 800 nm, 100 fs pulse length, 1 kHz repetition rate). For the OPE experiments, the pump pulses at 400 nm were generated by a BBO crystal as a second harmonic of the laser. For the TPE experiments, the pump pulses at 800 nm were obtained directly from the regenerative amplifier. In the Steak camera (Hamamatsu C6860) measurements, the laser source was a titanium: sapphire passively mode-locked femtosecond laser system 2 (SpectraPhysics, Tsunami), emitting at 410 nm (OPE) or 800 nm (TPE) with 80 MHz repetition rate and 100 fs pulse duration. TPA Coefficient Measurements: TPA coefficients were measured by placing the sample at the focus of a lens (focus length 10 cm) and by attenuating the incident laser radiation with a neutral density filter wheel.[52] The incident and transmitted light were measured by placing power meters before and after the sample. The excitation source was a femtosecond laser system 1. Photodetector Fabrication: Glass substrates with predeposited ITO electrodes were patterned using dry etching method. Contacts were obtained with a channel width of 5 µm and a channel length of 1 mm. A layer of interconnected CsPbBr3 MCs was then deposited on the substrate using the method described above.
1703758 (6 of 8)
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
www.advancedsciencenews.com
www.advmat.de
Photodetector Characterization: The I–V characteristic of the device was measured using a Keithley 2400 SourceMeter. For the OPE measurements, a blue monochromatic 450 nm LED source was used. The optical power was measured using a Newport 1830c power meter. A neutral density filter wheel was used to change the incident light intensity. For the TPE, the light source was a femtosecond laser system 1. Time Response Characterization: During the measurement, the device was biased using a homemade DC power supply. Transient photocurrent of the photodetector was measured using a digital oscilloscope. The incident light source was monochromatic for the OPE measurements, whereas it was the femtosecond laser system 1 for the TPE measurements. Wavelength-dependent Photocurrent Measurement: The wavelengthdependent photocurrent of the detector was measured by using monochromatic LED (femtosecond laser system 1 for TPE) with different wavelengths for OPE. And the light density was maintained at 1 mW cm−2 by using a density filter.
Supporting Information Supporting Information is available from the Wiley Online Library or from the author.
Acknowledgements We are grateful to the Ministry of Science and Technology of China (Grant 2017YFA0204800), the National Natural Science Foundation of China (Grant No: 21533010, 21321091, 21525315 and 91333116), DICP DMTO201601, the Science Challenging Program (JCKY2016212A501), Swedish Research Council, KAW foundation and Interreg ÖresundKattegat-Skagerrak, European regional development fund for their financial support.
Conflict of Interest The authors declare no conflict of interest.
Keywords CsPbBr3, optoelectronics, perovskites, photoluminescence, single crystals Received: July 6, 2017 Revised: August 2, 2017 Published online: September 1, 2017
[1] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050. [2] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344. [3] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341. [4] G. Niu, X. Guo, L. Wang, J. Mater. Chem. A 2015, 3, 8970. [5] J. Yang, B. D. Siempelkamp, D. Liu, T. L. Kelly, ACS Nano 2015, 9, 1955. [6] R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, H. J. Snaith, Adv. Energy Mater. 2016, 6, 1502458.
Adv. Mater. 2017, 29, 1703758
[7] Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, H. Sun, Adv. Mater. 2015, 27, 7101. [8] J. Chen, D. Liu, M. J. Al-Marri, L. Nuuttila, H. Lehtivuori, K. Zheng, Sci. China Mater. 2016, 59, 719. [9] J. Chen, K. Žídek, P. Chábera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, T. Pullerits, J. Phys. Chem. Lett. 2017, 8, 2316. [10] L. Dou, Y. M. Yang, J. You, Z. Hong, W. Chang, G. Li, Y. Yang, Nat. Commun. 2014, 5, 5404. [11] V. Adinolfi, O. Ouellette, M. I. Saidaminov, G. Walters, A. L. Abdelhady, O. M. Bakr, E. H. Sargent, Adv. Mater. 2016, 28, 7264. [12] M. I. Saidaminov, M. A. Haque, M. Savoie, A. L. Abdelhady, N. Cho, I. Dursun, U. Buttner, E. Alarousu, T. Wu, O. M. Bakr, Adv. Mater. 2016, 28, 8144. [13] M. I. Saidaminov, V. Adinolfi, R. Comin, A. L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E. H. Sargent, O. M. Bakr, Nat. Commun. 2015, 6, 8724. [14] J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, E. H. Sargent, Nat. Nanotechnol. 2009, 4, 40. [15] P. Ramasamy, D. H. Lim, B. Kim, S. Lee, M. Leeb, J. Lee, Chem. Commun. 2016, 52, 2067. [16] L. Zhou, K. Yu, F. Yang, J. Zheng, Y. Zuo, C. Li, B. Cheng, Q. Wang, Dalton Trans. 2016, 46, 1766. [17] Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, H. Zeng, Small 2016, 12, 5622. [18] D. Liu, Z. Hu, W. Hu, P. Wangyang, K. Yu, M. Wen, Z. Zu, J. Liu, M. Wang, W. Chen, M. Zhou, X. Tang, Z. Zang, Mater. Lett. 2017, 186, 243. [19] X. Tang, Z. Zu, H. Shao, W. Hu, M. Zhou, M. Deng, W. Chen, Z. Zang, T. Zhu, J. Xue, Nanoscale 2016, 8, 15158. [20] J. Feng, X. Yan, Y. Liu, H. Gao, Y. Wu, B. Su, L. Jiang, Adv. Mater. 2017, 29, 1605993. [21] J. Song, L. Xu, J. Li, J. Xue, Y. Dong, X. Li, H. Zeng, Adv. Mater. 2016, 28, 4861. [22] X. Li, D. Yu, F. Cao, Y. Gu, Y. Wei, Y. Wu, J. Song, H. Zeng, Adv. Funct. Mater. 2016, 26, 5903. [23] J. Xue, Y. Gu, Q. Shan, Y. Zou, J. Song, L. Xu, Y. Dong, J. Li, H. Zeng, Angew. Chem., Int. Ed. 2017, 56, 5232. [24] D. Kwak, D. Lim, H. Ra, P. Ramasamy, J. Lee, RSC Adv. 2016, 6, 65252. [25] Y. Lee, J. Kwon, E. Hwang, C. Ra, W. J. Yoo, J. Ahn, J. H. Park, J. H. Cho, Adv. Mater. 2015, 27, 41. [26] Y. Wang, X. Guan, D. Li, H. Cheng, X. Duan, Z. Lin, X. Duan, Nano Res. 2017, 10, 1223. [27] X. Tang, Z. Zu, Z. Zang, Z. Hu, W. Hu, Z. Yao, W. Chen, S. Li, S. Han, M. Zhou, Sens. Actuators, B 2017, 245, 435. [28] C. Ma, Y. Shi, W. Hu, M. Chiu, Z. Liu, A. Bera, F. Li, H. Wang, L. Li, T. Wu, Adv. Mater. 2016, 28, 3683. [29] C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, B. W. Wessels, M. G. Kanatzidis, Cryst. Growth Des. 2013, 13, 2722. [30] J. Song, Q. Cui, J. Li, J. Xu, Y. Wang, L. Xu, J. Xue, Y. Dong, T. Tian, H. Sun, H. Zeng, Adv. Opt. Mater. 2017, 5, 1700157. [31] Y. Rakita, N. Kedem, S. Gupta, A. Sadhanala, V. Kalchenko, M. L. Bohm, M. Kulbak, R. H. Friend, D. Cahen, G. Hodes, Cryst. Growth Des. 2016, 16, 5717. [32] D. N. Dirin, I. Cherniukh, S. Yakunin, Y. Shynkarenko, M. V. Kovalenko, Chem. Mater. 2016, 28, 8470. [33] M. I. Saidaminov, M. A. Haque, J. Almutlaq, S. Sarmah, X. Miao, R. Begum, A. A. Zhumekenov, I. Dursun, N. Cho, B. Murali, O. F. Mohammed, T. Wu, O. M. Bakr, Adv. Opt. Mater. 2017, 5, 1600704. [34] J. Cha, J. H. Han, W. Yin, C. Park, Y. Park, T. K. Ahn, J. H. Cho, D. Y. Jung, J. Phys. Chem. Lett. 2017, 8, 565.
1703758 (7 of 8)
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
www.advancedsciencenews.com
www.advmat.de
[35] J. Ding, S. Du, Z. Zuo, Y. Zhao, H. Cui, X. Zhan, J. Phys. Chem. C 2017, 121, 4917. [36] B. Yang, X. Mao, S. Yang, Y. Li, Y. Wang, M. Wang, W. Deng, K. Han, ACS Appl. Mater. Interfaces 2016, 8, 19587. [37] R. Xiao, Y. Hou, Y. Fu, X. Peng, Q. Wang, E. Gonzalez, S. Jin, D. Yu, Nano Lett. 2016, 16, 7710. [38] Y. Fang, Q. Dong, Y. Shao, Y. Yuan, J. Huang, Nat. Photonics 2015, 9, 679. [39] Y. Fang, H. Wei, Q. Dong, J. Huang, Nat. Commun. 2017, 8, 14417. [40] Y. Yamada, T. Yamada, L. Q. Phuong, N. Maruyama, H. Nishimura, A. Wakamiya, Y. Murata, Y. Kanemitsu, J. Am. Chem. Soc. 2015, 137, 10456. [41] T. Yamada, Y. Yamada, H. Nishimura, Y. Nakaike, A. Wakamiya, Y. Murata, Y. Kanemitsu, Adv. Electron. Mater. 2016, 2, 1500290. [42] L. M. Pazos-Outón, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vruc´inic´, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, F. Deschle, Science 2016, 351, 1430. [43] T. Yamada, Y. Yamada, Y. Nakaike, A. Wakamiya, Y. Kanemitsu, Phys. Rev. Appl. 2017, 7, 014001.
Adv. Mater. 2017, 29, 1703758
[44] J. S. Manser, P. V. Kamat, Nat. Photonics 2014, 8, 737. [45] J. Huang, Y. Shao, Q. Dong, J. Phys. Chem. Lett. 2015, 6, 3218. [46] Y. Liu, J. Sun, Z. Yang, D. Yang, X. Ren, H. Xu, Z. Yang, S. F. Liu, Adv. Opt. Mater. 2016, 4, 1829. [47] P. A. Shaikh, D. Shi, J. R. D. Retamal, A. D. Sheikh, M. A. Haque, C. Kang, J. He, O. M. Bakr, T. Wu, J. Mater. Chem. C 2016, 4, 8304. [48] X. Li, D. Yu, J. Chen, Y. Wang, F. Cao, Y. Wei, Y. Wu, L. Wang, Y. Zhu, Z. Sun, J. Ji, Y. Shen, H. Sun, H. Zeng, ACS Nano 2017, 11, 2015. [49] B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Roèckel, M. Rumi, X. Wu, S. R. Marder, J. W. Perry, Nature 1999, 398, 51. [50] S. Kawata, Y. Kawata, Chem. Rev. 2000, 100, 1777. [51] A. Hayat, A. Nevet, P. Ginzburg, M. Orenstein, Semicond. Sci. Technol. 2011, 26, 083001. [52] G. Walters, B. R. Sutherland, S. Hoogland, D. Shi, R. Comin, D. P. Sellan, O. M. Bakr, E. H. Sargent, ACS Nano 2015, 9, 9340. [53] Q. Lin, A. Armin, P. L. Burn, P. Meredith, Laser Photonics Rev. 2016, 10, 1047.
1703758 (8 of 8)
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim