International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 ISSN 2229-5518
689
Bianchi Type IX Two Fluids Cosmological Models in General Relativity D. D. Pawar1 , V. J. Dagwal2 Abstract— In this paper we have studied Bianchi Type IX two fluids cosmological models with matter and radiating source. In the model one of the fluids represents the matter content of the universe and another fluid is the CMB radiation. To get the deterministic model, we have asn sumed a supplementary condition a = b where a & b are metric potentials and n is the constant. We have also investigated the behaviors of some physical parameters. Keywords: Bianchi Type-IX Space Time, CMB radiation, Two Fluids.
—————————— ——————————
1 INTRODUCTION
T
sent through out the evolution of the universe. HE cosmic microwave background (CMB) is one of the
2 FIELD EQUATIONS
cornerstones of the homogeneous, isotropic model. Anisotropies in the CMB are related to small perturbation, superimposed on the perfectly smooth background, which are believed to seed formation of galaxies and large-scale structure in the universe. Coley and Dunn1 (1990), have studied Bianchi
We consider the metric in the form
ds 2 dt 2 a 2 t dx 2 b 2 t dy 2
b
2
sin 2 y a 2 cos 2 y dz 2 2a 2 cos ydxdz (1)
where a & b are functions of t alone. The Einstein’s field equation is
type VI0 model with two fluid source. Pant and Oli2 (2002) has been investigated two fluid cosmological models using Bianchi type II space-time. Oli (2008) presented anisotropic, ho3
R ij
1 i g j R T ji . 2
(2)
mogeneous two fluid cosmological models in a Bianchi type I
The energy momentum tensor for two fluids sources is given
space time with a variable gravitational constant G and cos-
by
mological constant. Many researchers were investigated the
Ti j Ti (jm ) Ti (jr ) ,
Friedmann-Robertson-Walker models with two fluids source [Davidson4 (1962), McIntosh5 (1968), Coley and Tupper6 (1986), Coley7 (1988), Verma8 (2009) etc.]
where and
Recently Adhav9 et al. (2011) examined two fluid cosmological models in Bianchi type V space-time. Here we have studied two-fluid models in Kantowski-Suchs space time. In these models we assume that both the fluids are pre-
School of Mathematical Sciences, Swami Ramanand Teerth Marathwada University, Vishnupuri Nanded-431 606 (India) E-mail:
[email protected]
) Ti (m j is the energy momentum tensor for matter field
Ti (rj ) is the energy momentum tensor for radiation field
which are given by
Ti (jm ) pm m uim u mj pm g i j ,
Ti (jr ) with
————————————————
(3)
4 1 r uir u rj r g i j , 3 3 g i j uim u mj 1 , g i j uir u rj 1 .
(4) (5) (6)
1
Govt.College of Engineering, Amravati-444 604 (India) E-mail:
[email protected] 2
The off diagonal equations of (2) together with energy conditions imply that the matter and radiation are both comoving. We get,
IJSER © 2013 http://www.ijser.org
International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 ISSN 2229-5518
ui( m ) 0,0,0,1 ,
ui( r ) 0,0,0,1
When
(7)
f1
The Einstein’s field equation (2) reduces to –
3a 2 2b 1 b 2 2 2 Pm r 4 4b b b b 3
a b ab a 2 2 Pm r a b ab 4b 3
,
df 2 f 2 2b 2 n 3 2 2 1 n . (19) db b 1 n b 1 n
(9)
Equation (19) leads to
2
b 2n1 1 b 21n . 2 2n1 n 1 n
f2
2 2 Pm m r , 3 Pm
df . db
Equating (16), (17) and (18) we have
(8)
ab b 1 a 2 2 4 ab b b 4b 2
2
,
690
where is integration constant.
(10)
Equating (14) and (15) we get
r 0. 3
2n b 10 Pm m . n 1 2n n 1 2 1 n
(11)
b
2 n 1
3 SOLUTION OF THE FIELD EQUATION
(21)
Equations (8) to (11) are four independent equations in five unknowns a, b, r ,
m
and
pm . For the complete de-
terminacy of the system, we need extra conditions. We assume a relation in metric potentials as
a bn
(12)
(13)
Pm 1 m ,
(23)
total energy density as (14)
(15)
2 n 1 1 2n T 21 n m T , (24) 10 9 n 1 2n n 1
r
Equating (8), (9) and (12) we get
b 2 2b 2n3 2 2b 21 n b 1 n b1 n
1 2
We get energy density matter, energy density of radiation and
Equating (13) and (14) we get .
(22)
For the equation of state of matter we shall assume the -law
Equating (8), (9) and (11) we get
5b 1 b 2 3a 3ab 8Pm . b b2 b2 a ab
1
T 2 n 1 1 21 n dT 2 T 2 n dX 2 ds T 2 2n 1 n 1 n T 2 dY 2 T 2 sin 2 Y T 2 n cos 2 Y dZ 2 2T 2 n cos YdXdZ 2
where b = T, x = X, y = Y and z = Z
Equating (9), (10) and (11) we get
a b 3ab b 2 1 2 Pm m a b ab b 2 b 2
The metric (1) reduces to the form
.
when n is the constant.
a 2b 5 Pm m a b 2
(20)
3 1 2 n 1 2n T 21 n T , (25) 10 9 n 1 2n n 1
r m , (16)
We assume that
(26)
3 2 2 n 1 2n T 21 n T . 10 9 n 1 2n n 1
(27)
b f b ,
(17)
Case I: Dust model when
b f f 1 .
(18)
The scalar of expansion, shear scalar and deceleration parameIJSER © 2013 http://www.ijser.org
1
International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 ISSN 2229-5518
691
ter are given by
(34) 1
2 T 2 n 4 1 2 n 2 , 3H n 2 2 T 2 2n 1 n T 1 n
2 n 2 1 T 2 n 4 1 2 n 4 , T 2 2 3 2n n 1 T 1 n 2
(35)
(28)
T 4 n 8 2 q 1 n 2 n 1 2 4n 1 n T 8 T 2 n 6 T 2 n 6 ,(36) 1 n 1 n n1 n 1 n 2
T 2 n 4 2 2 1 2 2 n 4 , n 1 2 T 2 3 2n n 1 T 1 n
(29)
T 4 n 8 T 8 q 1 6 n 2 n 1 2 4n 1 n 1 n T 2 n 6 nT 2 n 6 2 n 1 n 1 n 2
1 T 1 n 2 4
2
nT 4 n 8
nT 2 n6
m
1
T 4 1 n
2 2
nT 4n8
2 n 1 2n T 21 n T n 1 2n n 1
1 2
2n T 21 n n 1 2nn 1
m
2 n 4
T 1 3 2 T 2 n 2 2 2n1 n T 1 n
2n T 21 n n 1 2nn 1
T 2 n 4 1 3 2 T 2 n 2 2 2n1 n T 1 n
1 2
13 n 2 T 2 n 4 1 2 n 2 2 T 2 2n 1 n T 1 n
,
(38)
(32)
, (31)
r 0 ,
n 21 T 2 n1
r
2
2
2 n 1 2n T 21 n T . 2n n 1 n 1
The density parameters are
,
(37)
(30)
n 21 T 2n1
2
13 n 2 T 2 n 4 1 2 n 2 2 T 2 2n 1 n T 1 n
2
. (33)
2 n 1 2n T 21 n T . 2n n 1 n 1
2 2
13 n 2 T 2 n 4 1 2 n 2 2 T 2 2n 1 n T 1 n
2
.
(39)
Case II: Radiation universe: Case III: Hard Universe:
4 When 3 The scalar of expansion, shear scalar and deceleration parame-
Let
ter
4 ,2 3
5 3
1
2 T 2 n 4 1 2 n 2 3H n 2 2 T 2 2n 1 n T 1 n
The scalar of expansion, shear scalar and deceleration parameter in hard universe are
IJSER © 2013 http://www.ijser.org
International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 ISSN 2229-5518
692
(46)
1
2 T 2 n 4 1 3H n 2 2 1 n 2 T 2 n 2 , 2n 1 n T
2
(40)
(47)
T 2 n 4 2 1 2 n 4 , n 2 1 2 T 2 3 2 n n 1 T 1 n 2
q 1 6n 2 n 1 2
T 4 n 8 T 8 T 2 n 6 2 1 n 1 n 4n 1 n , T 2 n 6 nT 2 n6 2 n1 n 1 n
(41)
4 n 8
T 2 q 1 6n 2 n 1 2 4n 1 n T 8 T 2 n 6 ,(42) 1 n n1 n 1 n 2
T 2 n 4 2 2 1 2 n 4 , n 1 2 T 2 3 2n n 1 T 1 n
1
T 4 1 n2
2
nT 4 n8
T 4 1 n
2 2
r m
2 n 1 2n T 21 n T n 1 2n n 1
1 m 2 23 n 2 T 2 n 4 1 2 n 2 2 T 2 2n 1 n T 1 n
nT 4n8
1 2 33n 2
2n1 2n T 21 n T n 1 2nn 1
,
,(49)
T 2 n 4 1 2 T 2 n 2 2 2n1 n T 1 n
2
m r ,
(43)
r
1
(48)
2 n 1 2n T 21 n . T 2n n 1 n 1
3 2 23 n 2 T 2 n 4 1 2 T 2 n 2 2 2 n 1 n T 1 n
,
2 2 33n 2
2n1 2n T 21n T . n 1 2nn 1
.(50)
T 2 n 4 1 2 T 2 n 2 2 2n1 n T 1 n
(44)
2
21 n
2 n 1 2n T . T 2n n 1 n 1
2 2 23 n 2 T 2 n 4 1 2 n 2 2 T 2 2n 1 n T 1 n
4 CONCLUSION
.
Here we observe that when n = –2 then expansion
0
(45)
q 1 0
indicates the accelerating model of
the universe. Also the energy density of matter
Case IV: Zeldovich Universe: When
and
total energy
2
r 0
T 2 n 4 1 2 n 2 3H n 2 2 T 2 2n 1 n T 1 n
1 2
for dust model only.
lim 2 n2 1 In all cases 0 T n 12
IJSER © 2013 http://www.ijser.org
and
but energy density of radiation
2
,
m
International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 ISSN 2229-5518
Therefore these models do not approach isotropy for large value of T. These models are expanding, the expansion in the model starts with big bang at T = 0.
Acknowledgments: The author D D Pawar especially thanks to University Grant Commission, Pune for provides the grant under MRP scheme.
REFERENCES 1)
Coley A. A. and Dunn K.: Astrophys. J. 348, 26 (1990).
2)
Pant D. N. and Oli S.: Astrophys. Space Sci., 281, 623 (2002).
3)
Oli S.: Astrophys. Space Sci., 314, 89 (2008).
4)
Davidson W.: Mon. Not. R. Astron. Soc., 124, 79 (1962).
5)
McIntosh C. B. G.: Mon. Not. R. Astron. Soc., 140, 461 (1968).
6)
Coley A. A. Tupper B. O.: J. Astrophys., 27, 406-416 (1986)
7)
Coley A. A.: Astrophys. Space Sci., 140, 175 (1988).
8)
Verma A. K.: Astrophys. Space Sci., 321, 73-77 (2009).
9)
Adhav K. S., Borikar S. M., Raut R. B: Int. J. Theor. Phys., 50: 1846-1851 (2011).
IJSER © 2013 http://www.ijser.org
693