Biogeochemistry of the Amazonian Floodplains ... - AMS Journals

0 downloads 0 Views 6MB Size Report
@USP–ESALQ, NUPEGEL, Piracicaba, Brazil. &Embrapa ..... sols of lowlands, as inferred from the very characteristic 18O enrichment of waters (Tardy et al.
Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 1

Copyright Ó 2010, Paper 14-009; 35226 words, 8 Figures, 0 Animations, 8 Tables. http://EarthInteractions.org

Biogeochemistry of the Amazonian Floodplains: Insights from Six End-Member Mixing Models* Vincent Bustillo*,1,# Reynaldo Luiz Victoria,1,@ Jose Mauro Sousa de Moura,1 Daniel de Castro Victoria,& Andre Marcondes Andrade Toledo,** and Erich Collicchio1,11 1

Centro de Energia Nuclear na Agricultura, Laborato´rio de Geoprocessamento e Tratamento de Imagens, Piracicaba, Brazil # Universite´ Francxois-Rabelais de Tours, UMR CNRS/INSU 6113 Institut des Sciences de la Terre d’Orle´ans, Universite´ d’Orle´ans, Tours, France @ USP–ESALQ, NUPEGEL, Piracicaba, Brazil & Embrapa Monitoramento por Sate´lite, Campinas, Brazil **Universidade Federal de Mato Grosso, UFMT, Campus de Rondono´polis, Rodovia Rondono´polis-Guiratinga, Rondono´polis, Brazil 11 Universidade Federal do Tocantins, AgroUnitins, Palmas, Brazil Received 10 January 2010; accepted 29 May 2010 ABSTRACT: The influence of Amazonian floodplains on the hydrological, sedimentary, and biogeochemical river budget was investigated along the Var´ bidos reach, by applying six mixing models based on variable gem Grande–O regional and/or variable hydrological sources. By comparing the output of many different models designed for different purposes, the nature and the magnitude of processes linking water and biogeochemical budgets of the Amazonian * Supplemental information related to this paper is available at the Journals Online Web site: http://dx.doi.org/10.1175/2010EI326.s1. * Corresponding author address: Vincent Bustillo, Universite´ Francxois Rabelais de Tours, Parc Grandmont, UFR Sciences et Techniques, Baˆtiment E, 37200 Tours, France. E-mail address: [email protected] DOI: 10.1175/2010EI326.1

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 2

floodplains were clarified. This study reveals that most of the chemical baseline of the Amazon River basin is acquired before the studied 2000-km Amazonian reach. However, the tight connection between the hydrograph stage of the river and the chemical signals provides insightful information on the dynamics of its floodplains. The chemical expression of biotic and abiotic processes occurring in the Amazonian floodplains can be particularly perceived during falling waters. It appears delayed in time compared to the maximum extension of submerged area, because the alternating water circulation polarity (filling versus emptying) between the main channel and the adjacent floodplains determines delayed emptying of floodplains during falling waters. It results also in a longer time of residence in the hydrograph network, which strengthens the rate of transformation of transiting materials and solutes. Biotic and biologically mediated processes tend to accentuate changes in river water chemistry initiated upstream, in each subbasin, along river corridors, indicating that processes operating downstream prolong those from upstream (e.g., floodplains of the large tributaries). Conversely, the flood wave propagation tends to lessen the seasonal variability as a result of the water storage in the floodplains, which admixes waters of distinct origins (in time and space). The morphology of floodplains, determining the deposition and the diagenesis of the sediments as well as the variable extension of submerged areas or the chronology of floodplains storage/emptying, appears to be the main factor controlling the floodplains biogeodynamics. By coupling classical end-member mixing models (providing insight on hydrological source) with a variable regional contribution scheme, relevant information on the biogeochemical budget of the Amazonian floodplains can be achieved. KEYWORDS: Amazon River; Floodplains; Biogeochemical cycles; Sediment dynamics; Diagenesis; CO2 outgassing

1. Introduction This paper is dedicated to the study of coupled biogeochemical, sedimentary, and hydrological budgets of the Amazonian floodplains along a 2000-km reach ´ bidos (O ´ bi). extending between the stations of Vargem Grande (VG) and O 1.1. Preliminary work Based on the chemical data of the Carbon in the Amazon River Experiment (CAMREX), biogeochemical mass balances over the studied reach were calculated at 10 sampling sites, well spatially distributed, by comparing incoming and outgoing signals and fluxes (Bustillo 2007) with respect to 44 physicochemical parameters. This approach, based essentially on empirical observations instead of modeling outputs, emphasized that the anomalies of mass balances were mainly related to hydrograph stages and to the hydrological balance of the floodplains. Geochemical and hydrological information were treated in a lumped way, providing thus a pertinent insight on the complex hydrological and chemical linkages normally present between floodplains and river channels. Deliberately based on facts instead of modeling outcomes, this preliminary work raised many intriguing questions with respect to the structure of flux and signal anomalies (e.g., the coarse fraction of particulate organic carbon is very significantly 13C enriched during falling waters). The calculations of mass balances were performed in an exhaustive

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 3

way, at the 10 monitoring stations, involving 44 physicochemical parameters over 8 sampling cruises. However, the determinants of flux imbalances remain to be identified. 1.2. Research objectives and challenges This study aims at deciphering the nature and magnitude of underlying processes driving the transport of particulate and dissolved species toward the ocean and the gaseous exchanges at the river–atmosphere interface, with a special focus on floodplain–channel linkages. This last component is especially significant in large river systems and is highly relevant to contemporary international debates on the human modification of floodplain land use, flood control, and the construction of levees and reservoirs, which all act to decouple floodplains from stream channel environments. Spatially linking tributary streams and longitudinal shifts in hydrology, water chemistry, and sedimentology is therefore a very challenging issue. Achieving this purpose requires testing the validity of the interpretative statements inspired by the empirical observations (preliminary work). The question addressed in this paper can be formulated as follows: what is the actual impact of the floodplains and of their hydrological functioning on the biogeochemical budget of the Amazon River basin? To these ends, six hydrochemical modeling strategies, based on end-member mixing concept and using tracer-based separation methods, were implemented. These approaches aim to link hydrological pathways and chemical signals in order to couple hydrological and biogeochemical budgets. Comparing the outputs of these different models designed for different purposes is expected to provide a better sense of the whole by better constraining the range of possible interpretations given to the flux imbalances. 1.3. On the use of end-member mixing models End-member mixing models provide comprehensive understanding of runoff generation processes with a special focus on hydrological pathways, contributive areas, and retention times (Gonzales et al. 2009). However, the direct measurement of each contributive runoff in a continuous way and at a sufficient number of locations is practically impossible (Tardy et al. 2004; Bustillo 2005). Hydrograph separation methods can be divided in two main categories: tracer-based and nontracer-based separation methods. Nontracer-based separation methods are based on the analysis of hydrographs, including a large variety of procedures, including graphical analysis of recession curves, low-pass filtering, unit hydrograph modeling with extrapolation to rising limb of hydrographs, and rating curve methods linking groundwater levels and river flow. Tracer-based separation methods are based on a mass balance approach determined by the conservative mixture in variable proportions of compositionally constant end members (or at least sufficiently stable and distinct from one end member to another to make the procedure achievable). They are usually recognized to deliver valuable information about the groundwater contribution to the river discharge, provided that adequate tracers are selected. The procedure proposed by Hooper et al. (Hooper et al. 1990), which was called endmember mixing analysis and based on the identification of end members by principal component analysis (PCA), was widely applied for studying the hydrology of small

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 4

catchments. Its implementation supposes that the water chemistry within each hydrological component is known. At the scale of very large river basins, no such input data can be measured, particularly because of spatial heterogeneities of tracer concentrations and because the fluxes supplied by hydrological reservoirs are not systematically conservative because of in-stream processes and fluvial filtering in river corridors and floodplains (Meybeck and Vo¨ro¨smarty 2005). The synthesis of Mortatti (Mortatti 1995) attempted to provide new insights into Amazon River hydrology by gathering biogeochemical and hydrological approaches. However, the hydrograph separation is based on two reservoirs only; although it is very interesting, it proved to be insufficient, particularly because it did not allow capture of the very significant influence of the floodplains on the biogeochemical budget of the Amazon River basin. Despite peculiar cases that are easily corrected case by case, it appears that most large river basins, whatever their morphology and hydroclimatology, are reasonably modeled using the hydrograph separation concept, dividing the total discharge into—at least—three reservoirs. 1.4. Organization of the manuscript To overcome the difficulties mentioned above, we proposed to investigate the hydrologic function of the Amazon River floodplains, between Vargem Grande ´ bidos (the outlet of the studied area), by (before the confluence of Rio Ic xa) and O applying six complementary modeling approaches (including end-member mixing models) to the successive sampling stations located along the main stem of the Amazon. These are based on 1) variable regional sources with (model M2) and without (model M1) correction of inputs by small tributaries; 2) variable hydrological sources with three end members (model M3) to determine their individual compositional evolution, with contrasted response depending on hydrograph stage, throughout their course in the floodplains; 3) variable hydrological sources with three end members, including a correction on the baseflow to account for in-stream biogenic transformations (model M4); and 4) mixed approaches (models M5 and M6) combining the regional variability of chemical signals (between river basins) and the variability related to hydrological source (between contributing runoffs or end members), taking into consideration the defaults of floodplains water balance. The compositional changes of the chemical baseline in each individual reservoir, set in evidence by comparing their composition within incoming (tributaries) and outgoing (Amazon River reach) runoffs, are more particularly analyzed. By determining hydrological sources and the magnitude of their individual compositional changes, this approach delivers a valuable and original insight on the main factors [hydrological source, water budget of the floodplains, nature of hydrobiological pattern (e.g., photosynthesis versus mineralization, air–water gaseous exchanges, etc.)] driving the biogeochemical and sedimentary budgets of Amazonian floodplains.

2. Study area and dataset The main physiographic structural elements of the basin include (i) the Precambrian, highly weathered Guyana and Brazilian shields; (ii) the Andean mountains to the west; (iii) the Andean alluvial foreland; and (iv) a large alluvial plain along the Amazon main stem. Soils in the lowlands are generally deep and highly weathered, with widespread covers of sandy podzols in the shields. The soils in floodplains (and alluvial

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 5

regions around main stems draining the Andes) are much less weathered because of the continuous input of fresh sediments delivered by physical erosion. The Amazon River and most of its large tributaries have developed extensive floodplains, which are integral parts of the river systems (Richey et al. 1997). After leaving the Andean foothills, the tributaries of the Amazon converge into a large sedimentary plain, where they deposit large volumes of sediments (e.g., Guyot 1993) and inundate the floodplains via an extensive network of drainage channels called paranas. Two distinct types of floodplain channels are (i) tributary channels that drain upland terraces and (ii) distributary channels that transport main-stem Amazon water and sediment to floodplain lake basins. A synthetic view of the Amazon River basin upstream from ´ bidos, including the delineation of major subbasins, the location of the sampling O station along the Amazon River main stem, and the geographical repartition of small tributaries ungauged during the CAMREX project, is presented (Figure 1). The samples were collected during the CAMREX project over the period 1982–84 (eight cruises), during contrasted hydrographic stages, completed by five additional cruises between 1985 and 1991 focusing on specific topics, for which an exhaustive dataset is not available (thus not considered in this paper). The objective of CAMREX project was to define by mass balances and direct measurements the processes that control the distribution of bioactive elements (C, N, P, and O) in the main stem of the Amazon River in Brazil. The CAMREX dataset represents a time series unique in its length and detail for very large river systems. The dataset, extracted from Pre-Large-Scale Biosphere-Atmosphere Experiment in Amazonia (PreLBA) compilation (Marengo and Victoria 1998; Richey et al. 2008), consists in representative flux-weighted water samples for comprehensive chemical analysis measured over 18 different sites within a 2000-km reach of the Brazilian Amazon main stem, including seven major tributaries. This dataset constitutes, until that date, the basis of more than 130 CAMREX publications, which have focused on understanding physical and biogeochemical dynamics throughout the basin using a large variety of approaches (e.g., Richey et al. 1990). Monitoring stations are located a few kilometers upstream of the confluence of the seven major tributaries with the Amazon River, Ic xa, Japura, Jutai, Jurua, Purus, Negro, and Madeira, and along the Amazon River at the 11 following stations: Vargem Grande (VG), Santo Antonio do Ic xa (SAI), Xibeco (Xib), Tupe (Tup), Jutica (Jut), Anori (Ano), Itapeua ´ bidos (Ita), Manacapuru´ (Man), Sa˜o Jose da Amatari (SJA), Paura´ (Pau), and O 2 ´ (Obi; 4 619 000 km ; the outlet of the studied area). Thus, it becomes possible to compare the inputs from tributaries and the outputs of the Amazon River at different locations along the longitudinal profile of the main stem.

3. Modeling strategy Six mixing models of increasing complexity are implemented (Table 1). They belong to three distinct categories. The first category (models M1 and M2) accounts the variable contribution of the subbasins to the biogeochemical budget. The second category relies on end-member mixing models (models M3 and M4), which allow the identification of source reservoirs, supposed to have constant composition but contributing in variable proportion to the river flow. A third category of model, taking into account the variability related to regional contrasts and hydrological source, is also explored (models M5 and M6).

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 6

´ bi showing the major tributaries Figure 1. Map of the Amazon basin upstream from O and the geographical repartition of small tributaries (areas colored in gray) along the Amazon River main stem. Numbers in italics stand for the drainage area of major subbasins (expressed in km2).

3.1. Variable regional source The first model (M1) fundamentally relies on the comparison between calculated and observed longitudinal profiles of concentrations. Upstream, the chemical composition of Rio Solimo˜es constitutes 1) the starting point. Along its course, in low plains, several tributaries join the principal river and modify its chemical composition: the rivers 2) Icxa´; 3) Jutai; 4) Japura´; 5) Jurua´; 6) Purus; 7) Negro; and ´ bidos, the outlet of the Amazon River basin 8) Madeira, the last one before 9) O chosen in this study. Considering the concentrations Cij of each chemical species i, the total discharge Qtj of the jth confluent, and before the confluence with the tributary ( j 1 1), the concentration C ij11 ,tot in the Amazon River after the ( j 1 1)th confluent is established as follows: !, k5j k5j11 X X j11 j j11 k j11 C i,tot 5 C i,tot 3 Qt 1 C i 3 Qt Qkt . (1) k51

k51

Subscripts i and superscripts j correspond to the parameter analyzed and to the number of tributaries contributing to the Amazon River flow at each station considered (from j 5 1 standing for Santo Antonio do Ic xa´ to j 5 8 designating the station

Variable contribution of major tributaries Step 1: Variable contribution of major tributaries Step 2: Mean concentration of the additional flow (small tributaries and alluvial aquifers) End-member mixing models: Three reservoirs RS: forwarded direct runoff; RI: delayed direct runoff; RB: baseflow Step 1: Variable contribution of major tributaries Step 2: End-member mixing models taking into account biotic processes Step 1: Variable contribution of major tributaries Step 2: End-member mixing models calibrated on the relative differences (DCijk) Step 1: Variable contribution of major tributaries Step 2: End-member mixing models calibrated on the relative differences (DCijk)

M1 M2

Paper No. 9

M6

DCijk 5 f (3 covariates) D(QRS/Qt), D(QRI/Qt), and DQt(I 2 O) DCijk 5 f (2 covariates) 1) River discharge Qt 2) Default of water balance DQt(I 2 O)

Cijk(RB) 5 Cij(RB), 0 1 KBIO(ij) 3 IBIO( jk)

d

M5

C(ijk) 5 Cij(RS) 3 QRS ( jk)/Qt( jk) 1 Cij(RI) 3 Qjk(RI)/Qt( jk) 1 Cij(RB) 3 QRB( jk)/Qt( jk)

C(ijk) 5 SSS [Cijk, t 3 Q( jk, t)/Qt( jk)] C(ijk) 5 C(ijk), M1 3 Qin( jk)/Qo( jk) 1 Cij(y) 3 [Qo( jk) 2 Qin( jk)]/Qo( jk)

Rule of calculation

Volume 14 (2010)

M4

M3

Principle

d

Model

Table 1. Modeling of the Amazon River composition along a 2000-km longitudinal profile. Main principles and rules of calculations of six distinct mixing models: M1 and M2 are based on the variable contribution of regional sources to water and biogeochemical budgets; M3 and M4 rely on the variable contribution of hydrological sources (viz., forwarded direct runoff RS, delayed direct runoff RI, and baseflow RB) with a correction for M4 taking into account the influence of the river processes; and M5 and M6 are composite models taking into account the combined effects of the variable contributions relative to the regional and hydrological sources. Note that i is the index of the chemical species (ni 5 44), j is the index of the monitoring station (nj 510), and k is the index of the sample (nk 5 8).

Earth Interactions d

Page 7

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 8

j ´ bidos), respectively. Assuming conventionally that Qtot of O 5 Pn5j11 n j11 Qtot 5 n51 Qt , one obtains

Pn5j

n n51 Qtot

j j j11 j11 3 Qtj11 )=Qtot . C ij11 ,tot 5 (C i,tot 3 Qtot 1 C i

and (2)

j After the jth confluent, C ij11 ,tot becomes C i,tot , and the cumulative runoff changes j11 j from Qtot to Qtot . For each parameter, the concordance between theoretical (i.e., calculated) and observed longitudinal profiles is appreciated by analyzing the fitting capability of the simple linear model,

C ij (obs) 5 aij 3 C ij (calc) 1 bij .

(3)

The correlation coefficient r2 is calculated for each parameter (ni 5 44) and each station (nj 5 10). The results of calibration are given in the appendix (Table A2). Then, the slope aij (ideally close to 1) and the intercept to origin bij (ideally close to 0) are considered. Finally, the mean bias B is calculated as follows: k5Nk P

Bij 5

k51

C ij,k(calc) 

k5Nk P k51

C ij,k(obs) ,

N ij,k

(4)

where k indexes the number of the sample and N ij,k for the number of samples for each station and each parameter. This bias, calculated on average dischargeweighed values, allows estimating the mean chemical composition of floodplains and small tributaries Cij(y), assuming that measured biases depend on their variable contribution to river flow. The model M2 corrects M1 by taking into account the mean composition of small tributaries and floodplains. The composition of the additional flow (small tributaries plus alluvial aquifers), noted Cij(y), is estimated by the analysis of differences (composition and flow) between the sum of major tributaries (calculated input), Fij(in) 5 Cij(in) 3 Qtj(in), and the output (measured output), Fij(out) 5 Cij(out) 3 Qtj(out), corresponding to the river water composition at the considered station:   C ij (y) 5 Fij (out)  Fij (in) Qtj (y)   5 C ij (out) 3 Qtj (out)  C ij (in) 3 Qtj (in) [Qtj (out)  Qtj (in).

(5)

Finally, the concentrations obtained through the model M2 for each cruise are given by C ij,k (M2) 5

n

C ij,k (M1) 3 Qtj,k

1 C ij (y) 3

h

Qtj11 ,k



Qtj,k

io.

Qtj11 ,k .

(6)

To test the model fitting capability, linear equations comparable to those presented above for M1 are also calibrated for M2. By averaging the estimations of all the

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 9

samples, it must be reminded that Bij 5 0 for each station and each parameter in the case of M2. 3.2. Variable hydrological source The third model (M3) relies on the hydrograph separation into three components: the superficial runoff RS, the interflow RI, and the baseflow RB. These reservoirs are meant as the expression of spatially organized tributary basins with vertical (top–bottom in soils) and upstream–downstream gradients involving three mixing end members: d

d

d

RS tracking superficial and hypodermic pathways that arise more particularly in upstream areas, which provide most of the solid load transported by fluvial systems; RI tracking superficial and hypodermic pathways that arise more particularly in downstream areas where deep leached soils provide waters of low dissolved (except for organic matter) and solid loads; and RB tracking groundwater pathways, corresponding to the leaching of the soil horizon C (permeable saprolite) that occasionally emerge in the gleysols of lowlands, as inferred from the very characteristic 18O enrichment of waters (Tardy et al. 2009).

The identification of these three components relies upon chemical tracing. The concentrations of Na1 and fine suspended sediment [FSS] are selected as the best tracers (Tardy et al. 2005). The fluctuations of [Na1] track the processes of dissolution and evaporation, which tend to generate a concentration gradient from the superficial layer of soil to groundwaters that are directly at the contact with the chemical front of alteration. On the other hand, the fluctuations of [FSS] track the soil erosion, which is almost specific of surface runoff. The chemical tracers in each reservoir determine the contribution of these source reservoirs to the total river flow Qt by solving the system of equation composed of two equations of mass conservation for each tracer [Equation (7)] and the equation of flow conservation [Equation (8)], C ij,k 5 C ij (RS) 3 QRSkj /Qt kj 1 C ij (RI) 3 QRIkj /Qt kj 1 C ij (RB) 3 QRBkj /Qt kj

and

QRSkj 1 QRIkj 1 QRBkj 5 Qt kj ,

(7)

(8)

where j indexes the considered subbasin and i the parameter used as a chemical tracer. Here [Na1] and [FSS] within each reservoir correspond to the values established by Tardy et al. (Tardy et al. 2005). The next step consists in adjusting CijRS, CijRI, and CijRB to the whole dataset (42 parameters, excluding the 2 tracers) by performing multilinear regressions. As a result, we define statistically the most probable composition of each reservoir RS, RI, and RB. End-member mixing models are calibrated for each of the 10 stations located along the Amazon River

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 10

´ bidos) but also for each of the eight major main stem (from Sao˜ Antonio do Icxa´ to O tributaries. Then, the decomposition of hydrograph is performed theoretically by cumulating the reservoir inflow QK of each tributary (trib) to each station (1  j  8), QKj11 5 QKj 1 QKj11 ,trib ,

(9)

where K is the index for hydrological reservoirs, RS, RI, or RB. Consequently, for each hydrological node, two models of repartition are implemented. The first one is calibrated using chemical data measured at each of the 10 stations, whereas the second one is calibrated using a calculated pool of chemical data, corresponding to the variable spatial contribution of subbasins to the Amazon River discharge. It is expected that differences between the chemical characteristics of reservoirs are good indicators of floodplains biogeodynamics. A full dataset is provided in the appendix (Table A3). 3.3. Biologically mediated processes The biological control of chemical factors in river, popularized by Redfield (Redfield 1958), is evaluated in the model M4 by testing the influence of biotic processes on the composition of the baseflow RB. The protocol of calculation for evaluating QRS( j), QRI( j), and QRB( j) is identical to that of the model M3. The composition of baseflow is supposed to be variable as a function of biological pathway tracked with the synthetic variable IBIO, I BIO kj 5 [O2 ]kj  [CO2 ]kj .

(10)

In the case of intense photosynthesis, O2 is actively produced while CO2 is removed and consequently IBIO increases. Conversely, when the decomposition prevails, CO2 is actively produced while O2 is removed and consequently IBIO diminishes. The model M4 is formalized as follows:   C ij,k 5 C ij (RS) 3 QRSkj Qt kj 1 C ij (RI) 3 QRIkj Qt kj    1 C ij (RB) 1 K BIO kj 3 I BIO kj 3 QRBkj Qt kj , (11) with K BIO ij corresponding to the rate of uptake or release of each bioactive element (i) for each station ( j) associated to biologically mediated processes in the river water. If K BIO ij . 0, the concentration increases when the photosynthesis pathway prevails (I BIO kj . 0) and decreases when the mineralization predominates (I BIO kj , 0). The mineralization leads to the removal of dissolved O2 and to the release of CO2. That is the reason why IBIO associated to mineralization paths is usually negative and potentially very negative. Therefore, K BIO ij , 0 indicates that the concentration increases when mineralization pathway prevails (I BIO kj , 0) and decreases when photosynthesis predominates (I BIO kj . 0). In the case of isotopic data (d18O, d13C) that are all negative, the interpretation of K BIO ij is inverted. For simplification purposes, the signs of K BIO ij associated to isotopic values were systematically inverted to homogenize the deciphering for all the parameters. Full model outcomes relative to M4 are presented in the appendix (Table A4).

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 11

3.4. Composite approach The model M5 is a composite approach that integrates both variable spatial contribution (M1) and variable hydrological source (end-member mixing models). First, we establish for each cruise k (Nk 5 8) each parameter i and each hydrological node j, the relative difference, noted DC ij,k , between calculated (calc) and observed (obs) values, as follows: DC ij,k

5

C ij,k (obs)  C ij,k (calc) C ij,k (calc)

(12)

The second step consists in relating this relative difference with several factors. We have selected three covariates corresponding to the relative differences D(QRS/Qt), D(QRI/Qt), and DQt: DC ij,k 5 aij 3 D(QRS/Qt )kj 1 bij 3 D(QRI/Qt )kj 1 g ij 3 DQt kj 1 dij ,

(13)

8 j j j > :D Q j 5 Q j , obs/Q j  1 tk tk t tot,k

(14)

with

The term dij in Equation (13) stands for the residual relative difference DC ij,k when the three following conditions are fulfilled: (i) D(QRS/Qt ) kj 5 0 ; (ii) D(QRI/Qt ) kj 5 0 ; and (iii) D Qt kj 5 0. The coefficients aij, bij, and g ij, estimated by multilinear regressions, provide qualitative information on river diagenesis in RS (surface runoff), RI (interflow), and Qt (total runoff). If the coefficient is positive, it indicates that the concentration increases in the correspondent runoff as the individual discharge QK increases. Considering the total river flow Qt, the sign of gij indicates whether the discharge of floodplains, roughly estimated by DQt kj 5 Qt kj /Qtjtot,k  1, contributes to increase or decrease the chemical concentration of the chemical parameter i in the river water at the station j. Values of QRS, QRI, QRB, and Qt are given in the appendix (Table A1 and Figure A1), with M3 corresponding to model-derived data and M1 corresponding to data calculated from upstream subbasins. A complementary approach (M6) consists in evaluating the combined effect of the total discharge Qt kj and its excess or deficit DQt kj , DC ij,k 5 a2 ij 3 DQt kj 1 b2 ij 3 Qt kj 1 g 2 ij 3 Qt kj 3 DQt kj 1 d2 ij .

(15)

The calibration of these four coefficients (a2 ij , b2 ij , g 2 ij , and d2 ij ) for each sampling station and each parameter leads to synthetic 3D diagrams (see Figure A2),

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 12

which allow describing the compositional fluctuations of the river water as a function of the river discharge Qt kj and the default of water balance D Qt kj .

4. Results and discussion After a brief comparison of the five models in term of statistical resolution capability, the information supplied individually by each method is analyzed. The analysis of their mutual consistency is more particularly performed. 4.1. Compared performance The agreement between calculated and observed water composition is very significant for most of the parameters. The cumulative distribution of correlation coefficient for five tested models is presented in Figure 2. This indicates that 50% of the parameters modeled by M1 exhibit r2 . 0.75. Unexpectedly, M1 provides better results than M2, suggesting that floodplains are not of constant composition, contrary to the assumption underlying the approach M2. The comparison between M3 and M4 reveals a significant improvement of the performance of end-member mixing models by taking into account the ‘‘hydrobiological index’’ IBIO, which allows identifying the parameters influenced by in-stream processes. The level of performance remains deficient (threshold arbitrarily fixed to r2 , 0.60) on 25% of parameters for M4 versus 50% of parameters for M3. Finally, the mixed approach (M5) combining variable spatial contribution and end-member mixing models constitutes a very convenient compromise, which provides the best results. 4.2. Variable regional contribution (M1 and M2) The simple approach consisting in correlating incoming (theoretical and calculated) and outgoing (measured) concentrations (M1) provides insightful information. It appears that most of linear calibrations are very significant, except for SO422, HPO422, coarse fraction of suspended sediment (CSS), particulate organic carbon (POCC), nitrogen (PONC), and C/N (in all fractions). These deficiencies reveal that substantial modifications occur in the floodplains. Table 2 delivers the mean values of a (slope), b (intersect of line for x 5 0), r2 (correlation coefficient), bias, and average for each parameter and for the 10 sampling stations located along the Amazon main stem. These linear calibrations indicate that the compositional fluctuations of river water in the Amazon reach might be greater than those impulsed by the tributaries inputs (a . 1 and b , 0) for pH, K1, Mg21, NO32, CO2, NaSil, KSil, CaSil, MgSil, dolomite, and FR. For example, when the inflow defines a low pH, the outflow is still more acidic and conversely, when the inflow defines an elevated pH, the outflow is more basic. Considering the parameters listed before, the open system dynamics along the Amazon main stem (and in its floodplains) accentuate the chemical perturbations initiated upstream, in the subbasins. Conversely, the compositional fluctuations generated in the tributaries tend to be buffered in the outflow (a , 1 and b . 0) for other parameters such as Ca21, HCO32, DIC, Cl2, DOC, O2, CSS, POCC, C/N (all the fractions), dissolved and particulate organic nitrogen, and [CaCO3].

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 13

Figure 2. Compared performance of the five hydrochemical models (M1–M5) based on the probability of nonexceedance of the determination coefficient r 2 established by confronting simulated and observed concentrations (or isotopic values). Data represented are obtained by gathering ´ bi, outlet of the the results of 42 chemical parameters for the station of O studied reach.

A complementary analysis of Table 2 consists in assessing the bias between the concentrations in the inflow and in the outflow. Positive values (bias . 0) indicate that concentrations in the inflow are superior to those measured in the outflow and vice versa. Negative biases are observed for Ca21, HCO32, Cl2, O2, CSS, PONF, PONC and CaCO3. We observe also a decrease of d13C in all the carbon fractions: DIC, POCF, and to a lower extent POCC. In turn, positive biases are obtained for NO32, CO2, and C/N (in all the fractions), whereas d18O gets less negative. Globally speaking, the measured composition of the Amazon River (outputs) follows the chemical baseline imprinted by the tributaries (inputs). Thus, in-stream processes arising in the studied reach do not fundamentally modify the chemical composition acquired in the tributaries. The mitigation of compositional fluctuations is probably related to the contribution of ungauged rivers, which influence substantially the chemical signal measured in the Amazon River (e.g., Ca21, HCO32, and Cl2) because of the very low salinity of small rivers draining thick, sandy soils in central Amazonia. Conversely, the accentuation of trends observed downstream seems to be due to organic matter decay, which is expected to take place in the floodplain as water slowly enters the stream channel from temporary storage. This leads to the release of CO2 (13C depleted) and nitrogenous dissolved species (NO32 and DON) and symmetrically to the removal of O2. In the model M2, outputs are adjusted by prescribing ad hoc additional contribution of small rivers (whose average composition is not accurately known) that border the Amazon River. The reconstituted mean annual composition of small rivers and floodplains (Bustillo 2007) delivers reliable results for most of the parameters and provides valuable insight on the presumed impact of river processes. However, the correction proposed in the model M2, relying on the variable contribution but constant composition of small rivers and adjacent floodplains,

1.07 20.59 0.77 20.08 6.99

a b r2 Bias Ave

0.89 15 0.82 1 136

k

a b r2 Bias Ave

1.67 221 0.34 8.0 52.0

a b r2 Bias Ave

POCF

S2

POC

0.84 71 0.87 284 827

POCC

0.84 70 0.87 284 827

S1

DIC

0.80 78 0.78 267 618

HCO32

NO32

1.67 28 0.34 3.2 20.8

CaSil 1.67 27 0.34 2.6 16.6

MgSil 0.76 13.55 0.67 231.32 172.17

CaCO3

1.45 225.05 0.80 25.73 38.26

Dolomite

Carbonates (mmol L21)

0.60 11.1 0.21 1.63 24.91

0.96 231.63 0.79 242.78 248.69

CO2 carb

1.29 216.44 0.26 19.56 153.51

CO2 sil

0.69 24.6 0.21 21.50 28.26

0.80 85.06 0.79 265.99 650.90

CO2 tot

Carbon cycle (mmol L21)

0.41 6.6 0.34 0.35 10.97

DOC

0.86 0.35 0.84 20.24 3.76

1.17 29 0.82 12 141

CO2

0.82 20 0.74 212 159

O2

0.26 1.2 0.15 20.37 1.83

PONC

0.86 1.9 0.49 0.00 11.17

DON

1.93 20.40 0.64 20.03 0.38

FR

0.34 1.53 0.14 0.19 2.23

Re

Additional indexes

0.72 3.7 0.81 22.38 19.80

PONF

Organic N (mmol L21)

0.81 98 0.80 254 759

DIC

d

1.35 28.54 0.81 0.0 26.60

KSil

Silicates (mmol L21)

C/N

0.79 0.23 0.36 0.05 0.76

HPO422

POCF POCC

0.40 23.4 0.27 22.7 42.1

SO422

d18O H2O

0.86 1.9 0.84 21.3 20.1

DOC2

POCC

1.30 22.6 0.84 0.3 11.2

POCF

d13C

0.70 24 0.66 211 92

Cl2

mmol L21

Paper No. 9

NaSil

TSS

mg L21

1.12 29 0.84 23 55

Mg21

Mg L21 DOC

d

k

CSS

0.80 25 0.91 237 273

Ca21

0.86 026 0.76 0.88 0.24 0.77 1.14 0.99 0.61 0.95 8 36 36 0.05 0.38 0.1 1.4 20.6 210.9 20.12 0.91 0.39 0.83 0.79 0.10 0 68 0.92 0.69 0.50 0.98 226 213 238 20.25 20.08 20.22 20.57 20.28 20.19 0.23 227 59 286 2.59 0.53 3.11 214.32 227.19 227.72 26.10

FSS

1.35 29 0.81 0 27

K1

Anions (mmoI L21)

Volume 14 (2010)

.

mmol L21 SiO2

1.04 23 0.63 23 144

Na1

meq L21

d

.

pH

k

Cations (mmol L21)

Table 2. Mean parameters of the linear equation (a, b, r 2, Bias) relating incoming and outgoing concentration (model M1) for 44 chemical parameters at 10 sampling stations ( j ) of the Amazon main stem. Data are presented for each chemical parameter (index i ) and correspond to the mean values from 10 equations: Cij(obs) 5 aij 3 Cij(calc) 1 bij(nj 5 10). The mean biases and r 2 are also given.

Earth Interactions Page 14

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 15

unambiguously fails (Figure 2). This may be due to several factors: 1) the area of flooded areas, on which direct precipitation falls, is variable; 2) the biotic transformations undergone by transiting materials are not the same depending if floodplains fill or dry up; and 3) the respective contributions of small rivers draining lowlands [low total dissolved solids (TDS)] and groundwater (high TDS) fluctuate along the hydrological cycle. 4.3. Hydrograph separation into three reservoirs (model M3) The detailed modeling outcomes relative to M3 are presented in the appendix (Table A3). A simple comparison can be made between inputs (calculated) and outputs (observed). Mean values are more accurately examined (Figures 3a,b). Observed values are established by averaging the results obtained for nine sampling stations (excluding Vargem Grande and Santo Antonio do Icxa, which are located at and close to the upstream boundary) located along the Amazon River main stem. Calculated concentrations (C^i,k ) are obtained as follows: h i j53 j55 j56 j57 j58 1 C 1 3 3 C 1 C 1 C 1 2 3 C . (16) C^i,k 5 1/9 3 C ij52 ,k i,k i ,k i,k i ,k i ,k Notice that [C]RS 3 QRS/Qt 1 [C]RI 3 QRI/Qt 1[C]RB 3 QRB/Qt 5 [C]AVE for all the chemical parameters. The agreement between both datasets is good, except for C/N, DON, HPO422, CO2, O2, and pH. Despite some unavoidable deviations resulting from the imprecisions of the chemical analyses and from simplifying assumptions required for modeling, the repartition of chemical species and isotopic signatures display the same pattern. The compositional contrasts between the three reservoirs tend to decrease in the outflow, suggesting that the intermittent storage of water in floodplains contributes to mix waters originating from different sources (e.g., hydrological reservoirs, subbasins). This tends to homogenize their chemical composition at the outlet of the system. The examples provided by CSS, d18O, and DOC (Figure 3b) and by SO422 and Cl2 (Figure 3a) are particularly explicit. The greatest deviations are observed for the sand fraction CSS whose transport in the Amazonian reach is considerably delayed compared to solutes and water. Concerning the major chemical species (anions and cations), concentrations in RS and RI tend to be lower in the outflow: this effect of dilution is very marked for SO422, Cl2, DOC, Ca21, and HCO32 (Figure 3a). This is consistent with the biogeochemical balance calculated for the floodplains (Bustillo 2007), which did not reveal any dissolution of carbonates in central Amazonia. It is likely that a part of Ca21 is adsorbed on transiting clay suspensions, fulvic acids, and/or goethite (Weng et al. 2005), whereas HCO32 might be partly converted into CO2 as a result of pH buffering of very acidic waters provided by small Amazonian rivers draining lowlands and Rio Negro. We observe also a very significant increase of weathering rate in the outflow (see CO2 SIL), attributed to the baseflow RB. The consequence is the correlative decrease of the lithological index FR and d13C (DIC): 29.6 & / 211.7 &. However, the values established for d13C (DIC) and F R are not totally compatible, because a low contribution of carbonates on DIC release (FR low) should lead to a very negative d13C (DIC). The unexpected heavy signature of d13C (DIC) in the

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 16

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 17

baseflow (Figure 3b) might be the consequence of 1) CO2 outgassing (Richey et al. 2002) and 2) aquatic photosynthesis, which both subtract preferentially 12C and thus concentrate 13C in the river water. ´ bidos ´ and O 4.4. Focus on the sampling stations of Paura The outcomes of the end-member mixing model are more particularly analyzed downstream from the confluence of the eight major tributaries, at the monitoring ´ bidos (Table 3). Chemical characteristics of the three resstations of Paura´ and O ´ bidos; they display distributions comervoirs are almost similar for Paura´ and O parable to those resulting from the conservative mixing of the eight major tributaries. Even so, the statistical resolution might be deeply altered on specific parameters for one station and not for the other (e.g., Ca21, Mg21, and HCO32). Small errors of chemical analyses might have large repercussions on the outcomes of the models, especially when the number of samples is low and when the variability of the chemical baseline is moderate. For the sampling stations located at the outlet of large fluvial basins, the compositional fluctuations of the river water are often attenuated because of the water storage in the floodplains and the slow motion of flood wave, which mixes waters having resided for a short or long time in the surface network. Even when r2 values are low, the model outcomes are qualitatively very instructive to appreciate the dynamics within each reservoir and their heterogeneity. The similarity between the fictitious station (8 Rios) and the sampling ´ bidos) indicates that the chemical composition (including stations (Paura´ and O isotopic composition) of the Amazon River water is essentially acquired before the waters supplied by tributaries reach the Amazonian floodplains. It seems that underlying processes driving biogeochemical budgets (chemical weathering, gas emissions toward the atmosphere, deposition versus remobilization of sediments, etc.) in the tributaries and in the Amazon main reach are of the same nature and define comparable chemical equilibria. The large-scale flooding of lowlands, occurring almost concomitantly over central Amazonia (Hamilton et al. 2002), provides autochthonous organic substrate for decomposition, leading subsequently

Figure 3. (a) Composition of (i) the three individual runoffs RS, RI, and RB and (ii) the river (AVE) obtained by averaging the model M3’s outcomes of nine stations located on the studied Amazonian reach. Calculated data [calc; see Equation (16)] resulting from the discharge weighing of runoffs composition of the major tributaries are compared to observed data (obs) obtained by multilinear regression. Dissolved species and biogeochemical indices (see the appendix for a list of parameters). (b) Composition of (i) the three individual runoffs RS, RI, and RB and (ii) the river (AVE) obtained by averaging the model M3’s outcomes of nine stations located on the studied Amazonian reach. Calculated data [calc; see Equation (16)], resulting from the discharge weighing of runoffs composition of the major tributaries, are compared to observed data (obs.) obtained by multilinear regression. Suspended sediments, organic carbon and nitrogen, C/N molar ratios, and isotopic signature of carbon (d13C) and water (d18O).

RS RI RB Ave r2 RS RI RB Ave r2

4.9 5.3 1.5 4.1 0.49 4.2 4.9 2.7 4.0 0.17

820 466 494 583 0.59 802 519 445 583 0.43

237 236 244 160 0.50 216 264 230 160 0.49

CO2

69 21 57 46 0.71 68 25 51 46 0.28 57 25 62 46 0.90

116 116 250 153 0.48 120 90 262 151 0.67

O2

mmol L21

250 102 205 176 0.55 246 102 188 172 0.26 302 120 185 196 0.80

Mg21

123 107 154 125 0.44 117 128 144 129 0.17

SiO2

706 302 848 575 0.68 703 306 782 573 0.36 789 351 788 619 0.85

S1

620 20 0 199 1.00 610 15 0 193 1.00

FSS

706 302 848 575 0.68 703 306 782 573 0.36 790 350 787 618 0.85

S2

58 51 224 33 0.40 63 59 232 33 0.52

CSS

584 232 535 423 0.59 586 254 476 423 0.33 628 284 490 453 0.75

HCO32 10.0 0.6 24.6 10.0 0.80 11.4 22.2 27.4 11.0 0.72 3.9 0.4 25.2 9.0 0.82

NO32

679 70 223 232 0.99 673 73 231 226 0.99

TSS

5.77 1.17 20.43 2.15 0.94 5.3 2.0 20.3 2.3 0.85

POCF

mg L21

52 17 134 60 0.85 68 19 99 58 0.69 3 10 196 65 0.98

CI2

0.57 0.52 20.18 0.35 0.55 0.8 0.4 20.3 0.3 0.85

POCC

26 28 8 22 0.49 22 25 14 21 0.17 41 39 210 25 0.76

DOC2

6.34 1.69 20.61 2.49 0.93 6.0 2.4 20.5 2.6 0.89

POC

17 12 71 30 0.25 8 5 80 28 0.36 57 8 41 33 0.83

SO422

27.8 27.3 20.9 25.7 0.46 27.1 27.6 21.6 25.6 0.39

d18O H2O

0.02 0.41 1.56 0.60 0.90 0.53 0.68 0.98 0.73 0.05 0.07 0.30 1.36 0.55 0.46

HPO422

d

345 437 341 1122

358 490 317 1165

39 21 17 25 0.31 44 18 19 26 0.16 41 22 11 25 0.69

Ca21

Paper No. 9

´ bi O

Pau

DIC

28 33 308 106 1.00 28 33 285 108 1.00 28 33 280 107 1.00

mg L21 DOC

6.66 6.34 7.66 6.80 0.60 6.63 6.23 7.52 6.75 0.48 6.59 6.36 7.81 6.87 0.73

K1

Anions (mmol L21)

d

mm yr21 QK

344 433 340 1117

345 437 341 1122

358 490 317 1165

Na1

meq L21

Volume 14 (2010)

k

RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2

pH

Cations (mmol L21)

d

8 Rios

´ bi O

Pau

k

mm yr21 QK

Table 3. Compared composition of the three individual runoff RS, RI, and RB for the eight major tributaries (8 Rios, calculated data ´ bi (data established from measured confrom discharge weighing of the contributing reservoirs) and the stations of Pau and O centrations by multilinear regressions).

Earth Interactions Page 18

RS RI RB Ave r2

358 490 317 1165

CaSil 210 7 70 18.7 0.90

NaSil 225 16 174 46.7 0.90

28 5 56 14.9 0.90

MgSil

7.5 11.2 9.9 9.7 0.51 10.5 12.9 6.1 10.1 0.57 6.8 10.2 11.3 9.5 0.34

POCF

C/N 22.9 210.1 109.0 32.5 0.81 48.9 3.6 35.3 27.1 0.29 41.1 24.5 22.3 29.0 0.42

810 461 490 576 0.60 812 525 450 590 0.43 882 525 392 594 0.67

DIC

665 20 0 213 1.00

166 68 62 96 0.41

CaCO3

77 16 2 31 0.63

Dolomite

Carb (mmol L21)

28.8 22.0 11.6 21.2 0.11 21.9 17.2 21.0 19.8 0.08 24.4 26.5 16.1 22.7 0.32

DOC

95 101 191 127 0.55

POCC

76 105 320 162 0.39

319 100 66 158 0.56

5.5 1.0 0.5 2.2 0.95

1.4 0.5 20.6 0.4 0.72

55.3 6.5 24.7 18.4 0.91 45.0 11.7 2.7 19.2 0.76 54.2 7.5 20.1 19.6 0.97

PONF

221 61 440 139 0.94

CO2 SIL

2.15 2.00 20.51 1.36 0.30 3.1 1.9 21.1 1.3 0.79 5.2 1.6 21.9 1.6 0.74

PONC

619 261 571 456 0.61

CO2 TOT

CO2 cycle (mmol L21)

48 44 215 29 0.55 65 35 223 26 0.85 119 42 252 37 0.72

POCC

Carbon cycle (mmol L21)

857 68 293 262 0.99

CO2 CARB

480 98 236 179 0.94 439 169 222 194 0.85 461 79 41 185 0.95

POCF

192 48 294 49 0.81

0.56 0.37 0.07 0.35 0.75

FR

404 438 125 343 0.49 349 408 224 334 0.17 642 611 2163 385 0.76

DOC

7.0 1.5 20.1 2.7 0.94

1.45 1.73 3.89 2.23 0.90

Re

8.5 25.1 29.5 10.6 0.67 5.3 24.3 4.1 12.3 0.41 15.6 22.9 21.3 13.3 0.47

DON

210.3 28.4 1.7 25.9 0.41

d

k

228.5 226.9 228.0 227.70 0.68 228.3 227.5 228.4 228.01 0.17 225.7 226.9 229.9 227.47 0.10

POCC

248 234 295 138 0.59

Paper No. 9

Sil (mmol L21)

POCF 225.7 227.8 228.0 227.22 0.61 227.4 228.1 226.1 227.26 0.29 226.4 227.4 227.1 227.02 0.50

DIC

d13C

877 522 389 591 0.67

214.5 218.7 211.6 215.50 0.67 214.6 219.3 211.8 215.56 0.46 217.0 218.4 28.2 214.86 0.78

7.7 7.4 22.0 4.6 0.78

d

mm yr21 QK

344 433 340 1117

345 437 341 1122

358 490 317 1165

mm yr21 QK

344 433 340 1117

Volume 14 (2010)

Pau

8 Rios

RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2

k

RS RI RB Ave r2

d

´ bi O

Pau

8 Rios

Earth Interactions Page 19

8 Rios

k

RS RI RB Ave r2 RS RI RB Ave r2

344 433 340 1117

345 437 341 1122

NaSil 240 14 187 49.8 0.91 25 23 84 42.0 0.89

216 6 75 19.9 0.91 15 14 49 24.7 0.89

CaSil

Sil (mmol L21) MgSil 213 4 60 15.9 0.91 10 9 33 16.8 0.89 175 71 40 94 0.50 185 85 75 113 0.57

CaCO3 80 21 27 30 0.39 49 17 35 33 0.86

Dolomite

Carb (mmol L21) 335 113 26 154 0.45 284 120 146 176 0.69

CO2 CARB

253 52 473 148 0.97 101 78 215 127 0.88

CO2 SIL

621 278 519 456 0.35 669 319 508 484 0.74

CO2 TOT

CO2 cycle (mmol L21) FR 0.60 0.38 0.02 0.34 0.78 0.45 0.37 0.28 0.37 0.44

Re 1.46 1.44 4.12 2.26 0.76 2.54 1.86 1.81 2.06 0.53

d

´ bi O

mm yr21 QK

Table 3. (Continued )

Earth Interactions Volume 14 (2010) d

Paper No. 9 d

Page 20

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 21

to the creation of hypoxic and anoxic environments along river corridors. These reductive conditions influence considerably carbon and nutrient cycling resulting from the enhancement of gas emission (CH4, CO2, NO, N2O, and N2) toward the atmosphere and thus determine the isotopic signature of the dissolved inorganic carbon. The major chemical species released by chemical weathering in upstream reaches, where the bedrock outcrops, and in the floodplains, where coarse unweathered sediments deposit, seem to be transported (almost) conservatively within the river network.

4.5. Hydrobiological modeling (model M4) The analysis focuses more particularly on the sign of the coefficient K BIO ij associated to the hydrobiological factor I BIO ij. Model outcomes, on several characteristic parameters and for the 11 monitoring stations of the Amazon profile, are represented in Figure 4 (full dataset in Table A4 and electronic supplementary material; supplements are available online at http://dx.doi.org/10.1175/2010EI326..s1.). Chemical responses to the hydrobiological factor may be roughly grouped into three categories: 1) K BIO ij . 0, indicating that concentrations (or values) increase concomitantly to IBIO or that concentrations are higher when photosynthetic paths dominate; 2) K BIO ij , 0, indicating that concentrations (or values) increase when j the mineralization prevails on the photosynthesis; and 3) K BIO ij  C i , indicating that hydrobiological processes do not significantly influence the chemical baseline. Among the parameters varying like I BIO kj , we have the following: pH, K1, NO32, SO422, HPO422, O2, d13C (DIC), d13C (POCF), and C/N (three fractions). Among the parameters varying in the opposite sense, we have the following: Ca21, HCO32, DOC, DIC, CO2, POCF, PONF, PONC, and DON. Other parameters do not exhibit any significant and reproducible correlation with I BIO kj . A break is observed at Manau´s, depending if we locate upstream or downstream from the confluent of Rio Negro. Roughly speaking, there is a loss of Ca21, Mg21, K1, and HCO32 under photosynthetic regime and conversely a gain of these solutes after the confluent of Rio Negro. Similarly, the decrease of [DOC] is clearly observed downstream from Manau´s but remains negligible upstream. When the photosynthetic paths dominate (I BIO kj  0), CO2 is removed while O2 is released. As a result, the pH increases and influences the nature and magnitude of abiotic processes. First of all, the biological uptake of CO2 operates a carbon fractionation, which tends to make heavier, by mass effect, the value of d13C (DIC) in the river water. Concomitantly, the decrease of [Ca21] and [HCO32] supports the hypothesis that Ca21 is adsorbed by clay minerals, which releases H1 and leads to the subsequent protonization of HCO32 (which frees CO2). After the confluence of Rio Madeira, the dynamics of Ca21 is reversed: all other things being equal, [Ca21] and [HCO32] tend to increase (photosynthetic path). The rise of pH and/or [O2] related to photosynthetic paths might promote the side-chain oxidation of nitrogenous functions contained in dissolved organic molecules (Aufdenkampe et al. 2001; Aufdenkampe 2002). Their condensation makes them get more hydrophobic (Tardy et al. 2009) and leads presumably to their sorption onto fine suspended sediments to form diagenetic POCF. The rise of POCF/PONF and POCC/PONC reflects the genesis of autochthonous molecules, which progressively obliterates the signal of

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 22

Figure 4. Influence of the hydrobiological regime, appreciated by K BIO ij /[i] AVE,8R for 12 chemical parameters (noted i) at the 11 sampling stations (noted j) over the Amazon River longitudinal profile: VG, SAI, Xib, Tup, Jut, Ita, Ano, Man, ´ bi (the outlet of the studied reach); [i] AVE,8R is the mean SJA, Pau, and O concentration of i, calculated by discharge weighing the inputs of the j ´ bi; K eight major tributaries upstream from O BIO i is a calibrated parameter [outcomes of the model M4; see Equation (11)] corresponding to the rate of uptake or release of each bioactive element (i ) for each station ( j) associated to biologically mediated processes in the river water and describing thus the response of chemical parameters to I BIO kj 5 [O2 ]kj  [CO2 ]kj . Here, K BIO ij > 0 means that Cij rises with photosynthetic pathways (I BIO kj . 0), decreases with mineralization pathways (I BIO kj < 0) and vice versa.

soil-derived substances. Actually, riparian grasses and floating aquatic plants that grow in the floodplains exhibit a high atomic ratio C/N, evaluated to 42 by Victoria et al. (Victoria et al. 1992), suggesting that the uptake of NO32 is rather low and does not totally counterbalance the input associated to the sorption of DOM. However, the most significant rise is observed for [DOC]/[DON] because of the diagenesis of DOM, which tends to release NO32 and to concentrate carbon in DOM. Conversely, when the mineralization paths prevail on photosynthesis (K BIO ij  0), low 13C/12C source of DIC is released in the river while O2 is consumed. The chemical signals associated to mineralization are, roughly speaking, symmetrical to those imprinted by the photosynthesis. The Andean soil-derived POCC, mainly mobilized in surface runoff, is exposed to increasing temperature as transported downstream and subjected to mineralization in lowland environments (McClain

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 23

et al. 1995). This source of unstable carbon provides a significant amount of carbon substrate that fuels the heterotrophic metabolism of the river, after deposition of large quantities of carbon. In addition to allochthonous POCC, the mechanism locally named ‘‘terras-caı´das,’’ corresponding to the large-scale bank erosion during flood periods (Irion et al. 1997), promotes the large-scale destruction of well-developed floodplain forest communities (Junk and Piedade 1997) and provides large amounts of highly unstable organic substrate. The contribution of grass va´rzeas to the carbon budget of floodplains, appreciated by the isotopic composition of va´rzea sediments (Victoria et al. 1992; Martinelli et al. 2003), increases as we move downstream. This suggests that the impact of aquatic vegetation on the carbon budget of floodplain progressively increases (Quay et al. 1992). Because of preservation mechanisms during decomposition (such as adsorption-linked protection), the fine fraction POCF is clearly refractory: K BIO ij  [POCF] AVE and does not appear to be significantly influenced by in-stream mineralization. 4.6. The composite approaches (M5 and M6) The model M5 exhibits an unexpected high performance for all monitoring stations and all chemical parameters, as shown in the appendix (Table A5). The reconstitution of isotopic signatures is very convincing for d18O (SMOW) and d13C (DIC), whereas the lowest levels of confidence are observed for POCC, CSS, PONC, and C/N atomic ratios for POCC and POCF. The significant improvement compared to M1 and M3 denotes the influence of floodplains on the chronological variations of the Amazon River composition, mainly because of 1) the polarity of water circulation in the floodplains and 2) the variable contribution of each individual runoff to the water budget of floodplains. The chemical response of river to the polarity of water circulation in the floodplains can be approached by analyzing the magnitude and the sign of gij [cf. Equation (13)] corresponding to the variation of concentration in the river water associated to the water balance of floodplains D Qt kj . The complete dataset compiling the values of gij is supplied in the electronic supplementary materials (Table A5); several selected values are represented in Figure 5. Despite some variations between stations, the magnitude and the sign of gij match quite well. The model M5, taking into account simultaneously the variables D Qt kj , DQRS/Qt, and DQRI/Qt, although providing reliable outcomes, might sometimes be difficult to interpret, notably because of covariations between variables. For example, D Qt kj and DQRI/ Qt exhibit a positive correlation simply because the drainage of floodplains principally involves the hydrological reservoir RI. Moreover, the simple interpretation of gij does not allow investigating the additional impact of the river flow, whose magnitude influences floodplain dynamics. To facilitate the deciphering process, the model M6 was implemented. The calibration of the four parameters [see Equation (15)] leads to the determination of 3D diagrams with spatial representation realized for 600 mm yr21  Qt kj  1600 mm yr21 (average 5 1122 mm yr21) and 20.05  D Qt kj  0.30 (average 5 0.134). These figures, available in full in the appendix (Figure A2) for the station of ´ bidos, represent the variations of concentration (or isotopic value) as a function of O the river outflow and as a function of the water balance of floodplains, tracked by D Qt kj . The mean concentration of each parameter, calculated in the inflow (for eight cruises), is centered on Qt kj 5 1 122 mm yr21 and D Qt kj 5 0.134. The isolines

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 24

Figure 5. Variation of the coefficients gij over the Amazon River (longitudinal profile ´ bi) obtained by the model M5 for a sample of 24 between Jut and O chemical parameters (i) and 7 sampling stations (j): Jut, Ita, Ano, Man, ´ bi (the outlet of the studied reach). The coefficients g ij SJA, Pau, and O enable tracking of the influence of floodplains water balance on the compositional changes of water chemistry for a given parameter (i) at a given station (j ): g ij > 0 indicates that concentrations are higher (all other things being equal) when the floodplains drain [DQt kj . 0] and vice versa. ´ bi, indiFor example, gij 5 0.92 for fine suspended sediments (FSS) at O cating that [FSS] in the outgoing flow increases by 92% compared to [FSS] in the incoming flow (data calculated by discharge-weighing chemical ´ bi) when D Q j 5 100% signals from the eight tributaries upstream from O tk (i.e., outflow 5 2 3 inflow).

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 25

represent the changes of chemical characteristics as we stray from the central point, assuming that the chemical composition of the inflow remains constant, whatever Qt kj and D Qt kj are. In this section, the objective is not to predict the chemical composition of the outflow but rather the deviation to the inflow. As a consequence, the following diagrams must be read and interpreted only in terms of relative values. In each diagram are identified the main sequence of hydrological cycle: 1) lowest waters, characterized by low Qt and excess of outflow; then 2) rising waters, exhibiting intermediate Qt and a severe deficit of outflow; then 3) highest waters, with high Qt and moderate deficit of outflow; then 4) falling waters, with intermediate Qt and excess of outflow; and back to 1) lowest waters. 4.6.1. Major chemical species and chemical weathering

Concerning the major chemical species, a dilution effect is observed during the phase of water storage while concentrations rise when the waters stored in the floodplains join back the main channel. The influence of the circulation polarity is greater after the confluence of Rio Japura´, as the Amazon valley widens. Considering the poles of chemical erosion, it is noticeable that the apparent rate of chemical alteration is substantially greater (both for silicates and carbonates) when the floodplains empty, with the exception of dolomite, all other things being equal (Figure 5). On average, the lithological index FR (cf. list of parameters) exhibits lower values during the emptying of floodplains. It suggests that submerged low plains drain areas where the alteration of sedimentary minerals mimics the weathering of crystalline rocks. It is likely that chemical weathering in floodplains manifests itself sequentially, when the floodplains dry up: that is, when the water stored in low plains joins back the main channel. Following Johnsson and Meade (Johnsson and Meade 1990), these model outcomes support the idea that the chemical weathering of the additional flow is mainly driven by the diagenesis of unweathered sediments that are deposited during the filling of floodplains (Martinelli et al. 1993). The decrease of lithological index FR during the emptying of floodplains coincides with lower d13C (DIC), compared to the stage of filling (Figure 6a). The parallel evolution of d13C (DIC) and FR confirms that the isotopic signal of dissolved inorganic carbon is fundamentally determined by the pattern of weathering processes (synthesized by FR). Because of the hydrological dynamics of floodplains, following an annual immutable cycle, the chemical expression of weathering processes is sequential as well. It should also be noticed that the index Re (SiO2/Al2O3 in altered products inferred from the chemistry of river water; Tardy et al. 2004) is much higher during the emptying of floodplains, suggesting that SiO2 might be picked up and converted into a particulate form because of the growth of diatoms, which is encouraged in adjacent lakes and flooded areas. 4.6.2. Budget of sediments

The sand fraction CSS exhibits systematically lower concentrations during the phase of water storage (g ij values are all positive in Figure 5) than during the emptying stage (Figure 6b). This result supports the idea that the sediments tend to deposit as the river inundates the low plains and tend to be remobilized as the extension of submerged areas lessens. The greatest contrasts are observed between Itapeua and Sa˜o Jose´ da Amatari and the lowest is accredited to Paura´, after the

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 26

Figure 6. Mean simulated variations of (a) d13C (DIC), (b) [CSS], and (c) d13C (POCC) as a function of the river outflow (Qt) and the floodplain water balance j (FWB) 5 DQt kj 5 Qt kj , obs/Qt tot,k  1. The fluctuations modeled by M6 over an ´ bi, are represented by arrows, showing (a) annual cycle, at the station of O 13 12 C/ C depletion during falling waters (path 3 / 4); (b) sedimentation patterns on the 1 / 2 / 3 paths and remobilization patterns on the 3/ ´ rzeas grasses (13C/12C en4 / 1 paths; and (c) the exportation of the va riched) toward the main channel during the falling water stage (3 / 4 path). The hydrological sequence is 1) lowest waters with outflow 5 inflow (FBW 5 0); then 2) rising waters, with outflow < inflow (FBW < 0); then 3) highest waters, with outflow 5 inflow (FBW 5 0); then 4) falling waters, with outflow > inflow (FBW > 0); and then 1) lowest waters.

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 27

confluence of Rio Madeira, which provides large amounts of coarse sediments. The trends for the silt–clay fraction are less explicit. Considering the silt–clay fraction FSS, no clear tendency can be outlined on the Vargem Grande–Manacapuru´ reach. ´ bidos, the pattern is very similar to the In turn, between Sa˜o Jose´ da Amatari and O one described for CSS, suggesting that the flushing action of Rio Negro (Meade et al. 1985; Dunne et al. 1998) might promote the remobilization of fine sediments when the floodplains drain. 4.6.3. River metabolism

Considering the gaseous composition of the river, the computed g ij values indicate higher [CO2] during the emptying of flooded area on the upstream reach and lower ´ bidos). All other things [CO2] on the downstream reach (from Manacapuru´ to O being equal, pH appears to be higher during the emptying of floodplains while [O2] is lower. Considering nitrogenous species, the evolutions are the following: while the floodplains dry up, a generalized drop of [NO32] and a gain of [PONC] and [DON] are observed. The exceptions are Paura´ and Sa˜o Jose´ da Amatari, where sorption processes of dissolved organic matter arise (Aufdenkampe et al. 2001; Tardy et al. 2009). Considering organic carbon species, g ij values highlight a gain of POCF and POCC during the emptying of floodplains and conversely a deficit of DOC. The major exception corresponds to the station of Paura´, which is highly influenced by the forwarded contribution of Rio Madeira, which reverberates directly on the chronological evolution of processes. As the waters stored in the floodplains join back the main channel, the atomic ratio POCF/PONF rise, whereas DOC/DON and POCC/PONC drop drastically. The drift observed along the Amazon profile involves the increasing contribution of submerged areas to the water budget of the Amazon River, as we move downstream. This amplifies the imprint of river diagenesis on the organic matter. As heterotrophic processes operate more and more intensely, the maturation of organic matter is accelerated and leads to lower and lower POCF/PONF in the water draining floodplains. The effects of these processes on the isotopic signature of carbon are not appreciable. Concerning POCC, the concentrations tend to be higher during the emptying of the floodplains. The effects on the isotopic signal of d13C (POCC) are noticeable, leading unequivocally to a 13C enriched signature when the water stored in the floodplains rejoins the main channel (Figure 6c). The presumed influence of aquatic grasses, whose isotopic signature is heavy (213 &, according to Victoria et al. 1992), on the isotopic composition of POCC, seems to be confirmed here. ´ bidos and those reconstituted by The amounts of DOM, both those observed at O modeling (model M6), exhibit a drastic decline of [DON] and a correlative increase of [DOC]/[DON] when the inundation of the floodplains occurs: that is, during rising water stage. At this stage, the chemical nature of DOM, mobilized by surface runoff (Tardy et al. 2005), is mainly soil derived and refractory (Hedges et al. 1986). Low C/N molecules, conveyors of positive charge (e.g., amino acids) or hydrophobic (humic acids), are recognized to be the best candidates to sorption onto fine sediments (Aufdenkampe et al. 2001), leading subsequently to rising C/N in the remaining DOM fraction. Conversely, the emptying of floodplains coincides

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 28

with a rise of [DOC] and [DON] and a decrease of [DOC]/[DON]. This supports the idea that additional DOC and DON observed during the emptying of floodplains is autochthonous and is released by the decay of aquatic biomass, which contains high proportion of amino acids (low C/N) compared to soil-derived DOM (Hedges et al. 1994). The high variability of C/N tends to confirm that, along a complete hydrological cycle, distinct pools of molecules (allochthonous soil derived versus autochthonous river derived) exhibiting contrasted reactivity and very dissimilar elemental composition are exported by the Amazonian rivers (Amon and Benner 1996a; Amon and Benner 1996b).

5. Summary and concluding remarks The six hydrochemical models that were tested provide a valuable insight on the main factors [hydrological source, water budget of the floodplains, nature of hydrobiological pattern (e.g., photosynthesis versus mineralization, air–water gaseous exchanges, etc.)] controlling the biogeochemical and sedimentary budgets of the Amazonian floodplains. The influence of floodplain and additional flow (small rivers, alluvial groundwater, and direct precipitation) could be shown for most of the studied parameters (Bustillo 2007). Unfortunately, because of the lack of reliable data concerning the water chemistry of small tributaries, the influence of variable additional input (involving variable contribution of small rivers and alluvial groundwaters to the river flow) cannot be distinguished from the effects of the diagenesis operating in the floodplains. At the light of the results provided by the six mixing models, three main issues dealing with the biogeochemistry and hydrology of the floodplains are addressed: 1) coupling between sediment deposition and biogeochemical diagenesis; 2) organic metabolism of the river and its effects on the nature and intensity of biotic processes; and 3) nature and intensity of abiotic processes, involving notably the sorption of DOM, the evaporation of wetlands, and the river outgassing. A companion paper (V. Bustillo et al. 2010, unpublished manuscript) aims to investigate more in detail these three topics, which are intrinsically related and which determine most of the biogeochemical budget relative to Amazonian floodplains. The magnitude and polarity of water exchanges between the Amazon River and its floodplains strongly influence the sedimentary and chemical signals measured in the river waters. The floodplains constitute widespread sites where major biotic and abiotic processes affecting the dynamics of transiting materials occur: sedimentation, remobilization of sediments, organic matter decay, CO2 outgassing, etc. Unexpectedly, the chemical trends observed upstream are sometimes accentuated downstream, as shown by the model M1. It supports the idea that the processes operating downstream are of the same nature as those occurring upstream, prolonging therefore the imprint given by upstream rivers to the chemical baseline. Because of the increase in floodplain size as we move downstream, the impact of floodplain filling and draining on the biogeochemical qualities of the water are therefore amplified downstream. Taking into account the additional contribution of ungauged areas, using ad hoc constant characteristics to close the river budget

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 29

(model M2) does not improve the performance of modeling compared to the simplest possible model M1. It means that the composition of the ‘‘additional’’ flow is probably very variable, particularly because the alluvial groundwaters draining unweathered sediments deposited alongside the Amazon River (high TDS) and the small tributaries draining thick, sandy soils (intensively leached, low TDS) do not contribute synchronously to the river flow (Bustillo 2007) and exhibit very distinct chemical characteristics. The mixing model M3 shows a decrease of compositional differences between hydrological reservoirs as we move downstream. This homogenization might be the result of the mixture of waters having resided more or less durably in the hydrographic network. The main differences between incoming and outgoing compositions are attributable to the baseflow RB and, to a lesser extent, to the delayed direct runoff RI. This would be the result of in-stream biogeochemical processes: the aquatic photosynthesis impacts RB, whose contribution to river flow is at maximum during lowest waters stage (i.e., when autotrophic regime prevails), whereas organic matter decay more particularly impacts RI ([ CO2, Y pH, Y O2, Y d13C-DIC, Y DON, Y DOC, and Y DOC/DON), whose contribution is maximum when the emptying of floodplains (where heterotrophic regime prevails) occurs. The model M4, which is also based on variable hydrological source, involves the hydrobiological index I BIO kj 5 ½O2 kj ½CO2 kj , used as a tracer of autotrophic versus heterotrophic regime. This improves considerably the performances of the simulations, compared to M3. The model M4 enables us 1) to identify the parameters significantly influenced by in-stream processes and 2) to determine their response, depending on the nature and magnitude of hydrobiological regime. Globally speaking, the hydrobiological regime promotes large variations of pH and [O2], which have direct repercussions on the biodynamics of other chemical variables. The autotrophic regime is dominant (IBIO . 0) during lowest waters stage, when 1) the river turbidity is minimum, 2) when the river–floodplain connectivity is interrupted, and 3) when the rate of incoming solar radiation reaching the water body is at maximum (flow concentrated within the well exposed main channel). The rises of pH and [O2] directly induced by aquatic photosynthesis coincide with losses of organic nitrogen to the benefit of mineral nitrogen, increases of 13C/12C for DIC (isotopic fractionation induced by aquatic photosynthesis), and losses of Ca21 and HCO32. The heterotrophic regime is dominant over the annual cycle, except during lowest waters stage. The heterotrophic signal is hugely amplified when the waters stored in the floodplains rejoin the main channel. Falling waters constitute privileged moments to appreciate the biogeodynamics of the floodplains, because their discharge in the main channel is intermittent. The decrease of pH and [O2] related to the heterotrophic regime coincide with increase of [CO2]; decrease of d13C(DIC); decrease of [DOC]/[DON]; and rise of d13C(POCC), which is interpreted as the result of the sequential release of autochthonous carbon (C4 aquatic grasses). The models M5 and M6 enable the impact of floodplains water balance (filling versus emptying) on the differences of chemical concentrations between the tributaries and the Amazon River to be tested more specifically. This test appears to be very conclusive, showing that chemical signals observed in the Amazon River waters are thoroughly influenced by the magnitude and polarity of water exchanges between the Amazon River main channel and its floodplains.

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 30

Acknowledgments. This work was funded by the Brazilian FAPESP agency by way of a postdoctoral fellowship (2005/58884-5) associated to the project entitled ‘‘A large-scale synthetic model applied to the hydroclimatology and eco-geodynamics of the Amazon River basin.’’ This study benefited from insightful comments from two anonymous referees, whose very careful review and far-reaching vision contributed indeed to substantially improve the quality of the language and the clarity of the thinking.

Appendix List of parameters The full results of the end-member mixing models are provided in the appendices. Table A1 and Figure A1 report the simulated fluctuations of the three runoff components for monitoring [(11)] and virtual [(7)] stations. Tables A2–A5 show the detailed results (calibrated parameters and performance criteria) of the models M1, M3, M4, and M5, respectively. The results of the model M6 are presented synthetically in Figure A2. The list of parameters shown below is intended to facilitate the self-exploration of the appendices. a. Indexes i j k

chemical species sampling station number of the sample.

b. Hydroclimatic features RS RI RB QK

forwarded direct runoff delayed direct runoff baseflow discharge of each individual runoff with K standing for RS, RI, or RB

c. Geochemical characteristics (for full details, see Tardy et al. 2004) Re: SiO2/Al2O3 in altered products CO2 CARB CO2 SIL CO2 TOT: CO2 SIL 1 2.CO2 CARB FR: CO2 CARB/CO2 TOT WR FCO2

stoechiometry of clays formed by chemical weathering CO2 consumed by the alteration of carbonated rocks CO2 consumed by the alteration of crystalline rocks DIC released by geochemical alteration lithological index is the part of DIC originating from the dissolution of carbonates chemical weathering rate (m Ma21) rate of CO2 consumption (TC km22 yr21)

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 31

d. Hydrochemical modeling I BIO kj K BIO ij (DQt /Qt ) kj j DQt kj 5 Qt kj /Qt tot ,k  1

aij bij g ij dij

hydrobiological index based on the gaseous composition of the river water rate of uptake or release of chemical species associated to hydrobiological path index of hydrograph stage (.0 during rising water, ,0 during falling water, and 50 for highest waters and lowest waters) water balance of floodplains (,0 if filling and .0 if emptying) variation of concentration in the river water associated to the variation of QRS/Qt in the main channel variation of concentration in the river water associated to the variation of QRI/Qt in the main channel variation of concentration in the river water associated to the water balance of floodplains DQt kj residual variation of concentration in the river water, for DQRS/Qt 5 DQRI/Qt 5 DQt 5 0

0 90 372 628 808 1026 1553 1744 2000

456 490 481 454 454 413 352 333 333

QRS

334 363 382 403 349 344 307 237 244 330

1479 1328 1374 1211 1211 1214 1489 1086 1086

380 384 386 366 366 343 314 319 319

QRB

mm yr21 QRI

1187 1310 1287 1044 1076 1085 1085 1396 1120 882

QRB

2315 2202 2241 2031 2031 1970 2154 1738 1738

Qt

1914 2084 2130 1897 1897 1897 1876 2052 1662 1496

Qt 13 14 17 24 26 26 33 38 40 41

13 17 17 24 24 26 30 43 43

738 032 728 030 030 698 425 355 355

QRS

724 516 240 263 362 578 437 524 980 757

QRS

535 212 649 032 032 539 837 479 479

QRI

371 278 109 223 020 548 980 290 047 683

44 46 50 64 64 78 128 141 141

41 46 48 56 60 61 74 128 154 129

QRI

m3 s21 428 356 223 338 338 163 137 565 565

QRB

634 835 280 725 437 497 182 784 571 560

11 13 14 19 19 22 27 41 41

11 12 14 21 19 19 21 21 33 48

QRB

700 600 600 400 400 400 400 400 400

Qt

729 629 629 212 819 623 598 598 598 000

69 76 82 107 107 127 186 226 226

66 73 79 102 105 107 129 188 228 220

Qt

0.197 0.222 0.215 0.224 0.224 0.210 0.163 0.191 0.191

QRS

0.206 0.197 0.217 0.237 0.249 0.247 0.258 0.204 0.179 0.190

QRS

0.639 0.603 0.613 0.596 0.596 0.616 0.691 0.625 0.625

QRI

QK/Qt

0.620 0.629 0.604 0.550 0.567 0.572 0.579 0.680 0.674 0.589

QRI

QK/Qt

0.164 0.174 0.172 0.180 0.180 0.174 0.146 0.184 0.184

QRB

0.174 0.174 0.179 0.213 0.184 0.181 0.163 0.116 0.147 0.221

QRB

d

Solimo˜es 1 Icxa 1 Jutai 1 Jur 1 Jap 1 Jur 1 Jap 1 Purus 1 Negro 1 Madeira S Rios

394 411 461 450 473 469 484 419 298 284

QRI

Volume 14 (2010)

km

90 231 372 628 808 923 1026 1553 1744 2000

SAI Xib Tup Jut Ita Ano Man SJA Pau ´ bi O

QRS

m3 s21

Cruise 1

d

Station

km

Station

mm yr

21

Table A1. Total discharge and river flow components (superficial runoff RS, interflow RI, and baseflow RB) as calculated by chemical tracing (model 3); in-long profile of discharge established for each individual cruise (n 5 8) and for averages; and observed values on the Amazon River main stem (10 stations) compared to theoretical in-long profile (nine virtual stations) by cumulating the inputs and inflows. Earth Interactions Paper No. 9 d

Page 32

90 231 372 628

913 1054 1097 996

QRS 170 197 135 24

QRI 446 464 457 518

QRB

21

317 310 312 282 282 269 241 245 245

QRB

Qt

1529 1715 1690 1510

Qt

Qt 1053 1121 1118 1216 1216 1163 1335 992 992

1006 1199 1192 1587 1587 1587 1619 1656 1206 1097

31 37 41 53

812 236 022 653

QRS

4122 4487 4905 5115 5115 5716 3270 12 836 12 836

QRS

3009 2410 6505 14 485 20 043 19 327 19 832 33 329 31 256 36 180

QRS

035 715 779 277 277 110 406 466 466

5924 6952 5065 2221

QRI

543 797 516 908 908 373 824 898 898

550 397 098 927

QRB 15 16 17 27

m3 s21

9 10 11 14 14 17 20 31 31

QRB

532 789 732 909 097 385 935 113 741 202

QRB 11 11 12 23 23 26 22 26 33 37 m3 s21

Cruise 3

18 23 24 44 44 52 91 84 84

QRI

538 180 342 084 355 291 096 721 866 918

QRI 20 28 25 47 45 44 69 92 100 87

53 60 63 81

700 000 200 300 300 200 500 200 200

285 585 185 359

Qt

31 39 41 64 64 75 115 129 129

Qt

079 379 579 478 495 003 863 163 863 300

Qt 35 42 44 85 88 90 111 152 165 161

QRS

0.597 0.615 0.649 0.659

QRS

0.130 0.115 0.119 0.080 0.080 0.076 0.028 0.099 0.099

QRS

0.086 0.057 0.146 0.169 0.226 0.215 0.177 0.219 0.188 0.224

QRI

0.111 0.115 0.080 20.003

QRI

QK/Qt

0.569 0.608 0.601 0.689 0.689 0.693 0.791 0.654 0.654

QRI

QK/Qt

0.585 0.665 0.568 0.551 0.513 0.492 0.618 0.609 0.608 0.545

QRB

0.292 0.271 0.271 0.343

QRB

0.301 0.277 0.280 0.232 0.232 0.231 0.180 0.247 0.247

QRB

0.329 0.278 0.286 0.280 0.261 0.293 0.205 0.172 0.203 0.231

d

mm yr

599 682 672 837 837 806 1056 648 648

QRI

mm yr21

331 334 340 444 414 465 332 284 245 253

QRB

Paper No. 9

km

137 129 133 97 97 88 38 99 99

QRS

589 798 678 874 813 781 1000 1009 733 598

QRI

d

SAI Xib Tup Jut

0 90 372 628 808 1026 1553 1744 2000

Solimo˜es 1 Ic xa 1 Jutai 1 Jur 1 Jap 1 Jur 1 Jap 1 Purus 1 Negro 1 P Madeira Rios

86 68 174 269 359 341 287 363 227 246

QRS

QK/Qt

Volume 14 (2010)

Station

km

90 231 372 628 808 923 1026 1553 1744 2000

SAI Xib Tup Jut Ita Ano Man SJA Pau ´ bi O

m3 s21

Cruise 2

d

Station

km

Station

mm yr

21

Earth Interactions Page 33

90 231 372 628 808

SAI Xib Tup Jut Ita

895 972 868 895 786

265 323 434 298 403

QRI 493 517 515 476 480

QRB

21

514 512 515 470 470 430 421 386 386

QRB

1653 1812 1816 1669 1669

Qt

1897 1851 1818 1607 1607 1392 1098 907 907

Qt

1510 1510 1172 935 793 836

33 38 41 54 54 60 86 67 67

506 792 729 624 624 623 126 479 479

QRS

958 604 583 739 720 155

31 34 32 48 43

191 340 444 238 818

QRS

52 54 52 48 47 47

QRS

9226 11 414 16 228 16 027 22 462

464 805 966 838 838 798 395 277 277

197 260 242 638 796

QRB

15 17 18 24 24 27 36 50 50

QRB

118 287 464 548 413 365

17 18 19 25 26

m3 s21

Cruise 4 QRI

31 31 27 31 41 43

QRB

m3 s21 8129 7803 6305 5538 5538 1579 227 521 344 344

QRI

155 2224 888 5648 19 902 32 380

QRI

57 64 67 89 93

614 014 914 903 076

Qt

100 400 000 000 000 000 000 100 100

Qt

231 667 935 935 035 900

57 64 67 85 85 90 95 118 118

84 85 80 85 109 122

Qt

0.541 0.536 0.478 0.537 0.471

QRS

0.587 0.602 0.623 0.643 0.643 0.674 0.907 0.571 0.571

QRS

0.629 0.637 0.650 0.567 0.438 0.384

QRS

0.160 0.178 0.239 0.178 0.241

QRI

QK/Qt

0.142 0.121 0.094 0.065 0.065 0.018 20.290 0.003 0.003

QRI

QK/Qt

0.002 20.003 0.011 0.066 0.183 0.263

QRI

QK/Qt

0.298 0.285 0.283 0.285 0.288

QRB

0.271 0.276 0.283 0.292 0.292 0.309 0.383 0.426 0.426

QRB

0.369 0.365 0.339 0.367 0.380 0.353

QRB

d

mm yr

270 224 171 105 105 24 2318 3 3

QRI

mm yr21

558 552 398 343 301 295

Qt

Paper No. 9

QRS

1113 1115 1132 1033 1033 937 995 518 518

3 24 13 61 145 220

QRB

d

km

0 90 372 628 808 1026 1553 1744 2000

Solimo˜es 1 Icxa 1 Jutai 1 Jur 1 Jap 1 Jur 1 Jap 1 Purus 1 Negro 1 P Madeira Rios

QRS

950 963 761 530 347 321

QRI

m3 s21

Cruise 3

Volume 14 (2010)

Station

km

808 923 1026 1553 1744 2000

Ita Ano Man SJA Pau ´ bi O

QRS

mm yr

21

d

Station

km

Station

Table A1. (Continued )

Earth Interactions Page 34

90 231 372 628 808 923 1026 1553 1744 2000

SAI Xib Tup Jut Ita Ano Man SJA Pau ´ bi O

342 334 355 360 480 468 440 465 359 359

389 603 644 987 865 883 838 785 579 495

QRI

528 528 526 479 479 438 428 382 382

QRB

397 434 409 459 462 455 435 388 335 352

QRB

mm yr21

279 222 236 151 151 201 2106 119 119

QRI

mm yr21

482 439 354 310 279

1128 1371 1407 1806 1806 1806 1712 1638 1274 1206

Qt

1741 1690 1701 1462 1462 1416 1154 1138 1138

Qt

1669 1532 1242 1182 1134

28 32 34 43 43 50 71 83 83

112 696 617 941 941 272 986 003 003

QRS

284 049 464 579 036

11 11 13 19 26 26 30 42 49 52

913 786 260 417 744 529 377 701 425 855

QRS

47 50 53 71 68

QRI

054 478 165 275 700

13 21 24 53 48 50 57 72 79 72

562 307 086 178 232 109 863 169 642 740

QRI

896 375 372 356 356 299 049 790 790

849 332 279 708 762 817 059 628 132 706

QRB

15 18 19 25 25 28 37 49 49

13 15 15 24 25 25 30 35 46 51

m3 s21

325 298 495 671 064

QRB

27 30 32 42 41 m3 s21

Cruise 5

8392 7730 8711 8003 8003 13 029 29134 15 506 15 506

20 25 28 48 57

663 825 125 525 800

400 800 700 300 300 600 900 300 300

39 48 52 97 100 102 118 150 175 177

325 425 625 304 738 455 299 499 199 300

Qt

52 58 62 77 77 91 99 148 148

Qt

94 105 114 162 166

0.303 0.243 0.252 0.200 0.265 0.259 0.257 0.284 0.282 0.298

QRS

0.536 0.556 0.552 0.568 0.568 0.549 0.721 0.560 0.560

QRS

0.499 0.473 0.468 0.440 0.408

0.345 0.440 0.458 0.547 0.479 0.489 0.489 0.480 0.455 0.410

QRI

QK/Qt

0.160 0.131 0.139 0.104 0.104 0.142 20.091 0.105 0.105

QRI

QK/Qt

0.212 0.241 0.247 0.297 0.346

0.352 0.317 0.290 0.254 0.256 0.252 0.254 0.237 0.263 0.292

QRB

0.303 0.312 0.309 0.328 0.328 0.309 0.371 0.336 0.336

QRB

0.289 0.286 0.285 0.263 0.246

d

QRS

934 940 939 831 831 777 832 637 637

QRS

354 369 306 351 392

Volume 14 (2010)

km

0 90 372 628 808 1026 1553 1744 2000

834 725 582 520 463

d

Station

km

Station

923 1026 1553 1744 2000

Solimo˜es 1 Ic xa 1 Jutai 1 Jur 1 Jap 1 Jur 1 Jap 1 Purus 1 Negro 1 P Madeira Rios

Ano Man SJA Pau ´ bi O

Earth Interactions Paper No. 9 d

Page 35

90 231 372 628 808 923 1026 1553 1744 2000

117 221 239 280 320 370 281 219 83 86

QRS

370 353 345 302 302 263 248 198 198

439 404 332 496 404 334 221 275 172 165

QRI

mm yr

512 624 666 745 745 785 843 606 606

QRI

275 359 396 287 339 359 341 275 309 373

QRB

21

406 400 403 360 360 334 315 319 319

QRB

831 984 967 1063 1063 1063 844 769 564 624

Qt

1289 1377 1414 1407 1407 1382 1405 1123 1123

Qt

Qt

151 277 698 977 977 030 428 775 775

4067 7818 8927 15 065 17 839 20 959 19 440 20 128 11 362 12 633

QRS

11 12 12 15 15 17 21 25 25

QRS

QRS

419 720 550 405 405 776 936 006 006

15 14 12 26 22 18 15 25 23 24

297 265 419 734 549 929 280 316 658 233

QRI

m3 s21 9591 12 671 14 808 15 449 18 880 20 390 23 578 25 254 42 478 54 834

QRB

230 903 852 018 018 594 235 519 519

QRB

QRB

12 13 14 19 19 21 27 41 41

m3 s21

Cruise 6

15 21 24 39 39 50 72 79 79

QRI

QRI

28 34 36 57 59 60 58 70 77 91

800 900 100 400 400 400 600 300 300

954 754 154 248 268 278 298 698 498 700

Qt

38 47 52 74 74 89 121 146 146

Qt

Qt

0.140 0.225 0.247 0.263 0.301 0.348 0.333 0.285 0.147 0.138

QRS

0.287 0.256 0.244 0.215 0.215 0.190 0.176 0.176 0.176

QRS

QRS

0.528 0.410 0.344 0.467 0.380 0.314 0.262 0.358 0.305 0.264

QRI

QK/Qt

0.397 0.453 0.471 0.530 0.530 0.568 0.600 0.540 0.540

QRI

QK/Qt

QRI

QK/Qt

0.331 0.365 0.410 0.270 0.319 0.338 0.404 0.357 0.548 0.598

QRB

0.315 0.290 0.285 0.256 0.256 0.242 0.224 0.284 0.284

QRB

QRB

d

SAI Xib Tup Jut Ita Ano Man SJA Pau ´ bi O

0 90 372 628 808 1026 1553 1744 2000

Solimo˜es 1 Ic xa 1 Jutai 1 Jur 1 Jap 1 Jur 1 Jap 1 Purus 1 Negro 1 P Madeira Rios

QRS

QRB

mm yr21

QRI

m3 s21

Volume 14 (2010)

km

km

Station

QRS

mm yr21

d

Station

km

Station

Table A1. (Continued )

Earth Interactions Paper No. 9 d

Page 36

1070 1056 1056 954 954

138 120 129 82 82

QRI 503 513 513 487 487

QRB

mm yr21

459 529 510 426 476 425 455 417 400 423

Qt 1711 1690 1699 1524 1524

1614 1799 1801 1622 1622 1622 1450 1395 1238 1204

Qt

884 931 917 934 934 807 746 548 548

205 755 926 467 467

QRS

972 506 302 811 801 019 800 081 012 736

32 36 38 50 50

35 42 43 47 46 45 52 64 102 99

QRS

4538 5381 6027 7663 7663 9873 14 474 12 027 12 027

QRS 180 015 145 798 798 879 123 016 016

4167 4187 4767 4356 4356

QRI

4286 2345 4975 16 566 17 076 22 853 15 953 25 820 13 324 15 065

QRI

QRB

997 704 077 974 556 102 425 277 942 199

15 17 18 25 25

128 858 907 778 778

QRB

15 18 19 22 26 24 31 38 54 62

QRB

8882 10 004 10 628 13 939 13 939 16 448 22 004 30 357 30 357

m3 s21

m3 s21

Cruise 7

13 17 17 27 27 25 28 29 29

QRI 600 400 800 400 400 200 600 400 400

500 800 600 600 600

Qt

255 555 355 350 433 974 178 178 278 000

51 58 62 80 80

56 63 67 87 90 91 100 128 170 177

Qt

26 32 33 49 49 52 64 71 71

Qt

0.625 0.625 0.622 0.626 0.626

QRS

0.639 0.669 0.643 0.547 0.518 0.489 0.527 0.500 0.599 0.563

QRS

0.171 0.166 0.178 0.155 0.155 0.189 0.224 0.168 0.168

QRS

0.081 0.071 0.076 0.054 0.054

QRI

QK/Qt

0.076 0.037 0.074 0.190 0.189 0.248 0.159 0.201 0.078 0.085

QRI

QK/Qt

0.495 0.525 0.507 0.563 0.563 0.496 0.435 0.406 0.406

QRI

0.294 0.304 0.302 0.320 0.320

QRB

0.284 0.294 0.283 0.263 0.294 0.262 0.314 0.299 0.323 0.351

QRB

0.334 0.309 0.314 0.282 0.282 0.315 0.341 0.425 0.425

QRB

d

0 90 372 628 808

QRS

123 66 133 308 306 403 231 281 97 102

QRB

21

295 288 288 264 264 254 254 233 233

Qt

Paper No. 9

Solimo˜es 1 Ic xa 1 Jutai 1 Jur 1 Jap 1 Jur 1 Jap

1032 1203 1158 888 839 794 764 697 742 678

QRI

mm yr

438 489 465 526 526 400 325 223 223

QRB

d

km

90 231 372 628 808 923 1026 1553 1744 2000

SAI Xib Tup Jut Ita Ano Man SJA Pau ´ bi O

QRS

151 155 164 145 145 153 167 92 92

QRI

QK/Qt

Volume 14 (2010)

Station

km

0 90 372 628 808 1026 1553 1744 2000

Solimo˜es 1 Ic xa 1 Jutai 1 Jur 1 Jap 1 Jur 1 Jap 1 Purus 1 Negro 1 P Madeira Rios

QRS

m3 s21

d

Station

km

Station

mm yr21

Earth Interactions Page 37

827 856 852 828 828 861 1030 692 692

464 458 458 420 420 402 423 397 397

QRB 1594 1621 1620 1535 1535 1506 1661 1251 1251

Qt

1465 1683 1678 1881 1881 1881 1837 1885 1400 1381

10 12 10 14 20 19 24 37 39 46

9160 10 659 11 411 15 196 15 196 15 665 17 945 21 043 21 043

QRS

696 011 300 196 741 166 897 162 335 937

QRS

886 788 410 781 781 703 139 210 210

QRI

217 713 048 734 550 950 171 691 253 151

24 29 31 43 43 55 89 90 90

25 31 37 65 60 63 68 96 99 94

QRI

954 953 878 223 223 031 616 747 747

QRB 13 15 16 22 22 26 36 51 51

m3 s21

141 729 405 374 589 552 834 349 914 912

QRB

780 299 064 064

QRB 29 40 57 57

15 15 15 21 23 23 33 39 53 61

m3 s21

Cruise 8

3494 2099 11 341 11 341

QRI

000 400 700 200 200 400 700 000 000

Qt

053 453 753 305 880 668 902 202 502 000

48 56 59 81 81 97 143 163 163

51 59 62 101 104 106 126 173 192 203

Qt

300 300 400 400

Qt 91 119 161 161

QRS

0.191 0.189 0.191 0.187 0.187 0.161 0.125 0.129 0.129

QRS

0.209 0.202 0.164 0.140 0.198 0.180 0.196 0.215 0.204 0.231

QRS

0.636 0.645 0.576 0.576

QRI

0.518 0.528 0.526 0.539 0.539 0.572 0.620 0.553 0.553

QRI

QK/Qt

0.494 0.533 0.590 0.649 0.577 0.600 0.537 0.558 0.516 0.464

QRI

QK/Qt

0.038 0.018 0.070 0.070

QRB

0.291 0.283 0.283 0.274 0.274 0.267 0.255 0.317 0.317

QRB

0.297 0.265 0.245 0.211 0.225 0.221 0.267 0.227 0.280 0.305

QRB

0.326 0.338 0.354 0.354

d

304 306 310 287 287 242 207 162 162

QRI

mm yr21

434 445 412 397 423 415 490 428 392 421

Qt

026 903 995 995

QRS 58 76 92 92

Paper No. 9

0 90 372 628 808 1026 1553 1744 2000

QRS

723 898 991 1220 1086 1127 987 1052 722 640

Qt 1412 1379 1239 1239

QK/Qt

d

Solimo˜es 1 Ic xa 1 Jutai 1 Jur 1 Jap 1 Jur 1 Jap 1 Purus 1 Negro 1 P Madeira Rios

307 340 275 264 372 338 360 404 286 319

QRI

460 466 438 438

QRB

QRB

21

mm yr

54 24 87 87

QRI

m3 s21

Volume 14 (2010)

km

90 231 372 628 808 923 1026 1553 1744 2000

SAI Xib Tup Jut Ita Ano Man SJA Pau ´ bi O

QRS

897 889 714 714

QRS

mm yr21

d

Station

km

Station

km

1026 1553 1744 2000

Station

1 Purus 1 Negro 1 P Madeira Rios

Table A1. (Continued )

Earth Interactions Page 38

km

0 90 372 628 808 1026 1553 1744 2000

Solimo˜es 1 Ic xa 1 Jutai 1 jur 1 Jap 1 jur 1 Jap 1 Purus 1 Negro 1 P Madeira Rios

90 231 372 628 808 923 1026 1553 1744 2000

SAI Xib Tup Jut Ita Ano Man SJA Pau ´ bi O

511 575 578 550 572 572 513 460 358 345

486 575 579 653 619 620 593 646 490 437

396 431 428 426 438 437 399 341 317 341

QRB

426 424 425 391 391 366 358 340 340

1560 1560 1566 1464 1464 1381 1366 1117 1117

Qt

1392 1581 1585 1629 1629 1629 1505 1446 1165 1122

Qt 17 20 21 29 31 32 35 42 49 50

17 19 21 27 27 30 40 44 44

067 760 005 127 127 488 319 814 814

QRS

789 328 625 641 913 433 427 266 209 661

QRS

093 771 040 649 649 139 986 421 421

QRI

928 307 659 166 550 189 964 353 371 234

17 19 21 29 29 35 46 56 56

16 20 21 35 34 35 40 59 67 64

QRI

816 756 668 675 675 686 945 277 277

QRB

811 215 990 963 404 794 597 306 608 105

12 14 15 20 20 23 30 44 44

m3 s21

13 15 15 22 24 24 27 31 43 50

QRB

975 288 713 450 450 313 250 513 513

Qt

537 849 274 770 868 416 987 925 187 000

46 54 57 77 77 89 118 145 145

48 55 59 87 90 92 103 132 160 165

Qt

0.363 0.364 0.364 0.350 0.350 0.341 0.341 0.308 0.308

QRS

0.367 0.364 0.365 0.338 0.351 0.351 0.341 0.318 0.307 0.307

QRS

0.364 0.364 0.365 0.383 0.383 0.393 0.397 0.388 0.388

QRI

QK/Qt

0.349 0.364 0.365 0.401 0.380 0.381 0.394 0.447 0.421 0.389

QRI

QK/Qt

0.273 0.272 0.271 0.267 0.267 0.265 0.262 0.304 0.304

QRB

0.285 0.272 0.270 0.262 0.269 0.268 0.265 0.236 0.272 0.304

QRB

d

568 568 571 561 561 543 543 433 433

QRB

mm yr21 QRI

QRI

m3 s21

Volume 14 (2010)

567 568 570 513 513 471 466 344 344

QRS

QRS

Ave

d

Station

km

Station

mm yr21

Earth Interactions Paper No. 9 d

Page 39

0.97 25 0.92 202 191 211 1.13 224 0.79 181 179 22 1.24 240 0.66 173 173 1 0.26 106 0.17 170 151 219 0.75 35 0.38 145 143 22

1.16 28 0.95 32 29 23 1.10 23 0.64 29 29 0 0.91 4 0.73 28 29 1 1.33 212 0.87 29 26 23 1.36 28 0.66 25 26 1

K1 0.95 248 0.82 457 389 268 0.90 21 0.97 400 380 220 0.78 68 0.89 380 362 218 0.74 12 0.89 373 283 290 0.75 48 0.92 305 272 233

Ca21 0.92 25 0.58 80 69 210 1.03 24 0.90 71 69 22 0.86 8 0.74 67 65 22 1.47 243 0.79 67 55 212 1.06 24 0.92 56 55 21

Mg21 0.89 237 0.75 1308 1137 2171 0.87 111 0.96 1152 1107 246 0.72 271 0.80 1096 1057 239 0.90 2106 0.88 1078 852 2226 0.77 147 0.87 894 823 270

S1 0.89 237 0.75 1308 1137 2171 0.87 111 0.96 1152 1107 246 0.72 271 0.80 1096 1057 239 0.90 2105 0.88 1078 852 2226 0.77 147 0.87 894 823 270

S2 1.08 2211 0.82 992 866 2126 0.86 91 0.93 872 838 234 0.61 291 0.58 825 788 238 0.61 161 0.63 817 650 2167 0.85 36 0.89 674 602 272

HCO32 0.68 27 0.94 155 133 221 0.64 45 0.88 136 132 24 0.67 39 0.90 128 125 23 0.03 87 0.00 122 90 232 0.55 32 0.37 101 87 213

Cl2 1.06 22.5 0.91 13.4 11.6 21.7 0.90 1.7 0.92 12.6 13.1 0.5 1.17 21.1 0.80 11.9 12.9 1.0 0.84 2.0 0.54 11.9 12.0 0.0 1.51 25.7 0.84 11.1 10.9 20.2

NO32 0.58 7.2 0.53 19.0 18.2 20.8 0.65 5.7 0.88 19.1 17.9 21.2 0.81 3.0 0.96 19.6 18.7 20.9 1.20 24.0 0.94 20.0 19.5 20.5 1.08 21.9 0.93 19.6 19.1 20.5

DOC2

Anions (mmol L21) 0.78 4.2 0.72 63.2 52.9 210.3 0.71 11.9 0.76 55.8 51.9 23.9 0.49 28.6 0.34 54.7 55.6 0.9 0.51 14.3 0.36 52.7 39.3 213.5 0.17 45.7 0.04 43.2 51.2 8.0

SO422

0.29 0.6 0.13 0.90 0.86 20.04 0.67 0.3 0.54 0.84 0.86 0.02 0.47 0.5 0.22 0.81 0.88 0.07 0.76 0.1 0.45 0.81 0.72 20.09 0.90 0.1 0.47 0.70 0.74 0.04

HPO422

d

Paper No. 9 d

Ita

1.37 22.81 0.73 7.34 7.23 20.11 0.49 3.66 0.37 7.27 7.26 20.02 0.87 0.90 0.78 7.20 7.19 20.01 1.21 21.65 0.81 7.18 7.05 20.13 1.12 20.91 0.83 7.09 7.00 20.09

Na1

meq L21

Volume 14 (2010)

Jut

a b r2 In Out Bias a b r2 In Out Bias a b r2 In Out Bias a b r2 In Out Bias a b r2 In Out Bias

pH

Cations (mmol L21)

d

Tup

Xib

SAI

j

i

Table A2. Results of model M1. Calibration of linear coefficient (a 5 slope; b 5 x intersect) between the concentrations in the inflow (in) and in the outflow (out). View of correlation coefficient r2 and determination of mean bias for the 10 sampling stations located along the Amazon main stem.

Earth Interactions Page 40

j

0.58 1.34 0.53 3.56 3.41 20.14

1.19 2310 0.93 1098 984 2114

DIC 1.70 253 0.92 105 118 12

CO2

0.58 69 0.61 181 174 27

O2

1.20 212 0.87 56 54 22 1.19 210 0.85 52 50 22 1.16 27 0.86 41 40 21 1.14 26 0.98 46 46 0 1.22 29 0.93 46 46 0

mmoI L21

0.76 39 0.95 305 268 238 0.75 40 0.87 276 241 236 0.79 29 0.96 211 189 222 0.78 27 0.95 196 176 220 0.84 15 0.93 196 176 220

0.83 22 0.95 148 145 23

SiO2

0.76 142 0.87 894 813 280 0.86 58 0.80 817 743 275 0.87 47 0.97 639 591 247 0.88 43 0.92 619 575 244 0.90 30 0.91 619 580 239

0.92 230 0.99 349 292 257

FSS

0.76 143 0.87 894 813 280 0.86 58 0.80 817 743 275 0.87 49 0.97 638 591 247 0.88 45 0.92 618 575 243 0.90 32 0.91 618 580 238

1.54 25.7 0.74 11.1 11.2 0.1 1.66 26.7 0.94 10.5 10.5 0.0 1.46 23.3 0.91 8.6 9.0 0.4 1.32 21.7 0.95 9.0 10.0 1.0 1.49 22.4 0.88 9.0 11.0 1.9

0.83 2 0.98 456 379 278

TSS

mg L21

0.54 32 0.37 101 86 215 0.95 26 0.54 89 78 211 1.04 29 0.87 72 65 27 1.09 211 0.91 65 60 25 0.80 6 0.86 65 58 26

0.58 25 0.97 107 86 221

CSS

0.71 132 0.85 674 603 271 0.65 159 0.62 619 552 267 0.93 14 0.79 469 438 231 0.82 61 0.77 453 423 230 0.86 49 0.95 453 433 219

0.98 20.45 0.95 3.76 3.20 20.56

POCF

1.01 21.2 0.82 19.6 18.5 21.0 0.89 2.5 0.71 20.3 20.5 0.2 0.83 3.1 0.80 26.4 25.2 21.2 0.69 5.0 0.76 24.7 22.0 22.7 0.63 6.1 0.68 24.7 21.4 23.3

0.38 0.39 0.28 0.82 0.72 20.11

POCC

0.37 31.1 0.11 43.2 46.3 3.1 0.37 28.7 0.10 38.7 40.0 1.3 20.11 31.0 0.02 30.8 26.3 24.5 0.13 27.5 0.01 33.0 29.6 23.4 0.85 0.7 0.57 33.0 27.3 25.8

0.98 0.02 1.00 26.85 26.67 0.18

d18O H2O

0.60 0.4 0.23 0.70 0.79 0.09 1.14 0.0 0.34 0.7 0.8 0.07 1.26 20.1 0.39 0.57 0.63 0.07 1.22 20.1 0.74 0.55 0.60 0.05 0.59 0.4 0.11 0.6 0.7 0.17

d

a b r2 In Out Bias

1.20 25 0.84 25 25 0 2.30 229 0.80 25 28 2 1.16 23 0.82 22 22 0 1.13 22 0.94 25 25 1 1.86 219 0.80 25 26 1

Paper No. 9

mg L21 DOC

0.66 49 0.24 145 144 21 1.53 272 0.83 135 133 22 1.14 213 0.89 110 111 1 1.51 253 0.82 107 106 0 1.18 216 0.62 107 109 2

d

SAI

i

1.23 21.75 0.85 7.09 6.99 20.10 1.12 20.92 0.82 6.98 6.91 20.07 1.01 20.12 0.85 6.87 6.78 20.09 1.14 21.05 0.83 6.87 6.80 20.07 1.17 21.23 0.84 6.87 6.75 20.13

Volume 14 (2010)

´ bi O

a b r2 In Out Bias a b r2 In Out Bias a b r2 In Out Bias a b r2 In Out Bias a b r2 In Out Bias

d

Pau

SJA

Man

Ano

Earth Interactions Page 41

0.85 115 0.95 981 946 234 0.73 226 0.71 946 906 240 0.71 128 0.69 943 786 2157 0.87 55 0.86 802 742 260 0.73 174 0.84 802 747 255

0.67 37 0.73 109 108 21 0.93 9 0.93 121 118 22 1.13 21 0.85 126 136 10 1.15 25 0.83 128 140 12 1.28 216 0.87 128 144 16

CO2 0.85 20 0.86 181 173 28 0.70 43 0.69 175 165 210 0.84 16 0.76 172 161 211 0.86 2 0.60 176 153 223 0.83 10 0.60 176 155 221

O2 0.96 4 0.99 143 142 0 1.04 25 0.97 142 144 2 0.85 18 0.92 144 143 21 0.97 5 0.83 135 137 2 1.07 28 0.88 135 137 2

SiO2 1.05 228 0.98 312 298 213 0.97 4 0.98 294 288 26 102 256 0.94 287 222 265 0.93 6 0.90 238 219 220 0.94 3 0.84 238 217 222

FSS 0.23 62 0.20 95 82 212 0.55 35 0.47 89 83 26 0.42 37 0.51 85 69 216 0.44 32 0.68 68 61 27 0.37 38 0.39 68 61 27

CSS 0.91 17 0.83 406 381 226 1.01 28 0.90 383 372 212 0.94 237 0.87 372 291 281 0.84 33 0.86 306 279 227 0.87 25 0.78 306 278 229

TSS

mg L21 1.04 20.36 0.98 3.43 3.23 20.21 0.92 0.29 0.90 3.28 3.27 20.01 1.05 20.59 0.91 3.18 2.64 20.54 1.21 20.70 0.94 2.83 2.64 20.19 0.95 20.06 0.76 2.83 2.53 20.30

POCF

0.05 0.65 0.00 0.74 0.70 20.04 0.25 0.48 0.07 0.70 0.65 20.04 0.39 0.39 0.04 0.67 0.62 20.05 0.38 0.40 0.06 0.64 0.62 20.02 0.25 0.38 0.03 0.64 0.52 20.11

POCC

0.95 20.26 0.99 26.69 26.58 0.11 0.98 20.02 0.99 26.61 26.45 0.16 0.94 20.04 0.99 26.52 26.10 0.42 0.92 20.28 0.98 26.33 26.05 0.29 0.89 20.46 0.96 26.33 26.03 0.31

d18O H2O

d

Paper No. 9 d

Ano

0.65 1.07 0.88 3.57 3.35 20.22 0.81 0.55 0.96 3.67 3.49 20.17 1.20 20.75 0.94 3.75 3.65 20.09 1.08 20.35 0.93 3.66 3.57 20.08 1.01 20.22 0.82 3.66 3.47 20.19

DIC

mmoI L21

Volume 14 (2010)

Ita

a b r2 In Out Bias a b r2 In Out Bias a b r2 In Out Bias a b r2 In Out Bias a b r2 In Out Bias

mg L21 DOC

d

Jut

Tup

Xib

j

i

Table A2. (Continued )

Earth Interactions Page 42

1.02 20.13 0.96 212.55 212.94 20.39 0.98 20.64 0.91 212.78 213.11 20.34

0.68 28.74 0.49 226.69 226.93 20.24 0.87 23.62 0.85 226.78 226.96 20.18

0.78 26.12 0.67 227.44 227.35 0.09 0.87 23.67 0.76 227.49 227.55 20.06

0.96 5.6 0.11 11.2 16.7 5.5 0.26 8.1 0.35 11.1 10.9 20.2

POCF 1.48 8.1 0.07 21.9 48.3 26.4 1.66 215.4 0.67 22.0 20.3 21.7

POCC

C/N

0.86 9 0.63 165 150 215 0.84 20 0.91 160 153 27 0.88 12 0.88 162 153 29 0.92 1 0.86 162 151 210

0.41 18.4 0.10 31.8 29.8 22.0 0.51 11.1 0.31 30.9 26.7 24.2

DOC

0.81 30 0.63 137 141 4 1.00 2 0.89 119 122 3 0.98 4 0.86 127 125 22 0.39 81 0.28 127 129 3

1.19 2310 0.93 1098 984 2114.0 0.85 114.5 0.95 980.8 946.3 234.5

DIC

0.97 27 0.93 216 190 226 0.64 48 0.95 165 149 215 0.65 62 0.85 213 199 214 0.52 81 0.74 213 193 219

0.98 237 0.95 313 267 246 1.04 230 0.98 286 269 217

POCF

0.86 18 0.88 276 238 238 0.41 98 0.85 210 181 229 0.52 95 0.73 262 232 230 0.40 117 0.58 262 226 236

0.99 20.33 0.87 2.59 2.13 20.46 0.74 0.25 0.86 2.06 1.75 20.31 0.56 0.86 0.51 2.22 2.15 20.08 0.32 1.55 0.26 2.22 2.32 0.10

0.38 32 0.28 68 60 29 0.05 54 0.00 62 58 23

0.46 3.4 0.80 28.0 16.0 212.0 0.87 1.7 0.97 25.8 24.7 21.2

PONF

0.91 21.1 0.54 3.1 1.2 21.9 0.06 2.5 0.00 2.8 2.9 0.1

PONC

Carbon cycle (mmol L21) POCC

0.30 32 0.58 60 48 212 20.17 35 0.09 45 32 213 20.05 32 0.01 49 33 216 20.05 32 0.01 49 33 217

0.58 112 0.53 296 284 212 0.65 89 0.88 297 279 218

DOC

0.36 0.25 0.19 0.56 0.43 20.13 0.20 0.27 0.19 0.43 0.35 20.08 20.09 0.36 0.02 0.45 0.35 20.10 0.22 0.20 0.16 0.45 0.32 20.13

0.86 2.7 0.51 9.3 9.5 0.2 0.67 4.5 0.48 9.6 10.4 0.8

DON

0.92 20.28 0.98 26.22 25.98 0.24 0.95 20.19 0.97 25.88 25.75 0.14 0.99 0.07 0.99 25.91 25.74 0.17 1.00 0.21 0.99 25.91 25.63 0.28

d

Xib

a b r2 In Out Bias a b r2 In Out Bias

POCC

1.16 212 0.85 152 159 8 1.42 240 0.87 146 169 23 1.13 24 0.68 138 160 22 121 24 0.60 138 160 22

Paper No. 9

POCF

d13C(&)

0.67 206 0.71 771 712 259 0.96 24 0.75 614 607 27 0.68 180 0.65 591 583 28 0.68 200 0.78 591 593 2

d

DIC

0.89 0.46 0.71 3.79 3.83 0.04 0.83 0.59 0.80 4.93 4.71 20.22 0.69 0.94 0.76 4.62 4.11 20.51 0.63 1.13 0.68 4.62 4.01 20.61

Volume 14 (2010)

SAI

j

i

a b r2 In Out Bias a b r2 In Out Bias a b r2 In Out Bias a b r2 In Out Bias

d

´ bi O

Pau

SJA

Man

Earth Interactions Page 43

1.00 20.23 0.99 213.04 213.24 20.20 1.11 0.91 0.92 213.29 213.86 20.57 1.24 2.49 0.86 213.63 214.38 20.75 1.33 3.68 0.84 213.63 214.45 20.81 1.23 2.55 0.93 214.17 215.02 20.85

DIC 0.60 211.03 0.57 226.81 226.98 20.18 1.06 1.19 0.60 226.84 227.22 20.38 1.16 4.04 0.78 226.93 227.22 20.30 1.27 7.02 0.66 226.93 227.25 20.33 1.18 4.38 0.72 227.02 227.44 20.42

POCF 0.81 25.42 0.79 227.50 227.65 20.15 1.07 1.78 0.78 227.52 227.82 20.30 0.68 28.97 0.56 227.58 227.87 20.29 0.69 28.46 0.56 227.58 227.70 20.12 0.78 26.12 0.72 227.63 227.72 20.09

POCC 0.55 4.8 0.55 11.0 10.6 20.4 0.67 3.2 0.41 10.9 10.3 20.7 0.22 8.3 0.01 10.8 10.8 0.0 0.18 8.7 0.09 10.8 10.5 20.4 0.43 5.7 0.47 10.7 10.3 20.4

POCF 1.75 216.2 0.67 22.0 22.3 0.3 0.75 5.9 0.18 22.0 23.0 1.0 0.05 22.8 0.00 24.1 24.3 0.2 20.04 24.1 0.00 24.1 23.0 21.1 20.39 32.4 0.25 24.4 23.3 21.1

POCC 0.89 20.3 0.52 30.0 26.4 23.6 0.08 24.0 0.01 29.8 24.9 25.0 0.06 28.3 0.00 29.5 22.8 26.7 0.91 8.9 0.07 29.5 30.3 0.8 1.04 2.2 0.19 28.4 29.1 0.7

DOC 0.73 225.8 0.71 946.0 906.1 240.0 0.71 127.9 0.69 942.6 785.7 2156.9 0.87 55.2 0.86 801.7 741.8 259.9 0.73 174.1 0.84 801.7 746.6 255.1 0.67 206.4 0.71 770.6 711.7 258.9

DIC 0.92 24 0.90 273 272 21 1.05 250 0.91 265 220 245 1.21 258 0.94 236 220 215 0.95 25 0.76 236 210 225 0.99 228 0.87 215 178 238

POCF 0.25 40 0.07 58 55 24 0.39 32 0.04 56 51 24 0.38 34 0.06 53 51 22 0.25 32 0.03 53 44 29 0.36 21 0.19 47 36 211

POCC 0.82 4.9 0.91 24.8 25.7 0.9 0.95 21.6 0.91 24.3 21.5 22.8 0.74 4.8 0.76 21.7 20.4 21.4 0.77 3.5 0.79 21.7 20.1 21.6 0.90 20.4 0.89 20.2 17.3 22.9

PONF 0.49 1.2 0.19 2.6 2.5 20.2 0.28 1.6 0.05 2.5 2.2 20.3 0.30 1.5 0.06 2.2 2.1 20.1 0.40 1.0 0.11 2.2 1.9 20.3 0.41 0.9 0.22 1.9 1.6 20.4

PONC

Carbon cycle (mmol L21) 0.81 46 0.96 306 291 214 1.20 262 0.94 312 304 28 1.08 229 0.93 305 298 27 1.01 218 0.82 305 289 216 0.89 38 0.71 316 319 3

DOC

0.93 2.4 0.53 10.2 11.0 0.9 0.26 10.2 0.03 10.5 12.2 1.8 0.03 12.5 0.00 10.4 13.1 2.7 1.42 23.9 0.70 10.4 9.5 20.8 1.40 23.5 0.71 11.1 11.0 20.1

DON

d

Paper No. 9 d

Man

a b r2 In Out Bias a b r2 In Out Bias a b r2 In Out Bias a b r2 In Out Bias a b r2 In Out Bias

C/N

Volume 14 (2010)

Ano

j

d13C(&)

d

Ita

Jut

Tup

i

Table A2. (Continued )

Earth Interactions Page 44

a b r2 In Out Bias a b r2 In Out Bias

0.52 213.38 0.25 227.67 227.80 20.13 0.09 225.20 0.05 227.48 227.70 20.23 20.09 230.64 0.04 227.48 228.01 20.53

1.67 27.6 0.53 18.9 23.2 4.3 1.14 21.0 0.24 17.9 18.5 0.6

CaSil

Silicates (mmol L21)

1.04 0.66 0.95 227.07 227.47 20.40 1.04 0.96 0.70 227.02 227.21 20.20 0.92 22.17 0.40 227.02 227.32 20.30

1.67 26.1 0.53 15.1 18.6 3.4 1.14 20.8 0.24 14.3 14.8 0.5

MgSil

20.47 15.1 0.04 10.6 9.9 20.7 0.71 3.0 0.91 9.5 9.7 0.2 0.62 3.9 0.47 9.5 10.1 0.6 1.35 0.9 0.04 29.8 31.5 1.8 2.50 229.8 0.39 29.0 32.5 3.5 1.73 215.1 0.24 29.0 27.9 21.1

0.96 23.9 0.75 614.4 607.3 27.1 0.68 179.5 0.65 590.7 582.6 28.1 0.68 199.8 0.78 590.7 593.1 2.4

1.14 291 0.86 311 263 248 0.93 5 0.93 270 256 214

CaCO3 1.48 245 0.70 64 51 214 1.26 217 0.75 56 54 22

Dolomite

Carbonates (mmol L21)

20.19 29.4 0.01 24.4 23.5 20.9 20.06 23.7 0.00 22.3 21.2 21.1 20.92 41.1 0.58 22.3 19.8 22.6 0.20 22 0.19 36 29 27 20.09 30 0.02 37 29 28 0.22 17 0.16 37 26 211

0.59 5.3 0.77 16.2 14.7 21.5 0.71 4.4 0.71 19.5 18.4 21.1 0.43 10.5 0.57 19.5 19.2 20.3

1.24 2181 0.83 439 364 276 1.03 229 0.94 383 364 219

CO2 CARB

SIL

1.53 250 0.46 147 170 23 0.67 56 0.10 139 142 4

CO2

20.19 1.5 0.21 1.5 1.2 20.2 20.24 1.6 0.13 1.7 1.4 20.3 0.05 1.2 0.01 1.7 1.3 20.3

1.08 2210 0.82 1026 898 2129 0.86 98 0.94 905 871 234

CO2 TOT

Carbon cycle (mmol L21)

0.74 21 0.86 172 146 226 0.56 72 0.51 185 179 26 0.32 130 0.26 185 194 8

2.12 20.51 0.75 0.428 0.405 20.023 1.60 20.26 0.65 0.423 0.418 20.005

FR

0.83 49 0.80 411 392 218 0.69 78 0.76 385 343 242 0.63 95 0.68 385 334 251

0.37 1.51 0.25 2.09 2.30 0.21 0.09 1.91 0.05 2.03 2.08 0.05

Re

0.76 2.0 0.34 13.8 12.4 21.3 1.32 27.2 0.91 13.3 10.6 22.7 1.10 22.8 0.75 13.3 12.0 21.3

d

1.67 219.1 0.53 47.2 58.0 10.8 1.14 22.6 0.24 44.8 46.2 1.4

NaSil

1.22 2.81 0.96 214.74 215.20 20.46 1.22 2.48 0.93 214.86 215.66 20.81 1.31 3.77 0.89 214.86 215.82 20.96

Volume 14 (2010) Paper No. 9 d

Xib

j

i

a b r2 In Out Bias a b r2 In Out Bias a b r2 In Out Bias

d

SAI

´ bi O

Pau

SJA

Earth Interactions Page 45

1.25 24.7 0.13 44.1 47.8 3.7 1.42 27.7 0.29 47.4 60.6 13.2 2.14 238.6 0.47 44.0 55.2 11.2 2.07 232.2 0.27 44.0 57.8 13.7 2.59 263.6 0.65 46.1 55.1 9.1

NaSil 1.25 21.9 0.13 17.6 19.1 1.5 1.42 23.1 0.29 19.0 24.2 5.3 2.14 215.5 0.47 17.6 22.1 4.5 2.07 212.9 0.27 17.6 23.1 5.5 2.59 225.5 0.65 18.4 22.1 3.6

CaSil 1.25 21.5 0.13 14.1 15.3 1.2 1.42 22.5 0.29 15.2 19.4 4.2 2.14 212.4 0.47 14.1 17.7 3.6 2.07 210.3 0.27 14.1 18.5 4.4 2.59 220.4 0.65 14.7 17.6 2.9

MgSil 0.73 52 0.56 255 238 217 0.51 59 0.57 249 184 265 0.89 216 0.83 203 162 241 0.71 21 0.66 203 163 240 0.56 45 0.49 182 146 236

CaCO3 1.24 216 0.72 53 50 23 1.73 252 0.78 52 35 216 1.38 220 0.96 42 37 25 1.70 234 0.95 42 36 26 1.33 216 0.87 37 33 24

Dolomite CARB

0.85 32 0.62 361 337 223 0.74 23 0.64 352 254 298 1.02 252 0.90 286 236 250 0.98 242 0.84 286 234 252 0.79 13 0.77 256 211 245

CO2 SIL

0.69 60 0.04 136 146 10 1.39 228 0.26 144 174 29 1.85 282 0.36 133 161 28 1.51 232 0.17 133 166 33 2.42 2169 0.60 138 162 24

CO2 TOT

0.61 302 0.58 858 821 237 0.62 160 0.67 849 683 2167 0.85 39 0.90 705 633 272 0.71 142 0.86 705 634 271 0.66 166 0.63 650 585 265

CO2

Carbon cycle (mmol L21) FR 1.76 20.33 0.41 0.421 0.411 20.010 1.84 20.39 0.53 0.415 0.373 20.042 2.41 20.60 0.85 0.406 0.373 20.033 2.77 20.75 0.80 0.406 0.369 20.037 1.76 20.33 0.76 0.394 0.361 20.033

Re 0.20 1.68 0.04 2.00 2.10 0.10 0.71 0.83 0.39 2.07 2.31 0.24 0.51 1.23 0.20 2.01 2.28 0.27 0.23 1.81 0.03 2.01 2.31 0.30 0.58 1.09 0.22 2.04 2.27 0.23

d

Paper No. 9 d

Man

a b r2 In Out Bias a b r2 In Out Bias a b r2 In Out Bias a b r2 In Out Bias a b r2 In Out Bias

Carbonates (mmol L21)

Volume 14 (2010)

Ano

j

Silicates (mmol L21)

d

Ita

Jut

Tup

i

Table A2. (Continued )

Earth Interactions Page 46

1.36 25.8 0.50 38.5 45.9 7.4 1.91 231.5 0.26 42.0 46.7 4.7 1.18 3.1 0.08 42.0 50.7 8.8

1.36 22.3 0.50 15.4 18.3 3.0 1.91 212.6 0.26 16.8 18.7 1.9 1.18 1.2 0.08 16.8 20.3 3.5

1.36 21.9 0.50 12.3 14.7 2.4 1.91 210.1 0.26 13.4 14.9 1.5 1.18 1.0 0.08 13.4 16.2 2.8

0.80 15 0.60 136 119 217 0.63 26 0.51 113 96 217 0.74 15 0.93 113 98 215

1.39 214 0.79 28 25 23 1.35 214 0.80 33 31 22 1.57 222 0.74 33 30 23

1.00 218 0.81 193 170 223 0.94 28 0.72 179 158 220 1.06 230 0.88 179 158 220

1.07 14 0.44 116 134 18 1.15 0 0.13 127 139 12 0.69 70 0.04 127 150 23

0.92 27 0.79 501 473 228 0.81 73 0.76 484 456 229 0.87 54 0.94 484 466 218

1.84 20.35 0.90 0.384 0.358 20.026 1.58 20.24 0.40 0.369 0.347 20.022 1.65 20.27 0.39 0.369 0.339 20.030

0.34 1.51 0.19 1.97 2.17 0.20 0.06 2.12 0.00 2.06 2.23 0.18 0.21 1.85 0.02 2.06 2.28 0.23

Volume 14 (2010)

´ bi O

a b r2 In Out Bias a b r2 In Out Bias a b r2 In Out Bias

d

Pau

SJA

Earth Interactions d

Paper No. 9 d

Page 47

Ita

572 619 438 1629

51 44 210 32 0.79 49 44 217 29 0.73 54 50 230 29 0.66 40 36 6 29 0.27 52 37 224 26 0.18 62 31 227 26 0.28

720 497 55 457 0.62 674 536 2157 389 0.55 644 441 254 380 0.71 517 385 123 362 0.38 579 335 2180 283 0.77 764 321 2439 272 0.80

Ca21 96 74 65 80 0.54 103 84 8 69 0.66 95 66 38 69 0.81 75 55 65 65 0.44 110 61 226 55 0.70 123 54 233 55 0.74

Mg21 1716 1255 834 1308 0.57 1632 1341 248 1137 0.46 1563 1127 470 1107 0.68 1252 976 904 1057 0.31 1458 887 15 852 0.80 1860 829 2540 823 0.81

S1 1716 1255 834 1308 0.57 1632 1341 248 1137 0.46 1563 1127 470 1107 0.68 1252 976 904 1057 0.31 1458 887 15 852 0.80 1860 829 2540 823 0.81

S2 1504 1216 13 992 0.60 1485 1296 2459 866 0.68 1276 997 41 838 0.57 1041 814 409 788 0.41 1135 799 2204 650 0.47 1676 765 21034 602 0.77

HCO32 11 53 482 155 0.95 58 65 315 133 0.67 74 82 277 132 0.84 82 88 236 125 0.68 162 99 216 90 0.76 127 71 60 87 0.62

Cl2 5.4 20.3 42.2 13.4 0.79 3.7 23.1 39.9 11.6 0.70 10.3 4.1 29.0 13.1 0.65 11.5 0.3 31.9 12.9 0.86 4.5 0.4 39.3 12.0 0.60 25.5 26.2 56.7 10.9 0.93

NO32

36 32 220 19 0.74 27 27 24 18 0.43 26 23 1 18 0.33 26 23 3 19 0.27 54 39 254 20 0.38 60 35 257 19 0.83

DOC2

80 225 158 63 0.51 28 224 180 53 0.24 88 10 59 52 0.54 45 24 112 56 0.09 52 225 121 39 0.93 3 218 212 51 0.62

SO422

0.10 0.65 2.29 0.90 0.54 0.88 1.23 0.37 0.86 0.33 0.53 0.84 1.33 0.86 0.24 0.89 1.03 0.66 0.88 0.06 0.13 0.49 1.83 0.72 0.08 20.88 0.08 3.81 0.74 0.81

HPO422

d

550 653 426 1629

— — — — — — — — — — — — —

35 70 600 202 1.00 30 60 560 191 1.00 31 63 530 179 1.00 30 60 520 173 1.00 28 59 450 151 1.00 24 49 430 143 1.00

20.54 20.29 2.35 0.34 0.32 — — — — — — — — — — —

K1

Anions (mmol L21)

Paper No. 9

Jut

7.23 7.14 7.75 7.34 0.18 7.34 7.32 6.99 7.23 0.02 7.40 7.26 7.05 7.26 0.20 6.95 6.91 7.90 7.19 0.37 6.67 6.67 8.12 7.05 0.17 6.97 6.60 7.62 7.00 0.47

Na1

NH41

meq L21

d

578 579 428 1585

575 575 431 1581

511 486 396 1392

567 568 426 1560

pH

Cations (mmol L21)

Volume 14 (2010)

Tup

Xib

RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2

mm yr21 QK

d

SAI

VG

j

i

Table A3. Results of model M3. Chemical composition [C]K of hydrological reservoirs (indexed k) RS, RI, and RB, established by chemical tracing for all parameters (indexed i) for the 10 sampling stations (index j) located along the Amazon main stem and the seven virtual stations whose chemical composition is calculated by adding the successive inputs of major tributaries. View of Rsquared value (r 2) and mean value (Ave) for each parameter. Notice that QRS/Qt (ij ) 3 [Cij ]RS 1 QRI/Qt (ij ) 3 [Cij ]RI 1 QRB/Qt 1 [Cij ]RB 5 [Cij ]Ave. Earth Interactions Page 48

j

RS RI RB Ave r2

567 568 426 1560

6.7 5.9 23.8 3.6 0.74

176 176 283 105 0.18

O2

SiO2

FSS

CSS

TSS

mg L21

138 76 33 86 0.69 83 31 140 78 0.94 61 17 162 65 0.91 52 17 134 60 0.85 66 19 100 58 0.70

1189 564 2663 456 1.00

1371 736 2591 603 0.80 843 442 343 552 0.65 937 172 268 438 0.76 584 232 535 423 0.59 524 274 543 433 0.25

439 354 2662 107 0.97

1736 815 2397 813 0.87 1137 492 608 743 0.85 1156 262 454 591 0.87 706 302 848 575 0.68 686 327 790 580 0.32

750 210 0 349 1.00

1736 815 2397 813 0.87 1137 492 608 743 0.85 1156 262 454 591 0.87 706 302 848 575 0.68 686 327 790 580 0.32

10 76 429 148 0.97

130 53 243 54 0.86 77 31 46 50 0.88 116 18 222 40 0.91 69 21 57 46 0.71 67 24 54 46 0.30

153 190 206 181 0.08

mmol L21

700 313 2362 268 0.86 442 185 64 241 0.79 420 84 77 189 0.81 250 102 205 176 0.55 239 113 190 176 0.21

CO2

53 33 223 25 0.35 70 25 223 28 0.57 65 22 234 22 0.73 39 21 17 25 0.31 44 18 19 26 0.16

1681 1393 272 1098 0.49

DIC

24 49 435 144 1.00 30 35 410 133 1.00 18 37 377 111 1.00 28 33 308 106 1.00 28 33 285 109 1.00

7.5 2.8 0.0 3.8 0.98

POCF

0.4 25.3 48.7 11.2 0.89 10.3 21.6 28.9 10.5 0.80 3.1 21.7 37.3 9.0 0.84 10.0 0.6 24.6 10.0 0.80 10.8 22.3 27.7 11.0 0.72

1.7 1.5 21.3 0.8 0.56

POCC

43 32 232 19 0.69 36 30 214 21 0.58 40 36 216 25 0.82 26 28 8 22 0.49 22 26 13 21 0.21

9.2 4.3 21.3 4.6 0.95

POC

91 213 72 46 0.58 81 25 53 40 0.52 58 18 22 26 0.08 17 12 71 30 0.25 31 5 51 27 0.17

212.4 212.9 8.7 26.8 0.76

d18O H2O

0.57 0.78 1.10 0.79 0.03 0.54 0.57 1.36 0.77 0.06 20.84 0.35 3.17 0.63 0.59 0.02 0.41 1.56 0.60 0.90 0.51 0.65 1.05 0.73 0.07

d

VG

mg L21 DOC

— — — — — — — — — — — — — — — — — — — — 0.02 0.72 1.31 0.69 0.64

Paper No. 9

mm yr21 QK

7.17 6.57 7.35 6.99 0.59 6.78 6.27 8.01 6.91 0.80 6.70 6.28 7.84 6.78 0.73 6.66 6.34 7.66 6.80 0.60 6.59 6.20 7.58 6.75 0.53

d

i

345 433 345 1122

358 490 317 1165

460 646 341 1446

513 593 399 1505

572 620 437 1629

Volume 14 (2010)

Obi

RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2

d

Pau

SJA

Man

Ano

Earth Interactions Page 49

5.0 5.1 20.8 3.4 0.43 4.8 4.2 0.2 3.3 0.33 4.9 4.3 0.5 3.5 0.27 10.1 7.2 210.2 3.7 0.38 11.2 6.6 210.7 3.6 0.83 8.0 6.0 26.0 3.5 0.69

DIC 1610 1417 2354 984 0.43 1401 1128 96 946 0.45 1238 999 332 906 0.34 1427 1063 2466 786 0.28 1972 1043 21294 742 0.62 1593 1029 2761 747 0.68

CO2 128 123 98 118 0.00 126 131 55 108 0.03 196 183 274 118 0.22 291 262 2258 136 0.16 297 277 2259 140 0.36 224 290 2170 144 0.50

O2 133 186 211 174 0.32 149 179 196 173 0.10 123 148 246 165 0.16 16 71 487 161 0.26 64 103 339 153 0.15 98 108 295 155 0.19

39 85 353 145 0.93 43 90 344 142 0.92 58 106 310 144 0.78 1 91 406 143 0.75 19 108 332 137 0.73 57 118 267 137 0.49

SiO2

FSS 635 170 0 292 1.00 650 170 0 298 1.00 625 165 0 288 1.00 575 70 0 222 1.00 590 30 0 219 1.00 590 25 0 217 1.00

CSS 264 238 2328 86 0.93 145 61 27 82 0.58 224 70 289 83 0.80 148 53 29 69 0.45 259 91 2241 61 0.71 195 49 297 61 0.78

899 409 2330 379 0.99 795 231 27 381 0.98 849 235 289 372 0.98 723 123 29 291 0.97 849 121 2240 279 0.99 784 74 296 278 0.99

TSS

mg L21 6.0 1.6 1.6 3.2 0.97 6.7 2.5 20.4 3.2 0.97 5.6 1.7 2.2 3.3 0.95 6.4 1.7 20.7 2.6 0.90 9.1 2.0 24.8 2.6 0.90 5.5 0.8 1.0 2.5 0.93

POCF 1.5 1.4 21.1 0.7 0.91 1.1 0.3 0.7 0.7 0.96 0.9 0.3 0.8 0.7 0.72 0.6 20.4 2.1 0.6 0.83 1.1 20.3 1.3 0.6 0.83 1.3 20.2 0.5 0.5 0.84

POCC

7.5 3.0 0.5 3.9 0.97 7.8 2.8 0.3 3.9 0.98 6.5 1.9 3.1 3.9 0.95 7.0 1.3 1.5 3.3 0.96 10.2 1.7 23.5 3.3 0.94 6.8 0.7 1.5 3.1 0.96

POC

211.4 212.5 6.5 26.7 0.64 212.0 212.9 9.1 26.6 0.89 211.3 212.0 7.6 26.4 0.90 212.9 211.1 10.4 26.1 0.30 216.4 211.2 14.8 26.0 0.61 211.5 210.0 6.6 26.0 0.47

d18O H2O

Paper No. 9 d

572 620 437 1629

572 619 438 1629

550 653 426 1629

578 579 428 1585

575 575 431 1581

511 486 396 1392

mmol L21

d

Ano

RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2

mg L21 DOC

Volume 14 (2010)

Ita

Jut

j

mm yr21 QK

d

Tup

Xib

SAI

i

Table A3. (Continued )

Earth Interactions Page 50

225.4 226.2 229.0 226.7 0.50 226.1 227.1 227.8 226.9 0.61

212.6 214.9 29.4 212.5 0.67 212.7 214.8 211.0 212.9 0.44

225.2 225.2 233.5 227.4 0.45 225.0 224.4 234.0 227.4 0.76 10.9 13.5 8.4 11.2 0.33 14.8 8.9 28.8 16.7 0.26

13.9 16.7 39.6 21.9 0.35 33.6 26.0 133.9 48.3 0.59

POCC

C/N

102 106 275 150 0.20 104 123 277 153 0.26 116 116 250 153 0.48 117 91 261 151 0.63

19.1 21.9 93.8 31.8 0.38 29.9 3.1 62.4 29.8 0.19

DOC

92 123 230 141 0.43 62 102 240 122 0.60 123 107 154 125 0.44 116 128 145 129 0.17

1681 1393 272 1098 0.49 1610 1417 2354 984 0.43

DIC

540 15 0 190 1.00 442 20 0 149 1.00 620 20 0 199 1.00 610 15 0 193 1.00

625 235 3 313 0.98 499 133 132 267 0.97

POCF

112 39 222 48 0.64 22 66 220 32 0.66 58 51 224 33 0.40 65 60 234 33 0.54

5.0 0.7 0.6 2.1 0.90 5.1 0.7 20.7 1.8 0.77 5.8 1.2 20.4 2.1 0.94 5.3 2.1 20.3 2.3 0.85

0.9 0.2 0.2 0.4 0.73 0.6 0.3 0.2 0.4 0.27 0.6 0.5 20.2 0.3 0.55 0.8 0.4 20.3 0.3 0.83

146 126 2110 68 0.56 123 118 294 60 0.91

POCC

56.4 15.3 7.2 28.0 0.91 32.4 17.2 26.6 16.0 0.68

PONF

7.9 6.8 28.2 3.1 0.82 4.1 5.3 27.4 1.2 0.87

PONC

Carbon cycle (mmol L21)

652 54 222 238 0.99 466 84 220 181 0.97 679 70 223 232 0.99 676 74 233 226 0.99

555 495 2313 296 0.74 419 427 264 284 0.43

DOC

5.9 0.8 0.8 2.6 0.89 5.6 0.9 20.5 2.1 0.80 6.3 1.7 20.6 2.5 0.93 6.1 2.5 20.6 2.6 0.90

24.0 29.2 236.7 9.3 0.80 16.6 23.6 216.8 9.5 0.33

DON

210.9 29.2 5.1 26.0 0.59 211.3 27.9 5.8 25.7 0.60 27.8 27.3 20.9 25.7 0.46 27.3 27.8 21.3 25.6 0.43

d

511 486 396 1392

567 568 426 1560

POCF

216 317 2148 159 0.64 280 248 2130 169 0.29 237 236 244 160 0.50 207 283 241 160 0.54

Paper No. 9

SAI

RS RI RB Ave r2 RS RI RB Ave r2

POCF

DIC

POCC

1058 766 186 712 0.28 1219 418 141 607 0.57 820 466 494 583 0.59 731 561 495 593 0.15

d13C (&)

6.8 5.6 22.7 3.8 0.58 7.4 6.8 23.0 4.7 0.82 4.9 5.3 1.5 4.1 0.49 4.3 5.0 2.5 4.0 0.21

d

mm yr21 QK

345 433 345 1122

358 490 317 1165

460 646 341 1446

513 593 399 1505

Volume 14 (2010)

VG

j

i

RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2

d

Obi

Pau

SJA

Man

Earth Interactions Page 51

POCF 225.8 226.6 228.9 227.0 0.46 226.5 227.2 227.4 227.0 0.28 225.8 227.2 229.1 227.2 0.23 223.1 226.7 233.4 227.2 0.68 223.2 226.9 233.1 227.3 0.72 224.7 227.8 230.3 227.4 0.77

DIC

212.8 215.4 210.5 213.1 0.83 213.0 215.6 210.3 213.2 0.72 215.9 217.4 25.8 213.9 0.70 211.6 217.1 214.2 214.4 0.72 29.8 216.9 216.9 214.4 0.82 213.2 218.8 211.7 215.0 0.91

POCC 225.4 226.2 232.3 227.6 0.32 226.4 226.6 230.7 227.7 0.20 223.2 225.7 237.0 227.8 0.22 226.5 226.2 232.0 227.9 0.36 226.2 226.4 231.5 227.7 0.21 227.6 227.1 228.7 227.7 0.09 11.4 11.2 9.9 10.9 0.02 11.9 11.6 7.4 10.6 0.12 12.4 11.9 4.9 10.3 0.05 34.4 17.5 229.4 10.8 0.70 12.2 10.1 8.7 10.5 0.30 11.3 10.6 8.4 10.3 0.07

POCF 17.6 23.6 19.6 20.3 0.10 9.5 20.7 41.6 22.3 0.31 18.8 12.1 45.1 23.0 0.39 37.1 17.2 17.8 24.3 0.29 19.9 14.0 39.9 23.0 0.71 28.7 22.5 17.8 23.3 0.15

POCC 23.7 14.0 84.4 26.7 0.24 25.7 17.3 39.6 26.4 0.04 45.5 3.7 30.8 24.9 0.77 66.1 26.9 8.2 22.8 0.55 27.2 240.0 134.0 30.3 0.63 28.3 36.2 19.6 29.1 0.02

DOC

DIC 1401 1128 96 946 0.45 1238 999 332 906 0.34 1427 1063 2466 786 0.28 1972 1043 21294 742 0.62 1593 1029 2761 747 0.68 1058 766 186 712 0.28

556 205 230 269 0.97 470 138 187 272 0.95 530 139 256 220 0.90 759 163 2404 220 0.90 461 69 84 210 0.93 418 56 49 178 0.90

POCF 91 27 57 58 0.96 75 23 68 55 0.72 52 231 178 51 0.83 89 224 109 51 0.83 108 215 42 44 0.84 76 14 18 36 0.73

POCC 49.7 18.1 0.0 24.7 0.93 41.0 10.9 25.1 25.7 0.82 51.8 13.0 24.8 21.5 0.87 29.9 4.3 30.5 20.4 0.86 40.4 7.8 11.0 20.1 0.85 38.7 5.1 8.1 17.3 0.85

PONF 4.5 0.9 3.4 2.9 0.85 4.8 1.4 0.8 2.5 0.73 2.7 20.1 5.2 2.2 0.67 2.6 20.1 4.6 2.1 0.76 4.8 0.3 0.5 1.9 0.83 2.9 0.6 1.2 1.6 0.73

PONC

Carbon cycle (mmol L21) 402 353 16 279 0.33 409 357 43 291 0.27 841 604 2847 304 0.38 933 549 2889 298 0.83 664 500 2501 289 0.69 567 470 2222 319 0.58

DOC

23.7 19.9 219.8 10.4 0.42 13.5 20.8 25.5 11.0 0.28 4.0 19.9 11.1 12.2 0.50 0.1 23.7 15.1 13.1 0.45 27.2 28.8 240.9 9.5 0.89 17.8 19.1 29.8 11.0 0.20

DON

Paper No. 9 d

513 593 399 1505

572 620 437 1629

572 619 438 1629

550 653 426 1629

578 579 428 1585

575 575 431 1581

C/N

d

Man

RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2

d13C (&)

Volume 14 (2010)

Ano

Ita

j

mm yr21 QK

d

Jut

Tup

Xib

i

Table A3. (Continued )

Earth Interactions Page 52

24 17 118 47 0.52 228 25 245 58 0.70 242 219 252 46 0.91

NaSil 10 7 47 19 0.52 211 22 98 23 0.70 217 28 101 18 0.91

CaSil 8 6 38 15 0.52 29 21 78 19 0.70 214 26 81 15 0.91

MgSil

8.7 7.9 15.3 9.9 0.14 7.5 11.4 9.8 9.7 0.59 10.7 12.9 5.9 10.1 0.58

23.4 54.0 0.0 31.5 0.10 22.9 210.1 109.0 32.5 0.81 5.6 29.7 97.5 27.9 0.63

1219 418 141 607 0.57 820 466 494 583 0.59 731 561 495 593 0.15

541 445 2175 311 0.61 544 475 2361 263 0.72 465 367 2172 256 0.55

CaCO3 88 68 27 64 0.45 112 85 271 51 0.80 109 72 243 54 0.85

Dolomite

Carbonates (mmol L21)

42.3 16.6 11.1 23.5 0.40 28.8 22.0 11.6 21.2 0.11 21.6 16.7 21.9 19.8 0.10

46 23 19 29 0.27 48 44 215 29 0.55 66 34 223 26 0.83

42.7 8.6 211.3 14.7 0.76 55.2 6.2 24.4 18.4 0.91 45.3 11.9 2.3 19.2 0.76

718 581 2121 439 0.59 768 646 2503 364 0.78 683 512 2258 364 0.69

SIL

109 87 278 147 0.38 218 32 582 170 0.62 250 3 586 142 0.92

CO2

1546 1249 37 1026 0.61 1517 1323 2422 898 0.67 1313 1025 74 871 0.58

TOT

0.9 1.4 1.5 1.2 0.06 2.1 2.0 20.5 1.4 0.30 3.2 1.9 21.2 1.3 0.81

CO2

Carbon cycle (mmol L21) CO2CARB

424 56 259 146 0.77 480 98 236 179 0.94 443 171 227 194 0.85

0.49 0.47 0.29 0.43 0.48 0.58 0.52 0.04 0.41 0.79 0.59 0.52 0.06 0.42 0.83

FR

620 569 2249 392 0.82 404 438 125 343 0.49 357 416 208 334 0.21

3.92 2.76 21.25 2.09 0.83 2.36 2.28 2.23 2.30 0.00 1.96 1.77 2.66 2.08 0.26

Re

28.3 18.1 219.7 12.4 0.20 8.5 25.1 29.5 10.6 0.67 12.5 26.8 27.2 12.0 0.53

Paper No. 9 d

575 575 431 1581

511 486 396 1392

567 568 426 1560

230.4 226.4 227.1 227.8 0.65 228.5 226.9 228.0 227.7 0.68 228.3 227.4 228.5 228.0 0.19

Silicates (mmol L21)

225.7 227.9 229.0 227.5 0.41 225.7 227.8 228.0 227.2 0.60 227.4 228.5 225.8 227.3 0.43

d

Xib

RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2

212.2 219.1 211.9 215.2 0.88 214.6 219.5 210.9 215.7 0.80 214.6 220.6 211.1 215.8 0.60

mm yr21 QK

345 433 345 1122

358 490 317 1165

460 646 341 1446

Volume 14 (2010)

SAI

VG

j

i

RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2

d

.

Obi

Pau

SJA

Earth Interactions Page 53

CaSil 221 211 114 19 0.91 254 217 188 24 0.89 242 29 149 22 0.83 246 211 162 23 0.92 221 2 108 22 0.95 217 8 86 18 0.83

NaSil 252 228 284 48 0.91 2135 242 470 61 0.89 2104 222 372 55 0.83 2115 227 404 58 0.92 253 4 270 55 0.95 242 20 215 46 0.83

MgSil 217 29 91 15 0.91 243 213 151 19 0.89 233 27 119 18 0.83 237 29 129 18 0.92 217 1 86 18 0.95 214 6 69 15 0.83 400 307 274 238 0.52 429 303 2314 184 0.55 648 287 2650 162 0.77 487 274 2420 163 0.74 288 159 257 146 0.41 249 46 84 119 0.55

CaCO3 92 64 227 50 0.64 153 74 2176 35 0.82 156 60 2151 37 0.72 167 62 2173 36 0.90 94 30 241 33 0.85 130 12 291 25 0.86

Dolomite 584 435 2128 337 0.61 734 451 2666 254 0.76 959 408 2952 236 0.80 820 398 2764 234 0.87 476 219 2140 211 0.69 509 69 297 170 0.71

CO2CARB SIL

286 231 700 146 0.88 2279 265 1125 174 0.81 2192 222 881 161 0.75 2229 233 964 166 0.88 259 35 636 162 0.94 238 70 489 134 0.83

CO2 TOT

1080 839 446 821 0.43 1193 839 2214 683 0.51 1729 794 21026 633 0.78 1415 764 2571 634 0.82 891 471 361 585 0.67 978 207 296 473 0.77

CO2

Carbon cycle (mmol L21) 0.60 0.54 20.02 0.41 0.82 0.83 0.59 20.55 0.37 0.88 0.95 0.56 20.65 0.37 0.78 0.91 0.57 20.62 0.37 0.86 0.64 0.45 20.13 0.36 0.85 0.67 0.35 20.04 0.36 0.53

FR

1.71 1.32 3.70 2.10 0.23 0.96 1.35 5.53 2.31 0.18 1.09 1.23 5.33 2.28 0.49 0.34 1.06 6.66 2.31 0.61 1.68 1.36 4.36 2.27 0.81 1.89 1.73 3.40 2.17 0.63

Re

Paper No. 9 d

460 646 341 1446

513 593 399 1505

572 620 437 1629

572 619 438 1629

550 653 426 1629

578 579 428 1585

Carbonates (mmol L21)

d

SJA

RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2

Silicates (mmol L21)

Volume 14 (2010)

Man

Ano

j

mm yr21 QK

d

Ita

Jut

Tup

i

Table A3. (Continued )

Earth Interactions Page 54

j

i 7.23 7.14 7.75 7.34 0.18 7.29 7.15 7.40 7.27 0.13 7.12 7.08 7.47 7.20 0.04 7.04 7.04 7.55 7.18 0.04

28 5 56 15 0.90 212 5 59 16 0.91

Na1 35 70 600 202 1.00 31 63 539 181 1.00 30 60 516 173 1.00 28 59 502 170 1.00

NH41 20.54 20.29 2.35 0.34 0.32 20.42 20.38 2.66 0.43 0.40 20.41 20.38 2.73 0.45 0.46 20.33 20.40 2.66 0.46 0.50 51 44 210 32 0.79 58 45 230 29 0.86 54 43 226 28 0.82 53 42 220 29 0.80

K1 96 74 65 80 0.54 99 72 31 71 0.67 94 69 29 67 0.69 93 70 30 67 0.68

Mg21

166 68 62 96 0.41 144 84 70 98 0.17

720 497 55 457 0.62 743 478 2162 400 0.69 713 466 2183 380 0.72 681 471 2156 373 0.74

Ca21

Cations (mmol L21)

210 7 70 19 0.90 215 6 74 20 0.91

1716 1255 834 1308 0.57 1770 1206 253 1152 0.67 1698 1172 188 1096 0.71 1627 1183 235 1078 0.71

S1 1716 1255 834 1308 0.57 1770 1206 253 1152 0.67 1698 1172 188 1096 0.71 1627 1183 234 1078 0.71

S2

meq L21

77 16 2 31 0.63 78 19 24 30 0.38

1504 1216 13 992 0.60 1635 1210 2603 872 0.77 1540 1149 2568 825 0.84 1438 1128 2403 817 0.86

HCO32

319 100 66 158 0.56 302 122 60 158 0.31

11 53 482 155 0.95 11 47 421 136 0.92 10 43 403 128 0.93 9 41 379 122 0.95

Cl2

619 261 571 456 0.61 558 298 585 466 0.27

5.4 20.3 42.2 13.4 0.79 2.9 20.6 43.2 12.6 0.74 2.4 21.0 42.1 11.9 0.78 3.7 21.6 41.0 11.9 0.78

NO32

36 32 220 19 0.74 42 34 231 19 0.74 42 34 230 20 0.74 43 35 230 20 0.72

DOC2

Anions (mmol L21)

221 61 440 139 0.94 248 53 469 150 0.97

80 225 158 63 0.51 39 244 212 56 0.59 52 228 171 55 0.56 67 212 124 53 0.48

SO422

0.56 0.37 0.07 0.35 0.75 0.57 0.38 0.06 0.34 0.72

0.10 0.65 2.29 0.90 0.54 0.19 0.75 1.83 0.84 0.49 0.19 0.72 1.76 0.81 0.49 0.16 0.67 1.81 0.81 0.46

HPO422

1.45 1.73 3.89 2.23 0.90 1.64 1.48 3.94 2.28 0.86

Paper No. 9 d

490 530 385 1405

570 571 425 1566

568 568 424 1560

567 568 426 1560

pH

225 16 174 47 0.90 238 14 185 51 0.91

d

1 Jurua´

RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2

mm yr21 QK

345 433 345 1122

358 490 317 1165

Volume 14 (2010)

1 Jutai

1 Icxa

RS RI RB Ave r2 RS RI RB Ave r2

d

Solimo˜es

Obi

Pau

Earth Interactions Page 55

j

568 568 424 1560

567 568 426 1560

6.7 5.9 23.8 3.6 0.74 7.8 6.4 25.9 3.6 0.74

DIC 1681 1393 272 1098 0.49 1822 1384 2685 981 0.66

CO2 176 176 283 105 0.18 187 174 282 109 0.12

153 190 206 181 0.08 174 199 167 181 0.07

O2

623 327 2141 305 0.70 562 304 2133 276 0.81 382 166 54 211 0.88 302 120 185 196 0.80

Ca21

mmol L21

55 36 229 25 0.84 50 34 219 25 0.78 42 25 28 22 0.77 41 22 11 25 0.69

K1

S1

10 76 429 148 0.97 8 77 411 143 0.97

S2

750 210 0 349 1.00 673 184 0 312 1.00

CSS

TSS

mg L21

3 28 333 101 0.93 9 25 286 89 0.96 0 17 248 72 0.98 3 10 196 65 0.98

Cl2

1189 564 2663 456 1.00 1154 531 2762 406 0.99

1458 865 2628 674 0.77 1214 738 2324 619 0.85 818 391 132 469 0.90 628 284 490 453 0.75

HCO32

439 354 2662 107 0.97 482 347 2761 95 0.96

1499 843 172 894 0.73 1347 779 192 817 0.83 935 454 532 638 0.91 790 350 787 618 0.85

FSS

1499 843 172 894 0.73 1347 779 193 817 0.83 933 455 535 639 0.91 789 351 788 619 0.85

SiO2

88 53 18 56 0.77 76 47 29 52 0.81 53 27 44 41 0.93 57 25 62 46 0.90

Mg21

7.5 2.8 0.0 3.8 0.98 6.9 2.5 0.0 3.4 0.97

POCF

2.9 2.1 34.7 11.1 0.55 3.1 1.3 33.8 10.5 0.64 5.0 2.6 22.3 8.6 0.79 3.9 0.4 25.2 9.0 0.82

NO32

1.7 1.5 21.3 0.8 0.56 1.8 1.4 21.7 0.7 0.55

POCC

45 32 230 20 0.53 48 34 235 20 0.63 49 41 224 26 0.62 41 39 210 25 0.76

DOC2

9.2 4.3 21.3 4.6 0.95 8.7 4.0 21.7 4.2 0.95

POC

25 243 231 43 0.66 36 211 115 39 0.58 31 1 76 31 0.62 57 8 41 33 0.83

SO422

212.4 212.9 8.7 26.8 0.76 214.8 213.8 13.7 26.7 0.75

d18O H2O

0.49 0.76 0.89 0.70 0.28 0.43 0.70 1.05 0.70 0.22 0.44 0.47 0.88 0.57 0.06 0.07 0.30 1.36 0.55 0.46

HPO422

d

1 Icxa

RS RI RB Ave r2 RS RI RB Ave r2

24 49 441 145 1.00 22 44 414 135 1.00 18 37 342 110 1.00 28 33 280 107 1.00

Na1

Anions (mmol L21)

Paper No. 9

Solimo˜es

20.61 20.27 3.14 0.52 0.53 20.26 20.15 2.67 0.56 0.38 20.44 0.04 2.84 0.61 0.56 0.95 0.47 0.77 0.71 0.18

mg L21 DOC

7.35 7.03 6.83 7.09 0.27 6.80 6.59 7.79 6.98 0.35 6.77 6.52 7.55 6.87 0.70 6.59 6.36 7.81 6.87 0.73

NH41

meq L21

d

mm yr21 QK

344 433 340 1117

466 543 358 1366

471 543 366 1381

513 561 391 1464

pH

Cations (mmol L21)

Volume 14 (2010)

i

1 Madiera

RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2

mm yr21 QK

d

1 Negro

1 Purus

1 Japura

j

i

Table A3. (Continued )

Earth Interactions Page 56

Solimo˜es

j

RS RI RB Ave r2

567 568 426 1560

POCF 225.4 226.2 229.0 226.7 0.50

DIC 212.6 214.9 29.4 212.5 0.67

d13C (&) 225.2 225.2 233.5 227.4 0.45

POCC

10.9 13.5 8.4 11.2 0.33

POCF

222 190 2108 121 0.12 233 199 2109 126 0.14 182 171 27 128 0.03 309 284 2248 152 0.25 258 225 2120 146 0.41 248 234 295 138 0.59

13.9 16.7 39.6 21.9 0.35

POCC

C/N

148 174 214 175 0.05 131 156 246 172 0.05 198 202 109 176 0.06 125 133 262 165 0.05 134 132 239 160 0.16 76 105 320 162 0.39

19.1 21.9 93.8 31.8 0.38

DOC

12 80 398 142 0.98 24 84 379 144 0.97 35 91 328 135 0.95 51 101 301 137 0.88 53 85 258 119 0.76 95 101 191 127 0.55

1681 1393 272 1098 0.49

DIC

635 173 0 294 1.00 646 164 0 287 1.00 537 132 0 238 1.00 501 114 0 216 1.00 383 86 0 165 1.00 665 20 0 213 1.00

625 235 3 313 0.98

POCF

440 314 2684 89 0.93 394 296 2600 85 0.90 426 236 2642 68 0.84 318 170 2437 60 0.73 202 82 2215 45 0.71 192 48 294 49 0.81

6.6 2.4 20.1 3.3 0.97 6.6 2.4 0.0 3.2 0.97 5.7 2.2 20.1 2.8 0.96 5.2 2.0 0.1 2.6 0.97 4.3 1.5 0.0 2.1 0.98 5.5 1.0 0.5 2.2 0.95

1.7 1.3 21.5 0.7 0.53 1.5 1.3 21.2 0.7 0.50 2.2 1.3 22.5 0.6 0.61 1.8 1.1 21.8 0.6 0.61 1.2 0.5 20.7 0.4 0.68 1.4 0.5 20.6 0.4 0.72

146 126 2110 68 0.56

POCC

56.4 15.3 7.2 28.0 0.91

PONF

7.9 6.8 28.2 3.1 0.82

PONC

Carbon cycle (mmol L21)

1076 488 2685 383 0.99 1041 460 2602 372 0.99 961 367 2638 306 0.98 819 284 2435 276 0.98 583 168 2213 210 0.98 857 68 293 262 0.99

555 495 2313 296 0.74

DOC

8.3 3.8 21.5 4.0 0.95 8.1 3.6 21.2 3.8 0.94 7.9 3.6 22.5 3.5 0.92 7.0 3.0 21.6 3.1 0.94 5.4 2.1 20.7 2.5 0.96 7.0 1.5 20.1 2.7 0.94

24.0 29.2 236.7 9.3 0.80

DON

214.7 213.7 13.8 26.6 0.77 213.8 213.7 12.6 26.5 0.78 217.2 213.5 18.2 26.3 0.67 215.1 212.3 14.2 26.2 0.66 212.8 29.5 8.5 25.9 0.61 210.3 28.4 1.7 25.9 0.41

d

mm yr21 QK

1762 1339 2676 946 0.70 1671 1327 2513 943 0.71 1640 1037 2636 802 0.62 1523 1021 2570 771 0.72 1075 616 12 614 0.87 877 522 389 591 0.67

Paper No. 9

i

344 433 340 1117

7.8 6.4 25.6 3.7 0.74 8.0 6.6 25.6 3.7 0.72 8.3 5.9 25.7 3.7 0.53 8.9 6.4 26.6 3.8 0.63 9.1 7.6 24.6 4.9 0.62 7.7 7.3 22.0 4.6 0.76

d

1 Madiera

466 543 358 1366

471 543 366 1381

513 561 391 1464

490 530 385 1405

570 571 425 1566

Volume 14 (2010)

1 Negro

RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2

d

1 Purus

1 Japura

1 Jurua´

1 Jutai

Earth Interactions Page 57

j

1 Madiera

344 433 340 1117

POCC 223.9 224.8 236.0 227.5 0.55 224.0 224.9 235.7 227.5 0.52 224.3 224.9 235.2 227.5 0.49 223.3 224.9 237.0 227.6 0.43 224.8 226.0 233.8 227.6 0.23 225.5 226.9 231.6 227.7 0.12 225.8 227.0 229.9 227.5 0.10 11.3 13.4 7.6 11.1 0.26 11.2 13.1 8.0 11.0 0.25 11.0 13.2 7.6 10.9 0.28 11.2 12.3 8.3 10.8 0.22 11.1 12.2 7.8 10.7 0.24 11.1 11.4 8.8 10.6 0.17 7.2 10.5 10.7 9.5 0.35

POCF 11.7 16.2 43.4 22.0 0.33 11.5 16.0 44.0 22.0 0.35 11.8 15.9 43.5 22.0 0.36 30.3 26.9 12.2 24.1 0.05 29.8 26.8 14.1 24.4 0.04 31.9 28.1 9.1 24.4 0.11 22.7 26.2 17.2 22.3 0.37

POCC 18.6 2.2 85.9 30.9 0.28 22.7 8.1 69.1 30.0 0.25 27.9 11.1 58.1 29.8 0.24 33.3 18.0 40.9 29.5 0.31 43.2 23.5 16.7 28.4 0.39 39.9 28.3 18.8 29.8 0.36 41.1 24.5 22.3 29.0 0.42

DOC

DIC 1822 1384 2685 981 0.66 1762 1339 2676 946 0.70 1671 1327 2513 943 0.71 1640 1037 2636 802 0.62 1523 1021 2570 771 0.72 1075 616 12 614 0.87 877 522 389 591 0.67

POCF 576 211 21 286 0.97 551 204 25 273 0.97 546 197 1 265 0.97 473 186 25 236 0.96 434 163 12 215 0.97 356 129 22 172 0.98 461 79 41 185 0.95

153 120 2138 62 0.55 140 110 2122 58 0.53 126 105 2103 56 0.50 187 112 2207 53 0.61 151 88 2148 47 0.61 97 45 258 36 0.68 119 42 252 37 0.72

POCC 50.4 13.5 9.4 25.8 0.90 48.8 13.7 7.6 24.8 0.90 49.1 12.9 8.3 24.3 0.89 42.0 13.9 6.4 21.7 0.89 39.0 12.3 7.7 20.2 0.90 32.6 11.1 2.6 16.2 0.93 53.6 7.0 0.8 19.5 0.97

PONF 8.5 6.5 29.9 2.8 0.81 7.9 6.0 28.9 2.6 0.81 7.1 5.8 27.8 2.5 0.78 7.3 4.3 27.5 2.2 0.62 5.9 3.4 25.4 1.9 0.64 3.7 1.6 21.7 1.5 0.69 5.4 1.6 22.1 1.7 0.73

PONC

648 534 2490 297 0.74 654 535 2470 306 0.74 668 551 2469 312 0.72 695 492 2475 305 0.53 740 532 2550 316 0.63 758 633 2380 411 0.62 642 611 2163 385 0.76

DOC

26.8 28.6 238.7 9.6 0.66 25.7 27.4 233.7 10.2 0.62 23.8 27.4 229.9 10.5 0.59 20.8 20.2 217.6 10.4 0.30 20.3 21.1 215.5 11.1 0.35 20.1 21.6 26.3 13.8 0.49 15.6 22.9 21.3 13.3 0.47

DON

d

466 543 358 1366

POCF 225.1 226.2 229.9 226.8 0.54 225.2 226.3 229.6 226.8 0.51 225.2 226.3 229.7 226.8 0.47 225.2 226.4 229.9 226.9 0.36 225.5 226.8 229.3 227.0 0.37 226.0 227.1 228.4 227.1 0.44 226.4 227.4 227.2 227.0 0.49

Carbon cycle (mmol L21)

Paper No. 9

1 Negro

DIC 213.0 215.1 29.4 212.8 0.63 213.7 215.5 28.9 213.0 0.56 214.1 215.8 28.8 213.3 0.43 213.4 215.3 211.5 213.6 0.44 215.6 217.3 27.7 214.2 0.56 215.7 217.3 29.6 214.7 0.80 217.0 218.4 28.2 214.9 0.77

C/N

d

471 543 366 1381

513 561 391 1464

490 530 385 1405

570 571 425 1566

568 568 424 1560

d13C (&)

Volume 14 (2010)

1 Purus

1 Japura

RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2

mm yr21 QK

d

1 Jurua´

1 Jutai

1 Icxa

i

Table A3. (Continued )

Earth Interactions Page 58

1 Madiera

1 Negro

344 433 340 1117

466 543 358 1366

88 68 27 64 0.45 93 67 26 56 0.56 88 63 28 53 0.61 86 64 210 52 0.65 82 46 217 42 0.66 72 41 212 37 0.76 48 21 13 28 0.89 49 17 35 33 0.86

Dolomite CARB

718 581 2121 439 0.59 788 581 2425 383 0.73 742 550 2404 361 0.81 692 539 2337 352 0.84 701 407 2431 286 0.72 593 346 2311 256 0.83 392 179 246 193 0.88 284 120 146 179 0.69

CO2 SIL

109 87 278 147 0.38 105 83 257 139 0.39 102 85 250 136 0.39 101 85 281 144 0.48 106 87 233 133 0.65 80 82 295 138 0.74 85 72 223 116 0.87 101 78 215 127 0.88

CO2 1546 1249 37 1026 0.61 1680 1245 2591 905 0.78 1585 1185 2556 858 0.84 1485 1163 2392 849 0.87 1507 901 2625 705 0.77 1265 774 2325 650 0.85 868 430 132 501 0.90 669 319 508 484 0.74

CO2 TOT 0.49 0.47 0.29 0.43 0.48 0.51 0.48 0.23 0.42 0.50 0.51 0.48 0.22 0.42 0.58 0.51 0.48 0.21 0.41 0.67 0.54 0.46 0.15 0.41 0.50 0.55 0.46 0.10 0.39 0.71 0.50 0.41 0.19 0.38 0.61 0.45 0.37 0.28 0.37 0.44

FR

3.92 2.76 21.25 2.09 0.83 4.15 2.73 21.76 2.03 0.87 4.02 2.66 21.60 2.00 0.84 3.69 2.57 20.69 2.07 0.83 3.76 2.34 20.76 2.01 0.90 3.05 2.07 0.68 2.04 0.72 3.01 2.01 0.56 1.97 0.80 2.54 1.86 1.81 2.06 0.53

Re

d

471 543 366 1381

541 445 2175 311 0.61 602 448 2412 270 0.76 565 424 2388 255 0.85 520 411 2317 249 0.88 537 315 2397 203 0.74 449 265 2287 182 0.86 297 136 273 136 0.87 185 85 75 113 0.57

CaCO3

Carbon cycle (mmol L21)

Paper No. 9

1 Purus

8 6 38 15 0.52 8 6 47 18 0.50 8 7 45 18 0.52 8 7 49 19 0.64 8 8 43 18 0.63 5 8 51 18 0.81 7 8 38 15 0.87 10 9 33 17 0.89

MgSil

Carbonates (mmol L21)

d

513 561 391 1464

490 530 385 1405

10 7 47 19 0.52 13 10 77 29 0.50 13 11 73 28 0.52 12 11 75 29 0.64 12 12 62 25 0.63 7 11 71 25 0.81 10 11 54 22 0.87 15 14 49 25 0.89

CaSil

Silicates (mmol L21)

Volume 14 (2010)

1 Japura

1 Jurua´

570 571 425 1566

568 568 424 1560

24 17 118 47 0.52 20 16 117 45 0.50 20 17 113 44 0.52 20 18 123 47 0.64 21 21 107 44 0.63 13 20 128 46 0.81 18 19 94 38 0.87 25 23 84 42 0.89

mm yr21 NaSil

d

1 Jutai

1 Icxa

567 568 426 1560

Solimo˜es

RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2 RS RI RB Ave r2

QK

j

i

Earth Interactions Page 59

SJA

341 22.38 0.89 2111 21.02 0.68 114 22.64 0.88 393 21.76 0.60 253 20.55 0.81 2390 20.41 0.81 2342 20.26 0.87 86 20.13 0.79 46 0.21 0.82

28 20.02 0.79 214 20.05 0.82 230 20.09 0.68 210 0.10 0.40 25 20.08 0.24 227 20.01 0.29 228 0.02 0.36 245 0.13 0.64 246 0.08 0.80 95 20.25 0.85 13 20.12 0.80 55 20.24 0.91 84 20.12 0.51 17 20.19 0.80 220 20.08 0.75 232 20.09 0.88 46 0.00 0.88 218 20.03 0.91

Mg21 1465 25.27 0.90 351 22.34 0.63 878 25.85 0.89 1472 23.65 0.53 374 21.55 0.85 2397 20.98 0.83 2324 20.68 0.87 629 20.13 0.85 387 0.44 0.88

S1 1465 25.27 0.90 351 22.34 0.63 878 25.85 0.89 1472 23.65 0.53 374 21.55 0.85 2397 20.98 0.83 2324 20.68 0.87 629 20.13 0.85 387 0.44 0.88

S2 585 24.76 0.98 2334 22.79 0.92 481 26.66 0.96 1053 24.16 0.86 345 22.37 0.75 2688 22.02 0.85 2438 21.18 0.84 665 21.91 0.83 439 21.16 0.78

HCO3 500 20.15 0.96 312 0.05 0.67 316 20.29 0.90 288 20.31 0.82 255 0.17 0.81 24 0.16 0.67 4 0.16 0.73 124 0.10 0.96 135 0.18 0.94

Cl2 35.6 0.06 0.86 38.2 0.05 0.82 23.7 0.10 0.81 34.8 20.01 0.86 16.6 0.10 0.86 51.3 0.04 0.96 39.1 0.07 0.95 19.3 0.06 0.86 24.6 0.09 0.96

NO32

219 20.01 0.74 22 20.05 0.60 4 20.07 0.41 3 20.01 0.27 255 0.00 0.38 267 0.02 0.84 233 20.01 0.69 22 20.07 0.69 211 20.03 0.83

DOC2

179 20.20 0.51 168 0.19 0.26 25 0.53 0.58 47 0.41 0.14 61 0.26 0.97 138 0.40 0.71 52 0.13 0.59 289 0.84 0.86 2103 0.67 0.56

SO422

2.5 20.002 0.56 0.3 0.001 0.35 1.2 0.002 0.26 20.2 0.006 0.28 20.1 0.008 0.63 3.4 0.003 0.89 20.2 0.008 0.63 0.3 0.01 0.33 2.4 0.01 0.74

HPO422

d

Man

600 0.00 1.00 560 0.00 1.00 570 0.00 1.00 530 0.00 1.00 450 0.00 1.00 450 0.00 1.00 450 0.00 1.00 410 0.00 1.00 375 0.00 1.00

Ca21

K1

Paper No. 9

Ano

1.25 0.01 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Na1

Anions (mmol L21)

d

Ita

7.21 0.0046 0.70 6.73 0.0058 0.90 6.67 0.0047 0.55 7.14 0.0050 0.79 6.36 0.0077 0.80 6.28 0.0065 0.83 6.27 0.0065 0.85 7.33 0.0041 0.91 7.11 0.0049 0.87

NH41

meq L21

Volume 14 (2010)

Jut

Tup

RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2

pH

Cations (mmol L21)

d

Xib

SAI

VG

j

i

Table A4. Results of model M4. Values of KBIO defining the chemical response to the river to the variations of the hydrobiological index IBIO. KBIO > 0 determines rise of concentrations or rise of values when river photosynthesis prevails and conversely KBIO < 0 reveals rise of concentrations or values when the organic matter decay predominates. Values established for the 10 sampling stations located along the Amazon main stem. Chemical composition of the aquifers RB* extrapolated for I BIO 5 0. View of Rsquared value (r2) and mean value (Ave) for each parameter. Notice that QRS/Qt (ij ) 3 [Cij]RS 1 QR/Qt(ij ) 3 [Cij]RI 1 QRB/Qt (ij ) 3 {[Cij]RB* 1 KBIO(ij ) 3 IBIO( j )} 5 [C]Ave.

Earth Interactions Page 60

24 1.53 0.66 188 0.56 0.70 60 1.78 0.75 79 1.09 0.70 218 1.18 0.84 66 1.34 0.81 95 1.22 0.71

O2

21 0.23 0.83 233 0.59 0.64 13 20.028 0.79

418 0.09 0.98 345 0.20 0.99 356 0.11 0.93 385 20.44 0.89 417 20.04 0.76 382 20.18 0.79 334 20.36 0.68

SiO2

393 2.80 0.84 250 5.87 0.66 371 21.03 0.78

0 0.00 1.00 0 0.00 1.00 0 0.00 1.00 0 0.00 1.00 0 0.00 1.00 0 0.00 1.00 0 0.00 1.00

FSS

393 2.80 0.84 250 5.87 0.66 371 21.03 0.78

2719 0.46 0.99 2331 0.03 0.94 253 1.03 0.74 2171 0.51 0.83 2116 0.46 0.53 2234 20.11 0.71 285 20.09 0.78

CSS

344 1.13 0.63 10 3.69 0.51 188 22.02 0.79

12.2 0.07 0.90 6.4 0.17 0.91 26.6 0.072 0.89

19 20.06 0.58 32 20.13 0.42 211 20.037 0.57

0.3 20.002 0.98 1.8 20.005 0.98 0.1 20.008 0.98 3.5 20.008 0.96 1.0 20.007 0.91 25.5 0.002 0.90 0.6 0.002 0.93

POCF

mg L21 2719 0.46 1.00 2331 0.03 0.99 253 1.03 0.99 2171 0.51 0.99 2116 0.46 0.98 2234 20.11 0.99 285 20.09 0.99

TSS

88 0.25 0.90 65 0.30 0.78 130 0.055 0.82

21.8 0.004 0.63 21.1 20.001 0.96 0.7 0.001 0.96 0.7 0.001 0.72 0.8 0.006 0.90 0.3 0.005 0.88 0.6 0.000 0.84

POCC

236 0.70 0.85 283 0.92 0.69 18 0.44 0.62

21.5 0.002 0.95 0.7 20.006 0.99 0.8 20.007 0.99 4.2 20.007 0.96 1.9 20.002 0.96 25.2 0.007 0.94 1.2 0.002 0.96

POC

1.2 0.002 0.94 0.5 0.004 0.12 0.9 0.004 0.52

d

Ano

132 21.79 0.80 209 22.41 0.96 215 22.15 0.76 263 22.20 0.89 361 22.69 0.95 242 22.48 0.95 235 22.49 0.94

CO2

mmol L21

40 1.07 0.77 2128 2.13 0.59 235 20.52 0.76

Paper No. 9

Ita

DIC 716 26.56 0.96 2125 25.20 0.96 696 28.80 0.97 1317 26.37 0.94 706 25.06 0.92 2445 24.50 0.91 2203 23.67 0.92

213 0.21 0.72 249 0.44 0.47 227 0.066 0.54

23.5 0.00 0.74 20.4 20.01 0.60 0.8 20.01 0.41 0.6 0.00 0.27 210.3 0.00 0.38 212.6 0.00 0.84 26.2 0.00 0.69

285 0.00 1.00 318 0.00 1.00 440 0.00 1.00

mg L21 DOC

0.00 0.00 0.00 2.20 20.01 0.79 0.22 0.000 0.08

d

Jut

RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2

6.58 0.0067 0.84 6.10 0.0111 0.86 6.66 0.0061 0.82

Volume 14 (2010)

Tup

Xib

j

i

RB* KBIO r2 RB* KBIO r2 RB* KBIO r2

d

SAI

VIG

Ave

Obi

Pau

Earth Interactions Page 61

8.7 20.001 0.76 6.0 0.009 0.67 11.4 20.004 0.89 10.2 20.014 0.92

6.8 0.015 0.36 28.0 0.008 0.26 6.8 0.040 0.61 1.8 0.037 0.49

POCF 31.1 0.076 0.58 103.7 0.247 0.80 20.1 0.267 0.41 33.8 0.062 0.34

POCC

C/N

SiO2

98.7 0.083 0.39 57.5 0.302 0.35 53.9 0.528 0.44 20.4 0.285 0.13

DOC

278 20.29 0.66 283 20.29 0.79 167 20.11 0.47 103 0.29 0.42 305 20.09 0.74

FSS

716 26.56 0.96 2125 25.20 0.96 696 28.80 0.97 1317 26.37 0.94

DIC

0 0.00 1.00 0 0.00 1.00 0 0.00 1.00 0 0.00 1.00 0 0.00 1.00

CSS

24 20.18 0.98 151 20.42 0.98 9 20.63 0.98 291 20.64 0.96

POCF

217 20.02 0.64 32 20.34 0.80 60 20.52 0.77 55 20.65 0.80 286 0.07 0.75

TSS 0.5 0.001 0.90 0.4 20.007 0.81 20.1 20.001 0.94 20.9 0.002 0.86 0.1 20.003 0.92

POCF

2151 0.34 0.63 289 20.12 0.96 56 0.07 0.96 57 0.08 0.72

POCC

12.3 20.042 0.92 24.9 20.043 0.73 9.9 20.136 0.96 47.9 20.148 0.91

PONF

28.8 0.005 0.83 29.8 20.016 0.98 4.7 20.015 0.88 0.6 0.001 0.73

PONC

Carbon cycle (mmol L d21)

217 20.02 0.99 32 20.34 0.98 60 20.52 1.00 56 20.65 0.99 286 0.07 0.99

2295 20.15 0.74 232 20.72 0.60 69 21.04 0.41 50 20.09 0.27

DOC

0.0 0.001 0.76 0.1 0.001 0.31 0.2 20.002 0.66 0.1 20.003 0.91 0.2 0.001 0.79

POCC

232.2 20.04 0.82 214.2 20.09 0.52 215.0 20.12 0.53 5.4 20.08 0.33

DON

0.5 0.002 0.89 0.5 20.006 0.83 0.1 20.003 0.93 20.8 20.001 0.90 0.4 20.002 0.93

POC

d

Tub

233.0 20.005 0.47 233.7 20.010 0.90 232.2 20.008 0.33 231.8 0.006 0.22

d18O H2O

O2 77 1.18 0.74 131 0.98 0.80 147 0.62 0.66 159 0.79 0.77 122 1.12 0.75

Paper No. 9

Xib

229.7 0.005 0.57 227.8 20.002 0.65 229.4 0.003 0.47 227.7 0.001 0.29

212.3 0.024 0.91 212.0 0.022 0.93 211.8 0.024 0.93 213.8 0.023 0.90

POCC

CO2 168 21.90 0.93 256 22.55 0.91 246 21.81 0.89 332 22.70 0.89 253 22.29 0.91

mg L21

d

SAI

POCF

DIC

j

RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2

d13C

DIC 833 23.81 0.89 695 23.71 0.80 590 20.68 0.62 342 0.99 0.18 441 24.31 0.81

20.3 20.01 0.69 22.1 20.01 0.83 3.6 20.01 0.58 6.0 20.02 0.42 22.1 20.01 0.57

i

RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2

mmol L21

Volume 14 (2010)

VG

Ave

j

mg L21 DOC

d

Obi

Pau

SJA

Man

i

Table A4. (Continued )

Earth Interactions Page 62

Xib

SAI

RB* KBIO r2 RB* KBIO r2 RB* KBIO r2

100 0.15 0.59 248 20.05 0.70 254 0.29 0.94

59 21.95 0.95 2311 21.09 0.91 13 22.94 0.93

CaCO3 63 20.30 0.83 266 20.11 0.84 226 20.34 0.94

Dolomite

9.9 0.002 0.30 17.5 20.006 0.62 9.5 20.013 0.49 6.7 20.009 0.61 8.0 20.015 0.65 0.0 20.010 0.48 23.3 0.019 0.47 7.6 20.004 0.61

34.6 0.042 0.41 217.5 0.163 0.46 35.6 0.030 0.73 7.3 0.060 0.36 216.6 0.188 0.73 219.4 0.221 0.56 10.1 0.083 0.24 17.1 0.131 0.50

185 22.54 0.97 2444 21.30 0.93 239 23.62 0.98

CO2 CARB

mmol L21

0.8 0.019 0.12 241.7 0.045 0.80 5.4 0.020 0.56 4.3 0.025 0.63 16.0 20.006 0.14 10.8 20.004 0.59 9.2 20.026 0.66 4.2 0.016 0.49

235 0.36 0.46 590 20.18 0.63 590 0.61 0.95

CO2 SIL

19.3 0.057 0.78 24.3 0.075 0.55 209.5 20.254 0.64 232.6 0.328 0.12 281.3 0.548 0.16 92.3 0.265 0.85 15.1 0.820 0.86 32.9 0.276 0.49

605 24.73 0.98 2297 22.78 0.92 511 26.62 0.96

FR

70 0.47 0.90 29 0.41 0.88 50 20.03 0.84 22 0.12 0.76 8 0.07 0.31 18 20.19 0.66 5 20.23 0.91 20 0.09 0.79

0.36 20.001 0.80 0.06 0.000 0.83 0.12 20.001 0.98

86 20.61 0.91 2461 0.13 0.90 53 0.19 0.93 41 0.05 0.90 32 20.61 0.81 212 20.10 0.94 275 0.14 0.86 12 20.24 0.92

CO2 TOT

706 25.06 0.92 2445 24.50 0.91 2203 23.67 0.92 833 23.81 0.89 695 23.71 0.80 590 20.68 0.62 342 0.99 0.18 441 24.31 0.81

28.2 20.056 0.73 25.9 20.012 0.64 23.1 20.087 0.72

21.4 0.001 0.83 2.4 20.004 0.14 2.5 0.003 0.31

14.4 20.01 0.50 28.5 20.06 0.47 258.7 0.05 0.91 4.7 20.09 0.27 28.8 20.07 0.25 2.1 20.06 0.69 31.6 20.28 0.88 21.0 20.08 0.54

231.24 20.062 0.98 223.88 20.036 0.95 215.62 20.098 0.97

TC.km22.a21 FCO2

2857 0.06 0.38 21046 0.37 0.84 2519 20.12 0.69 223 21.17 0.69 2174 20.46 0.83 298 21.00 0.58 502 22.08 0.42 2173 20.58 0.57

Re

0.3 0.021 0.80 4.1 0.004 0.77 0.9 20.003 0.83 1.3 0.000 0.73 2.7 20.008 0.46 2.8 20.021 0.70 1.0 20.017 0.98 0.9 20.004 0.79 m.Ma21 VCh

16.4 20.091 0.90 43.7 20.054 0.88 14.1 20.018 0.85 14.4 20.038 0.86 21.6 20.065 0.82 0.1 20.026 0.92 23.2 0.028 0.76 13.7 20.058 0.86

d

VG

NaSil

241.5 0.019 0.36 237.4 0.024 0.71 234.0 0.013 0.31 230.4 0.010 0.16 227.8 0.005 0.67 227.5 20.003 0.70 226.0 20.017 0.49 232.2 0.003 0.48

Paper No. 9

j

234.4 0.023 0.76 237.0 0.015 0.90 236.9 0.020 1.00 232.0 0.009 0.86 231.7 0.018 0.95 230.1 0.014 0.87 230.0 0.030 0.91 231.7 0.012 0.77

d

i

212.7 0.030 0.98 221.7 0.036 0.92 223.1 0.036 0.98 215.4 0.022 0.98 216.8 0.031 0.99 217.1 0.037 0.96 222.1 0.080 0.93 216.6 0.033 0.95

Volume 14 (2010)

Ave

Obi

RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2

d

Pau

SIA

Man

Ano

Ita

Jut

Earth Interactions Page 63

6 20.22 0.73 2144 20.13 0.85 2157 20.02 0.72 2174 20.04 0.90 245 0.03 0.85 295 0.03 0.86 242 0.31 0.79 2114 0.68 0.66 286 20.01 0.81

Dolomite 255 22.51 0.94 2460 20.88 0.85 2855 20.77 0.83 2746 20.37 0.87 15 20.91 0.82 242 20.37 0.72 245 0.77 0.63 2260 2.02 0.55 2262 20.95 0.81

CO2 CARB 580 0.86 0.93 1227 20.49 0.85 1013 20.41 0.77 1060 20.36 0.90 654 20.10 0.94 541 20.36 0.87 467 20.40 0.95 567 20.29 0.97 729 20.07 0.88

CO2 SIL 1091 24.17 0.87 306 22.24 0.75 2697 21.94 0.85 2433 21.10 0.85 683 21.91 0.84 458 21.09 0.79 377 1.15 0.65 47 3.74 0.53 205 21.97 0.80

CO2 TOT

FR 0.14 20.001 0.95 20.52 0.000 0.88 20.63 0.000 0.79 20.65 0.000 0.86 20.06 0.000 0.88 20.04 0.000 0.53 20.02 0.001 0.80 20.17 0.001 0.78 20.18 0.000 0.83

Re 1.4 0.014 0.53 6.5 20.005 0.24 5.7 20.001 0.49 6.4 0.001 0.61 4.0 0.002 0.82 3.3 0.000 0.63 3.7 0.000 0.90 4.4 20.001 0.86 4.0 0.001 0.55

2.9 20.069 0.80 41.2 -0.133 0.82 17.0 20.129 0.97 21.0 20.143 0.96 15.1 20.118 0.96 5.4 20.105 0.94 7.0 20.062 0.91 11.3 20.091 0.89 11.2 20.091 0.86

27.09 20.032 0.81 8.52 20.076 0.66 210.17 20.060 0.92 23.49 20.051 0.83 5.65 20.054 0.80 0.38 20.044 0.77 3.15 20.020 0.75 4.66 20.024 0.47 23.79 20.051 0.79

d

Ave

243 22.07 0.96 2171 20.61 0.68 2541 20.72 0.83 2398 20.29 0.76 106 20.96 0.75 148 20.43 0.58 39 0.16 0.42 233 0.65 0.30 291 20.93 0.71

CaCO3

Paper No. 9

Obi

NaSil

242 0.31 0.95 505 20.17 0.91 426 20.16 0.85 446 20.16 0.93 286 20.10 0.96 240 20.18 0.88 197 20.25 0.94 253 20.30 0.93 310 20.06 0.90

TC.km22.a21 FCO2

d

Pau

RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2 RB* KBIO r2

m.Ma21 VCh

Volume 14 (2010)

SJA

Man

j

mmol L21

d

Ano

Ita

Jut

Tup

i

Table A4. (Continued )

Earth Interactions Page 64

NH41

— — — — — — — — — 0.01 0.01

pH

0.79 0.78 0.91 0.98 0.84 0.85 0.93 0.93 0.94 0.93 0.89

DIC

0.98

r2 Station

SAI Xib Tup Jut Ita Ano Man SJA Pau Obi Ave

r2 Station

SAI Xib Tup Jut Ita Ano Man SJA Pau Obi Ave

r2 Station

SAI

0.75

0.75

POCC 0.57

POCF

0.96 0.72 0.98 0.97 0.85 0.88 0.94 0.95 0.82 0.81 0.89

0.50

POCC

C/N

0.74 0.92 0.77 0.93 0.76 0.74 0.64 0.97 0.94 0.91 0.83

0.83

DOC

0.95 0.99 0.97 1.00 0.91 0.90 0.65 0.92 0.91 0.44 0.86

1.00 0.98 1.00 0.98 0.96 0.91 0.99 0.98 0.92 0.95 0.97

FSS

0.91

DIC

0.80 1.00 0.90 0.95 0.95 0.98 0.94 0.99 0.98 0.95 0.94

S2

0.99

POCF

0.94 0.23 0.43 0.40 0.53 0.55 0.49 0.31 0.31 0.81 0.50

CSS

0.84 0.96 0.67 0.98 0.98 0.94 0.94 0.93 0.93 0.98 0.91

HCO32

0.99 0.99 0.96 0.93 0.92 0.88 0.96 0.87 0.94 0.90 0.93

POCF

mg L21

0.93 0.94 0.88 0.98 0.89 0.87 0.93 0.90 0.97 0.97 0.93

NO32

0.59 0.82 0.08 0.14 0.52 0.45 0.81 0.03 0.17 0.69 0.43

POCC

0.70 0.86 0.98 0.95 0.94 0.88 0.78 0.95 0.83 0.71 0.86

DOC2

0.59

POCC

0.80

PONF

0.66

PONC

Carbon cycle (mmol L21)

0.99 0.89 0.95 0.91 0.97 0.87 0.99 0.90 0.86 0.92 0.93

TSS

0.98 0.64 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.96

Cl2

0.73

DOC

0.98 0.96 0.93 0.88 0.94 0.84 0.97 0.88 0.91 0.96 0.92

POC

0.82 0.93 0.71 0.87 0.78 0.82 0.93 0.01 0.28 0.83 0.70

SO422

0.90

DON

1.00 0.99 0.99 0.98 0.99 0.98 0.98 0.98 0.99 1.00 0.99

d18O H2O

0.27 0.94 0.41 0.88 0.56 0.65 0.83 0.47 0.97 0.15 0.61

HPO422

d

POCF

0.91 0.95 0.79 0.98 0.95 0.98 0.97 0.91 0.79 0.85 0.91

SiO2

0.80 1.00 0.90 0.95 0.95 0.98 0.94 0.99 0.98 0.95 0.94

S1

Paper No. 9

d13C

0.73 0.87 0.98 0.97 0.98 0.93 0.84 0.96 0.85 0.74 0.88

O2

mmol L21

0.74 0.99 0.97 0.88 0.96 0.97 0.93 0.91 0.99 0.96 0.93

Mg21

d

CO2

0.86 1.00 0.91 0.94 0.95 0.98 0.94 0.98 0.97 0.94 0.95

Ca21

Anions (mmol L21)

Volume 14 (2010)

DIC

0.94 0.97 0.93 0.87 0.81 0.83 0.77 0.91 0.96 0.83 0.88

K1

meq L21

d

mg L21 DOC

1.00 0.93 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99

Na1

Cations (mmol L21)

Table A5. Results of model M5, combining chemical tracing (implying variable contribution of hydrological reservoirs) and variable regional contribution (M1 3 M3). Values of linear coefficients a(ij ), b(ij ), g(ij ), and d(ij ) are adjusted for each chemical parameter (indexed i ) and each sampling station (noted j ) is located on the Amazon River main stem, in reference to the following equation (see text): DC(ijk) 5 a (ij ) 3 D(QRS/Qt ), (jk) 1 b (ij) 3 D(QRI/Qt ), (jk ) 1 g (ij ) 3 DQt (I-O), (jk) 1 d (ij) View of R-squared value (r 2) is after reconstitution of water composition. Earth Interactions Page 65

DIC

0.97 1.00 0.84 0.96 0.94 0.98 0.98 0.97 0.91 0.95

NaSil

0.96 0.94 1.00 0.98 0.99 1.00 1.00 0.94 0.99 1.00 0.98

NH41

— — —

r2 Station

Xib Tup Jut Ita Ano Man SJA Pau Obi Ave

r2 Station

SAI Xib Tup Jut Ita Ano Man SJA Pau Obi Ave

g (ij) Station

SAI Xib Tup

0.82 0.87 0.46 0.77 0.60 0.82 0.82 0.63 0.18 0.67

POCC

0.96 0.94 1.00 0.98 0.99 1.00 1.00 0.94 0.99 1.00 0.98

CaSil

20.29 20.05 20.41

20.03 20.01 20.03

20.42 0.01 0.29

20.70 20.15 0.80

Mg21

20.38 0.00 0.31

S1

S2 20.38 0.00 0.31

meq L21

0.85 0.97 0.99 0.90 0.95 0.96 0.92 0.86 0.99 0.98 0.94

Dolomite

20.36 0.42 0.81

HCO32

20.26 20.90 20.89

Cl2

CO2 CARB 0.87 0.97 0.84 0.98 0.98 0.96 0.95 0.95 0.95 0.99 0.94

0.99 0.95 0.92 0.97 0.97 0.98 0.88 0.96 0.88 0.93

PONF

0.84 0.96 0.67 0.98 0.99 0.93 0.94 0.93 0.92 0.98 0.92

CO2 TOT

0.85 0.29 0.01 0.52 0.43 0.70 0.33 0.39 0.80 0.50

PONC

20.22 20.83 0.81

NO32

0.17 0.17 0.18

DOC2

Anions (mmol L21)

0.96 0.94 1.00 0.98 1.00 1.00 0.99 0.94 0.99 0.99 0.98

CO2 SIL

Carbon cycle (mmol L21)

0.82 0.08 0.01 0.52 0.45 0.81 0.03 0.17 0.69 0.42

POCC

0.64 21.65 24.60

SO422

0.91 0.96 0.99 0.99 0.97 0.97 0.98 0.96 1.00 1.00 0.97

FR

0.86 0.98 0.66 0.98 0.93 0.84 0.96 0.85 0.74 0.85

DOC

20.30 20.17 21.93

HPO422

0.75 0.38 0.97 0.86 0.99 0.99 0.92 0.91 0.92 0.84 0.85

Re

0.88 0.68 0.05 0.35 0.83 0.80 0.54 0.87 0.83 0.67

DON

d

Ca21

0.89 0.96 0.71 0.99 0.97 0.93 0.92 0.77 0.85 0.99 0.90

CaCO3

0.99 0.96 0.87 0.92 0.88 0.96 0.87 0.94 0.90 0.93

POCF

Paper No. 9

K1

DIC 0.95 0.79 0.50 0.95 0.98 0.97 0.91 0.79 0.85 0.86

d

Na1

0.96 0.94 1.00 0.98 0.99 1.00 1.00 0.94 0.99 1.00 0.98

MgSil

0.83 0.85 0.11 0.80 0.86 0.65 0.48 0.81 0.74 0.70

DOC

Carbonates (mmol L21)

0.95 0.77 0.00 0.08 0.29 0.00 0.40 0.75 0.30 0.41

POCC

Carbon cycle (mmol L21)

Volume 14 (2010)

Cations (mmol L21)

0.94 0.97 0.93 0.87 0.81 0.83 0.77 0.91 0.96 0.83 0.88

KSil

0.42 0.57 0.01 0.68 0.51 0.56 0.30 0.91 0.81 0.53

POCF

C/N

d

Silicates (mmol L21)

0.92 0.67 0.14 0.93 0.91 0.93 0.96 0.84 0.86 0.79

POCF

d13C

Table A5. (Continued )

Earth Interactions Page 66

1.81 20.51 0.44 0.22 20.24 0.05 20.49 20.34

POCC

2.00 0.11 0.24 0.36 20.85 20.20 20.07 20.68

POCF 28.1 0.92 0.95 1.90 22.19 20.06 0.53 4.48

DOC

20.28 20.04 0.00 0.25 0.14 0.09 20.06 0.14 20.13 20.55 20.04

SiO2

0.26 0.14 0.15 0.12 0.46 0.46 0.13 0.16

20.15 0.39 0.77 20.58 0.45 0.37 0.48 0.86

DIC

20.04 20.10 0.11 20.44 0.35 20.08 0.00 1.09 1.30 0.92 0.31

FSS

0.26 0.14 0.15 0.12 0.46 0.47 0.14 0.17

0.73 20.31 0.80 0.25 0.08 20.24 20.37 20.09

POCF

1.43 2.74 0.51 0.81 3.28 2.19 2.52 5.07 0.48 2.57 2.16

CSS

0.62 0.43 0.28 0.62 1.07 0.99 20.04 0.48

0.73 20.31 0.80 20.25 0.08 20.24 20.37 20.09 0.22 20.69 20.01

POCF

mg L21

21.36 20.26 20.70 20.02 20.02 0.26 0.05 20.23

0.03 0.32 20.55 21.86 0.28 20.02 0.31 1.10 20.53 0.59 20.03

POCC

20.21 20.01 0.29 0.31 0.38 20.17 0.18 0.13

0.03 0.32 20.55 1.86 0.28 20.02 0.31 1.10

POCC

20.49 20.41 0.60 20.07 0.91 20.02 20.32 0.92

PONF

20.99 1.38 20.46 1.54 0.89 0.11 0.79 1.92

PONC

Carbon cycle (mmol L21)

0.34 0.76 0.48 20.22 0.86 0.41 0.57 1.91 1.31 1.45 0.79

TSS

20.69 20.66 20.63 20.70 20.66 20.70 20.69 20.68

20.18 0.17 0.29 0.31 20.12 0.21 0.25 0.32

DOC

0.53 20.14 0.51 20.47 0.21 20.14 20.20 0.19 0.08 20.34 0.02

POC

21.35 21.80 20.24 24.87 24.10 21.66 2.42 21.72

7.69 20.58 20.39 23.58 4.63 20.03 0.13 20.31

DON

0.05 20.22 0.17 20.05 20.15 20.19 20.08 20.17 20.08 20.04 20.08

d18O H2O

20.82 0.43 21.13 21.45 0.16 1.33 1.41 20.25

Paper No. 9

0.09 0.13 0.11 20.05 0.00 0.03 0.05 0.05

POCC

0.07 20.01 20.02 20.04 20.02 20.05 0.00 0.00

0.02 0.02 0.29 20.25 20.51 20.43 20.18 20.18 20.42 0.29 20.13

POCF

SAI Xib Tup Jut Ita Ano Man SJA

1.21 0.19 0.42 0.30 0.35 0.50 20.28 20.06 21.14 21.77 20.03

O2

DIC

g (ij) Station

20.15 0.39 0.77 0.58 0.45 0.37 0.48 0.86 0.54 20.42 0.39

CO2

mmol L21

0.19 0.09 0.14 0.10 0.70 0.34 0.11 0.16

d

20.04 20.09 20.07 0.04 20.17 20.21 0.00 20.02

20.08 0.03 0.03 0.02 0.01 20.01 0.06 0.08 0.13 0.10 0.04

SAI Xib Tup Jut Ita Ano Man SJA Pau Obi Ave

DIC

0.28 0.14 0.16 0.17 0.47 0.64 0.15 0.19

Volume 14 (2010)

C/N

20.18 0.25 0.29 20.31 20.12 0.21 0.25 0.32 20.14 0.20 0.08

pH

0.43 0.31 0.10 20.71 0.33 0.14 0.28 0.01

d

d13C

mg L21 DOC

g (ij) Station

0.00 0.00 0.02 0.02 0.25 20.02 20.27 20.01

— — — — — — 21.79 21.79

Jut Ita Ano Man SJA Pau Obi Ave

Earth Interactions d

Page 67

— — — — — — — — — 21.51 21.51

K1 0.91 2.64 22.77 4.26 22.83 20.64 1.03 2.27 20.47 20.28 20.44

Na1

22.32 22.60 22.60 22.93 22.71 22.88 23.69 23.68 22.31 21.83 22.75

1.33 2.41 2.28 1.54 1.48 1.47 1.40 1.76 1.06 0.67 1.54

0.03 20.13 21.06 1.54 20.75 21.17 21.70 21.71 20.75 20.22 20.59

Ca21

Cations (mmol L21)

1.33 2.41 2.28 1.54 1.48 1.47 1.40 1.76 1.06 0.67 1.54

20.29 20.05 20.41 0.43 0.31 0.10 20.71 0.33 0.14 0.28 0.01

MgSil

20.31 1.98 0.01 0.54 20.42 0.27

DIC

0.83 0.65 20.14 21.26 21.24 22.77 22.38 0.03 20.59 20.29 20.72

Mg21

20.31 0.47 0.56 0.54 0.38 0.07 0.78 0.99 1.30 20.53 0.43

CaCO3

20.37 20.42 21.28 0.21 21.25 21.67 22.17 21.77 21.13 20.61 21.04

S1

S2 20.37 20.42 21.28 0.21 21.25 21.67 22.17 21.75 21.12 20.59 21.04

meq L21

21.24 20.97 0.18 20.63 20.54 20.58 20.46 0.16 20.08 20.41 20.46

Dolomite

Carbonates (mmol L21)

0.39 0.28 0.16

DOC

20.58 0.04 0.46 0.21 0.13 20.10 0.43 0.79 0.81 20.48 0.17

0.30 20.14 0.07 0.47 21.27 0.27 23.60 21.52 21.21 20.08 20.67

HCO32

0.37 20.37 0.11

PONF

2.01 0.03 0.02 20.39 20.09 20.19 0.47 20.33 0.07 0.03 0.16

Cl2

20.35 0.41 0.80 0.56 0.41 0.26 0.60 1.03 0.94 20.02 0.46

CO2 TOT

20.69 0.87 0.54

PONC

0.18 0.03 4.12 3.57 22.40 20.36 4.54 23.37 21.57 22.49 20.68

NO32

2

4.86 21.01 20.38 0.24 0.68 20.07 20.18 23.17 0.26 20.39 20.89

DOC

Anions (mmol L21)

1.06 1.91 1.78 1.40 1.24 1.21 0.98 1.43 0.90 0.76 1.27

CO2 SIL

Carbon cycle (mmol L21)

20.53 0.59 0.34

POCC

CO2 CARB

0.22 20.69 0.04

POCF

29.86 21.63 221.76 20.84 20.20 219.23 17.67 6.42 22.30 24.99 23.67

SO422

20.26 20.38 20.32 20.26 20.28 20.38 20.15 20.21 20.09 20.44 20.28

FR

20.14 0.20 0.13

DOC

7.08 2.42 0.23 6.21 23.17 3.42 3.31 22.35 23.01 0.88 1.50

HPO422

1.11 1.49 1.08 0.83 0.72 0.66 0.72 1.15 0.60 0.66 0.90

Re

20.27 20.69 0.66

DON

d

SAI Xib Tup Jut Ita Ano Man SJA Pau Obi Ave

1.33 2.41 2.28 1.54 1.48 1.47 1.40 1.76 1.06 0.67 1.54

SAI Xib Tup Jut Ita Ano Man SJA Pau Obi Ave

CaSil

KSil

20.14 20.39 0.04

POCC

Carbon cycle (mmol L21)

Volume 14 (2010)

NH41

NaSil

g (ij) Station

0.09 0.15 0.07

POCF

C/N

d

DQRS/Qt Station

0.01 0.09 0.00

20.11 20.14 20.08

Pau Obi Ave

POCC

Silicates (mmol L21)

POCF

DIC

g (ij) Station

d13C

Table A5. (Continued )

Earth Interactions Paper No. 9 d

Page 68

23.37 20.09 20.23 0.72 0.94 0.03 0.01 22.90 0.16 20.43 20.51

KSil 0.91 2.64

pH

20.13 20.12 20.26 0.39 20.05 0.03 20.61 0.02 20.26 20.10 20.11

DIC

0.20 0.43 20.23 20.42 20.10 0.12 20.93 20.15 0.03 20.17 20.12

NaSil

217.46 210.32

SAI Xib Tup Jut Ita Ano Man SJA Pau Obi Ave

DQRS/Qt Station

SAI Xib Tup Jut Ita Ano Man SJA Pau Obi Ave

DQRS/Qt Station

SAI Xib

8.72 0.88 0.52 0.91 0.87 21.01 21.00 20.21 0.22 1.06 1.10

20.09 0.32 0.36 0.15 0.42 0.14 20.06 0.09 0.24 0.37 0.19

217.46 210.32

217.46 210.32

0.13 0.10 0.60 0.26 20.98 0.24 21.67 21.49 20.21 0.39 20.26

DIC

2.89 2.85 1.54 2.98 22.71 21.32 23.39 22.69 3.61 5.58 0.94

FSS

1.83 0.55

CaCO3

6.67 4.17

Dolomite

0.79 2.52 2.63 20.51 22.63 21.27 22.61 20.92 5.26 5.30 0.86

POCF 6.53 9.78 22.82 7.38 213.01 212.07 210.73 24.12 9.94 7.00 20.21

PONF 22.89 1.91 2.10 20.32 23.35 20.60 21.78 20.99 4.96 4.32 0.34

214.10 28.02

CO2SIL

PONC 0.57 11.45 4.09 29.59 29.68 26.95 211.67 4.27 11.59 9.51 20.50

0.22 20.14

CO2 TOT

Carbon cycle (mmol L21)

6.53 9.78 22.82 27.38 213.01 212.07 210.73 24.12 9.94 7.00 21.69

POCC

3.19 1.65

POCC

Carbon cycle (mmol L21)

1.23 1.10 1.42 4.39 23.70 22.41 26.65 23.77 4.40 6.65 0.27

TSS

CO2CARB

0.79 2.52 2.63 0.51 22.63 21.27 22.61 20.92 5.26 5.30 0.96

POCF

26.16 210.47 22.95 9.46 27.99 24.66 216.36 29.65 11.29 12.32 22.52

CSS

3.40 1.83

FR

23.37 21.01 20.23 20.72 0.94 0.03 0.01 22.90 0.16 20.43 20.75

DOC

2.23 3.98 1.40 1.07 24.55 23.06 24.45 21.71 5.84 5.45 0.62

POC

210.30 26.11

Re

21.41 13.27 29.86 8.50 23.19 9.66 23.64 2.56 3.54 3.10 2.25

DON

20.01 0.88 0.72 0.17 0.79 1.48 0.22 20.15 20.14 20.24 0.37

d

Carbonates (mmol L21)

22.1 210.56 6.62 21.98 211.33 229.45 7.38 26.49 210.37 27.87 26.62

DOC

20.08 20.26 0.17 20.58 20.67 20.24 20.34 20.59 0.35 0.24 20.20

SiO2

Paper No. 9

CaSil

19.10 21.57 25.17 20.18 22.54 24.07 20.31 21.42 20.77 21.24 0.18

POCC

C/N

3.26 0.69 21.09 1.83 1.57 1.46 0.23 1.83 0.37 20.20 0.99

O2

d18O H2O

d

MgSil

POCF

POCC

1.92 0.92 4.44 25.53 20.35 20.12 5.95 22.65 3.19 1.69 0.95

CO2

mg L21

Volume 14 (2010)

Silicates (mmol L21)

0.01 20.06 20.14 0.34 20.03 0.09 20.21 20.01 0.07 20.10 20.01

POCF

0.13 0.10 0.60 20.26 20.98 0.24 21.67 21.49 20.21 0.39 20.32

DIC

mmol L21

d

d13C

mg L21 DOC

DQRS/Qt Station

Earth Interactions Page 69

NH41

— — — — — — — — — 22.75 22.75

pH

0.23 0.08 20.14 0.18 20.02 0.02

SAI Xib Tup Jut Ita Ano Man SJA Pau Obi Ave

DQRI/Qt Station

SAI Xib Tup Jut Ita Ano

CaSil 210.41 28.13 27.68 27.52 212.08 29.38 27.04 25.76 29.58

20.39 20.23 0.34 20.42 20.60 0.15

24.49 22.51 2.42 22.93 20.38 20.08

CO2 3.24 20.13 20.73 1.01 1.13 0.99

O2

0.58 0.01 0.09 20.70 20.55 20.15

SiO2

0.27 20.31 21.07 20.51 21.20 21.40 21.96 21.49 20.76 20.44 20.89

S1

0.77 0.72 0.23 1.02 22.81 21.91

FSS

0.27 20.31 21.07 20.51 21.20 21.40 21.96 21.48 20.76 20.44 20.89

S2

24.75 214.00 23.90 4.57 25.76 23.42

CSS

0.68 20.10 0.06 20.12 20.76 0.16 22.59 20.87 20.41 20.28 20.42

HCO32

0.14 0.57 21.24 0.25 23.52 21.60 21.17 20.16 20.66

CO2 TOT

1.86 0.12 1.65 1.47 22.07 20.94 23.43 22.85 21.27 21.73 20.72

NO32

22.63 1.01 0.48 20.68 21.90 21.69

POCF

2.08 3.22 23.03 3.48 210.45 28.83

POCC

2479 21.45 20.54 20.21 0.51 20.04 20.15 22.87 20.17 20.36 21.01

DOC2

Anions (mmol L21)

29.16 27.21 26.60 26.09 29.63 27.27 26.13 25.03 27.92

CO2SIL

mg L21 20.23 21.50 20.12 1.86 23.35 22.49

TSS

1.52 0.03 0.01 20.30 20.11 20.16 0.32 20.28 0.07 20.01 0.11

Cl2

2.17 2.48 0.21 2.20 21.32 0.39 1.00 1.79 1.38

CO2CARB

FR

21.52 1.44 20.24 0.24 23.41 22.84

POC

27.28 20.80 215.55 24.14 24.62 215.84 8.44 2.80 23.58 22.29 24.29

SO422

2.07 1.85 1.49 2.26 2.18 1.92 2.07 1.90 2.10

Re

20.38 0.54 0.25 0.12 0.57 1.00

d18O H2O

6.83 1.56 0.82 3.82 22.38 2.36 2.11 22.33 21.38 1.90 1.33

HPO422

27.12 23.65 22.22 21.31 25.99 24.67 23.20 22.31 4.69

d

22.02 20.83 20.46 0.07 0.70 0.01

1.18 0.51 20.14 20.73 20.93 21.78 21.83 0.57 20.07 0.13 20.31

Mg21

meq L21

2.78 1.34 1.21 20.32 1.82 4.88 2.65 2.35 2.76

Dolomite

Paper No. 9

mmol L21

0.74 0.05 20.80 0.22 20.79 21.01 21.62 21.52 20.42 20.17 20.53

Ca21

1.80 3.19 20.18 3.39 22.47 21.39 0.05 1.44 0.82

CaCO3

d

DIC

0.35 2.13 22.26 22.44 22.50 20.37 0.81 2.29 20.06 0.56 20.15

22.18 22.38 22.40 22.75 22.53 22.65 23.14 23.26 22.20 21.95 22.55

MgSil 210.41 28.13 27.68 27.52 212.08 29.38 27.04 25.76 29.58

Carbon cycle (mmol L21)

Volume 14 (2010)

mgL21 DOC

K1

Na1

Cations (mmol L21)

Tup Jut Ita Ano Man SJA Pau Obi Ave

Carbonates (mmol L21)

d

DQRI/Qt Station

KSil 22.77 4.26 22.83 20.64 1.03 2.27 20.47 20.28 20.44

NaSil

210.41 28.13 27.68 27.52 212.08 29.38 27.04 25.76 29.58

DQRS/Qt Station

Silicates (mmol L21)

Table A5. (Continued )

Earth Interactions Page 70

0.35 2.13 22.26 22.44 22.50 20.37 0.81 2.29 20.06 0.56 20.15

215.47 29.77 29.76 27.82 27.24 27.27 210.07 28.34 26.58 25.64 28.80

SAI Xib Tup Jut Ita Ano Man SJA Pau Obi Ave

0.42 20.39 0.31 0.73 1.50 20.59 20.68 0.01 20.07 0.57 0.18

POCF

3.87 22.51 0.69 20.20 20.61

215.47 29.77 29.76 27.82 27.24 27.27 210.07 28.34 26.58 25.64 28.80

215.47 29.77 29.76 27.82 27.24 27.27 210.07 28.34 26.58 25.64 28.80

MgSil

16.71 0.67 22.34 0.03 21.53 23.14 20.77 20.44 1.84 0.10 1.11

POCC

C/N

0.29 1.59 20.06 20.01 0.73

20.39 20.23 0.34 0.42 20.60 0.15 21.28 21.02 20.15 20.26 20.30

DIC

23.27 22.77 1.29 2.18 20.46

1.83 0.62 1.67 1.65 0.51 2.55 21.36 20.79 0.86 0.50 0.80

CaCO3

22.63 1.01 0.48 0.68 21.90 21.69 22.56 21.04 2.22 1.40 20.40

5.82 3.68 2.76 2.28 1.66 0.95 1.96 5.21 3.05 2.69 3.01

22.56 21.04 2.22 1.40 20.54

28.98 24.00 3.16 3.39 22.00

POCC

2.93 1.58 2.05 1.73 0.83 2.03 20.46 0.94 1.67 1.33 1.46

CARB

SIL

212.43 27.68 28.53 26.74 26.28 25.95 28.13 26.47 25.62 24.62 27.24

CO2

0.65 20.12 0.08 20.05 20.76 0.13 22.54 20.99 20.45 20.33 20.44

CO2

TOT

21.64 2.30 0.41 25.25 27.83 2482 28.96 2452 2.90 4.28 22.31

PONC

Carbon cycle (mmol L21)

21.64 1.49 0.17 0.05 23.37 21.32 21.98 21.29 2.24 0.88 20.48

PONF

Carbon cycle (mmol L21)

25.68 23.79 1.35 2.82 21.11

2.08 3.22 23.03 23.48 210.45 28.83 28.98 2400 3.16 3.39 22.69

CO2

213.34 29.79 2.46 5.56 24.24

POCF

Dolomite

Carbonates (mmol L21)

11.2 29.20 1.47 21.19 29.67 221.62 4.43 26.80 28.58 24.36 24.43

DOC

20.20 20.51 0.11 20.18 20.15

2.62 1.73 1.99 1.69 1.68 2.14 2.08 1.87 2.05 1.63 1.95

FR

22.02 21.45 20.46 20.07 0.70 0.01 0.01 22.63 20.18 20.35 20.65

DOC

23.96 21.73 2.31 1.75 20.80

28.59 26.29 26.71 23.30 22.67 22.11 25.04 24.14 22.85 21.96 24.37

Re

217.26 10.82 22.41 7.98 22.66 7.69 21.44 3.23 2.43 1.64 1.00

DON

0.00 20.19 20.13 20.18 20.04

d

CaSil

Silicates (mmol L21)

20.45 0.25 0.21 0.16 0.30 0.12 20.03 20.01 0.06 0.21 0.08

20.30 20.10 20.11 0.18 0.02 0.11 20.10 20.01 0.10 20.03 20.02

KSil

0.39 0.08 20.09 20.34 20.01 0.16 20.58 20.04 0.11 20.12 20.04

SAI Xib Tup Jut Ita Ano Man SJA Pau Obi Ave

POCC

POCF

d13C

21.28 21.02 20.15 20.26 20.39

Volume 14 (2010)

NaSil

DIC

DQRI/Qt Station

0.01 22.63 20.18 20.35 20.57

d

DQRI/Qt Station

20.41 0.06 20.06 20.01 20.01

Man SJA Pau Obi Ave

Earth Interactions Paper No. 9 d

Page 71

mg L21 DOC

20.05 20.07 20.06 0.04 20.01 20.10 20.04 20.03 20.08 20.15 20.05

POCF

20.02 20.01

— — — — — — — — — 0.33 0.33

pH

20.01 0.00 0.00 20.01 20.01 20.01 20.02 20.02 20.02 20.03 20.01

DIC

20.03 20.03

d (ij) Station

SAI Xib Tup Jut Ita Ano Man SJA Pau Obi Ave

d (ij) Station

SAI Xib

K1 21

20.01 0.00 0.37 20.02

0.94 20.01

POCC

SiO2

0.4 20.20

DOC

20.01 0.00 0.01 0.02 20.02 20.01 0.04 0.01 0.02 0.12 0.02

FSS

20.11 20.04

DIC

20.17 20.05 20.02 0.00 20.12 20.05 20.09 20.07 20.09 20.01 20.07

20.22 20.06

POCF

20.17 0.01 0.06 0.12 20.46 20.29 20.39 20.37 20.03 20.22 20.17

CSS

20.11 20.05 20.06 20.10 20.17 20.14 20.18 20.17 20.13 20.04 20.12

HCO3

2

HCO32

20.22 20.06 20.02 20.02 20.07 20.04 20.10 20.10 20.05 0.29 20.04

mg L21 POCF

20.11 0.07 0.03 0.28 0.03 0.15 0.02 0.12 0.12 0.18 0.09

NO3

2

20.07 0.00 0.01 0.32 0.04 20.04 20.20 20.12 20.04 20.19 20.03

POCC

20.07 20.05 20.04 0.03 20.02 20.11 20.04 20.03 20.07 20.14 20.05

DOC

20.07 0.00

POCC

20.40 20.04

PONF

)

2

21

DOC2

Anions (mmol L

NO32

20.44 0.01

PONC

Carbon cycle (mmol L21)

20.18 20.07 20.04 0.01 20.19 20.12 20.18 20.16 20.11 20.09 20.11

TSS

20.12 0.00 0.00 0.00 20.01 20.01 0.01 0.00 0.00 0.00 20.01

Cl

2

Cl2

20.05 20.05

DOC

20.19 20.06 20.02 0.02 20.08 20.06 20.13 20.11 20.06 0.18 20.05

POC

20.24 0.02 0.32 0.23 0.66 0.30 0.95 0.64 0.30 20.43 0.27

SO422

SO422

20.29 0.27

DON

0.01 0.01 0.01 0.03 0.06 0.07 0.04 0.04 0.04 0.04 20.02

d18O H2O

0.03 0.03 0.14 0.12 0.00 0.36 0.36 0.21 0.01 0.14 0.14

HPO422

HPO422

d

C/N

0.00 20.05 20.06 20.05 20.03 20.03 20.05 20.04 20.01 20.12 20.04

O2

20.12 20.04 20.03 20.06 20.09 20.10 20.09 20.08 20.08 20.08 20.08

S

2

S2

Paper No. 9

POCF

0.05 0.03 20.01 0.07 0.04 0.04 0.09 0.18 0.19 0.43 0.11

CO2

20.12 20.04 20.03 20.06 20.09 20.10 20.09 20.08 20.08 20.08 20.08

S

meq L

21

d

POCC

20.10 20.02 20.05 20.03 20.02 20.04 20.02 20.13 20.03 20.01 20.04

mmol L21

20.13 20.04 20.04 20.09 20.12 20.13 20.14 20.10 20.13 20.11 20.10

Mg

1

S1

Anions (mmol L21)

Volume 14 (2010)

20.11 20.04 20.05 20.08 20.14 20.12 20.13 20.10 20.06 0.07 20.08

DIC

20.09 0.01 0.06 20.01 20.02 20.03 0.23 20.08 0.03 0.04 0.01

Ca

21

Mg21

meq L21

d

d13C

20.08 20.01 0.01 0.06 20.02 20.01 20.02 0.05 0.06 0.03 0.01

K

1 21

Ca21

Cations (mmol L )

SAI Xib Tup Jut Ita Ano Man SJA Pau Obi Ave

Na

1

NH41

d(ij) Station

Na1

NH41

Cations (mmol L21)

d(ij) Station

Table A5. (Continued )

Earth Interactions Page 72

20.01 20.01 20.02 20.01 20.05 20.02 20.03 20.02 20.02

NaSil

0.03 20.04 0.05 0.20 20.04 20.01 20.06 0.14 0.19 0.04 0.05

Tup Jut Ita Ano Man SJA Pau Obi Ave

d (ij) Station

SAI Xib Tup Jut Ita Ano Man SJA Pau Obi Ave

20.01 0.00 0.00 0.00 20.01 0.00 20.01 20.03 20.01

CaSil 0.03 20.04 0.05 0.20 20.04 20.01 20.06 0.14 0.19 0.04 0.05

KSil

20.09 0.01 0.06 20.01 20.02 20.03 0.23 20.08 0.03 0.04 0.01 0.03 20.04 0.05 0.20 20.04 20.01 20.06 0.14 0.19 0.04 0.05

MgSil

20.03 20.03 0.16 0.03 20.02 0.02 0.03 0.09 0.06

20.20 20.15 0.41 0.27 20.07 20.02 0.71 20.17 0.10

20.05 0.08 20.14 20.12 20.13 20.10 20.06 0.07 20.06

20.14 20.06 20.07 20.15 20.25 20.20 20.30 20.21 20.28 20.06 20.17

20.13 20.01 20.08 20.08 20.01 20.02 20.02 20.29 20.13 0.00 20.08

Dolomite

Carbonates (umol L21) CaCO3

0.03 0.01 0.08 20.03 0.03 0.06 20.09 20.15 0.09

0.01 20.32 0.04 20.04 20.20 20.12 20.04 20.19 20.09

0.01 0.05 20.20 20.07 20.09 20.12 20.08 0.21 20.07

CARB

SIL

0.01 20.02 0.05 0.15 20.03 20.01 0.00 0.12 0.17 0.02 0.05

CO2

20.11 20.04 20.05 20.09 20.16 20.14 20.17 20.15 20.12 20.04 20.11

TOT

20.02 20.29 20.10 20.08 20.23 20.17 0.08 20.05 20.13

CO2

Carbon cycle (umol L21) 20.14 20.05 20.07 20.13 20.18 20.15 20.22 20.24 20.23 20.04 20.15

CO2

20.02 0.02 20.07 20.04 20.10 20.10 20.05 0.29 20.04

20.03 0.00 20.02 20.05 20.03 20.02 20.05 20.09 20.11 0.00 20.04

FR

20.06 20.04 20.01 20.10 20.04 20.03 20.08 20.15 20.06

0.00 0.01 0.05 0.05 20.01 0.00 20.01 0.06 0.08 20.05 0.02

Re

0.24 0.13 20.50 0.00 0.09 20.13 20.34 20.02 20.06

d

Silicates (umol L21)

0.00 20.01 20.01 0.00 20.01 20.01 20.01 20.02 20.01

Earth Interactions Volume 14 (2010) d

Paper No. 9 d

Page 73

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 74

Figure A1. Comparison between the fluctuations of discharge of the Amazon River (10 stations) and the theoretical compositional fluctuations (9 virtual stations) estimated by cumulating the inputs and inflows: total discharge; Qt; and river flow components superficial runoff QRS, interflow QRI, and baseflow QRB (all data given in mm yr21).

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

Figure A1. (Continued )

d

Page 75

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

Figure A1. (Continued )

d

Page 76

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

Figure A1. (Continued )

d

Page 77

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 78

´ bi. Representation of the compositional variations Figure A2. M6 at the station of O (for all the parameters) as a function of the river flow (x axis) and the water balance of the floodplains appreciated by D Qt (I-O) (y axis). The input is supposed to exhibit a constant concentration corresponding to the value at the center of the diagram for which Qt 5 1122 mm yr21 and DQt (I-O) 5 0.13. The stages 1, 2, 3, and 4 correspond to the lowest waters, rising waters, peak of discharge, and falling waters, respectively.

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

Figure A2. (Continued )

d

Page 79

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

Figure A2. (Continued )

d

Page 80

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 81

Figure A2. (Continued )

References Amon, R. M. W., and R. Benner, 1996a: Bacterial utilization of different size classes of dissolved organic matter. Limnol. Oceanogr., 41, 41–51. ——, and ——, 1996b: Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochim. Cosmochim. Acta, 60, 1783–1792. Aufdenkampe, A. K., 2002: The role of sorptive processes in the organic carbon and nitrogen cycles of the Amazon River basin. Ph.D. thesis, University of Washington, 164 pp.

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 82

——, J. I. Hedges, A. V. Krusche, C. Llerena, and J. E. Richey, 2001: Sorptive fractionation of dissolved organic nitrogen and amino acids onto sediments within the Amazon basin. Limnol. Oceanogr., 46, 1921–1935. Bustillo, V., 2005: Hydroclimatologie et Bioge´ochimie applique´es a` l’ame´nagement des bassins fluviaux. Mode`les de me´lange. Diagnostic et pre´vision. PhD thesis, Institut National Polytechnique de Toulouse, 426 pp. ——, 2007: A large-scale synthetic model applied to the hydroclimatology and eco-geodynamics of the Amazonian basin. FAPESP Rep., Post-doctoral fellowship 2005-58884-5, 93 pp. Dunne, T., L. A. K. Mertes, R. H. Meade, J. E. Richey, and B. R. Forsberg, 1998: Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. Geol. Soc. Amer. Bull., 110, 450–467. Gonzales, A. L., J. Nonner, J. Heijkers, and S. Uhlenbrook, 2009: Comparison of different base flow separation methods in a lowland catchment. Hydrol. Earth Syst. Sci., 13, 2055–2068. Guyot, J. L., 1993: Hydroge´ochimie des Fleuves de l’Amazonie Bolivienne. Editions de l’ORSTOM, 261 pp. Hamilton, S. K., S. J. Sippel, and J. M. Melack, 2002: Comparison of inundation patterns among major South American floodplains. J. Geophys. Res., 107, 8038, doi:10.1029/2000JD000306. Hedges, J. I., W. A. Clark, P. D. Quay, J. E. Richey, A. H. Devol, and U. M. Santos, 1986: Compositions and fluxes for particulate organic material in the Amazon River. Limnol. Oceanogr., 31, 717–738. ——, G. L. Cowie, J. E. Richey, P. D. Quay, R. Benner, and M. Strom, 1994: Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids. Limnol. Oceanogr., 39, 743–761. Hooper, R. P., N. Christophersen, and J. Peters, 1990: End-member mixing analysis (EMMA): An analytical framework for the interpretation of streamwater chemistry. J. Hydrol., 116, 321–345. Irion, G., W. J. Junk, and J. A. S. N. Mello, 1997: The large central Amazonian river floodplains near Manaus: Geological, climatological, hydrological and morphological aspects. The Central Amazon Floodplain, W. J. Junk, Ed., Springer-Verlag, 23–44. Johnsson, M. J., and R. H. Meade, 1990: Chemical weathering of fluvial sediments during alluvial storage: The Macuapanim Island point bar, Solimo˜es River, Brazil. J. Sediment. Petrol., 60, 827–842. Junk, W. J., and M. T. Piedade, 1997: Plant life in the floodplain with special reference to herbaceous plants. The Central Amazon Floodplain, W. J. Junk, Ed., Springer-Verlag, 147–181. Marengo, J. A., and R. L. Victoria, 1998: Pre-Large-Scale Biosphere-Atmosphere Experiment in Amazonia Data Sets Initiative, 3 Vols. Center for Weather Forecasting and Climate Study, National Institute for Space Research, CD-ROM. Martinelli, L. A., R. L. Victoria, J. L. I. Dematte, J. E. Richey, and A. H. Devol, 1993: Chemical and mineralogical composition of Amazon River floodplain sediments, Brazil. Appl. Geochem., 8, 391–402. ——, ——, P. B. Camargo, M. Piccolo, L. Mertes, J. E. Richey, A. H. Devol, and B. R. Forsberg, 2003: Inland variability of carbon-nitrogen concentrations and d13C in Amazon floodplain (va´rzea) vegetation and sediment. Hydrol. Proc., 17, 1419–1430. McClain, M. E., J. E. Richey, and R. L. Victoria, 1995: Andean contributions to the biogeochemistry of the Amazon River system. Bull. Inst. Fr. Etud. Andines, 24, 425–437. Meade, R. H., T. Dunne, J. E. Richey, U. M. Santos, and E. Salati, 1985: Storage and remobilization of sediment in the lower Amazon River of Brazil. Science, 228, 488–490. Meybeck, M., and C. Vo¨ro¨smarty, 2005: Fluvial filtering of land-to-ocean fluxes: From natural Holocene variations to Anthropocene. C. R. Geosci., 337 (1–2), 107–123. Mortatti, J., 1995: Erosa˜o na Amazoˆnia: Processos, modelos e balancxo. Ph.D. thesis, University of Sa˜o Paulo, 150 pp.

Earth Interactions

d

Volume 14 (2010)

d

Paper No. 9

d

Page 83

Quay, P. D., D. O. Wilbur, J. E. Richey, J. I. Hedges, A. H. Devol, and R. L. Victoria, 1992: Carbon cycling in the Amazon River: Implications from the 13C composition of particles and solutes. Limnol. Oceanogr., 37, 857–871. Redfield, A. C., 1958: The biological control of chemical factors in the environment. Amer. Sci., 46, 206–226. Richey, J. E., J. I. Hedges, A. H. Devol, P. D. Quay, R. L. Victoria, L. A. Martinelli, and B. R. Forsberg, 1990: Biogeochemistry of carbon in the Amazon River. Limnol. Oceanogr., 35, 352–371. ——, S. R. Wilhem, M. E. McClain, R. L. Victoria, J. M. Melack, and C. Araujo-Lima, 1997: Organic matter and nutrient dynamics in river corridors of the Amazon basin and their response to anthropogenic change. Cienc. Cult., 49, 98–110. ——, J. M. Melack, A. K. Aufdenkampe, M. V. Ballester, and L. L. Hess, 2002: Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature, 416, 617–620. ——, R. L. Victoria, J. I. Hedges, T. Dunne, L. A. Martinelli, L. Mertes, and J. Adams, 2008: PreLBA Carbon in the Amazon River Experiment (CAMREX) data. Oak Ridge National Laboratory Distributed Active Archive Center dataset. [Available online at http://daac.ornl.gov/ cgi-bin/dsviewer.pl?ds_id5904.] Tardy, Y., V. Bustillo, and J.-L. Boeglin, 2004: Geochemistry applied to the watershed survey: hydrograph separation, erosion and soil dynamics. A case study: The basin of the Niger River, Africa. Appl. Geochem., 19, 469–518. ——, ——, C. Roquin, J. Mortatti, and R. Victoria, 2005: The Amazon. Bio-geochemistry applied to the river basin management: Part 1. Hydro-climatology, hydrograph separation, mass transfer balance, stable isotopes, and modelling. Appl. Geochem., 20, 1746–1829. ——, C. Roquin, V. Bustillo, M. Moreira, L. A. Martinelli, and R. L. Victoria, 2009: Carbon and Water Cycles: Amazon River Basin, Applied Biogeochemistry. Atlantica, 479 pp. Victoria, R. L., L. A. Martinelli, P. C. O. Trivelin, E. Matsui, B. R. Forsberg, J. E. Richey, and A. H. Devol, 1992: The use of stable isotopes in studies of nutrient cycling: Carbon isotope composition of Amazon varzea sediments. Biotropica, 24, 240–249. Weng, L. P., L. K. Koopal, T. Hiemstra, J. C. L. Meeussen, and W. H. Van Riemsdiejk, 2005: Interactions of calcium and fulvic acids at the goethite-water interface. Geochim. Cosmochim. Acta, 69, 325–339.

Earth Interactions is published jointly by the American Meteorological Society, the American Geophysical Union, and the Association of American Geographers. Permission to use figures, tables, and brief excerpts from this journal in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this journal that is determined to be ‘‘fair use’’ under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.IL. 94553) does not require the publishers’ permission. For permission for any other from of copying, contact one of the copublishing societies.