biostratigraphy and paleoecology of cretaceous

1 downloads 0 Views 38MB Size Report
b6 - Guembelitria cretacea- Parvularugoglobigerina eugubina Interval Zone (p0. & pα), (Kolosh ..... 332, pp.245-282. Bellen, R. C. Van, Dunnington, H. V., Wetzel, R. and Morton, D., 1959. ...... Awagird mountain plunge toe ħ””¯ĪËĤ. ĪīĔËġ””ð ».
BIOSTRATIGRAPHY AND PALEOECOLOGY OF CRETACEOUS/TERTIARY BOUNDARY IN THE SULAIMANI REGION, KURDISTAN, NE-IRAQ

A THESIS

SUBMITTED TO THE COLLEGE OF SCIENCE, UNIVERSITY OF SULAIMANI, IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE OF DOCTORATE OF PHILOSOPHY IN GEOLOGY

By

Khalid Mahmood Ismael Sharbazheri M. Sc. In Geology , Mosul University, 1983

Supervised by

Dr. Qahtan A. M. Al Nuaimy Assistant Professor

Jan. 2008 A.D

Dr. Imad M. Ghafor Assistant Professor

Bafranbar. 2707 KU

II

III

IV

Dedicated: To My Wife My Daughters And My Sons

V ACKNOWLEDGEMENTS I am deeply indebted to Dr. Qahtan A. Mohammed Al Nuaimy Mahmood Ghafor

for their

and Dr.Imad

undertaking the task of supervising this

dissertation and for offering many suggestions and corrections during all stages of the work. My best thanks to the Head of the Department of Geology Dr. Kamal Haji Karim and

the Dean of the College of Science (Dr. Parykhan M. Jaf ), for

their generous help and assistance throughout this work especially offering the available facilities . I would like to express my gratitude to the University presidency for providing the financial support for transportation (during fieldwork) and printing the draft and final copy of this work. I am indebted also to

Dr. Rund Al Hammoody / Department of Geology,

University of Mosul for her pioneering in providing me the internet key for application the catalogue and atlas of Paleocene planktonic foraminifera. My genuine

thanks to my friends; Dr. Bakhtear Muhammad Ameen , Dr. Dler

Hussen Baban , Mr. Musher Mustafa, Mrs. Razawa Hama Rasheed , Mr. Serwan Hama Ahmed , and

Mr Jabar Muhammad

from the Department of Geology,

University of Sulaimani for helping me in the fieldwork and the software programming

in this dissertation.

My sincere thank goes to Prof. Dr. Martin Langer at the Institute for Paleontology, University of Bonn/Germany for offering

available facilities in the

library, the references and scanning electron microscope photo processing. Also I would like to express my gratitude to Prof. Dr. Basim Al- Qayim for his contributions and discussion during this work. Finally, I would like to express my special appreciation for my wife, Shina Darwesh, for her endurance during the preparation of this effort.

Khalid Jan. 2008

VI Abstract The Cretaceous / Tertiary (K/T) boundary section, which crop out in the studied regions are located within the High Folded zone (Dokan and Smaquli area), Imbricated

Zone (Sirwan valley, Barzinja and Qala Cholan area) in

Northeastern Iraq. Is extended in northwest-southeast direction as narrow trend near and parallel to the Iraqi/ Iranian border. These units mainly consist of flysch and flysch type successions of thick beds of clastic rocks of Tanjero / Kolosh Formations in (Sirwan, Qulka and Gali sections) or flysch to molasses Tanjero/Red bed series (Swaiss group) in (Kato and Qishlagh sections). The study is specially focused on analysis of all the uncertain aspects of the boundary zones, such as lithostratigraphy, biostratigraphy, paleoenvironment reconstruction, paleoecology

nature of contact, age determination, local and

regional correlation in order to answer many of the questions raised naturally through different researches and studies since decades by different authors in and outside Iraqi regions about lithostratigraphic, biostratigraphic nature of the contact, age, paleoecology, paleoenvironment reconstruction, correlation with regional, continental and intercontinental similarities. The detail lithostratigraphic study achieved on the cropped upper most part of the Upper Cretaceous successions (upper part of Tanjero Formation) in Sirwan valley, Kato, Qishlagh And Qulka sections, with the lower most part of Kolosh Formation and Red Bed Series of the Early Tertiary, while in the Gali section (Smaquli area) the studied stratigraphic units include the upper part of Shiranish Formation, Shiranish-Tanjero transition unit, Tanjero Formation and Kolosh Formation. Eight biozones were recorded in the studied area, based on identified planktonic foraminiferal assemblages within uppermost part of Shiranish Formation, Shiranish-Tanjero transition unit (Reddish to pale brown succession), Tanjero Formation in Smaquli area (Gali section) and upper part of Tanjero Formation in all other studied sections, and also four biozones are recorded

VII within the lower part of Kolosh Formation (Lower Paleocene) in Smaquli, Dokan and Sirwan areas. The biostratigraphic correlations

on the studied sections are based on

planktonic foraminiferal zonations. The correlation showed a comparison between the biostratigraphic zones established in this study with other equivalent of the commonly used planktonic zonal scheme around the Cretaceous/Tertiary boundary in and outside of Iraq. The paleoenvironment of Cretaceous/Tertiary boundary sequences in the Sulaimani region, NE-Iraq, Kurdistan are determined by using foraminifera especially planktonic through Late Maastrichtian and Early Danian. Lithologically it is concerned with Tanjero and Kolosh Clastic Formations regionally, and Tanjero-Red Bed Series in the studied area. Paleobathymetric and paleoecological factors are studied through the distribution patterns of

planktonic and benthonic foraminifera and include the total

numbers of foraminiferal species, the diversity and statistical analysis of planktonic, benthonic forams, the Planktonic/Benthonic ratio and the Agglutinated/Calcareous ratio. The available data on distinguished planktonic foraminifera evidenced that the Cretaceous/Tertiary nature in the present study displays both gradual and sudden catastrophic extinction pattern approximately halve number in planktonic foraminiferal species before the K/T boundary and complete species extinction at or near the K/T boundary which indicates no Cretaceous planktonic foraminiferal survivorship into the Danian except (Guembelitria cretacea) and (Hedbergella monmothensis) in the lower most Danian. The recorded planktonic foraminiferal biozones in the studied area reveal the continuous sedimentation without evidence of any hiatus, in addition that the appearance of the new lower most Danian planktonic forams indicates gradual sedimentation especially at Smaquli, Dokan and Sirwan area, The sedimentation rate mean in graphical method by using biozone (m/myr)

or

years/meter

was

estimated

for

total

studied

stratigraphic

VIII successions from the upper part of Tanjero Formation and lower part of Kolosh Formation around K/T boundary, reveals the continuations and increasing the sediment accumulation rate without interruption or any gaps to be disclosed.

IX LIST OF CONTENTS Subject

Page

1- Chapter One:

Introduction

1

1.1- Preface .................................................................................................................................................

1

1.2- Location and Geomorphology..............................................................................................................

2

1.3- Geological Setting ……………………………………………………………………………………………..

3

1.4- general stratigraphy .............................................................................................................................

5

1.4.1- Upper Cretaceous formations ……………………………………………………………………………..

6

1.4.1.1- Shiranish Formation ………………………………………………………………………………….….. 1.4.1.2-Tanjero Formation …………………………………………………………………………………………. 1.4.2- Lower Tertiary formations ………………………………………………………………………………….

1.4.2.1- Kolosh Formation …………………………………………………………………………………………. 1.4.2.2- Red Bed Series (Suwais Group) ………………………………………………………………………... 1.5- previous biostratigraphic studies on Shiranish - Tanjero Formations ……………………………... 1.6- Review on the Upper Cretaceous – Lower Tertiary Contact on Iraq …………………………………

1.7- Methodology ……………………………………………………………………………………………………. 1.7.1- Studied Sections …………………………………………………………………………………………….. 1.7.2- Samples collection and preparation ……………………………………………………………………..

6 8 10 11 14 15 17 19 19 20

1.8 The aim of the Study …………………………………………………………………………………………..

22

2- Chapter Two:

23

Lithostratigraphy 2.1- Preface ………………………………………………………………………………………………………….

2.2- Lithostratigraphy of Sirwan sections ………………………………………………………………………

2.3- Lithostratigraphy of Kato section …………………………………………………………………………... 2.4- Lithostratigraphy of Qishlagh section …………………………………………………………………….

23 23 28 29

2.5- Lithostratigraphy of Qulka section (Dokan area) ………………………………………………………...

33

2.6- Lithostratigraphic of Gali section (Smaquli area) ..............................................................................

37

3- Chapter Three:

42

Biostratigraphy 3.1-Preface ……………………………………………………………………………………………………………

42

3.2- Biostratigraphy …………………………………………………………………………………………………

42

3.2.1- Biostratigraphy of the Upper Cretaceous Formations………………………………………………

47

3.2.1.1- Globotruncana aegyptiaca Interval Zone (CF8) ……………………………………………………...

50

3.2.1.2- Gansserina gansseri Interval Zone (CF7)……………………………………………………………..

52

3.2.1.3- Contusotruncana contusa Interval Zone (CF6)………………………………………………………

54

X 3.2.1.4- Pseudotextularia intermedia Interval Zone (CF5)…………………………………………………….

55

3.2.1.5- Racemiguembelina fructicosa Interval Zone (CF4)…………………………………………………..

60

3.2.1.6- Pseudoguembelina hariaensis Interval Zone (CF3)………………………………………………….

63

3.2.1.7- Pseudoguembelina palpebra Interval Zone (CF2)……………………………………………………

66

3.2.1.8- Plummerita hantkeninoides Total Range Zone (CF1)………………………………………………..

68

3.2.2- Biostratigraphy of the Early Paleocene Formations…………………………………………………..

71

3.2.2.1- (P0) Gumbelitria cretacea Interval Zone........................................................................................

71

3.2.2.2- ( Pá) Parvularugoglobierina eugubina Total Range Zone............................................................

72

3.2.2.3- ( Pá & P0 ) in Dokan and Sirwan valley..........................................................................................

76

3.2.2.4- (P1) Parvularugoglobigerina eugubina- Praemurica uncinata Interval Zone……………………

77

3.2.2.4.1- (P1a) Parvularugoglobierina eugubina – Subbotina triloculinoides Interval Subzone..........

78

3.2.2.4.2- (P1b) Subbotina triloculinoides- Globanomalina compressa/Praemurica inconstans Interval Subzone...........................................................................................................................................

79

4- Chapter Four: Depositional environment and paleoecology

86

4.1-Preface ....................................................................................................................................................

86

4.2- Planktonic species diversity or species richness ………………………………………………………

87

4.3- Signor- Lipps Effect...............................................................................................................................

89

4.4- Planktic/Benthic foraminiferal ratio and Benthic Foraminiferal Assemblage……………………….

90

4.4.1- Maastrichtian......................................................................................................................................

93

4.4.2- Paleocene...........................................................................................................................................

100

4.5- The Nature of Maastrichtian/Paleogene boundary……………………………………………………….

103

4.6- Method of graphical correlation……………………………………………………………………………..

105

4.7- Sedimentation rate around Cretaceous/Tertiary boundary…………………………………………….

108

6- CHAPTER FIVE conclusions

112

References

122

Plates

List of Figures and Table Figure No.

Title

Page

Fig (1.1) Location and Geological map of the studied area (modified from Sissakian, 2000)

4

Fig (1.2) General stratigraphy of Cretaceous/Tertiary boundary at the studied sections

5

XI Fig (1.3) Upper Campanian - Maastrichtian facies map of Middle East (Buday, 1980) with general location of the studied area.

7

Fig (1.4) A: Modification of the time expanded stratigraphic column of Bellen et al (1959) to showing the gradational contact between Kometan and Shiranish Formations. B: original column of the above author without modification. (After Karim et al., 2007)

8

Fig (1.5) Paleocene –Lower Eocene facies map of Middle east (Buday, 1980 with general location of the studied area.

13

Fig (1, 6) Correlation of the previous biostratigraphic zonation on Cretaceous/Tertiary boundary in the studied region and different localities of Iraq.

18

Fig (2.1) Lithostratigraphic column of studied section in Sirwan valley showing conventional lithologic constituent.

24

Fig (2.2) Schematic geologic cross section of the studied section (Sirwan valley)

Fig (2.3) Image showing the Cretaceous/Tertiary contact between Tanjero- Kolosh Formations and three ridge forming conglomerate beds at the lower part of Kolosh Formation Fig (2.4) Image showing a- conglomerate bed. b- Systematic sampling within the upper part of Tanjero Formation, Sirwan valley

26 27

27

Fig (2.5) Lithostratigraphic column of Kato section showing conventional lithologic constituent.

28

Fig (2.6) Lithostratigraphic column of Qishlagh section showing conventional lithologic constituent.

31

Fig (2.7) Schematic geologic cross section of the Qishlagh Section Qala Cholan area

32

Fig (2. 8) (a) showing reworked fossils of large foram. of Loftusia, Omphalocyclus and Orbitoides in the transitional zone between Tanjero and Red Bed Series. (b) Showing the conglomerate bed of 3 m. thick, which contain reworked and dwarfed fossils at the base of Red Bed Series.

33

Fig (2.9) Schematic geologic cross section of the Qulka Section Dokan area

35

Fig (2.10) Lithostratigraphic column of Qulka section in Dokan area showing conventional lithologic constituent.

36

Fig (2. 11) Photo image (a) Showing the conglomerate bed of 1.5 m. thick, which previously concluded to be the contact line of Cretaceous/Tertiary boundary in Dokan area by different authors. (b) Soft, friable and weathered intraformational conglomerate and pebbly sandstone from the lower part of Kolosh Formation, rich in reworked fossils of Corals. Gastropods, Pelecypods, Echinoids and Brachiopods

37

Fig (2.12) Schematic geologic cross section of the (Gali Section) Smaquli area

39

Fig (2.13) Lithostratigraphic column of Gali section in Smaquli area showing conventional lithologic constituent.

40

Fig (2.14) Image showing the graditional contact (change in color) between Shiranish Formation and Reddish to pale brown succession

41

XII Table No.

Title

Page

Table (3.1) Showing the number of planktonic and benthonic foraminiferal Genera and species identified in the studied sections from the Tanjero and Kolosh Formations

44

Figure No.

Page

Title

Fig ( 3.1) Biostratigraphic range chart of planktonic foraminifera at Cretaceous/Tertiary boundary, Sirwan area, (Sirwan section)

45

Fig (3.2 ) Biostratigraphic range chart of benthonic foraminifera at Cretaceous/Tertiary boundary, Sirwan area, (Sirwan section)

46

Fig (3.3) Biostratigraphic range chart of planktonic and benthonic foraminifera, Cretaceous /Tertiary boundary in Kato area (Kato section)

48

Fig (3.4 ) Biostratigraphic range chart of planktonic and benthonic foraminifera Cretaceous /Tertiary boundary, Qala cholan area, (Qishlagh section)

49

Fig (3.5) Biostratigraphic range chart of planktonic foraminifera at Cretaceous/Tertiary boundary, Dokan area, (Qulka section)

56

Fig (3.6 ) Biostratigraphic range chart of benthonic foraminifera at Cretaceous/Tertiary boundary, Dokan area, (Qulka section)

57

Fig (3.7) (in 2 parts). – Part 1: Biotratigraphic range chart of planktonic foraminifera at Cretaceous /Tertiary boundary in Smaquli area (Gali section)

58

Fig (3.7) Part 2:- Biostratigraphic range chart of planktonic foraminifera at Cretaceous/Tertiary Boundary in Smaquli area (Gali section) Continued.

59

Fig (3.8) Biostratigraphic range chart of benthonic foraminifera at Cretaceous/Tertiary boundary in Smaquli area (Gali section)

65

Fig (3.9) Genetic radiation, Phylogenetic relationship and Geologic ranges of Paleocene serial & low to high trochospiral microperforate wall structure planktonic foraminifera (From Olsson et. al, 2000)

73

Fig (3.10) Genetic radiation, Phylogenetic relationship and Geologic range of Paleocene muricate, smooth walled, non-spinose and spinose concellate wall structure of trochospiral planktonic foraminifera (From Olsson et. al, 2000)

74

Fig (3.11) Genetic radiation and phylogenetic reconstruction of the Early Paleocene microperforate planktonic foraminifera (From Liu & Olsson 1992)

75

Fig (3. 12 ) Correlation chart showing the planktonic foraminiferal biostratigraphic zones of Upper Cretaceous (Maastrichtian) of the studied sections with the planktonic foraminiferal zonation commonly used in low, middle and high latitudes, in the new zonal scheme, and inside the Iraq. The age of planktonic foraminiferal datum events shown. (Modified from different authors)

82

Fig ( 3. 13) Correlation chart showing the planktonic foraminiferal biostratigraphic zones of Upper Maastrichtian/lower Danian of the studied sections with the planktonic foraminiferal zonation commonly used in low, middle and high latitudes, in the new zonal scheme. The age of planktonic foraminiferal datum events shown. (Modified from different authors)

83

XIII Fig (3.14). High resolution planktonic foraminiferal biozone for the Maastrichtian and Early Danian (Cretaceous/Tertiary) boundary at Gali section (Smaquli area) and other studied localities. Note that this biozones significantly refines the resolution for the upper Maastrichtian, by replacing the Abathomphalus mayaroensis zone by four biozones.

84

Fig (3.15) Correlation of the previous Planktonic foraminiferal biostratigraphic zonation on Cretaceous/Tertiary boundary with the present study in the studied region and different localities of Iraq.

85

Fig (4.1) Planktonic foraminiferal species richness across the Tunisian continental shelf-slope based on data from the inner shelf Seldja section (Keller and other,1998) , middle shelf Elles section ( Abramovich and Keller,2002), and outer shelf to upper slope El Kef section (Li and Keller 1998c,). Note: The species richness increase with increasing depth across the shelf and is a function of available ecological niches and depth habitats (from Keller 2004)

89

Fig (4.2) Upper depth limits and paleobathymetric distribution of Upper Cretaceous and Lower Paleogene benthonic foraminifera (1): van Morkhoven et al.(1986), fold out, p.8, fig,5; (2): Speijer (1994), p. 84,fig.6; (3):Tjalsma and Lohmann (1983); (4): Widmark (2000), p.376; (5): Berggren and Aubert (1975); (6):R. Speijer, press. Comm., 2001; (7): Widmark and Speijer 1997a; (8): Kaminski et al.1988;(1c): modified after van Morkhoven et al.(1986), (from Alegret and Thomas 2001)

92

Fig (4.3): The main Foraminiferal parameters derived from the quantitative analysis with the proposed paleodepth curve in the Late Cretaceous/Early Paleocene succession in Gali section (Smaquli area)

94

Fig (4.4): The main Foraminiferal parameters derived from the quantitative analysis with the proposed paleodepth curve in the late Cretaceous/Early Paleocene succession in Qulka section (Dokan area)

96

Fig (4.5): The main Foraminiferal parameters derived from the quantitative analysis with the proposed paleodepth curve in the late Cretaceous/Early Paleocene succession in Sirwan section (Sirwan valley)

97

Fig (4.6): The main Foraminiferal parameters derived from the quantitative analysis with the proposed paleodepth curve in the late Cretaceous/Early Paleocene succession in Qishlagh section (Qala Cholan area)

99

Fig (4.7: The main Foraminiferal parameters derived from the quantitative analysis with the proposed paleodepth curve in the late Cretaceous/Early Paleocene succession in Kato section (Barzinja area)

101

Fig (4.8): Graphic correlation shows the depositional rate of sediment between Smaquli and Qulka sections, Note: Change in the gradient in the early stage (dog-Leg) indicate highest rate of deposition in Qulka section than Smaquli section

106

Fig (4.9): Graphic correlation shows the depositional rate of sediment between Smaquli and Sirwan sections. Note: Change in the gradient in the early stage (dog-Leg) indicate highest rate of deposition in Sirwan section than Smaquli section

Fig (4.10): Graphic correlation shows the depositional rate of sediment between Qulka and Sirwan sections. Note: NO Change in the gradient o observed, a best-fit line constructed completely which indicate similar rate of deposition in Qulka and Sirwan section

107

107

XIV Fig (4.11): Sedimentation rate of the Upper Cretaceous/Lower Tertiary Succession from gali section Smaquli area plotted vs. planktonic foraminiferal zonal scheme. The age (Time) of foraminiferal datum events shown (in MY)

110

Fig (4.12): Sedimentation rate of the Upper Cretaceous/Lower Tertiary Succession from Qulka section Dokan area plotted vs. planktonic foraminiferal zonal scheme. The age (Time) of foraminiferal datum events shown (in MY)

110

Fig (4.13): Sedimentation rate of the Upper Cretaceous/Lower Tertiary Succession from Sirwan section plotted vs. planktonic foraminiferal zonal scheme. The age (Time) of foraminiferal datum events shown (in MY)

111

Chapter one

Introduction

CHAPTER ONE Introduction 1.1- Preface The Tanjero, Kolosh and Red Bed Series basin, as a part of the Neotethys, was strongly deformed by the Alpine orogeny during their activity continued from Jurassic to Miocene where a huge thickness of sediments was accumulated.

These successions are generally well exposed in different

localities and different types of stratigraphic units in Zagros mountain regions such as the Balambo, Qulqula, Qamchuqa, Aqra-Bekhme, Kometan, Shiranish and Tanjero Formations, in addition to the Kolosh, Gercus Formations and Red Bed Series. The basins of these units have a complicated history of development and tectonics, this history was demonstrated by different characteristics of these stratigraphic units. Biostratigraphic analysis involves the interpretation of the nature of contact between Tanjero / Kolosh and Tanjero / Red Bed series, evolution, estimation the age of biozones by high resolution

planktonic foraminiferal

zonation and paleoenvironmental interpretation in accordance to planktonic and benthonic foraminiferal assemblages relationship by examining different geologic variables associated in this study. The geologic variables in the present study include the

traditional and biostratigraphic analysis based on

detail study of (5) exposed sections throughout the studied area. The detailed field and lab studies and

were directed towards planktonic foraminiferal zonation

paleoenvironmental

interpretation

to

interpret

architecture

and

biostratigraphic relation, in addition to the correlation and comparisons with similar and related studies achieved in this field regionally or globally. During the last decades the analysis of the Cretaceous/ Tertiary (K/T) boundary has been one of the most frequently mentioned topics in the earth science and several hypotheses have been suggested to explain the causes behind the global mass extinction in several groups of organism across this boundary, both marine and terrestrial forms were affected by the extinction event, which implies a multitude of causes for the Late Cretaceous extinctions,

1

Chapter one

Introduction

such as plate tectonics' (continental rifting) the asteroid-impact, volcanisms, acid rains, iridium increase and CO2 release and the resulting climate changes. The K/T boundary has been studied in different localities and regions in the world for different sense and purposes by different methods, such as tectonic, geochemical, stratigraphic, and biostratigraphic. The Cretaceous/ Tertiary Boundary in Kurdistan Region were not studied completely, especially in Sulaimani region which represents an important part of Zagros area. This study deals with the biostratigraphy and paleoenvironment of Cretaceous/Tertiary boundary sequences in the Sulaimani region, NE-Iraq, Kurdistan, depending on planktonic

foraminifera through Late Maastrichtian

and Early Paleocene. Lithologically it is concerned with Tanjero and Kolosh clastic Formations, Tanjero-Red Bed Series or Shiranish-Kolosh Formations regionally in the studied area. The study is specially concentrated on analysis of all the uncertain aspects of the formations, such as

stratigraphy, biostratigraphy, paleoenvironment,

paleogeography, basin analysis, age and regional geology. In the present study there are attempts to answer many of the questions raised naturally through different researches and studies since this decade

by different

authors in and outside Iraqi regions about stratigraphy, biostratigraphy, nature of

the

contact,

age

determination,

paleoecology,

paleogeographic

reconstruction, and correlation with regional, continental and intercontinental similarities.

1.2- Location and Geomorphology The studied area is located within the Imbricated Zone (proximal area) was represented by Qishlagh, Kato and Sirwan valley sections (High Folded Zones) and

in the High and Low Folded Zones (distal area) represented by

Qulka and Gali sections. The studied area is located within Sulaimani and near by Erbil Governorates in northeastern Iraq. It extended

from

Halabja town

in southeast to Koy Sinjaq town in the northwest. This area is located between latitude (350 10-) and (360 30-) north and longitude (460 10-) and (440 40-) east, (Fig.1.1 ). The main outcrop of the studied sections is located at Smaquli

2

Chapter one

Introduction

area north of Koy Sinjaq town by about 25 Km. This area is represented geomorphologically by mountain series and narrow or wide subsequent (strike) valleys trending northwest—southeast.

The Mountains and valleys are

dissected by, at least, two large consequent valleys and tens of smaller ones. The large valleys are those in which the Little Zab and Diala Rivers. The outcrops of the studied sections consist mainly of alternation of thick beds of flysch type marl, shale, marly limestone, claystone and sandstone of TanjeroKolosh Formations, ridge forming massive pale grey tough recrystalized occasionally dolomitized, siliclastic limestone of interfingering Aqra Formation and thick beds of red claystone, sandstone and conglomerate molasses type of Red Bed Series.

1.3- Geological Setting The studied area is located at the southern boundary (in front) of the Zagros Thrust Belt, which is developed from the basin fill of the Neo-Tethys and colliding of the Iranian and Arabian plates (Buday 1980). Structurally, the studied area is located within two different zones. The outcrops of Qishlagh section ( Qala Cholan area), Kato section (Barzinja area) and Sirwan valley section (Halabja area) are located in the Imbricated Zone while that of Dokan section ( Dokan area) and Gali section (Smaquli area) are located exactly on the high folded Zone, as divided by Buday and Jassim (1987) (Fig.1.1 and 1.2). Because of

intense imbrications, the studied area in Qishlagh, Kato and

Sirwan valley is characterized by obscured anticlines and synclines which have been stacked together as very thick and tight packages which were overturned toward southwest (Karim 2004). These imbrications include Qulqula, Balambo, Aqra, and other units such as Kometan, Shiranish, Tanjero, Kolosh Formations and the Red Bed Series.

3

Introduction Chapter one

Fig. (1.1) Location and geological map of the studied area (from Sissakian et al., 2000).

4

Chapter one

Introduction

The Tanjero Formation underlies the Red Bed Series directly; Numan (2000) and Karim (2004) regarded the basin of latter formation and Kolosh Formations as Zagros Early Foreland Basin. In the Tagaran, Qala Cholan, Qishlagh, Sura Qqalat and Mawat area, the Tanjero Formation overlied by Red Bed Series graditionaly. Lawa et al., (1998), Karim (2004) and Sharbazheri, (2007). mentioned that the contact is gradational in some places and unconformable in others. Even as in the other three studied sections (Sirwan valley, Dokan and Smaquli Gali sections), the Tanjero Formation underlies directly the Kolosh Formation, and the nature of the contact explained briefly in subsequent chapters.

1.4- General stratigraphy The general stratigraphy of the Cretaceous/Tertiary boundary of Upper Campanian-Maastrichtian and Paleocene-Lower Eocene cycles of the studied sections was shown in Fig (1.2), the studied sections in the Sulaimani area

Fig (1.2) General stratigraphy of Cretaceous/Tertiary boundary at the studied sections.

comparatively comprise wide distribution and show rapid lateral variation in depositional environment, consequently the present study will include several

5

Chapter one

Introduction

lithologic units during Upper Cretaceous-Lower Tertiary. The following is a review on the previous studies about lithostratigraphy and biostratigraphy of the incorporated formations. 1.4.1- Upper Cretaceous Formations Bellen et al., (1959), Ditmar et al., (1971),Kassab (1974 & 1975), Buday (1980),Karim (2004), Jassim & Goff (2006) and others defined the Upper Cretaceous cycles as the Upper Campanian –Maastrichtian sedimentary cycle based on the ages attributed to the Shiranish and Tanjero Formations at their type localities and the other similar rock units. Fig (1.3)

1.4.1.1- Shiranish Formation The Shiranish Formation was first defined by Henson (1940) from the High Folded Zone of North Iraq, near the village of Shiranish Islam, Northeast of Zakho. The formation belongs among the most widespread units to the Upper Campanian- Maastrichtian cycle in North Iraq. It is represents distal portion of deeper foreland basin near by its neighboring Tanjero Formation too Karim (2004). The Formation, in its type area, comprises thin bedded argillaceous limestones (locally dolomitic) overlain by blue pelagic marls (Owen and Nasr, 1958; Bellen et al., 1959, in Jassim & Goff. 2006). Al Qayim, (1992), divided the formation into three lithologic units in its type locality. The Shiranish Formation is also recognized in NE Syria (Dubertret, 1966 and Brew et al., 2002 in Jassim & Goff. 2006). Maastrichtian foraminiferal limestone and marl in central Syria can be partly correlated with the Shiranish Formation (Ponicarov et al., 1967 in Jassim & Goff. 2006). Al Mutwali and Al Juboury (2005) studied Shiranish Formation from Sinjar area, northwestern Iraq and lithologically they are divided into three units; these units embrace an alternation of marl, marly limestone, limestone, sandy limestone and lenses of breccia.

In SE Turkey the Shiranish Formation is equivalent to the Kermav

marls of the Mardin area (Beer 1966 in Buday, 1980). Towards, the SE of Iran the formation is equivalent to the upper part of pelagic Grupi Formation (James & Wynd 1965), and the Upper Cretaceous Marl Group it is equivalent to Tayrat Formation from Kuwait and Upper part of Aruma Formation in Saudi

6

Chapter one

Introduction

Arabia (Kent et al.,1951 in Jassim & Goff . 2006).

Abdel-Kireem (1983 -

1986b) studied the lithostratigraphy and paleoecology of exposed Shiranish Formation in Sulaimani-Dokan region, and subdivided the formation into two lithologic members.

Fig (1.3) Upper Campanian- Maastrichtian facies map of Middle East (Buday 1980) with general location of studied area

7

Chapter one

Introduction

The Shiranish Formation in the studied area overlies Kometan Formation conformably. This evidence was studied in the recent years and during fieldwork, new observations are recorded in many different localities that show, distinct character in opposite to previous studies, like gradational contact between the Kometan and Shiranish Formations. The gradation contact can be seen as the regular alternating of beds of white limestone and bluish white marl. Fig (1.4) (Karim et al., 2007). In the studied area the Shiranish Formation overerlain by Tanjero Formation graditionally and the contact is marked by the first appearance of gray sandstone or siltstone beds at the top of Shiranish Formation (bluish white marl and marly limestone) and starting of olive green lithology of Tanjero Formation.

Fig. (1.4) A: Modification of the time expanded stratigraphic column of Bellen et al (1959) showing the gradational contact between Kometan and Shiranish Formations. B: Original column of the above authors without modification. (After Karim et al., 2007)

1.4.1.2- Tanjero Formation According to Bellen et al. (1959), Tanjero Formation is first defined and described under the name of Tanjero Formation by Dunnington (1952). From the selected type section at Sirwan valley, 2 km to the south of Kani Karweshkan village, near Halabja town (Fig 1.1 ) and at the right bank of

8

Chapter one

Introduction

Sirwan river (upstream of Dialla river). The type section comprises two divisions. The lower division comprises pelagic marl, and occasional beds of argillaceous limestone with siltstone beds in the upper part (Bellen et al. 1959).The upper division comprises silty marl, sandstone, conglomerate, and sandy or silty organic detrital limestone, it interfingers with the Aqra Limestone Formation. The sandstone is composed predominantly of grains of chert and green igneous and metamorphic rocks. The conglomerates contain pebbles of Mesozoic limestones, dolomites, recrystalized limestones and radiolarian chert. The thickness of the formation is highly variable. The maximum thickness of the formation is about 2000 meters between Rowandus and Chwarta (Jassim and Goff 2006) The Tanjero Formation outcrop extends into Southeast Iran where it was referred to as the Maastrichtian flysch by (Kent et al., 1952 in (Jassim and Goff 2006), and described as chert conglomerate by James and Wynd (1965). In Turkey, the Cretaceous parts of the Garmav Formation are equivalent to the Tanjero Formation (Buday 1980) In the study area, the formation has great variation in thickness which reflects tectonic activity and character of foreland depositional basin, in the Barzinja- Kato proximal area only the lower part of 50m remained, the other part is eroded and represented by incised valley and Kato conglomerate. (Karim, 2004). In the Smaquli area the thickness is reduced to 72m which represents the distal part of the basin and completely vanished by about 5Km south of Shaqlawa city. Al-Mehaidi (1975) discussed briefly the stratigraphy and tectonic of the formation within the Chuarta area and mentioned the occurrence of the Aqra Formation in the upper part of Tanjero Formation as a lens. AI-Rawi (1981) studied in detail the sedimentology, and petrology of the formation in selected sections (Sulaimani, Dokan and Rawandoz). He mentioned that the lower part at Sulaimaniya has shallow environment of deposition and concluded that the paleocurrent is toward northwest and flow parallel to the axis of the Tanjero trough.

9

Chapter one

Introduction

Abdel-Kireem(1986 a) studied the formation within stratigraphy of Upper Cretaceous and Lower Tertiary of Sulaimaniya- Dokan Region, and suggested to remove the word "clastic" from the name of the formation and to add its lower part within the Shiranish Formation. Abdel-Kireem (1986b) studied planktonic forams and stratigraphy of Tanjero Formations, and subdivided the formation into three units according to the microfacies and lithofacies. Jaza (1992), recognized the turbidite and submarine fan (as depositional feature of the basin) during the sedimentary facies analysis of the formation in selected sections from Sulaimaniya district , and divided the rock body of the formation into sixteen lithofacies and suggested further detailed study of the formation to reconstruct depositional model for the whole basin and its relation to tectonics. Minas (1997), studied sequence stratigraphy of the formation and laid Tanjero Formation in deeper environment than Shiranish Formation. AlRawi and Al-Rawi (2002), studied the formation as turbidite example of flysch type in a northeast and north of Iraq, and concluded that the formation deposited in deeper environment, except the limestone beds, which are deposited in shallower condition. Karim (2004 and 2006); Karim and Surdashy (2005a, 2005b, and 2006) studied in detail the basin analysis, paleocurrent, tectonic history and sequence stratigraphy of Tanjero Formation. They indicated an unconformity at the lower part of Tanjero Formation which was represented by about 500m of boulder and gravel conglomerate, and found about four main incised valleys in the Sulaimani area during Maastrichtian. They mentioned that this conglomerate is deposited during sea level fall (lowstand system tract)

1.4.2- Lower Tertiary Formations The lower Tertiary Formations are the most widespread and well known lithologic units in both surface and subsurface sections throughout almost all structural units of Iraq Figure 1.5 However, the Tertiary sediments have a small areal distribution in the High Folded, Imbricated, and Northern Thrust Zones Units. (Buday 1980)

10

Chapter one

Introduction

Ditmar et al., (1971) subdivided the Tertiary Group into two sedimentary cycles, the Paleocene- Lower Eocene Cycle and the Middle Eocene cycle. The Paleocene- Lower Eocene units in the studied locations represented by thick sequence clastic rocks of Kolosh Formation and Suwais Group (Red bed Series) where it overlies the Tanjero Formation.

1.4.2.1- Kolosh Formation The formation was first described by Dunnington (1952, in Bellen et al., 1959) at Kolosh village, north of Koy Sinjaq in the High Folded Zone; Ditmar et al., (1971) mentioned the occurrence of Sinjar Formation too at its upper part in the type locality. The formation according to the original description consists of shale and sandstones composed of green rock, chert, and radiolarite. Bellen et al., (1959) described the following units from Kolosh type locality from the top to the base: 1- 144m of limestone and marl with Miscellanea miscella, ostracods and miliolids; 2- 30m of limestone with Dictyokathina simplex Smout, Lokhartia sp. Valvulinids, miliolids, ostracods; 3- 113.5m of limestone and shales, red shales and sandstone with the same fossils but without Dictyokarhina simplex Smout; 4- 6m of limestone with Saudia labyrinthia; miliolids and rotalids, 5- 410m of blue shale and green sand. According to Ditmar et al., (1971), the following fossils were distinguished in the type locality: Ammodiscus incertus, Globorotalia angulata, Globigerina bulloides,

Gyroidina

soldanii,

Loxostoma

applinae,

Nodosaria

zippei,

Nuttalides trumpyi, Pseudovalvulineria sp, Teredolites sp, Ovulites morlleti, O. cf elongate, Trinocladus perplexuz, Griphoporella

arabica. Funcoporella

diplopora, Cymoporella sp. Toward the west, the formation comprises distal lithologic character of mudstone, siltstone, and argillaceous limestone beds in subsurface sections at the Chamchamal, Taq Taq and Mushorah region. (Jassim & Goff, 2006)

11

Chapter one

Introduction

The Kolosh Formation extends into Turkey, where it is represented by the clastic facies of the Garmav Formation (Altinli, 1966 in Jassim & Goff, 2006). In southeast of Iran, the upper part of the Amiran Formation of the (James and Wynd,1965) and the purple shales of the Lower Pabda Formation

can be

correlated with the Kolosh Formation. (Jassim & Goff, 2006) The biostratigraphy of Kolosh Formations were studied by Kassab (1972, 1974, 1975, 1976 and 1978) and Kassab et al., (1986) at the type locality and other locations in north and northeast of Iraq. They recognized the planktonic foraminiferal Zones of Lowermost Middle Paleocene, represented by Globorotalia uncinata partial range Zone. Fig (1.6) Munim (1976) and Jacob (1978) recorded the Late Lower Paleocene at Zandour village, by recognizing Globorotalia trinidadensis Zone in Kolosh Formation. Al-Mutwali (1983) and Al-Omari et al., (1988), through their study of biostratigraphy of Kolosh Formation at Shaqlawa area, they recognized Globorotalia trinidadensis Zone which is indicated to the Late Lower Paleocene age. Fig (1.6) Al-Shaibani et al., (1986) during their stratigraphic analysis on the Tertiary-Cretaceous contact in Dokan area, (North Iraq), they placed the contact in Zone P3 ( Middle Thanetian), based on overlapping of the range of Globorotalia (T.) trinidadensis Bolli, 1957, and Subbotina velascoensis Cushman,1925 and other species. Fig (1.6) Raffo (1989) recorded the following Danian

species Eoglobigerina

appressa, Eoglobigerina edita praeedita, Globorotalia (Tu.) compressa planocompressa; Grt. (Tu.) archaeocompressa; Grt. (Tu.) rainwateri; Grt. (Tu.) sp. Type VII, during his study on planktonic foraminifera and biostratigraphy of Aaliji Formation and the nature of the contact with underlying Shiranish Formation at Mushorah well (No.1) (northwest Iraq) Fig (1.6 ) Ghafor and Karim (1999), studied the biostratigraphy of the upper part of Kolosh Formation from Sartaq-Bamo in northeastern Iraq and they recognized the Globororalia velascoensis Zone of Upper Paleocene age.

12

Chapter one

Fig (1, 5)

Introduction

Paleocene – Lower Eocene facies map of Middle East

location of studied area

13

(Buday 1980) with general

Chapter one

Introduction

1.4.2.2- Red Bed Series (Suwais Group) The Series was first described by Bolton (1958) as a Suwais Red Beds (the name comes from Suwais village) in the Imbricate Zone about 20km to the north of Sangasar town and to the north of the Ranyia city. The lithology of the series at the type section is divided into four units; they are as follows from bottom to top: -Unit 1, Consists of different types of limestone beds (fossiliferous, detrital and conglomeratic limestone) -Unit 2, this unit consists of

fine clastic (ferruginous red shale and blue

siltstone) with some interlayer of

limestone and conglomerate.

The

thickness of this unit is about 300m. -Unit 3, Polymictic conglomerate is containing boulder and blocks of limestones, chert, igneous and metamorphic rock fragments. -Unit 4, Composed of marly shale and sandstone with some conglomerate. Al-Mehaidi (1975), divided the Series at Chwarta area into four parts. Karim (1975) studied the Series paleontologically and claimed that the age of the series is Miocene. Buday (1980), reviewed the earlier studies about the series with illustration of the regional distribution and interpretation of different lithology. Al-Ameri et al., (1990), investigated the palynology of Unit one of Suwais Red Beds

in Chwarta Area; they concluded that this unit deposited

during Santonian.

Lawa et al. (1998), recorded gradational contact between

Red

Bed Series and Tanjero Formation in

Chwarta area; while Karim

(2004), recorded both gradational and unconformable contact in different localities in Chwarta and Qandil area. Al-Qayim (2000) studied the sedimentation and tectonic environment of the Suwais Red Beds from northeast margin of the Arabian plate, and concluded that the unit indicates flysch type sequence with variable facies. Lawa 2004, in Al-Barzinjy, 2005 showed by sketch that the Red Bed Series have been deposited during Paleocene and in an intermountain basin above the sea level where the Kolosh Formation located to the southwest of the series, and separated both basins from each other by mountain ranges.

14

Chapter one

Introduction

Al-Barzinjy (2005) during the study of stratigraphy and basin analysis of Red Bed Series at northeast Iraq, claimed that the depositional basin of lower Tertiary sequences of Red Bed, Kolosh, and Gercus Formations are the same and there were no paleohigh at the time of deposition to separate these units. 1.5 - Previous biostratigraphic works on Shiranish –Tanjero Formations Bellen et al. (1959) has described briefly the distribution, age, lithology, fossil content, and stratigraphy of the Shiranish and Tanjero Formations, in addition to geographic distribution at different localities. The most representative fossils foraminifera of Shiranish Formation recorded in the type locality are: - Globigerina cretacea, Globotruncana tricarinata, G. lapparenti pendens, G. fornicata, G. stiwarti, G. Leopoldi, G. arca, G. gagnebini, G. gansseri, G. cf.rosetta, and Pseudotextularia spp., Anomalina ammonoides, Bolivina incrassata, Bulimina sp., Buliminella laevis, Bolivinoides

dracco,

Cibicides

beaumontianus,

Gyroidina

naranjoinsis,Gyroidina sp., Marsonella oxycona, Nodosaria sp., Textularia cretosa.(Buday 1980) The fossils reported by (Bellen et al., 1959) in Tanjero Formation are:Gryphaea vesiclaris, Hippurites cf.morgani, H, nov. spp., Prairadiolites cylindraceous, Turbo clathratus, vaccinates cf. gallopryincialis, Loftusia morgani, L. elongata, L. persica, L. nov.sp., Omphalocyclus macropora, Siderolites calcitrapoides, Globigerina cretacea, G. sp., Globigerinella cf. aspera, Globotruncana stuarti, G. leupoldi, G. lapparenti bulloides, G. lapparenti tricarnata, G. arca , G. fornicata, G. marginata, Gumbelina spp.,Pseudotextularea elegans, Pseudolithothamnium album, Trinocladus. sp., Ovulites sp. Two planktonic foraminiferal zones and five subzones are recognized by Kassab (1972, 1974, 1975c, 1975d, 1976b) and Kassab et al (1986) during their biostratigraphy study

of the Shiranish and Tanjero Formations at their

type localities and six other sections in north and northeast Iraq . They deducted the Late Campanian –Maastrichtian age to the both Formations in Iraq, these zones as follow from base to the top:

15

Chapter one

Introduction

a- Globotruncana fornicata –stuartiformis-elevata-roseta- ventricoza Zone. 1- Globotruncana calcarata-- elevata--aegyptiaca Subzone (Late Campanian) 2- Globotruncana arca – tricarinata - subcircumnodifer Subzone (Early Maastrichtian) b - Globotruncana contusa- esnehensis- duwi Zone 1- G. gansseri- bahijae- Gublerina cuvillieri Subzone (Middle Maastrichtian) 2- Abathomphalus mayaroensis Subzone (Late Maastrichtian) 3- Globotruncana falsocalcarata Subzone (Late Maastrichtian) Abawi et al., (1982) and Abdel-Kireem (1986a &b) included both formations within stratigraphy of Upper Cretaceous in northeast Iraq, and they recognized five planktonic foraminiferal subzones under two zones as follow from the base to the top: a- Globotruncana fornicata-arca-stuarti Assemblage Zone Globotruncana calcarata Subzone (Late Campanian) b- Globotruncana aegyptiaca –lapparenti-stuarti Assemblage Zone. 1- Rugotruncana subcircumnodifer Subzone (Early Maastrichtian) 2- Globotruncana gansseri Subzone (Middle Maastrichtian) 3- Globotruncana contusa Subzone (Middle Maastrichtian) 4- Abathomphalus mayaroensis Subzone (Late Maastrichtian) Al-Mutwali and Al-Jubouri (2005) determined the age of Shiranish Formation by Late Campanian—Late Maastrichtian through the biostratigraphy of the following biozones 1- Globotruncana calcarata (Late Campanian) 2- Globotruncanella havanensis- Roseta fornicata Zone (Early Maastrichtian) 3- Globotruncana aegyptiaca Zone (Early Maastrichtian) 4- Globotruncana gansseri Zone (Late Maastrichtian) Bakkal et al., (1993), studied biostratigraphy of Shiranish Formation in Higran area, and determined the age of Shiranish Formation as Middle —Late Maastrichtian, by recognizing two planktonic foraminiferal subzones of Globotruncana gansseri gansseri and Kassabiana falsocalcarata subzones under the Globotruncana contusa stuartiformis biozone.

16

Chapter one

Introduction

Lawa et al. (1998) argued the interfingering carbonate layers in the upper part of the Tanjero Formation at Chwarta-Mawat area and concluded that these layers belong to Aqra Formation with Late Maastrichtian age according to existence of Abathomphalus mayaroensis Subzone. Sharbazheri (2007) estimated the age of unconformity within Tanjero Formation, by about (1.23 my) duration

through thick succession of

500m

conglomerate and red claystone layers at the lower part of Tanjero Formation at Chwarta area,

depending on describing the following planktonic

foraminiferal biostratigraphic zones from the base upward: aegyptiaca Interval Zone (CF8), Racemiguembelina

fructicosa

Globotruncana

Gansserina gansseri Interval Zone (CF7) Interval Zone

(CF4), Pseudoguembelina

hariaensis Interval Zone (CF3) with missing zones of Contusotruncana contusa Interval zone (CF6) and Pseudotextularia intermedia Interval zone (CF5). 1.6 – Review on the Upper Cretaceous- Lower Tertiary Contact in Iraq. The Upper Cretaceous and Lower Tertiary sedimentary rocks in Iraq have been the subject of numerous stratigraphic and paleontological investigations. Such sediments are well developed in both surface and subsurface exactly the exposed part at north and northeastern territory The Upper Cretaceous and Lower Tertiary boundary is marked by one of the most dramatic extinction of different groups of organism; especially the planktonic foraminifera, the recognition of the major paleoclimatic change during the late Maastrichtian has focused new attention on global climate changes and their effect on marine organism. In particular the last half million years of the Maastrichtian is increasingly recognized as a time of rapid and extreme climatic changes characterized by maximum cooling at about 65, 5 Ma, followed by (3-40) C greenhouse warming and major Deccan volcanic activity between 65.4 and 65.2 Ma. (Li & Keller, 1998a) (Keller 2001) (Barrera, 1994; Courtillot et al., 1996, Hoffman et al., 2000, in Keller, 2004)

17

Chapter one

Introduction

Fig (1, 6) Correlation of the previous biostratigraphic zonation on Cretaceous/Tertiary boundary in the studied region and different localities of Iraq.

18

Chapter one

Introduction

Dunnington (1955, 1957), recorded the indication of great gap in the stratigraphic column, in his biostratigraphic studies about the nature of the Cretaceous/Tertiary contact in Dohuk, Aqra and northern Iraq, evidenced by the period of great regression of the ocean during Late Maastrichtian and Early Paleocene time followed by the uplifting of the area due to the tectonic orogeny, consequently this region undergone the process of erosion and period of non deposition. This phenomenon is applied for almost greater area of Iraq, exactly in the region of the northern and northeastern part. Al-Omari (1970) during his study on foraminifera of Mesozoic and Cenozoic at wells Butmah-9 and Ainzala 16, 17 from the northwestern part of Iraq, confirmed that the Aaliji Formation overlies the Shiranish Formation unconformably. Other biostratigraphic studies carried out in Iraq and especially in the area of study are summarized in Fig (1.6). 1.7 - Methodology 1.7.1 - Studied Sections Five sections were selected for foraminiferal biostratigraphic study of the Cretaceous / Tertiary boundary (Fig1.1 and.1.2). The general stratigraphy and structural condition of

these sections are represented either by photos or

diagrams. These sections are as follow: 1- Gali section: It is located within Smaquli area about 25 Km. north of Koy Sinjaq town on the northeast limb of Awagird mountain at plunging of Safeen anticline in the direction of southeast, at the latitude (360 10-

51.3=) and

longitude (440 36- 40.8=) and for distance 1 km. south east of Gali village. (Fig. 1, 1 and 1, 2) 2- Dokan section: Is directly located to the southwest direction of about 3 km from Dokan Dam along the left bank of Qulka valley. (Fig .1, 1 & 1,2). At latitude (350 56-

22.0= ) and longitude (440 56- 13.6=)

3- Qishlagh section: It is located directly north of Qala Cholan, 15 Km. west of Chwarta Town, at the

latitude

(350 43- 69.2=) and longitude (450 29-

03.0=) (Fig.1.1 & 1. 2)

19

Chapter one

Introduction

4- Kato section: This section is located at 8 km to the southeast of Chwarta town, (Barzinja area) Kato mountain, at latitude (350 40- 39.1=) and longitude (450 37- 25.7=) near Suerala village (Fig.1, 1 & 1, 2) 5- Sirwan Section: located at the Sirwan valley, on the right bank of Sirwan river (upstream of Diyala river), (2) km to the south of Kani Karweshkan village, near Halabja Town

at

latitude

(350 07-

26.7= ) and longitude

(450 52- 34.7=). Most of the base part of type section for Tanjero Formation was covered under water mass of Darbandekhan Dam. (Fig.1, 1 & 1, 2) 1.7.2 - Samlpe collection and preparation All samples were collected from the studied sections at the field after removing the surface contaminated soil and trying to obtain fresh and un weathered materials. Samples were collected at interval range between (20 – 50) cm at or near the Cretaceous / Tertiary contact and at interval of 50cm to 3m away from the contact. 572 samples from five sections (Figs. 4.1-7) were analyzed for planktonic and benthonic foraminifera, by using (50) gm from each sample. Three special techniques were chose for the preparation and extraction of foraminiferal content in this study: 1- Acetic acid method:

The sample here was broken down into small

fragments of about 3 - 5 mm in diameter, placed in beaker. The small fragment (soaked) in acetic acid. The prepared solution termed as ethanoic acid solution CH3COOH, made up of (80%) acetic acid and (20%) H2O for the duration time

between (1 – 6) hours. The proposed technique based on cold-disaggregating with acetic acid. The acetic acid causes a very slow reaction that disaggregates the rocks without destroying and corroding fossil content. This method firstly was used by (Lirer 2000). The time of desegregations varies with the type of rock (amount of % CaCO3) ranged between 1 – 2 hours for marl , claystone and shale, 2 – 3 hours for shale and marly limestone, 4 – 6

hours are sufficient for limestone, this indicates that the porosity and degree of lithification play an important role on disaggregation time.

20

Chapter one

Introduction

2- Hydrogen peroxide method: Another preparation method was introduced in this research is hydrogen peroxide oxidation method,( H2O2) , oxidizes organic mater and producing (CO2) pressure in the pore spaces proved to be winning and it is the most favored method to separate foraminiferal test from the rock type of soft, friable, porous and permeable rocks. The method used H2O2 (concentration of 20 - 30% ) and water with duration time between 2 – 3 hours. 3-The third method is more classical and traditional preparation for extraction foraminifera from the rock matrix, in which the particles were boiled

in water

for 3 – 5 hours with addition of few grams of Sodium hydroxide ( Na OH) or Sodium carbonate (Na2CO3) which produces CO2 as well as crystals of salt within the pore spaces. -The disaggregated samples were washed under tap water through a 63-µm sieve until clean foraminiferal residues were recovered. Then to remove the residual encrustations and clay materials the residue is dipped again in beaker with water diluted desogen and placed into an ultrasonic vibrator for half hour. The use of ultrasonic cleaner proved to be successful in mechanical cleaning of individual specimens without breaking them. The final washed residue was dried in an oven at 50 Co or by using the sand bath, Planktonic and benthonic foraminifera are well preserved in the Smaquli area for both Upper Cretaceous and Lower Tertiary (Danian) forams, but in other sections the preservation is moderate, although original calcite shells are recrystallized in some samples of Sirwan section. For

each

sample

about

200—300

specimen

were

picked

from

representative sample split. Population counts for each sample are based on random split, of specimens from 63 µm and 150

µm

fraction respectively.

Planktonic and benthonic foraminifera were picked from each sample and mounted. The remaining samples were used to searching for rare species. A- Laboratory analysis and scanning electron microscope photography were processed in the Institute for Paleontology, University of Bonn, Germany.

21

Chapter one

Introduction

1.8 -The aim of the study: The aim of this study includes the following aspects: 1- Complete and high resolution biostratigraphic zonation of the

sections in

the studied area. 2- Regional biostratigraphic correlation of the sections within the area of the study and global correlation with other similar sequences 3- Indicating the age of the sequences, by using the new zonal scheme and the age of planktonic foraminiferal datum events with correlative and relative methods. 4- Depositional and paleoenvironmental study of the units based on sequence analysis of the formations along the studied section. 5- Paleogeobathymetric interpretation of the studied sections. 6.

To

establish

the

relations

between

the

Red

Bed

Series

and

contemporaneous Kolosh Formation in the high and low folded zones. 7- The nature of the contact between Late Maastrichtian and early Paleocene. 8- Interpretation and determination of depositional rate and Graphical correlation between the studied sections.

22

Chapter Two

Lithostratigraphy

CHAPTER TWO

LITHOSTRATIGRAPHY 2.1-Preface In this chapter, a detailed study of the exposed uppermost part of the Upper Cretaceous successions (upper part of Tanjero Formation) and the Early Tertiary (lower most part of Kolosh Formation and Red Bed Series) were carried out in Sirwan valley, Kato, Qishlagh, Dokan and Gali section (Smaquli area). The studied stratigraphic sections include the upper part of Shiranish Formation, (Shiranish-Tanjero transition unit), Tanjero, Red Bed Series

and

Kolosh Formations.

2.2- Lithostratigraphy of Sirwan section The studied section in Sirwan valley represents the uppermost part of Tanjero Formation and the lower part of Kolosh Formation, only 255m from the upper portion of Tanjero Formation were studied from the rest of (1500 m.) thickness and 65m from the lower part of Kolosh Formation, including the description and detailed lithologic constituent, and fieldwork investigation is inferred and shown in figs (2.1, 2.2, 2.3). The most characteristic lithologic component of Tanjero Formation comprises alternation of bluish marl, marly siltstone, dark grey weathered sandstone, pebbly sandstone, dark grey shale, sometime organic rich shale, and seven weathered friable intraformational conglomerate beds distributed along this interval, they range in thickness from 0.5m to 2m, the pebble component of these conglomerate beds consists of chert, limestone, and metamorphic particles Fig (2.4a). The lateral distribution of conglomerate beds ranges between 200 – 2000m.

23

Chapter Two

Lithostratigraphy

Fig (2.1) Lithostratigraphic column of studied section in Sirwan valley showing lithologic characters. (Not to scale, the thickness shown on each portion of discussion)

24

Chapter Two

The

Lithostratigraphy

thickness, alternations between fine and coarse sediments, with

different distinctive lithologic composition and abundant reworked high diversity species richness of radiolarian microfossils, silica sphere and microtectites?, reveal that these sediments were eroded and derived from short distance of hinterland source area of Qulqula Formation in the eastern side of the Tanjero foreland basin, and great deformation during later phases of the Laramide orogeny along the Arabian and Iranian plate margin. The foraminifera commonly represented in this interval of Tanjero Formation with three diluted foraminiferal survivorships, both planktonic and benthonic moderately preserved, restricted to fine clastics of marl, shale, marly limestone and clay siltstone, without any interruptions of deposition evidenced by continuation of foraminiferal biozones. It is worthy to mention that the intraformational conglomerate beds were formed by submarine fans during cyclic pulses of tectonic activity (Karim 2004). The Lower Tertiary lithostratigraphic unit is represented by Kolosh Formation which overlies the Tanjero Formation marked by 3m thick of conglomerate bed at the base, Figs (2.1, 2.2 2.3), which is in the lithologic characteristic point of view, while the biostratigraphic investigation results in this criterion indicate the most probable new condition of conformable contact. Only 65m of the lower part of Kolosh Formation investigated.

The most

characteristic lithologic component of Kolosh Formation comprises alternation of dark grey shale, bluish green marl, organic rich shale, with thin layer of siltstone, occasionally intervened by thin marly limestone layers and fine weathered sandstone, and three ridges forming diagnostic pale grey yellowish slightly weathered conglomerate beds distributed vertically along the lower part of the Kolosh Formation, with the thickness of 3.0m, 10.0m and 13m, respectively Fig (2.3). The distribution of foraminiferal content was recorded from twenty

samples from sample 185 to sample 205 after the Tanjero-

Kolosh contact by 14m thickness, which indicates barrens from foraminifera, otherwise the reworked radiolarians frequently observed in all samples of Kolosh Formation with rare reworked planktonic foraminifera of Tanjero Formation.

25

Lithostratigraphy Chapter Two

Fig (2.2) Schematic geologic cross section of the studied section (Sirwan Valley)

26

Chapter Two

Lithostratigraphy

Fig (2.3) Image showing the Cretaceous/Tertiary contact between Tanjero- Kolosh Formations, Sirwan valley section and three ridge forming conglomerate beds at the lower part of Kolosh Formation

As mentioned above,

the activations of Laramide Orogeny along the

Arabian and Iranian plate margin and great deformation during later phases were still continuous for the period of lower Tertiary (Paleocene) time (Karim 2004). Moreover, the Kolosh Formation was overlained by Sinjar Formation gradually in the studied sections and marked by the regular change from fine clastic sediment of Kolosh Formation to non clastic limestone beds of Sinjar Formation.

Fig (2.4) Image showing a- conglomerate bed within upper part of Tanjero Formation, Sirwan Valley. b- Systematic sampling within friable greenish grey silty marlstone of Tanjero Formation, Sirwan Valley

27

upper part of

Chapter Two

Lithostratigraphy

2.3- Lithostratigraphy of Kato section The Kato section is located in Barzinja area, lithostratigraphically includes the upper part of Tanjero Formation and the lowermost part of Red Bed Series. The lower part of Tanjero Formation was previously studied by Sharbazheri (2007) in order to determine the age of the barren zone belonging to the 500m intraformational Kato Conglomerate which estimated by (1.23 m.y).

Only 98m of remaining part from Tanjero Formation

have been

studied in this section, with 12m from the lower part of Red Bed Series, the description and lithologic constituent and fieldwork investigation is inferred as shown in fig (2.5).

Fig (2.5) Lithostratigraphic column of Kato section showing conventional lithologic constituent. (Not to scale, the thickness shown on each portion of discussion)

28

Chapter Two

Lithostratigraphy

In the Kato section Tanjero Formation is underlained by Shiranish Formation gradationally, as a rule the contact is marked at the first appearance of gray sandstone or siltstone beds at the top of Shiranish Formation. The Red Bed Series overlies the Tanjero Formation conformably with a transitional contact. The studied Cretaceous part in Kato section is divided into three units. Unit one comprises 40m of thick bedded succession of fossiliferous limestone and interbedded calcareous shale, the limestone forming a ridge of massive pale grey, tough, recrystallized, occasionally dolomitized, and characterized by several bands rich in rudist, gastropods, pelecypods, brachiopods, and other macro and microfossils. This unit was mentioned previously as interfingering Aqra limestone by Al-Mehaidi (1975) and Lawa et. al., (1998). The Aqra unit is overlained by 35m of alternation of thin bedded pale grey limestone, grey shale, marl, friable sandstone and calcareous fossiliferous sandstone with claystone and detrital fossiliferous limestone of second unit (Tanjero Formation). The third unit represents a transitional interval between Tanjero Formation and Red Bed Series; it comprises 23m of alternation of thin bedded pale gray unfossiliferous limestone, olive green sandstone, red clay, friable reddish sandstone, siltstone, and detrital sandy reworked fossiliferous limestone at lower part, and dark organic rich shale bed of 20 cm thickness at the base of this interval. The lower part of the Red Bed comprises alternation of thick bedded, red claystone, friable red bed of sandstone and siltstone, with lenses of conglomerate. The contact placed on the line when the olive green colour of sediment is vanished and the appearance of completely red colour of sediment and conglomerate beds. 2.4 - Lithostratigraphy of Qishlagh section The exposed rocks of Qishlagh section appeared in Qala Cholan area figs (2.6, 2.7) which includes the upper part of Tanjero Formation and the lower most part of Red Bed Series, the lithologic nature comprises of 45m of flysch type of Tanjero clastic sediments with dark grey to olive green marl, shale, and bluish white calcareous marl and

thin layer of fossiliferous friable sandy

limestone intervened by streak of limestone at the base of this interval, this unit followed by 115m of interfingering Aqra Limestone which consists of

29

Chapter Two

Lithostratigraphy

medium to massive well bedded ridge forming recrystalized pale grey limestone and sandstone to silty limestone occasionally dolomitized rich in rudist and other macro and microfossils intercalated by with beds of shale and calcareous shale at the lower and upper part of this interval. The Aqra Limestone interval overlained by 67m of Tanjero Formation with alternation of bluish white marl, marly siltstone, thin bedded recrystalized fossiliferous limestone and weathered pale grey friable sandstone layer with some pebbly sandstone, clay ball and pillow structure. The third unit of this section is transitional zone 35m of clastic increasing upward consists of reddish weathered friable sandstone pebbly sandstone rich in reworked Loftusia, Omphalocyclus and Orbitoides fig(2.8a) at the base and followed by alternation grey shale, marl, friable detrital sandy limestone with purple to reddish claystone, and two conglomerate beds at the upper part of this interval, the conglomerate genetically comprises igneous, metamorphic and sedimentary origin of the pebbles and they extended laterally for limited short distances. This interval is characterized by shell debris of macrofossils such as solitary corals cyclolites, echinoids, dwarfed gastropods, and pelecypodes.The transition interval overlained by typical molasses of Red Bed Series in this section marked by 3m of friable brownish weathered conglomerate of metamorphic and sedimentary pebbles and complete reddish color (fig 2.8b) with reworked dwarfed fossils of corals, brachiopod, echinoid, gastropod and pelecypods, followed by red beds of claystone, sandstone, pebbly sandstone. It is important to mention that in addition to Kato and Qishlagh sections, other three preliminary outcrops were taken into consideration for sampling on Tanjero/ Red Bed contact like (Zardabee, Tagaran and Shakha Sur) sections in order to get high foraminiferal survivorship recovery, but it proved useless result from the foraminiferal recovery point of view.

30

Chapter Two

Lithostratigraphy

Fig (2.6) Lithostratigraphic column of Qishlagh section showing lithologic characters. (Not to scale, thicknesses shown opposite each unit)

31

Lithostratigraphy Chapter Two

Fig (2.7) Schematic geologic cross section of the Qishlagh locality in Qala Cholan area

32

Chapter Two

Lithostratigraphy

Fig (2. 8) (a) showing reworked fossils of large foram. of Loftusia, Omphalocyclus and Orbitoides in the transitional zone between Tanjero and Red Bed Series. (b) Showing the conglomerate bed of 3 m. thick, which contain reworked and dwarfed fossils at the base of Red Bed Series.

2.5 - Lithostratigraphy of Qulka section (Dokan area) The measured part of studied section covered 163m of upper part of Tanjero Formation and 54m from the lower part of Kolosh Formation. The detailed stratigraphic section is shown in Figs (2.9, 2.10, & 2.11) on both side of conglomerate bed, which formerly supposed to be the contact or key marker for Cretaceous/Tertiary boundary in the studied area by different authors. The well exposed rocks of studied section of Tanjero Formation at Qulka section represented by 63m of olive green to pale grey marl and bluish white calcareous marl intervened by streak of limestone veins and 3m dark grey to olive green soft, friable sandstone occasionally with siltstone, clay ball and pillow structure at the middle part of this interval. Followed by 59m of interfingering Aqra Limestone unit which consists of well bedded ridge forming recrystalized pale grey to yellowish limestone and sandstone to silty limestone occasionally dolomitized intercalated by thin beds of shale, calcareous shale, marl and sandstone beds through this interval. The Aqra Limestone interval in this section varies from its equivalent at Qishlagh and Kato sections, by very low frequency of macrofossils and short lateral distribution. The interfingering Aqra limestone unit overlained by 41m of Tanjero flysch type emergence again by alternation of olive green to dark grey calcareous shale, marl, thin bedded sandy limestone ,friable weathered sandstone, some pebbly sandstone bluish

33

Chapter Two

Lithostratigraphy

white marl, marly siltstone, thin bedded recrystalized limestone and with clay ball and pillow structure. In this section, it is significant to mention that there are 3 conglomerate beds at the upper part of this unit, with the thickness of (0.5 m., –1.5 m., – 0.2 m.) respectively, the conglomerate bed with thickness of 1.5m is previously concluded to be the marker bed of Cretaceous/Tertiary boundary at studied section by different authors, Fig (2.11a). Whereas the negate event is that the exact Cretaceous/Tertiary contact comes after 14m above the previously mentioned contact, without any obvious change in lithologic characters between Tanjero and Kolosh Formations at sample No. of K20

with the first appearance of Paleocene index foram. taxon .and

disappearance

of

the

Upper

Cretaceous

planktonic

foraminifera

of

Globotruncanids, Heterohelicids and Rugoglobigerinids. The contact line placed at the base of friable, soft and weathered fine sandstone and silty sandstone of (5m.) thickness with dilution of foraminiferal content by abrupt change and without more Cretaceous planktonic foraminifera, and the recognition of the major paleoclimatic transform during the late Maastrichtian has focused new attention on climate changes and their effect on marine organisms, this was reflected on foraminiferal survivorship in the studied area. The Kolosh Formation consists of 5m soft, friable, weathered sandstone, siltstone at the base, followed by dark grey shale, olive green marl and organic rich shale alternate with thin layer of siltstone, fine sandstone occasionally intervened thin marly limestone layers, and 2m of sandstone, pebbly sandstone and friable conglomerate Fig (2.11b) rich in reworked fossils of solitary corals, and small gastropods, pelecypod and brachiopods at the middle part of studied interval.

34

Lithostratigraphy Chapter Two

Fig (2.9) Schematic geologic cross section of the Qulka Section in Dokan area

35

Chapter Two

Lithostratigraphy

Fig (2.10) Lithostratigraphic column of Qulka section in Dokan area showing lithologic characters. (Not to scale, the thickness shown on each portion of discussion)

36

Chapter Two

Lithostratigraphy

Fig (2. 11) Photo image (a) Showing the conglomerate bed of 1.5 m. thick, which is previously concluded to be the contact line of Cretaceous/Tertiary boundary in Dokan area by different authors. (b) Soft, friable and weathered intraformational conglomerate and pebbly sandstone from the lower part of Kolosh Formation, rich in reworked fossils of corals. gastropods, pelecypods, echinoids and brachiopods.

2.6 - Lithostratigraphy of Gali section (Smaquli area) The well exposed rocks of measured part of studied Gali section, in Smaquli Mountain area covered 15m of the upper most part of Shiranish Formation, then 74m of the reddish to pale brown succession (ShiranishTanjero transition unit), 72m Tanjero Formation and 49m Kolosh Formation and 10m of the lower most part of Gercus Formation. The detailed lithostratigraphic section is shown in Figs (2.12, 2.13, and 2.14). In the studied section, the reddish to pale brown succession (ShiranishTanjero transition unit) consists of 74m alternation of thin well bedded fossiliferous reddish to pale brown clay, marl alternate with thin reddish shale and papery shale intercalated by thin pale brown some time to pale grey calcareous marl of 5cm to 10cm

thickness from the base to the top of this

interval. Throughout the studied area the reddish to pale brown succession (Shiranish-Tanjero transition unit) is underlained by Shiranish Formation. It is likely forming a normal stratigraphic boundary of conformable gradational contact from bluish white marl and marly limestone of Shiranish Formation to the first appearance of reddish to pale brown clay or marl beds of the transitional unit Fig (2.14).

37

Chapter Two

Lithostratigraphy

The upper contact of the red unit marked by starting of olive green and dark grey lithology with the first appearance of 20cm hard well bedded sandstone at the base of Tanjero Formation. The Tanjero Formation is represented by 72m and subdivided lithologically into three distinct units based on field observation Figs (2.12, 2.13) .These three units

are described briefly as follows from the

base to the top. - Unit A: 24m thick consists of olive green to dark grey shale alternate with grey marl and claystone , with three layers of hard, fine to medium grain sandstone at the base of 20cm thickness, middle part of 15cm thickness and the upper part of 10cm. thickness. - Unit B: 20m Consists of alternation of thin olive green beds of marl, dark grey organic shale, papery calcareous shale and thin limestone beds of 3-6 cm thickness, repeated in cyclic way every two meter in this interval and two limestone beds of 20cm thickness at the middle and the upper part of this unit. -Unit C: 28m Consists of dark organic papery shale and interlayred by thin beds of dark grey marl with oily impregnated friable soft and weathered pale brown three sandstone beds of 3m , 1.8m and 1m thickness at the upper part of this unit respectively. The overlying formation is Kolosh Formation of 49m thick consists mainly of dark grey organic rich shale alternate with marl and thin layer of siltstone and hard sandstone beds of 5cm to 10cm thickness, occasionally intercalated with thin marly limestone layers and 5 red claystone beds at the last 10 meters of the upper most part of Kolosh formation, which starts from 30 cm to 2m respectively.

38

Lithostratigraphy Chapter Two

Fig (2.12) Schematic geologic cross section of the Gali section in Smaquli area

39

Chapter Two

Lithostratigraphy

Fig (2.13) Lithostratigraphic column of Gali section in Smaquli area showing conventional lithologic constituent. (Not to scale, the thickness shown on each portion of discussion)

40

Chapter Two

Lithostratigraphy

Fig (2.14) Image showing the graditional contact (change in color) between Shiranish Formation and Reddish to pale brown succession

The Kolosh Formation overlained by the Gercus Formation, the contact is seems to be conformable by lithologic evidence of graditional change from dark grey organic rich sediments of Kolosh Formation to red, purple mudstone, sandstone, gritty marl, pebbly sandstone and conglomerates. The contact placed on the line where the sediment colour mainly began with red lithology. paleontologically there were no significant fossils recorded in this interval of lower most part of Gercus Formation in which six samples were studied for both foraminiferal and palynomorphs evidence.

41

Chapter Three

Biostratigraphy

CHAPTER THREE BIOSTRATIGRAPHY 3.1: Preface The comprehensive studies of planktonic foraminiferal biostratigraphy during the last five decades have proved to be more useful and more accurate way among the large number of micropaleontological branches, especially than benthonic foraminifera for regional, interregional and intercontinental correlation over the Cretaceous and Tertiary periods. A number of datum events and series of zonation for different regions have been proposed. ( e.g. Bolli 1966; Postuma 1971; Blow 1979; Caron 1985; Berggren & Miller 1988; Berggren et al.,1995; Berggren & Norris 1997; Keller 1988 , 2002, 2004; Keller et al 1995; Li & Keller 1998a,b; Abramovich et al., 2002; and Olsson et al., 2000). That is due to wide geographic distribution, their occurrence in the deeper marine environment, short geologic range as well as known morphological feature of the index species. 3.2: BIOSTRATIGRAPHY The samples which contain microfossils collected from the studied sections yielded rare, predominant to extremely abundant groups, bad to well preserved, according to different localities of studied sections. It is looked as the radiation stage of biotic evolution and high diversity of globotruncanids, rugoglobigerinids, globigerinids and heterohelicids planktonic foraminifera in Smaquli area (Gali section), high to moderate occurrence in Qulka section (Dokan area), moderate in Sirwan section and low occurrence, low diversity in both Kato and Qishlagh sections with moderate calcareous and agglutinated benthonic forams in general Table (3.1), (Figs.3.1 – 3.8). The foraminifera occurs continuously in the sedimentary succession of the all studied sections, generally shows incessant in sedimentary sequence without any interruptions, except of Sirwan section which is evidenced by three diluted intervals of foraminiferal survivorship in the studied upper part of Tanjero Formation, and the fourth one at the base of Paleocene just after the extinction catastrophe of organism at the uppermost part of Maastrichtian. The Upper Maastrichtian –Lower Paleocene interval in general attracted particular attention because of the foraminifera is relatively moderate

42

Chapter Three

Biostratigraphy

and is mostly well preserved, especially in Smaquli area which showed highest species diversity than other sections, at the contact of Cretaceous/Tertiary boundary Table 3.1 shows the statistics of identified planktonic and benthonic foraminiferal genera and species belonging to all studied localities were recorded from the studied sections (Figs. 3.1 - 3.8). The planktonic foraminifera of globotruncanids, heterohelicids, rugoglobigerinids, globigerinelloidids and globigerinids are the most prevalent planktonic forams in the studied area and they show the best indication of typical Tethyan fauna type. The comprehensive and motif plan in this work was deduced from the recently planktonic foraminiferal zonation and correlation for the sediments in tropical/subtropical regions, are widely based on that

of Berggren & Miller

(1988), Li and Keller (1998a & b), Liu and Olsson (1992), Berggren et al., (1995), Berggren & Norris (1997), Olsson et al., (2000), Arenillas et al., (2001), Elnady & Shahin (2001), Samir (2002), Abramovich et al., (2002), Keller (2002) and (2004), Abramovich and Keller (2003), Obaidalla (2005), Smit (2005), and Sharbazheri (2007), and used exclusively as the biostratigraphic framework in this study. Fortunately, this zonation proved satisfactory successful results essentially achieved in different localities of the world. Li and Keller (1998a) subdivided the Maastrichtian zonal scheme into eight Cretaceous Foraminiferal (CF) zones labeled (CF8) to (CF1) from the base to the top; this new biozonation provides accurate and significantly higher biostratigraphic resolution than previous zonal schemes. They calibrated their ranges to the paleomagnatic time scale in the DSDP Site 525A, and

on

Tunisian sections (Li and Keller 1998b), their age estimation were also correlated with magnetochron ages by Berggren et al (1995), and consequently the criteria for age estimation and determination rate of sedimentation can be proved easily through biostratigraphic correlation and datum event comparison. The genetic classification and identification

used in this study for the

Maastrichtian and Lower Paleocene sediments respectively follow that of Boli (1966), Postuma (1971), Kassab (1974), (1975d) and (1976), Masters (1977), Blow (1979), Jenkins and Murray (1981), Caron (1985), Loeblich and Tappan

43

Chapter Three

Biostratigraphy

(1988), Berggren & Miller (1988), Berggren et al., (1995), Georgescu (1996 and 2002),

BouDagher-Fadel et al (1997),

Berggren & Norris (1997), Olsson et

al., (2000), Elnady & Shahin (2001), Arenillas et al., (2001). The biostratigraphic correlation of the studied sections is based on planktonic foraminiferal zonations (Figs.3.12 - 3.13), which shows a comparison between the biostratigraphic zones established in this study with other equivalent of the commonly used planktonic zonal scheme

around the

Cretaceous/Tertiary boundary in and outside of Iraq. Table (3.1) Showing the number of planktonic and benthonic foraminiferal Genera and species identified in the studied sections from the Tanjero and Kolosh Formations

Location

Formation

Sirwan

Tanjero

Sirwan

Kolosh

Sirwan

Tanjero

Sirwan

Kolosh

Kato

Tanjero

Kato

Epoch

Species

No.

No.

Pl.

20

62

Pl.

11

18

Ben.

36

58

Ben.

32

52

Late Maas.

Pl.

14

Tanjero

Late Maas.

Ben.

Qishlagh

Tanjero

Late Maas.

Qishlagh

Tanjero

Dokan

Tanjero

Dokan

Kolosh

Dokan

Tanjero

Dokan

Kolosh

Gali

Gali

Trunsit.unit + Tanjero Kolosh Trunsit.unit

Gali

Gali

+ Tanjero Kolosh

Late Maas.

Foram type

Genera

Total

Total

Genera

Species

No.

No.

30

79

40

62

30

14

30

25

38

25

38

Pl.

13

26

13

26

Late Maas.

Ben.

28

42

28

42

Late Maas.

Pl.

18

53

Pl.

9

16

Ben.

36

52

Ben.

31

43

Pl.

23

82

Pl.

14

21

Ben.

38

66

Ben.

30

50

Early Paleocene Late Maas. Early Paleocene

Early Paleocene Late Maas. Early Paleocene Maas. Early Paleocene Maas. Early Paleocene

44

26

68

38

57

35

101

38

71

Chapter Three C L A

T 1

40

A

Biostratigraphy R

E T

T

A

E

N J E R O

80

C

E

O

U

S

M A A S T R I C H

100

110

T I

F O R M A T I O 120

130

140

T E R T I A R Y P A L E O C E NE

A N

N

150

K O LO S H 160

177 180 185 195

200

Fn. 210

PERIOD EPOCH--AGE

FORMATION SAMPLE

No

LITHOLOGY

1

63

110

CF 5

140

160

170

180

CF 4

190 CF 3

210

230

255

CF 2

CF 1

P. palpebra

P. hantk.

& P. intermedia -

R. fructicosa

P. hariaensis

-------------------

----- ------------------- ------------------------------------

--------------------------------------------------------------------- -----

--

----------------

------------------------- ---- --- -- -- --- - --- -- -- -- -

-------------- ------------- --- --- ------ ---- -- ------ --- --- -- - - - ----

-- ----------------------- --------- -------

------------------------------------------------------------------------------------------------------- ------------

------------ ----------------- ---------- ----- --------- ---- --------- ------- ------- ----- -----

--------------- ---------- ------------ ------- ---- -------- -------- --------------- ------

--------------------------------------------------

------- --------- ----- ---- ------ --- ----- ----------

---------------------------------- -- --- --

--

--

-

--------

-----------------------------

------

----

---

--

----------

----------------------------------

---

------

------------------

---

----------------------- ----------0-------- ----

-------------- -------------------------------------------------------- --------------------------

--- --

----------- ---

---------- ---------------- ---

------------- -------------

------------

------

--------

------

------------

------ ------

--- ---- --------- --- ------------ --- ------- ------- ---- ------

------------------- --- -- -- -- -------- ----- --- --- -------- ---------- ------------------------------------------ ------------------------- ---- -- -------------- ------ ------ ------ ---- ---------------- -- -- - - - ------------------------- -- -- -- -- --- - -------------------- --- -- -- -- - - -- -- --- - ---- --- ----- ----- -- - - ------------------------------------ ---- ------------------------- --- --- -- - -- - --- - ------------------------- ---- -- --- -- - -- - -------------------0

-------------------- --- --- - -- --- -- --- ------------------------------------ ---- - --- -- -------------------------------------- ---- --- ------ ---- ---- - ----------------- --- -- ---- - --- ------------------ --- -- --- --- -------------- ------ ------- ---------------------------

--------------- -

-------

---

- - ------

------------- ---- ---- ---- ---- ---- ---------------------------- -- -------------- --- -- --- --- ---- --- -- ------- ----- --- ---- -- -- --- ---- --- --- -- ------------------ ---- ---- -------------- -- ---- ---- -- --- - - -

----- ----------- --- ------- ------- ----- ------- ------------------------ ------ ------ ------ ----- ----- ------ ---------- ----- --- ---- ----- --- -------- -------------- ------------- ---- -------- -------- ------ ----- ---- -- ---- ----- ------ ---- ---0---------- ----------------------------------------------------------------------------

-----

---------------

------------------ -- --- - ---- -- --- --------- ---- --- ----- ---- ---- -- --- -- ------ ------ ----- ------ ---- -- - - - - ------- ----- --- ------ ---- ---- - ---- -- ----------------- -- ------- ------- -------

- ----------- --------------------- ---- --- - --

----

-------

0----------0

320

P 1a

P1b

THICKNESS m. CF.zones (Li&Killer,1998a) SUBZONE

pá Heterohelix navarroensis Loeblich = globulosa (Ehrenberg) = striata (Ehrenberg) = punctulats (Cushman) = pulchra (Brotzen) Laeviheterohelix glabrans (Cushman) Planoglobulina carseyae (Plummer) = acervulinoides (Egger) Rugoglobigerina rugosa (Plummer) = scotti (Bronnimann) = hexacamerata Bronnimann = macrocephala Bronnimann = pennyi Bronnimann = reicheli Bronnimann Gansserina gansseri (Reuss) = wiedenmayeri (Gandolfi) Globotruncanita stuarti (de Lapparent) = stuartiformis Dalbez = conica White = pettersi Gandolfi = angulata Tilev Globotruncana aegyptiaca Nakkady = orientalis El-Naggar = falsocalcarata Kerdany & Abdelsalam = falsostuarti Sigal = dupeublie Caron et al. = lapparenti Boli = arca (Cushman) = bulloides Vohgler = rosetta Carsey = insignis (Gandolfi) Contusotruncana contusa (Cushman) = fornicata Plummer = plicata White = walfischensis Todd Rugotruncana circumnodifer (Finlay) = subcircumnodifer (Gandolfi) Globotruncanella petaloidea (Gandolfi) = pschadae (Keller) Globigerinelloides volutes (White) = multispinata (Lalicker) = prairiehillensis Pessango = bolli Pessango Pseudotextularia elegans (Rzehak) = deformis (kikoine) = intermedia (De Klasz) Racemiguembelina fructicosa (Egger) = poweli Smith & Pessango Pseudoguembelina costulata (Cushman) = hariaensis Nederbragt = palpebra = excolata (Cushman) Hedbergella monmothensis (Olsson) = holmdelensis Olsson Abathomphalus mayaroensis (Bolli) Archaeoglobigerina carteri (Kassab) = blowi Pessango = cretacea (d Orbigny) Gublerina cuvillieri Kikoine Gumbelitria cretacea Cushman = dammula (Voloshina) Plummerita hantkeninoides (Bronnimann) -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------0------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Fig (3.1) Biostratigraphic range chart of planktonic foraminifera at Cretaceous/Tertiary boundary, Sirwan area, (Sirwan section)

45

Paleocene planktonic foraminifera

Parvularugoglobigerina alabaminsis (Liu & Olsson) Rectoguembelina cretacea Cushman Woodringina clytonensis (Loeblich & Tappan) = hornerstownensis (Olsson) Chiloguembelina morsei (Kline) = midwayensis (Cushman) Globoconusa daubjergensis (Bronnimann) Parasubbotina pseudobulloides (Plummer) Subbotina trivalis (Subbotina) = triloculinoides (Plummer) Globanomalina archeocompressa (blow) = planocompressa (Shutskaya) Eoglobigerina edita (Subbotina) = eobulloides Morozova = simplicissma Blow Praemurica taurica (Morozova) = pseudoinconstans (blow) Guembelitria cretacea Cushman

300

Cretaceous planktonic foraminifera

--------- ----- --- ----

280

P0

Chapter Three

E

T 1

T

A

M A

C A

E

O

A N J E R O

40

80

100

110

U

S

T E R T I A R Y P A L EOC E N E

S T R I C H T I A N

Kolosh

F O R M A T I O N

120

130

140

150

160

177 180 185 195

200 210

PERIOD EPOCH--AGE FORMATION SAMPLE No LITHOLOGY

1

63 110

CF 5

140

160

-- ---------

----------------

--------- ------

-----------------

--------

-----

--------------------------------- -----

180

----

--------------------- ----- ---------

---

----------------------- ---------- ------------------------------

--------------------------------

---

--------- -------- ------- ------- -------------------------------- --------

--------------------------- ---------------

------------------------------------------------

--

------------------

-----------

--------

---

--------

---------

---------------

-----------------

---------------

-------

--------

--

---------------

--------------------------------------------

------

------

-

- -------- ---- ------ - - -

--

--- - - -

- ---- - --

320

THICKNESS m.

P1b

CF.zones (Li&Killer,1998a)

&

P 1a

SUBZONE

Pá ----

-----

------ ---

------ --

------------

-----

--------

300

P0

-- --

---- - ------------ ------- ---- --- -- ----- -- ----- ------- - -------- - - - -- ------- - - ---

-------

- ------- ----- ------ ------------ - ---- - --- ------- -- ------- ------- -------- - ----- --- --- -- - - ---- -- -- ---- -- -- ----

---

----

-- -

-

--- ---------- - ------- --- ------- ---- ---------------- -- ---- ------- ---

---- ---

----------------------------------------- ----------------------------

---------

---------------

------------- --- -------- ---- --------------------- --------- ---------------------

255 280 CF 1

P. P. palpebra hant. ---- - ----- --------- -----------------

--------------

------------- ----

230

CF 2

------------------ ------------------

------

210

P. hariaensis

----

-------

190

CF 3

P. R. fructicosa intermedia. ---- --------------------------

170

CF 4

------------

---------------------------- -- -- -- --- --- - -- --

---------------------------------------------------------------------------------- -------------------------------------

-----

-------- -- ------ ---- - - ------ -

----- ------------------

- - - ---- - - - - - - - - -

-------------- -------- ----- ----- --

---- - - - - - - ---

--

---

-----

----- --------- -- --- --- - - ------------------- - - - - --------------------------------- -------- -- - - -------------------- ---- -- -- - - -- -- -- - -- -

-------------------- ----------- ----- ---------- ------------- --------------- --------- -- ----- -------- ------ ---- ------------------ --------------------------- - ---------------- ------

------ --- -------- ---- -------------- --- -------------

Bolivina incrassata Reuss Bolivinoides draco (Marsson) = delicates Cushman = miliaris Hittcrmar & Koch Astacolua sp. Rzehakina epigone (Rzehak) Cibicidoides dayi (White) = subcarinatos Cushman & Deaderick Osangularia navarrana (Cushman) Pullenia jarvisi Cushman Pyrulinoides sp. Neoflabellina rugosa (d Orbigny). = delicatissima (Plummer) Bulimina ovulum Reuss = midwayensis Praebulimina ovulum (Reuss) = aspera (Cushman &Parker) Uvigerina graciliformis Oolina apiculata Reuss Globorotalites michelinianus (d Orbigny) Ammodiscus cretaceous (Reuss) = preuvianus Marsonella oxycona (Reuss) Dorothia smokynensis Wall = retusa = rosetta Textularia astutia. Lalicker Spiroplectamina laevis. (Roemer) = spectabilis (Grzybowski) = dentata (Alth) = navicula (d Orbigny) Stilomella midwayensis. (Cushman &Todd) Nodosaria minor Hantken = affinis Reuss = cf. limbata d'Orbigny. Pseudonodosaria sp. = appressa Loeblich & Tappan Dentalina elegans d Orbogny = inornata (d Orbogny) Dentalinoides canulina Marie Noneonella insecta (Schwager) Pleurostomella paleocenica (Cushman) Paralabamina hillebrndti (Fisher) = laevis. (Beissel) Lenticulina muennsteri = navicula. (d Orbigny). = gunderbookaensis. Crespin Gavelinella micra. = danica Lagena hispida Reuss Fissurina? sp. Coryphostomata midwayensis. (Cushman) Gyroidina girardana (Reuss) Gaudryna pyramidata. Cushman = pulvina Gyroidinoides globosus. (Hagenow) = exsertus (Belford) Clavulinoides globulifera.Ten Dam &Sigal Conicospirilina sp. Rotalia spp Omphalocyclus macroporus (Lamark) Orbitoides medius (d Archiac) .

Fig (3.2) Biostratigraphic range chart of benthonic foraminifera at Cretaceous/Tertiary boundary, Sirwan area, (Sirwan section)

46

BENTHONIC

R

L A T E

FORAMINIFERA

C

Biostratigraphy

Chapter Three

Biostratigraphy

It is important to mention that the conventional index species Abathomphalus mayaroensis of Late Maastrichtian recorded very rare presentation and it is frequently absent in shallow continental shelf sections in all studied regions which may be due to paleoenvironment condition of the deeper and more basinal oceanic environment around low latitudes restrictions of the species Canudo et al., (1991), and in high latitudes disappear prior to K/T boundary (Blow, 1979). Therefore the A. mayaroensis Biozone is geographically and ecologically restricted. In such cases it is better to replace the A. mayaroensis Biozone by other biozones to avoid any ambiguous and vague situation about first appearance and last extinction datum event. (Figs 3.12 and 3.13) For the Paleogene subdivisions zonal scheme previously have been developed in two widely separated geographic areas: the eastern hemisphere (Caucasus mountains, e.g. Subbotina, 1953; Krasheninikov, 1969), and in the western hemisphere (Trinidad, e.g. Bolli, 1957 a, b in Samir, 2002). A discussion of all subsequent modifications of the original zonal scheme proposed by Bolli (1966), Blow (1979), Berggren & Miller (1988), Berggren et al., (1995), Berggren & Norris (1997), Olsson et al., (2000), represent the base of Paleocene zonal scheme for this study with other mentioned authors in Fig (3.13) which shows a comparison between this zonal scheme and earlier developed schemes. It is worthy to remember that the original, genetic radiation, phylogenetic reconstruction relationship and geologic ranges of Paleocene planktonic foraminifera were established by Liu & Olsson (1992), and Olsson et al., (2000), which form the base principles datum event of working group up on the( Atlas of Paleocene Planktonic Foraminifera) by Olsson et al.,(2000), figs (4.9 -4.11) 3.2.1- Biostratigraphy of the Upper Cretaceous Formations: According to identified planktonic foraminiferal assemblages within upper most part of Shiranish Formation, Reddish to pale brown succession, Tanjero Formation in Smaquli area in addition in upper part of Tanjero Formation in all other sections, eight biozones are recorded from the studied sections. The biostratigraphic zones of the studied area are described from the bottom to the top as below:

47

Chapter Three

Biostratigraphy

U P P E R

C R E T A C E O U S

LATE 10

20

25

EPOCH--AGE

30

40

45

SAMPLE NO.

LITHOLOGY 1

10

20

30

40

R. fructicosa

CF 3

60

70

80

Tanjero Formation

(Interfingering Aqra Lst.) CF4

50

90

Transitional unit

100

Red Bed

THICKNESS m.

FORMATION Planktonic foram.CF. zones(Li&Killer,1998a)

---------

P.hariaensis--------------------??

SUBZONE

Reworked Foram.

----------

----------

----

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------

foraminifera

-------

Bolivinoides draco (Marsson) Bolivina incrassata Reuss Cibicides dayi (White) = subcarinatos Coshman &Deaderick = excavate Brotzen Osangularia navarrana (Cushman) Pullenia jarvisi Cushman Pyrulinoides sp. Neoflabellina rugosa (d Orbigny). Bulimina ovulum Reuss Praebulimina quadrata = ovulum Oolina apiculata Reuss Ammodiscus cretaceous (Reuss) = pruvianus Nodosaria minor Hantken Marsonella oxycona (Reuss) Globorotalites michelinianus (d Orbigny) Globorotaloides sp. Spiroplectamina israelskyi Hillebrandt = dentata (Alth) = sp. Ammospaeroidina pseudoapiculata. Lenticulina muennsteri Paralabamina hillebrndti (Fisher) = laevis. (Beissel) Dorothia crassa = smokynensis Wall = retusa Gyroidijna girardana (Reuss) Conicospirilina sp. Omphalocyclus macroporus (Lamark) Orbitoides medius (d Archiac) = tissoti Shlumberger Loftusia elongata Brady = morgani Douville = persica Brady = minor Coxi

Fig (3.3) Biostratigraphic range chart of planktonic and benthonic foraminifera, Cretaceous /Tertiary boundary in Kato area (Kato section)

48

BENTHONIC FORAMINIFERA

of

------

Heterohelix navarroensis Loeblich = globulosa (Ehrenberg) = striata (Ehrenberg) Planoglobulina carseyae (Plummer) = brazoensis Martin Rugoglobigerina rugosa (Plummer) = scotti (Bronnimann) = hexacamerata Bronnimann = macrocephala Bronnimann Gansserina gansseri (Reuses) Globotruncanita stuarti (de Lapparent) = stuartiformis Dalbez = conica White Contusotruncana contusa (Cushman) = fornicata Plummer Globotruncana aegyptiaca Nakkady = arca (Cushman) = gagnebini Tilev = dupeublie Caron et al. = falsostuarti Sigal Abathomphalus mayaroensis (Bolli) Globotruncanella petaloidea (Gandolfi) Gumbelitria cretacea Cushman Pseudotextularia elegans (Rzehak) = deformis (kikoine) = intermedia De Klasz). Racemiguembelina fructicosa (Egger) Pseudoguembelina costulata (Cushman) = hariaensis Nederbragt Planoglobulina carseyae (Plummer)

PLANKTONIC FORAMINIFERA

No records

------------------------------------------------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- -------------------------------------------------------- -- ----------------------- --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------ - -- - --- - - - - ---------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

110

FORAMINIFERA

1

PERIOD

MAASTRICHTIAN

Chapter Three

Biostratigraphy PERIOD EPOCH--AGE FORMATION SAMPLE No LITHOLOGY

1

20 CF 5

P.intermed.

45

75

100

130

160

200

225

245

265

CF 4 -----R .fructicusa

-----

275

THICKNESS M. Planktonic foraminiferal. CF. zones (Li&Killer,1998a)

FORAMINIFERA

UPPER CRETACEOUS TERTIARY E-MAAS. L A T E M A A S T R I C H T I A N PALEOCENE Tanjero Interfinguring Aqra lst.. Tanjero Transitional Red Bed 1 5 11 18 23 29 33 38 41 46 47 50 52 53 58

SUBZONE

Rewor ked

----------------------------------------------------------------------------------------------------------------------

Bolivina incrassata Reuss Bolivinoides draco (Marsson) Cibicidoides dayi (White) = subcarinatos Cushman & Deaderick = excavate Brotzen Osangularia navarrana (Cushman) Pullenia jarvisi Cushman Pyrulinoides sp. Neoflabellina rugosa (d Orbigny). Bulimina ovulum Reuss Oolina apiculata Reuss Globorotalites michelinianus (d Orbigny) Ammodiscus cretaceous (Reuss) = pruvianus Marsonella oxycona (Reuss) Dorothia smokynensis Wall = retusa = rosetta Textularia astutia. Lalicker Spiroplectamina israelskyi Hillebrandt = laevis. (Roemer) = sp. Ammospaeroidina pseudoapiculata. Gyroidina girardana (Reuss) Gyroidinoides globosus. (Hagenow) Gaudryna pyramidata. Cushman Clavulinoides globulifera.Ten Dam &Sigal Conicospirilina sp. Rotalia sp. Valvulammina sp. Omphalocyclus macroporus (Lamark) Orbitoides medius (d Archiac) = tissoti Shlumberger = apiculatus Shlumberger Lepidorbitioides socialis (Leymerie) Siderolites sp. Loftusia elongata Brady = morgani Douville. = persica Brady = minor Coxi = coxi Henson = sp.

Fig (3.4) Biostratigraphic range chart of planktonic and benthonic foraminifera Cretaceous /Tertiary boundary, Qala Cholan area, (Qishlagh section)

49

BENTHONIC FORAMINIFERA

Foram inifera

of foraminifera

------------------------------------------------ ---------------------------------------------- --- ------------------------------------------------------------------------------------------------------------------- - - ---------------------------------------------------------------------------------------- ----------------------------------------- ------- --- ------------------------------- ---- --------------------- -------------------------------- -- -- --------------------------- ----------------------- ------------------- ----- --- --------- ------------------------ ---------- ------ ----- -------------- -------------------------- ------------------------------------------------ ---- -- ---------------------------- ------ - - - ------ ------ ----------------------------- ---------- ---- --- --- ------------------------------ ---- --- -- ----------------------------------------------- ----------------------------------------------------------------------------------------- ----------------------------- ------------ --------- ------------------------------------------------------- -- ----------------------- ---- --------------------------- -- ------------ ------------------------------------------------------------------------------------------------------------------------------------ --------------------------------------------------------- --------- --- ---------- ---------- -------------------------- -------- --------------------- ----------------------------------------------- - --------------------------------------------------------------- ----------------- -------------------------------------------------------------------------------- -------------------------------------------------------------- ---------------- --------------------------------------------------------------------------------------------------------------------------------------------------- -------------- ----------------------------------------------------------------------------------------------------------------------------------------------- --------------- ------------------------------------------------------------------------------------ ---------------------------------------------------------------------------------------------------------------------------------- --------------- ------------------------------------------------------------------------------------ ---------------------------------------------------------------------------------------------

Heterohelix navarroensis Loeblich = globulosa (Ehrenberg) = striata (Ehrenberg) = punctulats (Cushman) Planoglobulina carseyae (Plummer) = brazoensis Martin Rugoglobigerina rugosa (Plummer) = scotti (Bronnimann) = hexacamerata Bronnimann = macrocephala Bronnimann Gansserina gansseri (Reuss) Globotruncanita stuarti (de Lapparent) = stuartiformis Dalbez = conica White Globotruncana aegyptiaca Nakkady Contusotruncana contusa (Cushman) = fornicata Plummer = plicata White Globotruncana arca (Cushman) = gagnebini Tilev Globotruncanella petaloidea (Gandolfi) Globigerinelloides volutes (White) Pseudotextularia elegans (Rzehak) = deformis (kikoine) Racemiguembelina fructicosa (Egger) Pseudoguembelina costulata (Cushman)

PLANKTONIC FORAMINIFERA

no r e c o r d s

-------------------------------------------------------------------------------------------------------------------------- ------------------------ --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Chapter Three

Biostratigraphy

3.2.1.1- Globotruncana aegyptiaca Interval Zone (CF8) The Globotruncana aegyptiaca

(CF8)

zone was originally established and

described by Caron (1985).It is marked by the interval from the First Appearance Datum (FAD) of the nominate species to the First Appearance Datum (FAD) of Gansserina gansseri (Bolli). In the studied Gali section (Smaquli area) is defined by the first appearance FAD of index taxon (Globotruncana aegyptiaca Nakkady,)within the first sample taken from the upper part of Shiranish Formation at the base to the FAD of Gansserina gansseri (Bolli) at sample No.8 (plate. 2, Figs. 10-12) within reddish unit at the top. This zone covers frequent occurrence of the nominate species for 15m. interval in the upper part of the Shiranish Formation and 8m. from the lower part of reddish unit. This interval may not represent all interval of the biozone because the first sample of our section may not fit within the

FAD of the nominate species. This part of

Globotruncana aegyptiaca zone indicates early Maastrichtian for the cropped interval, and corresponds to that of Caron (1985), in tropical regions, Shahin (1992), in Egypt, it is equivalent to the same zone recorded in the south Atlantic DSPT Site 525A and Tunisia by Li and Keller (1998a,b), Abramovich et al., (2002), in Madagascar, Al-Mutwali Sharbazheri (2007).

and Al-Jubouri, (2005), north Iraq,

In the studied section a well diversified planktonic

foraminiferal species are recorded, e.g. Heterohelix navarroensis Loeblish, H. globulosa

(Ehrenberg), H. striata

nauttalli

(Voorwijk), H.

(Ehrenberg), H. reussi (Cushman),

punctulats

(Cushman), H. pulchra

Planoglobulina carseyae (Plummer), P. brazoensis rugosa

(Plummer), R. scotti

H.

(Brotzen),

Martin, Rogoglobigerina

(Bronnimann), R. hexcamerata

Bronnimann,

R. macrocephala Bronnimann, R. rotundata Bronnimann, R. milamensis Smith & Pessango, Gansserina wiedenmayeri (Gandolfi), Globotruncanita stuarti (de Lapparent), G. stuartiforms subcircumnodifer

Dalbez, G. conica White, Rugotruncana

( Gandolfi), R.

circumnodifer

( Finlay),

Globotruncana

aegyptica Nakkady, Glt. orientalis El-Naggar, (Carsey), Glt. falsostuarti Sigal, Glt. mariei Banner & Blow, Glt. arca (Cushman), Glt. gagnebini Tilev, Glt. bulloides insignis

Vohgler, Glt. linneiana (Gandolfi),

(d Orbigny), Glt. ventricosa

White, Glt.

Glt. dupeublie Caron et al., Glt lapparenti

50

Boli,

Chapter Three

Biostratigraphy

Contusotruncana fornicata Plummer, Globotruncanella petaloidea (Gandolfi), G. havanensis

(Voorwuk),

Pseudotextularia elegans

(Rzehak), P. Deforms

(Kekoine), P.intermedia (De Clasz), Pseudoguembelina costulata (Cushman), Globigerinelloides voluta (White), G. multispiinata (Lalicker), G. prairiehilleinsis Pessango, G. subcarinatus Bronnimann,

G. bolli Pessango, G. ultramicra

(Subbotina), Archaeoglobigerina cretacea

(d Orbigny), A. blowi Passango,

Gublerina cuvillieri Kikoine, Gumbelitria cretacea Cushman, G. Dammula (Voloshina) Hedbergella monmothensis (Olsson). Beside these planktonic foraminiferal assemblages moderate benthonic foraminiferal species were recorded (Fig. 4.8) e.g: Bolivina incrassata Reuss, Bolivinoides

draco

(Marsson), B.

miliaris Hitt & Koch, Cibicidoides dayi

(White), C. subcarinatos Cushman & Deaderick , C.

excavata Brotzen,

Osangularia navarrana (Cushman), Pullenia jarvisi Cushman, Pyrulinoides sp., Neoflabellina rugosa (d Orbigny), N. delicatissima (Plummer), Bulimina midwayensis, Uvigerina graciliformis, Oolina apiculata Reuss, Globorotalites michelinianus (d Orbigny), Ammodiscus cretaceous

(Reuss), A. pruvianus,

Marsonella oxycona (Reuss), Dorothia smokynensis Wall, D. retusa, D. rosetta, Textularia astutia. Lalicker, Spiroplectamina israelskyi Hillebrandt, S,

laevis.

(Roemer), Stensioina excolata (Cushman), Nodosaria minor Hantken, N. affinis Reuss, N. cf. limbata d'Orbigny, Pseudonodosaria sp., P. appressa Loeblich & Tappan, Dentalina elegans d Orbogny, D.inornata (d Orbogny), Dentalinoides canulina Marie, Noneonella insecta (Schwager), Pleurostomella subnodosa (Reuss), Paralabamina hillebrndti (Fisher), P. laevis. (Beissel), P. carseyae (Plummer),

Lenticulina

muennsteri,

L.

navicula.

(d

Orbigny),.

L.

gunderbookaensis. Crespin, Gavelinella danica , Lagena sp., Coryphostomata midwayensis. (Cushman), Gyroidina girardana (Reuss), Gaudryna pyramidata. Cushman, G. pulvina, Gyroidinoides globosus. (Hagenow), Clavulinoides globulifera.Ten Dam & Sigal, According to the all above mentioned authors, and Khalil and Mashally (2004), SW Sinai Egypt, (Elnady and Shahin 2001), N E Sinai, Martines (1989), South America, Abdel-Kareem & Samir (1995), Western Desert Egypt, Fars (1984), Egypt. Al-Mutwali (1996), (Al Mutwali and Al Jabouri, 2005), Iraq. The

51

Chapter Three

Biostratigraphy

age estimation of this biozone indicates Early Maastrichtian age. Li and Keller (1998a), recorded the time span of this biozone from 72.48Ma to 70.39 Ma estimated by absolute ages based on magnetochron ages. Premoli Silva et al., (1998), in their study of bio-isotope stratigraphy on eastern Mediterranean, and Maestas et al., (2003), recorded the Globotruncana aegyptiaca Zone from the Upper Campanian age. The Geologic Time Scale (GTS2004) by Gradstein et al., (2004), (Fig.3.12), accompanying International Stratigraphic Chart, issued under auspices of the International

Commission

on

Stratigraphy

(ICS),

shows

the

current

chronostratigraphic scale and ages with estimation of uncertainty for all stage boundaries, placed this span of time 72.48Ma to 70.39 Ma under the upper limit of Campanian. The chronostratigrapic duration age was estimated based on different techniques and methods to construct a GTS (2004) placed the Maastrichtian stage between time intervals of (70.6 -+ 0.6 Ma) at the base, and to (65.5 +- 0.3 Ma) at the top. 3.2.1.2- Gansserina gansseri Interval Zone (CF7) The Gansserina gansseri (CF7) zone was introduced by Bronnimann (1952), as Globotruncana gansseri Zone for the first time and placed into the Early Maastrichtian of Trinidad in (Samir, 2002). In the studied section, this Biozone is defined by the interval

between the FAD of nominate species Gansserina

gansseri (Bolli) and the FAD of Contusotruncana contusa (Cushman), (plate. 2, Figs. 1-3) at Gali section (Smaquli area), lower part of reddish to pale brown succession. This zone covered abundant occurrence of the nominate species for (20m.). Most of the workers in the zonal scheme placed Gansserina gansseri zone informally at the middle- lower Maastrichtian (Li and Keller, 1998a), and (Abramovich et al., 2002) in DSDP Site 525A. (Fars, 1984), (Abdel-Kareem & Samir, 1995), (Luning et al., 1998), (Elnady and Shahin, 2001), and (Samir, 2002), Egypt. (Kassab 1974, 1975c, 1975d & 1976b), (Abawi et al., 1982) (Abdel-Kareem, 1986a, b), (Kassab et al., 1986), (Al-Mutwali, 1996), (Al-Mutwali and Al-Jubouri, 2005),

and (Sharbazheri 2007), Iraq.

(Chacon and Martin-

Chivelet, 2005), Spain. (Premoli Silva et al., 1998), Italy. (Changkham and Jafar, 1998), India. While (Khalil and Mashally, 2004), in Egypt, and Caron (1985), in

52

Chapter Three

Biostratigraphy

general this zone has been recorded from Middle Maastrichtian. Obaidalla (2005), Egypt, placed this zone on the base of Late Maastrichtian. Maestas et al., (2003), from California Mexico placed this Zone at upper Campanian- Lower Maastrichtian. Note: it is worthy to pay attention to the first appearance of A. mayaroensis which occurs 25m. above the first appearance of G. gansseri, therefore the A. mayaroensis not used as a zonal marker because of many studies have shown that both (FA) and (LA) of this species are diachronous. In addition, this taxon is rarely present in continental shelf due to its deeper environmental habitat. (Li and Keller, 1998), (Huber, 1992), (Nederbragt, 1991). In addition to the index species, the planktonic assemblages of this zone include: Heterohelix

navarroensis

Loeblish, H. globulosa

(Ehrenberg), H reussi (Cushman), (Cushman),H. pulchra brazoensis Bronnimann,

(Brotzen),

H. nauttalli

(Voorwijk), H. punctulats

Planoglobulina carseyae

Martin, Rogoglobigerina rugosa R. macrocephala

(Ehrenberg), H. striata

(Plummer),

(Plummer),

P.

R. hexcamerata

Bronnimann, R. milamensis

Smith&Pessa,

Gansserina gansseri (Reuss), G. wiedenmayeri (Gandolfi), Globotruncanita stuarti

(de Lapparent),Globotruncanita stuartiforms

conica

White,

Globotruncanita

pettersi

Dalbez, Globotruncanita Gandulfi,

Rugotruncana

subcircumnodifer ( Gandolfi) R. circumnodifer ( Gandolfi), ,Globotruncana aegyptica

Nakkady,

Glt. orientalis

falsostuarti

Sigal, Glt. mariei

Elnaggar, Glt. rosetta

Banner & Blow,

Glt. arca

(Carsey), Glt.

(Cushman),

Glt.

gagnebini Tilev, ,Glt. bulloides Vohgler, Glt. linneina (d Orbigny),Glt. ventricosa

White, Glt. insignis (Gandolfi),

Caron et al., Glt. lapparenti

Glt.

Boli, Contusotruncana fornicata

dupeublei (Plummer)

,Abathomphalus mayaroensis (Bolli), Abathomphalus intermedius Globotruncanella

petaloidea

(Gandolfi),

(Voorwuk), Pseudotextularia elegans

Globotruncanella

(Boli),

havanensis

(Rzehak),Pseudotextularia deformis

(kikoine), P. intermedia (De Clasz), Pseudoguembelina costulata (Cushman), Gublerina cuvillieri

kikoine, Globigerinelloides voluta (White), G. multispiinata

(Lalicker), G. prairiehilleinsis Pessagno, G. subcarinatus Bronnimann, G. bolli

53

Chapter Three

Biostratigraphy

Pessango, G. ultramicra (Subbotina),, Archaeoglobigerina cretacea

(d

Orbigny), A. blowi Passango, Gublerina cuvillieri Kikoine, Gumbelitria cretacea Cushman, G. dammula (Voloshina) Hedbergella monmothensis

(Olsson). In

addition to these planktonic foraminiferal assemblages moderate benthonic foraminiferal Species were recorded (Fig 3.8). The age estimation of this biozone by (Li and Keller 1998a), records the time span of 70.39Ma to 69.56 Ma 830 Ky estimating absolute ages based on magnetochron ages with 41ky/m, moderate rate of deposition (Fig.4.11) Age: early Maastrichtian. 3.2.1.3- Contusotruncana contusa Interval Zone (CF6) Dalbeiez (1955) proposed the Globotruncana contusa Zone for the Upper Maastrichtian of Tunisia. Biostratigraphic interval of this zone is defined by the FAD of Contusotruncana contusa (Cushman) at the base and last appearance (LAD) of Globotruncana linneniana (d Orbigny) at the top. (plate. 1, Figs. 6-8). In the present study

at Gali section, this Zone

(CF6) covers an interval of 25

meters. This Zone yielded an assemblage of planktonic foraminifera which totally resembles that of the underlying Gansserina gansseri Zone (CF7), except for

the

first appearance

Contusotruncana plicata

of

Contusotruncana

contusa

(Cushman),

White, C. patelliformis (Gandolfi), , Globotruncana

rosetta Carsey, Racemiguemelina powli Smith and Pessango, Hedbergella holmdelensis Olsson,

Rugoglobigerina scoti

(Bronnimann), and mark the

termination of Guembelitria dammula (Voloshina), Globotruncana gagnebini Tilev, Globotruncana bulloides Vohgler, Glt.

insignis (Gandolfi), Glt. mariei

Banner

Globotruncanella

&

Blow,

Glt.

ventricosa

(Voorwuk),Globigerinilloides

boli

White,

Passango,

havanensis

Archaeoglobigerina

blowi

Pessango, A. cretacea (d Orbigny). As defined above, the present Biozone (CF6) is correlatable with the Zone recorded by (Li and Keller, 1998a and b),and (Abramovich et al., 2002), at DSDP Site 525A. (Samir 2002), from Egypt. (Sharbazheri 2007), NE Iraq. To the lower part of Rosita contusa Zone recorded in the Northeast of Iraq by (Abawi et al., 1982 and Abdel-Kareem 1986), in Italy (Premoli Silva and Sliter 1995, 1999) (Premoli Silva et al 1998), (Abdel-Kareem & Samir 1995) Egypt,

54

Chapter Three

Biostratigraphy

and it is correlated with the middle part of Gansserina gansseri Zone of (AlMutwali 1996), Hammoudi 2000 and Al-Mutwali and Al-Jubouri 2005), Iraq. (Chacon and Martin-Chivelet 2005) Spain and other different localities of the world (Robaszynski et al.,1984) and (Caron, 1985) general, (Maestas et al 2003), USA. (Obaidalla 2005), Egypt. (Figs. 4.12 - 4. 13). Magnetochron records of this biozone by (Li and Keller 1998a show that the age estimation of the time span from (69.56 Ma) to (69.06Ma) 500 Ky/25meters estimating absolute ages based on

magnetochron ages with 20 Ky/meter

which indicate higher rate of deposition than (CF7) (Fig. 5.11) Age: Late early Maastrichtian. 3.2.1.4- Pseudotextularia intermedia Interval Zone (CF5) The Pseudotextularia intermedia Zone Globotruncana

linneiana

(d

Orbigny)

(CF5) is defined by the LAD of the at

the

base

and

the

FAD

of

Racemiguembelina fructicosa (Egger) at the top (plate 2, Fig 9). Nederbragt (1990), originally introduced this Biozone as the interval from the FAD of Planoglobulina acervulinoides at the base and the FAD Racemiguembelina fructicosa at the top. In the present study, the definition is constrained according to Li and Keller (1998 a and b).The interval of this Zone is 19 meters thick in Gali section. The

recorded

planktonic

foraminiferal

assemblages

in

this

biozone

represented by well diversified forms of Heterohelix navarroensis Loeblish, H. globulosa (Ehrenberg), H. striata (Ehrenberg), H. punctulats

(Cushman), H.

nauttalli (Voorwijk), H. reussi (Cyshman), H. pulchra (Brotzen), Planoglobulina carseyae (Plummer), P. brazoensis Martin, P. acervulinoides (Egger), Rugoglobigerina rugosa

(Plummer), R.

hexacamerata Bronnimann , R.

scotti

macrocephala Bronnimann, R.

Smith & Pessango, Gansserina gansseri

(Reuss), G.

(Gandolfi), Globotruncanita stuarti (de Lapparent), G. G.

conica White, G.

(Bronnimann),

pettersi Gandolfi, G.

stuartiformis Dalbez,

angulata Tilev, Globotruncana

dupeublie Caron et al., Glt. lapparenti Boli, Glt. arca (Cushman), C.

55

milamensis wiedenmayeri

aegyptiaca Nakkady, Glt.orientalis El-Naggar, Glt. falsostuarti

Carsey, Contusotruncana contusa

R.

Sigal, Glt.

(Cushman), Glt. rosetta plicata White, C.

Chapter Three

Biostratigraphy

Patelliformis

(Gandolfi),

Rugotruncana

circumnodifer

(Gandolfi),

R.

subcircumnodifer (Gandolfi), Globotruncanella petaloidea (Gandolfi), C R E T A C E O U S L A T E - M A A ST R I C H T I A N

Tanjero T48

T40

Interfingering (Aqra Lst) T35

T28

T22

T14

T E R T I A R Y P A L E O C E NE

Tanjero T10

Kolosh

T1 K1 K7 K11 K16

K20 K30 K45 K55 K65

PERIOD EPOCH--AGE FORMATION

SAMPLE

No

LITHOLOGY

1

30 CF 5

60

90 CF4

110

125 CF3

135

140

145 CF2

150 160 170 CF1

0

P.inter.

R. fructicosa

P. hariaensis

P. palpebra

P.hant.

THICKNESS m.

P1b

CF.zones (Li&Killer,1998a)

P 1a

á

SUBZONE

Heterohelix navarroensis Loeblish = globulosa (Ehrenberg) = striata (Ehrenberg) = punctulats (Cushman) Planoglobulina carseyae (Plummer) = brazoensis Martin = acervulinoides (Egger) Rugoglobigerina rugosa (Plummer) = scotti (Bronnimann) = hexacamerata Bronnimann = macrocephala Bronnimann = pennyi Bronnimann = rotundata Bronnimann Gansserina gansseri (Reuss) Globotruncanita stuarti (de Lapparent) = stuartiformis Dalbez = conica White Globotruncana aegyptiaca Nakkady = falsocalcarata Kerdany & Abdelsalam = falsostuarti Sigal = dupeublie Caron et al. = gagnebini Tilev = lapparenti Boli = arca (Cushman) = bulloides Vohgler Contusotruncana contusa (Cushman) = fornicata Plummer = plicata White Rugotruncana circumnodifer (Finlay) = subcircumnodifer (Gandolfi) Globotruncanella petaloidea (Gandolfi) = havanensis (Voorwuk) Globigerinelloides volutes (White) = multispinata (Lalicker) = subcarinata Bronnimann = prairiehillensis Pessango = bolli Pessango Pseudotextularia elegans (Rzehak) = deformis (kikoine) = intermedia (De Klasz) Racemiguembelina fructicosa (Egger) = poweli Smith & Pessango Pseudoguembelina costulata (Cushman) = hariaensis Nederbragt = palpebra = excolata (Coshman) Hedbergella monmothensis (Olsson) = holmdelensis Olsson Abathomphalus mayaroensis (Bolli) Gublerina cuvillieri Kikoine Gumbelitria cretacea Cushman = dammula (Voloshina) Plumeri. hantkeninoides (Bronnimann) ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Fig (3.5) Biostratigraphic range chart of planktonic foraminifera at Cretaceous/Tertiary boundary in Dokan area (Qulka section)

56

Paleocene planktonic foraminifera

Woodringina clytonensis (Loeblich & Tappan) = hornerstownensis (Olsson) Chiloguembelina Morse (Kline) = midwayensis (Cushman) Globoconusa daubjergensis (Bronnimann) Parasubbotina pseudobulloides (Plummer) Subbotina trivalis (Subbotina) = triloculinoides (Plummer) Globanomalina archeocompressa (blow) = planocompressa (Shutskaya) Eoglobigerina edita (Subbotina) = eobulloides Morozova = simplicissma Blow Praemurica taurica (Morozova) = pseudoinconstans (blow) Guembelitria cretacea Cushman

217

Cretaceous planktonic foraminifera

------------------------------ ------------------------------------------------ -------------------------------------------------------------------------------------------------- --------------------------------------------------------- ---------------------------------- ------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------- ------------------------ ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ----------------------------------------------------------------------------------- ----------------------------- --------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------0 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ---------------- ------ ------ -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ----------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- --- -- -- ------- ----- -------- ---- -- ---------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------- --------------------------- ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ---------- ------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ----- ----- ---0------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ---- --- --- --------------------------------- ---------------------- ------- ------- ----------------------------------------------------0------------ --------------- ------------------------------------- -- --- ---------- -------- --- ------- ----- ----------------------------------------------------------------------------------------------- -------- ------------ ---------- -------------- -------------------------------------------------------------------------------- ---------------- ------------------------------------------------------------------------------------------------------- --------- ------- ----------------------------------------------------------------------- --------------- -------- ---------------- --------- -------- -------------- ----------------------------------- --- -0-------------0

200

P

Chapter Three

Biostratigraphy

Tanjero T48

T40

Interfin. (Aqra Lst) T35

T28

T22

T E R T I A R Y P A L EOC E N E

Tanjero

T14

T10

Kolosh

T1 K1 K7 K11 K16

K20 K30 K45 K55 K65

PERIOD EPOCH--AGE FORMATION SAMPLE No LITHOLOGY

1

30

60

CF 5

90

110

125 135

CF4

140

CF3

145 150 CF2

160 170 P 1a

0

P.inter.

R. fructicosa

---------------------- ---

P. palpebra

P. hariaensis

------------------

------

P.hant.

---------------------------------------------------------- ------------------------- ---- ----

------

----

------ --

--- -

----------

------

----

--------

---

--- --

----

THICKNESS m.

P1b

CF.zones (Li&Killer,1998a)

SUBZONE

--

---

---

- ---- ------ -- ---- --- ----- ---------- ------------ ---- --- -- -

---

--

---

--- --- -------- -- -- ---- ----- -- -- -- - ----- ----- -- -- -- --- ----- ----

-

---

------ ----------------------- --------------------- ------------------ ---------- ---- --------- -- ----------- - ---- ------------- ---- ----------- --------------------------- --------------------- ------------- ------------------- ---------- --------- ------ ---- ---- ---------------- --- ---------------- ------------- ------ ----------------------------------------------------- ---- ---------- --------------------------- -- ------------------------------------------------- -------- -- ------- --------- ------------------ - -- ---------------------- -- ------------- ---------- ----------------------------------------- ---- -------------------- - ------- ------------------------------------- ---------------- ------------------- ---------------------- ----------------- ---- - ---------------------------- -------- ------- ------------------------------------ - ------ -------------- ---------------------------------- ------------------------------------- ---- -- - -- -- -- ----- -- -- ------- ---------------------------- ------- ---------- --------------------- - -------------------------------- --- -- ---- -- ------------------- ------------------ -- -- -------- ----------------------- -- ------------------------------ --------------------------- ---- ---------- ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

----

---

------------------ ------- --- --- ----------------- ------- --------- --- -------- ----------- -------- --------------------------- --------- ---- ------- ----------------------------- -------- -- -- ---

217

á

-

-----

200

P

CF1

------

----

---- --

---

---

-------

-------

--

-- -- -- -- - ------ ------- -- --

-

-- -- -

---------------- --------- ----------------------- --- --- ----- ----- --- ---- --- ----- --- ----- ------- -------- ---------- ---- -- -------- --- --- -- --- -- -- ------ ----- ------------- --- - ------- - -- --- - ----- ----

-- ------- - -------- ---- ---------- ------

Bolivina incrassata Reuss Bolivinoides draco (Marsson) = delicates Cushman = sp. Rzehakina epigone (Rzehak) Cibicidoides dayi (White) = subcarinatos Cushman & Deaderick Osangularia navarrana (Cushman) Pullenia jarvisi Cushman Neoflabellina rugosa (d Orbigny). = delicatissima (Plummer) Ellipsonodosaria plumerae (Cushman) Bulimina ovulum Reuss = midwayensis Praebulimina ovulum Uvigerina graciliformis Oolina apiculata Reuss Globorotalites michelinianus (d Orbigny) Ammodiscus cretaceous (Reuss) = pruvianus Marsonella oxycona (Reuss) Dorothia smokynensis Wall = retusa = rosetta Textularia astutia. Lalicker Spiroplectamina israelskyi Hillebrandt = laevis. (Roemer) = dentata (Alth) Nodosaria minor Hantken = cf. limbata d'Orbigny. Pseudonodosaria sp. = appressa Loeblich & Tappan Dentalina elegans d Orbogny = inornata (d Orbogny) Dentalinoides canulina Marie Noneonella insecta (Schwager) Pleurostomella subnodosa (Reuss) Paralabamina hillebrndti (Fisher) = laevis. (Beissel) = carseyae (Plummer) Lenticulina muennsteri = navicula. (d Orbigny). Gavelinella micra. = danica Lagena sp. Coryphostomata midwayensis. (Cushman) Gyroidina girardana (Reuss) Gaudryna pyramidata. Cushman Gyroidinoides globosus. (Hagenow) Clavulinoides globulifera.Ten Dam &Sigal Rotalia spp. Valvulammina sp. Omphalocyclus macroporus (Lamar) Orbitoides medius (d Archiac) = tissoti Shlumberger Loftusia morgani Douville = minor Coxi

Fig (3.6) Biostratigraphic range chart of benthonic foraminifera at Cretaceous/Tertiary boundary in Dokan area (Qulka section)

57

Benthonic foraminifera

C R E T A C E O U S L A T E M A A ST R I C H T I A N

Chapter Three C LATE CAMP.

R

Biostratigraphy E

T

A

C

E

O

U

S

EARLY Y MAASTRICHTIAN -----

Shiranish Shiranish/Tanjero transition unit 1 3 5 10 15 20 25 30 35

LA TE

T E R T I A R Y P A L E O C E N E

MAASTRICHTIAN

Tanjero 40 45 50

55

Kolosh

60 70 80 90 100 110 115 120

PERIOD EPOCH--AGE FORMATION

130

140

146

SAMPLE

No

LITHOLOGY

1

15

30

50

CF 8

CF 7

CF 6

Glt. aegyptiaca.

G. gansseri

C. contusa

70

89 CF 5

P. interm.

100 CF 4

R. fructicosa

113 CF 3 P. hariaensis

143

171

CF 2

CF 1

P

P. palpebra

P. hantk.

0



230 P 1a

58

P1b

Heterohelix navarroensis Loeblish = globulosa (Ehrenberg) = striata (Ehrenberg) = punctulats (Cushman) = nauttalli (Voorwijk) = reussi (Cyshman) = pulchra (Brotzen) Laeviheterohelix glabrans (Coshman) Planoglobulina carseyae (Plummer) = brazoensis Martin = acervulinoides (Egger) Rugoglobigerina rugosa (Plummer) = scotti (Bronnimann) = hexacamerata Bronnimann = macrocephala Bronnimann = pennyi Bronnimann = rotundata Bronnimann = milamensis Smith & Pessango = reicheli Bronnimann Gansserina gansseri (Reuss) = wiedenmayeri (Gandolfi) Globotruncanita stuarti (de Lapparent) = stuartiformis Dalbez = conica White = pettersi Gandolfi = angulata Tilev Globotruncana aegyptiaca Nakkady = linneina (d Orgigny) = orientalis El-Naggar = falsocalcarata Kerdany & Abdelsalam = falsostuarti Sigal = dupeublie Caron et al. = gagnebini Tilev = lapparenti Boli = arca (Cushman) = bulloides Vohgler = rosetta Carsey = insignis (Gandolfi) = mariei Banner & Blow = ventricosa White = sp. Contusotruncana contusa (Cushman) = fornicata Plummer = plicata White = Patelliformis (Gandolfi) = walfischensis Todd = sp. (nov. sp?) Rugotruncana circumnodifer (Gandolfi) = subcircumnodifer (Gandolfi) Globotruncanella petaloidea (Gandolfi) = havanensis (Voorwuk) = pschadae (Keller) = sp. Globigerinelloides volutes (White) = multispinata (Lalicker) = subcarinatus Bronnimann = prairiehillensis Pessango = bolli Pessango = ultramicra (Subbotina) Pseudotextularia elegans (Rzehak) = deformis (kikoine) = intermedia (De Klasz) Racemiguembelina fructicosa (Egger) = poweli Smith & Pessango Pseudoguembelina costulata (Cushman) = hariaensis Nederbragt = palpebra = excolata (Cushman) Hedbergella monmothensis (Olsson) = holmdelensis Olsson Abathomphalus mayaroensis (Bolli) = intermedius (Bolli) Kuglerina rotundata (Bronnimann) Costellagerina cf. bulbosa Belford Archaeoglobigerina carteri (Kassab) = blowi Pessango = cretacea (d Orbigny) Gublerina cuvillieri Kikoine Gumbelitria cretacea Cushman = dammula (Voloshina) Trinitella scotti Bronnimann Plummerita hantkeninoides (Bronnimann)

Fig (3.7) – Part 1: Biostratigraphic range chart of planktonic foraminifera at Cretaceous/Tertiary boundary in Smaquli area (Gali section)

THICKNESS m. CF.zones (Li&Killer,1998a) SUBZONE

Cretaceous planktonic foraminifera

------------------------------------------------- -------------- ---------------------------------- --------- ---- --------------------------- ------------- ----------- --- --------------- -------- ---- ---------------------------- ----- -- ---- --- --- --- --- ---------------------------------- -- ------- ------ ----- ---------- ----- ----------- -------- ---- -- ---- ---- ---- ---------- -- ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- -------------------------------------------------------------- ----------------------------------------------------------------------------------------------------------------------------------------- ------------- ------------------------------------------------------ --------------------- -------------- --------------------------------------- ------ ------ ------ ------------- -------- --------- ---- -- ------ ---- --- -------- ------------------- -------------- --------- --- -- -- -------------------------- ------------------ ----------- -- -- -- - - - - ------------------------------------------------------------------------------------------------------------------------------------------------ -- -- --- --- - ------------- --------------------------------------------------- --- -- -- -- - - -- -------------------- --------------- --------- --------------- ----------------------- --- ----- ---- -- -- -------------------------------- ---------- ---------- ------------ --------- --------------------------------------------------------------------------------------------------------- --- -------------------------- ---- -- -- -- -- --------------------------------------------------------------------------------------------------------------------- --- -- -- -- -0----------------------------------------------------------------------------------------------------------------0 --------------------------------------------------------------------------------------------------------------------------------- ------------ ----- ----------------- -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------0 ------------------------------------------------------------------------------------------------------------------------------------ ---------------- ------ ------ ------------------------------------------ --- -- ---- - ----------------------------------------------------------------------------------------------------------------------------- --- -- --- --- ------------------------------------------------------------------------------------ - ----------------------------------------------------------- ------ -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------0------------------------------------------------------------------------------------------- --- -- ------------------------------- --- - -- -- --- -------- ---- -- -------------------------- ---- ---- ---- ---- -- -- --- ------- ------ -------------------- ------- -------- --------------------------------- -- --- ---------------------------------------------------------------------------------------------- ----- -------------------------------------------------------------------------------------------------------------------- --------------------------- ------------------------------------------------------------------------------------------------------------------------------- ----- --- --- -- ---- -- -- -- ------------------------------------------------------------------------ ----------------------------------------------------------------------- -- ---- ---- -- ------ ------------------------------------------------------------------------------ --------------------------------------------------------------------------------------------------- ---------------------------------------- ------------------------------------------------------ ---------- ------------------- --- --- ------- ------------------------------------------------------------------- ------------------------------------------------------ ---- ----------- --- -------- ---------- --------- --------- ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ----------------- ----- ----- ---0------------------------------------- ------ --- ---- --- --- -- ------------------- ---- --- --- ---------- ------- -----------------------------------------------------------------0-------------------------------- - -- --------------------------------------------------------------------------- ----------------------------------------------------------------- ---------------------- ---------------- ------------------------------------------------------------------------------- --------- ------- ------- ------------------------------------------------------------------------- --------- ------------------------------------------------------------------------------------- --------- - - ------------------------------ - - - - --------------------- --------------- -------- --------- ----------------------------------------------------------------------- ----- ---- ---------- -------------------------------------------------------------------------------- -------- ------------------------ -------- -------- -------- ----------- ---- ---------------- ----- --------- --------------- ---- ------ -------- -------------- -------------------------- - - -- ------------ --- ----------------------- --------------------------- --0--------0

200

Chapter Three

C LATE CAMP.

R

Biostratigraphy

E

T

A

C

E

O

U

S

EARL Y MAASTRICHTIAN -----

Shiranish Shiranish/Tanjero transition unit 1 3 5 10 15 20 25 30 35

LA TE

T E R T I A R Y P A L E O C E N E

MAASTRICHTIAN

Tanjero 40 45 50

55

Kolosh

60 70 80 90 100 110 115 120

PERIOD EPOCH--AGE FORMATION

130

140

146

SAMPLE

No

LITHOLOGY

1

15

30

50

70

CF 8

CF 7

CF 6

Glt. aegyptiaca.

G. gansseri

C. contusa

89

100

CF 5 P. interm.

CF 4 R. fructicosa

113 CF 3 P. hariaensis

143

171

CF 2

CF 1

P

P. palpebra

P. hantk.

0

230 P 1a



P1b

THICKNESS m. CF.zones (Li&Killer,1998a) SUBZONE

-------------------------------------------------------------------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------------------------------------------- --------- -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Fig (3.7) Part 2:- Biostratigraphic range chart of planktonic foraminifera at Cretaceous/Tertiary boundary in Smaquli area (Gali section) Continued.

Globigerinelloides volutes (White), G.

subcarinatus

Bronnimann, G.

prairiehillensis Pessango, Pseudotextularia elegans (Rzehak), P.

deformis

(kikoine), P.

Smith &

intermedia

(De Klasz), Racemiguembelina poweli

Pessango, Pseudoguembelina costulata (Cushman), P. Hedbergella monmothensis (Olsson), P. Abathomphalus intermedius

excolata (Cushman),

holmdelensis

Olsson,

(Bolli), Archaeoglobigerina carteri (Kassab),

Gublerina cuvillieri Kikoine, Gumbelitria cretacea Cushman. Due to high similarities of foraminiferal occurance, the present Zone (CF5) is equvalent to that of Li and Keller (1998a,b), (Abramovich et al., 2002), (Samir 2002) , it is most likely equivalent

to the upper part of Gansserina gansseri

Zone recorded in the North and Northeast of Iraq and different regions of the world (Al-Mutwali and Al-Jubouri, 2005), (Al-Mutwali, 1996), (Hammoudi, 2000), (Caron 1985), (Ubaidalla, 2005), (Robaszynski et al., 1984), (D Hont & Keller, 1991), and it is equivalent to the upper part of Glt. contusa Zone of (Abawi et al., 1982, and Abdel-Kareem, 1986), and Glt.contusa-R. fructicosa Zone of (Premoli

59

Paleocene planktonic foraminifera

Parvularugoglobigirina eugubina (Luterbacher & Premoli Silva) Parvularugoglobigirina extensa (Blow) Rectoguembelina cretacea Cushman Hedbergella monmouthensis (Olsson), Woodringina clytonensis (Loeblich & Tappan) = hornerstownensis (Olsson) Chiloguembelina morsei (Kline) = midwayensis (Cushman) Globoconusa daubjergensis (Bronnimann) Parasubbotina aff pseudobulloides (Olsson et al) Parasubbotina pseudobulloides (Plummer) Subbotina trivalis (Subbotina) = triloculinoides (Plummer) Globanomalina archeocompressa (blow) = planocompressa (Shutskaya) Eoglobigerina edita (Subbotina) = eobulloides Morozova = simplicissma Blow Praemurica taurica (Morozova) = pseudoinconstans (blow) Guembelitria cretacea Cushman

200

Chapter Three

Biostratigraphy

Silva and Sliter, 1995, 1999) from Italy. (Abdel-Kareem & Samir. 1995), Egypt. (Fig. 3.12) The Pseudotextularia intermedia Zone spans about 0.73Myr (69.0668.33Ma), (730Ky/19) meters estimating absolute ages based on magnetochron ages with (38.5 Ky/meter) of moderate rate of deposition (Fig.3. 12 – 3. 13), (Fig,5.11) Age: Late Early Maastrichtian. Note: it is important to mention that the Pseudotextularia intermedia Zone was recorded also from the other studied sections (only the upper part) in which the lower limit not studied. This biozone represented by moderate diversity of planktonic foraminiferal assemblage by 43 species in Sirwan section, (Fig.3.1), 44 species in Qulka section (Fig.3.5) and Low diversity planktonic foraminiferal assemblage by (27) species in Qishlagh section, (Fig.3.4)

3.2.1.5- Racemiguembelina fructicosa Interval Zone (CF4) Racemiguembelina fructicosa zone

(CF4) was introduced by Li and Keller

(1998 a and b) as a biostratigraphic interval between FAD of Racemiguembelina fructicosa (Egger) at the base and the FAD of Pseudoguembelina hariaensis at the top. The FAD of Racemiguembelina fructicosa (Egger) in the studied section recorded from the upper most part of reddish to pale brown unit and covers the basal part of the Tanjero Formation (sample no.38) to the FAD of Pseudoguembelina hariaensis Nederbragt within Tanjero Formation (sample no.58). (plate. 1, Fig. 9). Attaining a thickness of 23m. at Gali section (Fig 3.7) 110 meters Sirwan section (Fig 3.1) 32 meters Kato section (Fig 3.3) 83 meters Qulka section (Fig 3.5), while the upper limit of this zone in Qishlagh section not recorded due to change of environmental parameters which is represented by thick bedded interfingering limestone of Aqra Formation at the upper part of Tanjero Formation It is important to mention that the zonal scheme of Cretaceous foraminifera (CF) proposed by Li and Keller (1998 a&b), which replaces the Abathomphalus mayaroensis zone with four zones (R. fructicosa zone, P. hariaensis Zone, P. palpebra Zone, P. hantkeninoides Zone), for a much improved age estimate for

60

Chapter Three

Biostratigraphy

the late Maastrichtian (Fig. 3.12). The total range zone of A. mayaroensis Zone characterized the Upper Maastrichtian in low latitude regions as well as the Tethyan paleogeographic realm. However it has been found that A. mayaroensis is very rare or absent in high latitude regions (Blow, 1979) and in the present section also, consequently it is more accurate to use the new zonal scheme. Most of the workers in the zonal scheme placed Racemiguembelina fructicosa zone at the lower Late Maastrichtian (Li and Keller, 1998a&b), (Abramovich et al., 2002), at DSDP Site 525A. (Keller et al., 1995), from Tunisia. (Obaidalla 2005), and (Samir 2002), Egypt. As defined above, the present Biozone (CF4) is correlatable with the lower part of A. mayaroensis of (Abawi et al., 1982 and Abdel-Kareem 1986), (Premoli Silva and Sliter 1995, 1999),Italy. (Caron 1985), and (Robaszynski et al., 1984), general. (Fig. 3.12). This zone covered abundant occurrence of the nominate species, in addition to the index planktonic 55 species identified from Gali section, e.g: Heterohelix navarroensis Loeblish, H. globulosa (Ehrenberg), H. striata (Ehrenberg), H. punctulats (Cushman), H. nauttalli (Voorwijk), H. reussi (Cyshman), H. pulchra (Brotzen) , Planoglobulina carseyae

(Plummer), P. brazoensis

acervulinoides (Egger), Rugoglobigerina rugosa

Martin,

(Plummer),

P.

R. scotti

(Bronnimann), R. hexacamerata Bronnimann, R. macrocephala Bronnimann, R. pennyi Bronnimann, R. milamensis Smith & Pessango, R. reicheli Bronnimann, Gansserina gansseri

(Reuss), Globotruncanita

Dalbez,

pettersi

G.

conica

White, G.

Globotruncana aegyptiaca Nakkady, Glt. Caron et al., Glt. contusa

(Cushman), C.

walfischensis R.

lapparenti Boli, Glt.

Gandolfi, G.

stuartiformis angulata

falsostuarti Sigal, Glt. arca

plicata White, C.

Tilev,

dupeublie

(Cushman), Contusotruncana Patelliformis (Gandolfi), C.

Todd, C. sp. (nov. sp?), Rugotruncana circumnodifer (Gandolfi),

subcircumnodifer (Gandolfi), Globotruncanella petaloidea (Gandolfi), G.

pschadae

(Keller),

Globigerinelloides

volutes

(White),

G.

subcarinatus

Bronnimann, G. prairiehillensis Pessango, Pseudotextularia elegans (Rzehak), P. deformis (kikoine), fructicosa (Egger), R.

P. intermedia poweli

(De Klasz),

Racemiguembelina

Smith & Pessango, Pseudoguembelina

costulata (Cushman), P. palpebra, P. excolata (Cushman), Hedbergella

61

Chapter Three

Biostratigraphy

monmothensis (Olsson), H. holmdelensisOlsson, Abathomphalus mayaroensis (Bolli),

A.

intermedius

(Bolli),

Kuglerina

rotundata

(Bronnimann),

Archaeoglobigerina carteri (Kassab) Gublerina cuvillieri Kikoine, Gumbelitria cretacea Cushman, The planktonic foraminiferal assemblages represented by moderate number of species diversities in both Sirwan and Qulka section represented by 45 species (figs. 3.2 and 3.5), while this number was reduced to 30 species in Kato section and 26 species in Qishlagh section , in Qishlagh the same assemblage and number of species continued from previous P. Intermedia Biozone to R. fructicosa zone with addition to the nominate species of R. fructicosa, at the lower part of 10 meters only, after that all planktonic foraminiferal assemblages disappeared and replaced by larger foraminiferal community with other smaller benthonic forams for the total remaining interval of Tanjero Formation till the transitional interval between Tanjero Formation and Red Bed series which is characterised by concentration of reworked larger foraminiferal assemblage and dwarfed macrofossils of pelecypods, gastropodes, brachiopodes and solitary corals

like

Cyclolites.

planktonic

forams

represented

by:

Heterohelix

navarroensis Loeblish, H. globulosa (Ehrenberg), H. striata (Ehrenberg), H. punctulats Martin,

(Cushman), Planoglobulina carseyae (Plummer), P. brazoensis

Rugoglobigerina rugosa

hexacamerata gansseri Dalbez

(Plummer), R. scotti

Bronnimann, R. macrocephala Bronnimann, Gansserina

(Reuss), Globotruncanita stuarti ,

(Bronnimann), R.

G.

conica

White,

(de Lapparent), G. stuartiformis

Globotruncana

aegyptiaca

Nakkady,

Contusotruncana contusa (Cushman), C. fornicata Plummer, C. plicata White, Globotruncana

arca

(Cushman),

Glt.

gagnebini

Tilev

Globotruncanella

petaloidea (Gandolfi), Globigerinelloides volutes (White), Pseudotextularia elegans (Rzehak), P. deformis (kikoine), Racemiguembelina fructicosa (Egger), Pseudoguembelina costulata (Cushman), The benthonic forams represented by Bolivinoides

draco

: Bolivina

(Marsson), Cibicidoides dayi

Cushman & Deaderick, C.

excavata

Brotzen,

incrassata Reuss,

(White), C. subcarinatus Osangularia navarrana

(Cushman), Pullenia jarvisi Cushman, Pyrulinoides sp. Neoflabellina rugosa (d,

62

Chapter Three

Biostratigraphy

Orbigny), Bulimina ovulum

Reuss, Oolina apiculata Reuss, Globorotalites

,

michelinianus (d Orbigny), Ammodiscus cretaceous

(Reuss), A. pruvianus,

Marsonella oxycona (Reuss), Dorothia smokynensis Wall, D.

retusa, D.

rosetta, Textularia astutia. Lalicker, Spiroplectamina israelskyi Hillebrandt, S. laevis. (Roemer), Gyroidina girardana (Reuss), Gyroidinoides globosus. (Hagenow), Gaudryna pyramidata. Cushman, Clavulinoides globulifera.Ten Dam &Sigal, Conicospirilina sp. Rotalia sp. Valvulammina sp. Omphalocyclus macroporus (Lamark), Orbitoides medius (d Archiac), O. tissoti Shlumberger, O. apiculatus Shlumberger, Lepidorbitioides socialis (Leymerie), Siderolites sp. Loftusia elongata Brady, L. morgani Douville, L. persica Brady, L. minor Cox , L. coxi Henson, L. sp.These assemblages of benthonic foraminifera in addition to macrofossils like echinoides, gastropods, cephalopods, brachiopods, corals and pelecypods (coral like rudistids ),indicate the fundamental variation in lithology and Faunal assemblages from Tanjero clastics to the interfingering interval of Aqra Limestone represents quite graditional change to reefal facies, probably formed due to the presence of submerged high within the Tanjero foreland basin at the end of the Maastrichtian

resulted from the termination of

Paraxysmal phases of Laramide orogeny. ( Lawa et al.,1998, Al Omari et al., 1989, Al Mutwali and Abawi, 2005) The age estimation of this biozone by (Li and Keller, 1998a), records the time span between (68.33 Ma) to (66.83 Ma) (1500 KY) estimating absolute ages based on magnetochron ages with (62 ky/m) low rate of deposition in Gali section, (13, 5 ky/m) high rate sedimentation in Sirwan area. (18 ky/m) high rate of deposition in Qulka section Dokan area. (Figs. 3.10 -3.11). Age: Early Late Maastrichtian. 3.2.1.6- Pseudoguembelina hariaensis Interval Zone (CF3) The Pseudoguembelina hariaensis zone was defined by Li and Killer, (1998a) as

a

partial

range

of the

nominate

species between

the

FAD

of

Pseudoguembelina hariaensis Nederbragt and the LAD of Gansserina gansseri (Bolli). In the studied area this zone also marked by the FAD of the nominate species to the last occurrence of Gansserina gansseri (Bolli). (Plate 16; Fig. 6).It is covers the intervals of (21)meter in Gali section, (23) meters in Qulka section

63

Chapter Three

Biostratigraphy

and 30 meters in Sirwan section.

This zone shows reliable abundance of

Pseudoguembelina hariaensis Nederbragt and other assemblages' planktonic foraminifera which totally resembles that of the underlying Racemiguemblina fructicosa zone (CF4), in Gali section with the following planktonic forams of 50 species like: Heterohelix navarroensis Loeblish, H. globulosa (Ehrenberg), H. striata (Ehrenberg), H.

punctulats (Cushman),H. nauttalli (Voorwijk), H. reussi

(Cyshman), Laeviheterohelix glabrans (Cyshman),

Planoglobulina carseyae

(Plummer), P. brazoensis Martin, P. acervulinoides (Egger), Rugoglobigerina rugosa (Plummer), R. scotti (Bronnimann), R. hexacamerata Bronnimann, R. macrocephala Bronnimann, R. pennyi Bronnimann,R. reicheli Bronnimann, R. rotundata Bronnimann, Gansserina gansseri stuartiformis Dalbez, G.

conica White, G.

pettersi Gandolfi, G.

Tilev, Globotruncana aegyptiaca Nakkady, Glt. dupeublie Caron et al., Glt. (Cushman), C. Todd,

C.

sp.

sp?),

falsostuarti

angulata Sigal, Glt.

lapparenti Boli, Contusotruncana contusa

plicata White, C. (nov.

(Reuss), Globotruncanita

Patelliformis (Gandolfi), C. Rugotruncana

circumnodifer

walfischensis (Gandolfi),

Globotruncanella petaloidea (Gandolfi), G. pschadae (Keller), Globigerinelloides volutes (White), G.

subcarinatus

Bronnimann, Pseudotextularia elegans

(Rzehak), P. deformis (kikoine), Racemiguembelina

fructicosa (Egger),

Pseudoguembelina costulata (Cushman), P. palpebra, P. excolata (Cushman), Hedbergella monmothensis (Olsson), H. holmdelensisOlsson, Abathomphalus mayaroensis (Bolli), Kuglerina rotundata

(Bronnimann), Costellagerina cf.

bulbosa Belford, Gublerina cuvillieri Kikoine, Gumbelitria cretacea Cushman. The species number of planktonic foraminifera in this zone is reduced to 45 species at Sirwan section (Fig. 3.1) and 40 species in Qulka section Dokan area (Fig. 3.5). While this number shows its relative decreasing to 27 species in Kato section (Fig. 3.3). This zone is recorded only from the marly and shaley limestone layers between the last 12 meters of Aqra interfingering Limestone within Tanjero Formation which is interrupted 10 meters of unfossiliferous sandstone and marl. In the upper part of Tanjero Formation at Kato section.

64

Chapter Three E

T

A

C

E

O

U

S

T E R T I A R Y P A L EOC E N E

Shiranish

1

3

Tanjero

Shiranish/Tanjero trans. unit

5

10 15

20

25 30

35

Kolosh

40 45 50 55 60 70 80 90 100 110 115 120 130 140 146

PERIOD EPOCH--AGE FORMATION SAMPLE No LITHOLOGY

1

15 CF 8

50

Cf 7

Glt, aegyptiaca -

30

---------

70

CF 6

CF 5

C. contusa

G. gansseri

--------------

89

--

100 CF 4

113 CF 3

143

171

CF 2

CF 1

P. P. P. R. intermed hariaens palpe fructicosa ia. is bra ------------ -----------------

P. hantk ini.

200

P

P

P

P 1a

á

0

230 1 b

-

----

-------- -- -- ---- -- -------- -- ------------------ --- ----------------- --- ----------- ----------- ------------- ----------------------------------- ---- ----------------------- ---------------- ------------------------------- ------------------- ----- ----- ------- ---------------------------------------------------------- -- ----------------------- --------- ---- -- ----

-----

------

---

--

----

------

----

-------

----

-------

----------- ------------- -- -------------------------------------------- --- ---------------------------------- -- --------- ---------------- ---------- ------ ---- ----- ------- ------ ------- ------ ---- - ----- ---------- --------------------------- ----- ---- -- -- - - - ---------- ---------------------- -------- -------- ---------------- -- --- ---- -- -- --- -- --- --- ------------------ --- -------- ----------------------------- ---- ---- -- --- -- - --------------------------------------- --- ------------------------- -------- ------ ------------------------------------------- --- ------ ---- -- -------------------------- ----------- ---------------- ---------- ---- ------------- ---------- -------- ------ ----- - -- - -- --- --- ----- ------- ---

----------------- --- --- ------------ --------- -- -- --- ---- ---- --- - - -- -- ----------- - ----- --- --- -- --- -- --- ------ --------------- --- ------------- ------- -- - - ---

---

--

-------- ----- -- ---------------------- --------- -------- -------------------------------------- ----------------------------------- ------ ---- - -- -- ---------------------------------------------------------- ----------------- --- -------------- ----------------------------------------- ------ ------------------ ----------------------------- ------------------------------------------------------------------------------------------------ ---- --- -

----- --- -- - -- ------ --

--

---

---- -- ---------- -- ---- ------- -- -- ------ ---

---

------------

-----

------

-----

-----

--------- ---------- ----------------------------------- -------- ---- -- ---- - ---- --- ---------------- -- ------ -------- ---- ---- -------- ----- -------- ------- --------------------------- ---------------------- ---- -- - ------------------------ -------- -------- -- -- -------------------------- ---------------- - -- ---- ----- -- -- -------- --------------- ---------------------- ----------------------------------------------- -------------- -------------------------- -- -- -------------------------------------- ----- -- - --------------- --- --------- ------------- ------- ---------------------- ------------------------------- ---------- ----------------- -------------------------- -------- ---------------- ---------------------- --

--- --

--- --- --

---

------

---

-

---

----- --

---

--- --- -- - -- ----------- - -- ----------- --- ---- --------- -------------------- ---------------------------- -- -- ----- --- ----

-------

--- - --- -- ----- --- ---- -------

--

------------- ------- - -----------------

-- ---------------

----

-------

----

-------

----

----------

THICKNESS m. CF.zones (Li&Killer,1998a)

SUBZONE Bolivina incrassata Reuss Bolivinoides draco (Marsson) = delicates Cushman = miliaris Hitt & Koch = sp. Cibicidoides dayi (White) = subcarinatos Cushman & Deaderick = excavata Brotzen Osangularia navarrana (Cushman) Pullenia jarvisi Cushman = quinqueloba (Reuss) Pyrulinoides sp. Neoflabellina rugosa (d Orbigny). = delicatissima (Plummer) Bulimina ovulum Reuss = midwayensis Praebulimina ovulum (Reuss) = aspera (Cushman &Parker) = laevis (Beissel) = carseyae (Plummer) Uvigerina graciliformis Oolina apiculata Reuss = golbosa (Montagu) Globorotalites michelinianus (d Orbigny) = sp. Ammodiscus cretaceous (Reuss) = pruvianus Marsonella oxycona (Reuss) Dorothia smokynensis Wall = retusa = rosetta = sp. Textularia astutia. Lalicker Spiroplectamina israelskyi Hillebrandt = laevis. (Roemer) = dentata (Alth) = navicula (d Orbigny) Stilomella midwayensis. (Cushman &Todd) Stensioina excolata (Cushman) Nodosaria minor Hantken = affinis Reuss = cf. limbata d'Orbigny. Pseudonodosaria sp. = appressa Loeblich & Tappan Dentalina elegans d Orbogny = inornata (d Orbogny) Dentalinoides canulina Marie Noneonella insecta (Schwager) Pleurostomella subnodosa (Reuss) = paleocenica (Cushman) Paralabamina hillebrndti (Fisher) Lenticulina muennsteri = navicula. (d Orbigny). = gunderbookaensis. Crespin = sp. Gavelinella micra. = danica Lagena hispida Reuss = sp. Palliolattella sp. Coryphostomata midwayensis. (Cushman) Gyroidina girardana (Reuss) Gaudryna pyramidata. Cushman = pulvina Gyroidinoides globosus. (Hagenow) = exsertus (Belford) = subangulatus (Plummer) Clavulinoides globulifera.Ten Dam &Sigal Conicospirilina sp. Saracenaria navicula (d Orbigny) Ellipsodimorphina sp.

Fig (3.8) Biostratigraphic range chart of benthonic foraminifera at Cretaceous/Tertiary boundary in Smaquli area (Gali section)

65

BENTHONIC

R

LATE CAM.---- EARLY MAASTRICHTIAN ----------- LATE MAASTRICHTIAN

FORAMINIFERA

C

Biostratigraphy

Chapter Three

Biostratigraphy

There is no any evidence of planktonic foram occurrence except of some larger foraminifera and smaller benthonic till the interval of Tanjero -- Red Bed transition unit which characterized by the presence of reworked larger forams. The benthonic foraminifera identified from the uppermost part of Tanjero Formation are:

Praebulimina quadrata, Oolina apiculata Reuss, Nodosaria

minor Hantken, Globorotaloides sp. Spiroplectamina israelskyi Hillebrandt, Lenticulina muennsteri,Dorothia crassa, D. smokynensis Wall, D. retusa, Omphalocyclus

macroporus,

Orbitoides

medius

(d

Archiac),

O. tissoti

Shlumberger, Loftusia elongata Brady, L. morgani Douville, L. persica Brady, L. minor Coxi, As defined above, the present Biozone (CF3) is correlatable with the Zone recorded by (Li and Keller, 1998a,b), (Abramovich and Keller,2003) in DSDP Site 525A. Abramovich et al., (2002) Madagascar. (Keller et al., 1995) from Tunisia. (Keller, 2004) Eastern Tethys. (Samir, 2002), (Keller, 2002), (Obaidalla, 005) Egypt. (Sharbazheri, 2007) NE Iraq, and it is correlated with the middle part of Abathomphalus mayaroensis zone recorded in the Northeast of Iraq (Abawi et al., 1982, and Abdel-Kareem,1986), in Italy (Premoli Silva and Sliter, 1995, 1999) (Premoli Silva et al., 1998), (Abdel-Kareem & Samir, 1995) Egypt, and (Robaszynski et al., 1984) (Caron, 1985) general.(Figs. 3.12 - 3.14) . The age estimation of this biozone by (Li and Keller, 1998a), records the Middle Late Maastrichtian, with the time span of (66.83Ma) to (65.45Ma) estimating absolute ages based on magnetochron ages. (1380 Ky) estimating absolute ages based on magnetochron ages with 66ky/m low rate of deposition in Gali section. (60 ky/m) low rate of deposition in Qulka section Dokan area.(46 ky/m) low to moderate rate of sedimentation in Sirwan valley.(Figs. 3.12 & 3.13) Age: Middle Late Maastrichtian.

3.2.1.7- Pseudoguembelina palpebra Interval Zone (CF 2) This Zone (CF2) defines the interval between the LAD of Gansserina gansseri at the base to the FAD of Plummerita hantkeninoides at the top. Li & Keller, (1998 a and b) introduced this zone from DSDP Site 525A and Tunisia, respectively. At Gali section in Smaquli area, the Zone (CF2) covers spans 24

66

Chapter Three

Biostratigraphy

meters (Fig. 3.7) (Plate.16; Figs. 7, 8). The recorded planktonic assemblage of this zone is characterized by the same number 50 species diversity with underlying Pseudoguembelina hariaensis zone, and marked by the extinction of Heterohelix punctulatus (Cushman), Gansserina gansseri, Globigerinelloides volutes (White), and Laeviheterohelix glabrans (Cyshman), at the upper part of this zone. Besides, the planktonic foraminiferal species enduring from the underlying Biozones, some species shows their first appearance, e.g. Globotruncana Falsoscalcarata Kerdany & Abdelsalam, Globotruncanella sp. and Trinitella scotti Bronnimann were appeared for the first time with this zone. In Qulka section at Dokan area, the Zone (CF2) covers spans (9) meters (Fig. 3.5) this zone represented by 37 species with the extinction of Gansserina gansseri (Reuss), Globigerinelloides prairiehillensis Pessango at the base and Globigerinelloides volutes (White), G. subcarinata Bronnimann at the upper part of this zone. The first appearance of Rugoglobigerina rotundata Bronnimann at the base and Globotruncana Falsoscalcarata Kerdany & Abdelsalam, at the upper part of this zone. The Pseudoguembelina palpebra Interval Zone (CF 2) in Sirwan valley displays spans 25 meters (Fig. 3.1), biostratigraphically represented by decreasing species number from 49 to 38 species and there is no any distinctive appearance of new species with this zone. The planktonic foraminiferal assemblages of this zone in Sirwan section represented by Heterohelix navarroensis Loeblish, H. globulosa (Ehrenberg), Laeviheterohelix glabrans (Coshman), Planoglobulina carseyae (Plummer), P. acervulinoides (Egger), Rugoglobigerina rugosa (Plummer), R. scotti (Bronnimann) , R. hexacamerata Bronnimann, R. macrocephala Bronnimann, R. pennyi Bronnimann, R. reicheli Bronnimann, Globotruncanita stuartiformis Globotruncana

aegyptiaca

Nakkady,

Glt.

Dalbez , G.conica Falsocalcarata

White ,

Kerdany

&

Abdelsalam, Glt. falsostuarti Sigal, Glt. dupeublie Caron et al., Glt. lapparenti Boli, Contusotruncana contusa (Cushman), C. plicata White, C. walfischensis Todd, Rugotruncana circumnodifer (Gandolfi), R.subcircumnodifer (Gandolfi), Globotruncanella petaloidea (Gandolfi), G. pschadae (Keller), Globigerinelloides prairiehillensis Pessango, Pseudotextularia elegans (Rzehak), P.deformis

67

Chapter Three

Biostratigraphy

(kikoine), Racemiguembelina fructicosa (Egger), Pseudoguembelina hariaensis Nederbragt, P. palpebra, P. excolata (Cushman), Hedbergella monmothensis (Olsson), H. holmdelensis

Olsson, Gublerina cuvillieri Kikoine, Gumbelitria

cretacea Cushman. As defined above, the present zone (CF2) of studied area is equivalent to the same zone of the P. palpebra Zone of South Atlantic DSDP Site 525A (Li & Keller, 1998a), (Abramovich et al.,2002); and Tunisia (Li & Keller, 1998b), (Arenillas et al.,2000); eastern Tethys (Keller, 2004), the present P. palpebra Zone is equivalent to the upper part of Abathomphalus mayaroensis Zone recorded from different parts of the world (Premoli Silva & Sliter, 1995 & 1999), (Molina et al., 1996) Canudo et al., 1991); from Spain; Premoli Silva et al.,1998 eastern Mediterranean; (Robaszynski et al., 1984; Caron, 1985), general; (Maestas et al., 2003), USA California; and Egypt (Obaidalla, 2005; Samir 2002; Elnady &Shahin, 2001; Luning et al.,1998). The present P. palpebra Zone is equivalent to the upper part of Abathomphalus mayaroensis Zone recorded from different localities from Iraq, (Al-Mutwali and Al Juboury, 2005; Al-Mutwali, 1996; Hammoudi, 2000; Abawi et al., 1982; Abdel-Kireem, 1986; Kassab, 1972, 1974, 1975, 1976, 1979, and Kassab et al., 1986) (Figs 3.10 -12) The age estimation of this biozone by (Li and Keller, 1998a), records the Upper Late Maastrichtian, with the time span of (65.45Ma) to (65.30Ma) estimating absolute ages based on magnetochron ages. (150 Ky) estimating absolute ages based on magnetochron ages with (6 ky/m) high rate of deposition in Gali section. (17 ky/m) high rate of deposition in Qulka section Dokan area.(6 ky/m) high rate of sedimentation in Sirwan valley. (Figs. 3.12 -14) Age: Upper Late Maastrichtian.

3.2.1.8- Plummerita hantkeninoides Total Range Zone (CF 1) The biostratigraphic interval of this zone defined by the total range of the nominate taxon, Plummerita hantkeninoides (Bronnimann). Pardo et al. (1996) introduced the P. hantkeninoides Zone for the latest Maastrichtian of Spain. It marks the uppermost Cretaceous biozones. As its top marks the K/P boundary. The upper limit of this zone coincides with the mass extinction of large tropical--

68

Chapter Three

Biostratigraphy

subtropical taxa. At Studied sections, this zone covers the top (25) meters of the Maastrichtian in Sirwan area (Plate.16, Fig.12). (Plate.21, Figs.10, 11). (13) meters in Qulka section. And (15) meters in Gali section. The Characteristic recorded planktonic foraminiferal assemblage of this zone shows gradual decreasing in both species and individual numbers from Pseudoguembelina palpebra Zone to Plummerita hantkeninoides Zone. (50) to (37) species in Gali section (Smaquli area), (37) to (29) species in Sirwan section and (38) to (24) species in Qulka section (Figs. 3.1, 3.5 and 3.7), at this zone. In addition, the planktonic foraminiferal species enduring from the underlying biozones, only two species

Plummerita

Bronnimann

hantkeninoides

(Bronnimann)

and

Trinitella

scotti

show their first appearance in Gali section and Plummerita

hantkeninoides (Bronnimann) in both Sirwan and Qulka section. The planktonic foraminiferal assemblages in Qulka section comprise Heterohelix

navarroensis

Loeblish, H. globulosa (Ehrenberg), H. striata

(Ehrenberg), Rugoglobigerina rugosa (Plummer), R. scotti (Bronnimann), R. macrocephala Bronnimann, R. Bronnimann, Globotruncanita

pennyi Bronnimann, R. stuartiformis

rotundata

Dalbez, G. conica White,

Globotruncana falsocalcarata Kerdany & Abdelsalam, Glt.

falsostuarti Sigal,

Glt. dupeublie Caron et al., Contusotruncana contusa (Cushman), C. plicata White, Globotruncanella petaloidea (Gandolfi), Pseudotextularia elegans (Rzehak), Pseudoguembelina costulata (Cushman), P. hariaensis Nederbragt, P. palpebra, P. excolata (Coshman), Hedbergella monmothensis (Olsson), H. holmdelensis

Olsson,

Gumbelitria

cretacea

Cushman,

Plummerita

hantkeninoides (Bronnimann), (Fig. 4.5). As defined above and based on the associated planktonic foraminiferal assemblage, the present Plummerita hantkeninoides Total Range Zone (CF 1) is equivalent to the same zone recorded from

Tunisia (Li & Keller, 1998b);

Eastern Tethys Israel (Keller 2004), Egypt (Keller, 2002), ( Samir 2002 and Obaidalla 2005),

(Pardo et al. 1996), (Keller 1996); Tunisia (Arenillas et

al.,2000); to the upper part of Zone (CF 1-2) from South Atlantic DSDP Site 525A (Li & Keller, 1998a); and Madagascar (Abramovich et al.,2002); DSDP Site 525A (Abramovich and Keller, 2003); USA (Stinnesbeck et al., 2004). The

69

Chapter Three

Biostratigraphy

present Plummerita hantkeninoides

Zone is equivalent to the upper most part

of Abathomphalus mayaroensis Zone recorded from different parts of the world (Canudo et al., 1991), (Smit 2005),and (Chacon & Martin-Chivelet 2005) Spain; (Premoli Silva & Sliter, 1995 & 1999),Italy; (Premoli Silva et al., 1998), eastern Mediterranean ; (Govindan et al., 1996), India; (Robaszynski et al., 1984, and Caron, 1985), general; (Maestas et al., 2003), USA, California; (Martinez, 1989; Luning et al., 1998), south USA. And equivalent to Plummerita reicheli Zone of (Elnady & Shahin, 2001, and Shahin, 1992,), from Egypt. The present Plummerita hantkeninoides Zone is equivalent to the Kassbiana falsocalcarata Zone recorded from Shalki village and Sirwan valley (Kassab et al., 1986), (Kassab 1976). Tel Hajar.1 (Ghafor 1988),

(Figs 3.12-14)

The age estimation of this biozone by (Li and Keller, 1998a), records the Upper most Late Maastrichtian, with the time span of (65.30Ma) to (65.00Ma), estimating absolute ages based on magnetochron ages. (300 Ky) estimating absolute ages based on magnetochron ages with (20 ky/m) high rate of deposition in Gali section. (23 ky/m)

high rate of deposition in Qulka section

Dokan area.(12 ky/m) high rate of sedimentation in Sirwan valley. (Figs. 3.12-14) Age: Latest Maastrichtian. It is reliable to pay attention that the decreasing in the number of species within the Plummerita hantkeninoides

Zone is continued to the end of this

zone at K/T boundary as observed in Gali section from (37) to (28) species, (24) to (20) species in Qulka section and (29) to (23) species in Sirwan section. The large

subtropical

high

diversities

Maastrichtian

planktonic

foraminiferal

assemblages suddenly disappeared at the stratigraphic level that corresponds to the top of this biozone. On paleontological criterion the Cretaceous/Tertiary boundary is placed

either at the mass extinctions of Cretaceous planktonic

foraminiferal assemblages as in all studied sections, or at the first occurrence of Paleocene species. It is convenient to assume that the stratigraphic intervals of transitional unit (at Tanjero – Red bed contact) in both Qishlagh and Kato sections in Qala-Cholan and Barzinja area respectively (Figs. 3. 3 - 4), which located on border line and represent the proximal area of Tanjero basin, characterized by reworked fossils of different types (macro and microfossils)

70

Chapter Three

Biostratigraphy

from predeposited sediment of Tanjero basin to be the transitional time interval from Cretaceous to Tertiary, the second estimation is that the transitional unit may represent

time interval of

latest Maastrichtian or Earliest Danian of

deposition, or the upper most part of Tanjero Formation chronostratigraphically may extended to the lower Paleocene while the another contradictory assumption is that the Red Bed Series may began from the upper Maastrichtian. The most important sedimentological evidence is Tagaran conglomerate within the upper part of Tanjero formation, shows the same sedimentological origin of that of transitional unit and conglomerate beds within the lower part of Red Bed Series. (Karim, 2004 and Al-Barzinjy, 2005), The K/T contact in the studied areas has been interpreted as conformable contact.

3.2.2- Biostratigraphy of the Early Paleocene Formations: According to identified planktonic foraminiferal assemblages within Lower part of Kolosh Formation,

in Smaquli, Dokan and Sirwan area, four biozones

recorded in the region. The biostratigraphic zones of the studied area are described from the bottom to the top as below: 3.2.2.1- P0. Guembelitria cretacea interval Zone. The contact line between Tanjero and overlying Kolosh Formation in Gali section placed on the last oily impregnated friable soft and weathered pale brown fine sandstone beds of 1 meter thickness barren of foraminifera except for few forms of Guembelitria cretacea Cushman. This fine sandstone bed overlied by 25cm dark organic papery shale and interlayred by thin beds of dark grey marl which evidenced by the record of Hedbergella monmothensis (Olsson) with Guembelitria cretacea. This interval is 1,25 meter thick representing the Guembelitria cretacea (P0) zone and marks the K/T boundary and defined as interval between the extinction of Cretaceous planktonic foraminifera, Last appearance

Datum

(LAD)

of

(Globotruncana,

Rugoglobigerina,

Globigerinelloides, Heterohelicids) at the base and the first appearance datum (FAD) of Parvularugoglobigerina eugubina (loterbacher & Premoli Silva) at the top. (Plate.26, Figs. 17-18) (Fig. 3. 7 part. 2). The Guembelitria cretacea Biozone is comparatively very well expanded (1, 25 meter) and lithologically

71

Chapter Three

Biostratigraphy

characterized by similar sediment constituent between both Tanjero and overlying Kolosh Formation in which no one can observe the contact line between these two formations in the field especially in Smaquli and Dokan area. Another important point to be mentioned is the lack of any reworked foraminiferal evidence to be observed within (P0) Guembelitria cretacea zone and overlying biozones in mentioned areas. The K/T contact in the studied areas has been interpreted as conformable contact because of the absence of any sedimentological break, or erosional surface, no condensed section no mineralogical record observed in addition to uninterrupted biostratigraphic record. As defined above and based on the associated planktonic foraminiferal assemblage, the Guembelitria cretacea zone coincides with the same zone recorded from Tunisia (Li & Keller, 1998 b); from Egypt (Keller, 2002); Eastern Tethys Israel (Keller, 2004); general (Olsson et al., 2000), (Berggren & Norris, 1997), (Berggren et al.,1995), (Keller, 1996); DSDP Site 525A (Abramovich and Keller, 2003) ; Spain (Pardo et al., 1996), (Smit, 2005). P0 is also equivalent to the Lower part of Guembelitria cretacea zone from Egypt by (Obaidalla, 2005) and Tunisia (Arenillas et al., 2000) and Canudo et al., 1991, Caravaca and Agost from Spain. The age estimation of this biozone by (Olsson et al., 2000) (Keller, 2002, and 2004), records the earliest Paleocene (Danian), with the time span of (65.00Ma) to (64.97Ma) estimating absolute ages based on magnetochron ages. (30 Ky) ages with (24 Ky/m) high rate of deposition in Gali section. (Figs. 3.12 -13) Age: Earliest Paleocene (Danian). 3.2.2.2- (Pá) Parvularugoglobigerina eugubina Total Range Zone Definition: Biostratigraphic interval is characterized by the total range of the nominate taxon. (Liu, 1993, emended. of Pá of Blow, 1979; Luterbacher and Premoli Silva, 1964). (Plate .24, Figs.9-14) Luterbacher & Premoli Silva (1964) firstly used the Globigerina eugubina Zone

for

the

Early Paleocene

of

Central

Italy.

Blow,

(1979)

used

Parvularugoglobigerina longiapertura to characterize the earliest Paleocene Zone P? (Globorotalia (Turborotalia) longiapertura). However, this assemblage

72

Chapter Three

Biostratigraphy

seems to be close to those of the Pv. eugubina Zone. Moreover, in (Samir 2002), most workers have included Pv. longiapertura with Pv. eugubina group (e.g. Olsson et al., 1992). In the studied section of Smaquli area, this zone covers the interval of 18 meters is characterized by a small-sized planktonic foraminiferal assemblage of a worldwide distribution, that represented by Parvularugoglobigirina

eugubina

(Luterbacher

&

Premoli

Silva),

Parvularugoglobigirina extensa (Blow), Hedbergella monmouthensis (Olsson), Rectoguembelina cretacea Cushman, Woodringina clytonensis

(Loeblich &

Tappan), W. hornerstownensis (Olsson), Chiloguembelina morsei (Kline), Ch. midwayensis

(Cushman),

Globoconusa

daubjergensis

(Bronnimann),

Parasubbotina aff pseudobulloides (Olsson et al), Subbotina trivalis (Subbotina), Globanomalina archeocompressa (blow), Gl. planocompressa (Shutskaya), Eoglobigerina edita

(Subbotina), E. eobulloides Morozova, E. simplicissma

Blow, Praemurica taurica

(Morozova), Guembelitria cretacea Cushman,

( Fig.3.7 part.2)

Fig (3.9) Genetic radiation, Phylogenetic relationship and Geologic range of Paleocene serial & low to high trochospiral microperforate wall structure planktonic foraminifera (From Olsson et. al, 2000)

73

Chapter Three

Biostratigraphy

Fig (3.10) Genetic radiation, Phylogenetic relationship and Geologic range of Paleocene muricate, smooth walled, non-spinose and spinose concellate wall structure of trochospiral planktonic foraminifera (From Olsson et. al, 2000)

74

Chapter Three

Biostratigraphy

Fig (3.11) Genetic radiation and phylogenetic reconstruction of the Early Paleocene microperforate planktonic foraminifera (From Liu & Olsson 1992)

Based on faunal similarities, the present Pv. eugubina Zone is equivalent to the same zone recorded from Tunisia (Keller, 1998 b); Egypt (Elnady & Shahin, 2001, Samir 2002 , Luning et al, 1998, Shahin 1992); Spain (Smit 2005); Ain Settara ,Tunisia (Arenillas et al., 2000); (Li & Keller, 1998 b); (Abramovich and Keller, 2003); Egypt (Keller, 2002); Eastern Tethys Israel (Keller, 2004), general (Olsson et al.2000); (Berggren & Norris 1997); (Berggren et al.1995); (Keller 1996); to P1a of (Pardo et al. 1996), (Fig 3. 13-14) The age estimation of this biozone by Olsson et al., 2000, Li and Keller 1998a, Keller, 2002, 2004, records the earliest Paleocene (Danian), with the time span of (64.97Ma) to (64.90Ma) estimating absolute ages based on magnetochron ages. 70Ky ages with 4 Ky/m high rate of deposition in Gali section. (Figs. 3.12 -14) Age: Earliest Paleocene (Danian).

75

Chapter Three

Biostratigraphy

3.2.2.3- (Pá & p0) in Dokan and Sirwan valley. In the present study,

the earliest Paleocene P0 (Guembelitria cretacea)

Zone, and Pá Parvularugoglobigerina eugubina Zone) which is

well observed

in Smaquli area, was not recorded completely or continuously in both Qulka and Sirwan sections The Cretaceous/Tertiary boundary in Dokan area placed on the base of soft weathered friable fine sandstone and claystone of 5 meter thickness with very rare occurrence (Few individuals) of Guembelitria cretacea Cushman and Globoconusa daubjergensis (Bronnimann) recorded from the upper most part of this sandstone unit (Fig.3.5). As in Gali section, the base of this fine sandstone marks the extinction (Datum event) or disappearance of Cetaceous planktonic foraminifera While in Sirwan valley, the Cretaceous/Tertiary boundary placed on the base of 3 meters of pale grey to yellowish, weathered friable conglomerate. This conglomerate and overlying 12 meters of dark grey organic rich shale alternate with marl, marly limestone and thin layer of siltstone, sandstone, are barren of foraminifera, as mentioned previously in Chapter Two that the sedimentary succession of the studied sections in Sirwan valley shows evidence of three diluted intervals of foraminiferal survivorship in the studied upper part of Tanjero Formation, and the fourth one at the base of Paleocene just after the extinction catastrophe of organism at the uppermost part of Maastrichtian. The age estimation of this interval depending on Magnetic polarity and recorded datum events by (Olsson et al., 2000), (Keller 2002, 2004), with the time span of (65.00Ma) end of Plummerita hantkeninoides to 64.90Ma last occurrence of Parvularugoglobigerina eugubina, estimating absolute ages based on magnetochron ages. 100 Ky with 20 Ky/m high rate of deposition in Qulka section. And with 6.5 Ky/m high rate of deposition in Sirwan section (Figs. 3.1213) Sedimentologically any evidence of erosional surface, condensed section or mineralogical record, trace fossils or hard ground was not observed beside these significant points, the great lithologic similarity between both Tanjero and overlying Kolosh Formations in which no one can observe or distinguished the

76

Chapter Three

Biostratigraphy

contact line of K/T boundary in the field. As there is no sign for the presence of an unconformity, we propose that this interval may be equivalent to both P0 & Pá (G. cretacea - P. eugubina Zone). In addition to these categories the sedimentation rate of deposition in all studied sections particularly in Sirwan section, closely at Cretaceous/Tertiary boundary recorded high to very high rate of

sedimentation

which

reveals

continuous

uninterrupted

sedimentary

sequences. Otherwise the significant amount of conglomerate beds within the studied upper part of Tanjero Formation represented by 7 repeated beds of 0.5 to 2 meters thickness) and three conglomerate beds within the lower part of Kolosh Formation. That reveals the intraformational conglomerate beds of limited lateral extensions. (Figs. 2.3 & 2.4),

this could be attributed to either its

extremely short duration, or its restriction to near shore, or diluted in foraminiferal survivorship rather than open ocean environments as outlined by Berggren & Norris, (1997). Entirely the presence of three local conglomerate beds in the upper most part of Tanjero Formation in Qulka section sustain and displays the same valid conception. (Fig.2.11)

3.2.2.4- P1. Parvularugoglobigerina eugubina - Praemurica uncinata Interval Zone (P1; defined in Berggren et al., 1995, emend. of Berggren & Miller, 1988). Definition: Biostratigraphic interval between the LAD of Parvularugoglobigerina eugubina at the base and the FAD of Praemurica uncinata at the top. According to Berggren & Norris (1997) and Olsson et al.,( 2000) the P1 zone is subdivided into three subzones based on the sequential appearances of Subbotina triloculinoides (P1a/P1b boundary) and Globanomalina compressa /Praemurica inconstans (P1b/P1c boundary). In the studied area of (Gali, Qulka and Sirwan) sections only, P1a Zone and Lower part of P1b Zone encountered. (Fig. 3.13)

77

Chapter Three

Biostratigraphy

3.2.2.4.1-

(P1a)

Parvularugoglobigerina

eugubina

-

Subbotina

triloculinoides interval subzone Definition: Biostratigraphic interval between the LAD of Parvularugoglobigerina eugubina and the FAD of Subbotina triloculinoides. (P1a; defined in Berggren et al., 1995; emendation of Parasubbotina pseudobulloides Subzone (P1a) in Berggren and Miller, 1988) In the present study, the P1a Subzone attains a thickness of 35 meter in Sirwan section, 40 meter in Qulka section and 25 meter in Gali section, (Figs.3. 1, 3. 5 and 3. 7 part 2) (Figs. 3.12-14). The associated planktonic foraminiferal assemblage in Gali section is generally similar to that recorded from the underlying Pá Zone except for the absence of Parvularugoglobigirina eugubina (Luterbacher

&

Premoli

Silva),

Parvularugoglobigirina

extensa

(Blow),

Hedbergella monmouthensis (Olsson), and Parasubbotina aff pseudobulloides (Olsson et al), in the lower part. While the Woodringina clytonensis (Loeblich & Tappan), Rectoguembelina cretacea Cushman, and

Guembelitria cretacea

Cushman were disappeared in the middle interval of this biozone, this Zone characterized by the first appearance of Parasubbotina

pseudobulloides

(Plummer) and Praemurica pseudoinconstans (Blow) at the beginning of this Biozone in Smaquli area. The associated planktonic foraminiferal assemblage is represented by complete

occurrences

of

the

following

species

in

Sirwan

area:

Parvularugoglobigerina alabaminsis (Liu & Olsson), Rectoguembelina cretacea Cushman, Woodringina clytonensis (Loeblich & Tappan), W. hornerstownensis (Olsson), Chiloguembelina morsei Globoconusa daubjergensis

(Kline), Ch. midwayensis (Cushman),

(Bronnimann), Parasubbotina pseudobulloides

(Plummer), Subbotina trivalis (Subbotina), Globanomalina archeocompressa (blow), G. planocompressa (Shutskaya), Eoglobigerina edita (Subbotina), E. eobulloides Morozova, E. simplicissma

Blow, Praemurica taurica (Morozova),

P. pseudoinconstans (blow), Guembelitria cretacea Cushman, in Qulka section the assemblages comprise (15) species

belonging to (9) Genus like:

Woodringina clytonensis (Loeblich & Tappan), W. hornerstownensis (Olsson), Chiloguembelina Morse

(Kline), W. midwayensis (Cushman), Globoconusa

78

Chapter Three

daubjergensis

Biostratigraphy

(Bronnimann), Parasubbotina pseudobulloides (Plummer),

Subbotina trivalis (Subbotina), Globanomalina archeocompressa (blow), S. planocompressa (Shutskaya), Eoglobigerina edita (Subbotina), E. eobulloides Morozova, E. simplicissma pseudoinconstans

Blow, Praemurica taurica

(Morozova), P.

(blow), Guembelitria cretacea Cushman. In which the

Guembelitria cretacea Cushman is represented in the lower part and Woodringina clytonensis (Loeblich & Tappan), and Globoconusa daubjergensis (Bronnimann) is prolonged to the middle part of this biozone. Based on faunal similarities, the combined P1a Subzones of studied sections could be equivalent to the lower part of Morozovella pseudobulloides Zone of Bolli (1966), Caron (1985),P1a Subzone of Blow, (1979); Elnady & Shahin (2001), from Egypt; Arenillas et al.,(2000) Tunisia; present subzones are correlatable with P1a

Subzones of Berggren & Miller, (1988); Samir, (2000) In

Egypt; to the P1b of Keller, (1988) and Keller et al., (1995), in Tunisia; to the P. pseudobulloides of Obaidalla, (2005), Egypt; and also it is equivalent to the P1a of Berggren and Norris, (1997),Berggren et al.,(1995); Keller, (2002, 2004), Abramovich et al.,(2002); Olsson, (2000); Smit, (2005), SE Spain. The age estimation of this interval depending on Magnetic polarity and recorded datum events by (Olsson et al., 2000), (Keller 2002, 2004) with the time span of (64.90Ma) from the end of Parvularugoglobigerina eugubina

to

(64.50Ma) first occurrence of, Subbotina triloculinoides, estimating absolute ages based on magnetochron ages. (400 Ky) with (10 Ky/m) high rate of deposition in Qulka section. And with (11.5 Ky/m) high rate of deposition in Sirwan section and (16 Ky/m) high rate of deposition in Gali section. (Fig. 3.13). The estimated age is Early Paleocene (Early Danian).

3.2.2.4.2- (P1b). Subbotina triloculinoides- Globanomalina compressa / Praemurica inconstans Interval Subzone Definition: Biostratigraphic interval between the FAD of Subbotina triloculinoides at the base and FAD of Globanomalina compressa and/or Praemurica inconstans at the top. Remarks: Berggren et al., (1995) introduced this subzone to emend P1b

79

Chapter Three

Biostratigraphy

(Subbotina triloculinoides) Subzone of Berggren & Miller, (1988). At studied sections only the lower part of this subzone is studied which attains a thickness of 15 meters in Sirwan section, 10 meter in Qulka and Gali sections. The associated planktonic assemblage of this subzone differs from the underlying P1a Subzone by the presence of S. triloculinoides (Plummer), in addition to the following in Gali section like: Woodringina hornerstownensis (Olsson), Chiloguembelina (Cushman),

Globoconusa

daubjergensis

midwayensis

(Bronnimann),

Parasubbotina

pseudobulloides (Plummer), Subbotina trivalis (Subbotina), Globanomalina archeocompressa (blow), G. planocompressa (Shutskaya), Eoglobigerina edita (Subbotina), E. eobulloides Morozova, Praemurica taurica

(Morozova),

P.pseudoinconstans (blow). In Qulka section slight different were existed in planktonic assemblage as below: Chiloguembelina morse (Kline), Ch. midwayensis (Cushman), Parasubbotina pseudobulloides (Plummer), Subbotina trivalis

(Subbotina),

Globanomalina

archeocompressa

(blow),

G.

planocompressa (Shutskaya), Eoglobigerina edita (Subbotina), E. eobulloides Morozova,

E.

simplicissma

P.pseudoinconstans observed

like:

Blow

Praemurica

taurica

(Morozova),

(blow). In Sirwan section similar assemblages were

Parvularugoglobigerina

alabaminsis

(Liu

&

Rectoguembelina cretacea Cushman, Woodringina clytonensis

Olsson), (Loeblich &

Tappan), W. hornerstownensis (Olsson), Chiloguembelina morsei (Kline), CH. midwayensis (Cushman), Parasubbotina pseudobulloides (Plummer), Subbotina trivalis

(Subbotina),

S.

triloculinoides

(Plummer),

Globanomalina

archeocompressa (blow), G. planocompressa (Shutskaya), Eoglobigerina edita (Subbotina), E.

eobulloides Morozova, Praemurica taurica

(Morozova), P.

pseudoinconstans (blow), Based on faunal similarities, the combined

P1 b Subzones of studied

section could be equivalent to the upper part of Morozovella pseudobulloides Zone of Bolli, (1966), and Blow, (1979). To Caron (1985); Elnady & Shahin, (2001), Samir, (2002) from Egypt; Arenillas et al.,(2000) Tunisia; to the P1c of Keller, (1988), and Keller et al., (1995), in Tunisia; to the S. triloculinoides by Obaidalla, (2005) in Egypt; and also it is equivalent to the P1b of Berggren and

80

Chapter Three

Biostratigraphy

Norris (1997),Berggren et al.,(1995); Keller, (2002, and 2004), Abramovich et al.,(2002), Olsson (2000); and Smit (2005) SE of Spain. The age estimation of this interval depending on Magnetic polarity and recorded datum events by (Olsson et al., 2000), (Keller, 2002, 2004) with the time span of 64.50Ma from first occurrence of, Subbotina triloculinoides, to FAD of Globanomalina compressa and/or Praemurica inconstans at the top of 63.00 Ma. Estimating absolute ages based on magnetochron ages (Figs. 3.13 -14). The estimated age is Early Paleocene (Early Danian).

81

Chapter Three

Biostratigraphy

Fig (3. 12 ) Correlation chart showing the planktonic foraminiferal biostratigraphic zones of Upper Cretaceous (Maastrichtian) of the studied sections with the planktonic foraminiferal zonation commonly used in low, middle and high latitudes, in the new zonal scheme, and inside the Iraq. The age of planktonic foraminiferal datum events shown. (Modified from different authors)

82

Chapter Three

Biostratigraphy

Fig ( 3. 13) Correlation chart showing the planktonic foraminiferal biostratigraphic zones of Upper Maastrichtian/lower Danian of the studied sections with the planktonic foraminiferal zonation commonly used in low, middle and high latitudes, in the new zonal scheme. The age of planktonic foraminiferal datum events shown. (Modified from different authors)

83

Chapter Three

Biostratigraphy

Fig (3.14). High resolution planktonic foraminiferal biozone for the Maastrichtian and Early Danian (Cretaceous/Tertiary) boundary at Gali section (Smaquli area) for Early Maastrichtian and other studied localities. Note that this biozones significantly refines the resolution for the upper Maastrichtian, by replacing the Abathomphalus mayaroensis zone by four biozones.

84

Chapter Three

Biostratigraphy

Fig (3.15) Correlation

of the previous Planktonic foraminiferal biostratigraphic zonation on Cretaceous/Tertiary boundary with the present study in the studied region and different localities of Iraq.

85

Chapter Four

Depositional Environmenment and Paleoecology

CHAPTER FOUR

DEPOSITIONAL ENVIRONMENT AND PALEOECOLOGY

4.1- Preface Paleoecology is defined as the study of the interaction of organisms with one another and with the environment in the geological past, and the study of the causes of patterns of distribution and abundance of organisms. It is concerned with interaction between individuals and their physical, chemical and biological parameters of the environment, consequently through high resolution studies of these important parameters with lithologic characters of lithofacies, textures, and sedimentary structures. The most important group of organisms used in this study is planktonic and benthonic foraminifera, which play an important role in interpretation of depositional environment and paleoecology of most of the sedimentary basin of Mesozoic and Cenozoic Era in the world. The paleontologists continuously faced the problem of how the fossil communities reveal the paleoenvironment in which they lived. The worthy approach to solve such problem has been answered through the quantitative evolution of the planktonic and benthonic foraminiferal species and their abundance patterns. The variations in the relative abundance of these assemblages are used to document the rate and nature of the planktonic foraminiferal evolution and diversification through the Cretaceous/ Tertiary boundaries. In the present studied area , the encountered parts of Maastrichtian, Early Paleocene

planktonic as well as benthonic foraminiferal assemblages developed

not only to construct the biostratigraphic zones but also their species communities could reflect the nature of the biotope controlled by abiotic sedimentary environments. Paleobathymetric and paleoecological factors are studied through the distribution patterns of

planktonic and benthonic foraminifera, where the total

numbers of foraminiferal species, the diversity and statistical analysis of planktonic, 86

Chapter Four

benthonic

Depositional Environmenment and Paleoecology

forams,

the

Planktonic/Benthonic

ratios

and

the

Agglutinated/Calcareous ratios are the most important parameters in this chapter.

4.2- Planktonic species diversity or species richness Species diversity is the total number of species in an assemblage, whereas species richness reflects the actual number of species present at a given time and is therefore a measure of environmental variability (e.g., climate, seasonality, nutrient fluctuations), but may be influenced by fossil preservation (e.g., dissolution, breakage of shells). Species richness may be significantly less than species diversity as a result of sample preservation, climate variations and/or local environmental conditions. (Keller 2004) Species richness at Smaquli, Dokan and Sirwan sections is unusually low during the latest Maastrichtian which starts from the end of Pseudoguembelina palpebra Zone (CF2) around 65.5 Ma and upward, it fluctuates about 30-20 species in Plummerita hantkeninoides Zone, except for the lower and middle part of the studied sections where 40-50 species are present and across the Cretaceous/Tertiary contact at Kolosh Formation where it drops down to 17-14 species (Figs. 4. 3 - 4.7). Even lower species richness was observed at Kato and Qishlagh sections with 25-28 species in Pseudotextularia intermedia and Racemiguembelina

fructicosa

Zones

CF5

-CF4.

While

the

planktonic

foraminiferal assemblages interrupted their occurrences due to environmental changes in both Kato section from the lower part of Pseudoguembelina hariaensis (CF3) and lower part of Racemiguembelina fructicosa Zone in Qishlagh section, and replaced by shallow benthonic larger foraminiferal assemblages of platform biotope communities. (Figs 4.3-4) There is the fact that increasing distances from the shoreline, the turbidity decreases, enabling principal production to increase. In addition, the complex pelagic ecosystem, with many nutrient chains, is only developed at a certain water depth around the total photic zone and has noted that planktonic 87

Chapter Four

Depositional Environmenment and Paleoecology

foraminiferal diversity (species richness) increases from shallower to deeper waters across shelf areas. (Van Der Zwaan et al., 1990) Sediment deposition at these localities occurred at outer neritic upper bathyal and middle-outer neritic depth, respectively. Comparable depth localities in Tunisia, Spain, and Mexico average 45-55 species (Lopez and Keller, 1996 in Keller, 2004; Pardo et al., 1996; Abramovich and Keller, 2002). Fossil preservation is excellent at Smaquli sections and relatively good in other studied localities and does not account for the low species richness, which appears to be regional throughout the studied area. To recognize these abnormally poor species assemblages exactly at the uppermost Maastrichtian Plummerita hantkeninoides zone (CF1), it is available to study species richness patterns across the Cretaceous/Tertiary boundary within high resolution biostratigraphic researches of all studied localities previously in Iraq and neighboring countries. Species richness and diversity tend to be highest in outer shelf-upper slope environments (250-500m) and gradually decrease in shallower waters across the continental shelf. (Keller, 2004), this can be confirmed in the present studied area. In the upper Maastrichtian zones (CF1 to CF3), species richness varies between 42-54 species at the outer shelf-upper slope section at El Kef (Keller, 1988; Li and Keller, 1998c: Keller et al., 2002b in Keller, 2004). At the shallower middle neritic trends (Abramovich. and Keller, 2002), the lowest species richness is found at the innermiddle neritic locality of Seldja in southern Tunisia where on average only (10-15) species are present. Species richness is directly related to niche availability, which is related to water depth and watermass stratification. In shallow inner neritic environment, species richness is lowest because ecological niches are largely restricted to the surface mixed layer (50m) of the upper photic zone (Keller,2004) (Fig 4,1)

88

Chapter Four

Depositional Environmenment and Paleoecology

Fig (4.1) Planktonic foraminiferal species richness across the Tunisian continental shelf-slope based on data from the inner shelf Seldja section (Keller and other,1998) , middle shelf Elles section ( Abramovich and Keller,2002), and outer shelf to upper slope El Kef section (Li and Keller 1998c,). Note: The species richness increase with increasing depth across the shelf and is a function of available ecological niches and depth habitats (from Keller 2004)

4.3- Signor- Lipps Effect Abundance: relative abundance refers to the proportion of species (or group of fauna) of the entire assemblages, e.g. percentage. While an absolute abundance refers to the number of individuals in a unit sample or assemblages. It is important to realize that relative and absolute abundance measurements give different information. Despite these difficulties the relative abundance is better for dead assemblages because of several effective parameters, which are known as Signor- Lipps Effect, Based on reasonable interactions between method of sampling, sampling density, sample size, preparation methods, relative abundance, precision amount and omission in statistical measurements, occurrence pattern, fossil preservations, and observation about last appearance datum event LAD (or first appearance datum FAD) provide an accurate estimate of the true LAD or FAD (Signor and Lipps, 1982, in MacLeod 1996). It does 89

Chapter Four

Depositional Environmenment and Paleoecology

enable much more sophisticated testing of those observations in such biostratigraphic analysis nevertheless on high resolution results for favorites. Consequently to avoid and reduce the effect of such variability we tried to get rid of these sophisticated cases by organization and systematic work with relevant and accurate documentation of biostratigraphic evidences.

4.4- Planktonic/Benthonic foraminiferal ratio and Benthic Foraminiferal Assemblage

In the present study, among the most important paleoecological and depositional environment factors, the abundance of planktic foraminifera, planktonic species richness, Planktic/Benthic foraminiferal ratios, Benthic Foraminiferal assemblage, and Agglutinated/Calcareous ratios are used as important

parameters

paleobathymetric

to

interpreting

determination

of

paleoecological

changes

Maastrichtian/Lower

and

Paleocene

succession in Sulaimani region (Figs 4.3 - 4.8) Nyong & Olsson, 1984 (in Samir, 2002) have noticed that the inner shelf depth

10-50m

is characterized by low planktonic percentage with low

species diversity and high benthic foraminiferal assemblages, whereas higher 8-25% planktonic foraminifera and diversity characterize the middle shelf depth

50-100m. In addition, the outer shelf depth 100-200m is

characterized by 30-70% planktonic foraminifera, while the middle slope depth 400-800m is characterized by 90% planktonics and a slight increase in benthonic diversity. The ratios of Planktonic/Benthonic

foraminiferal species are a valuable

indicator of paleobathymetry. The general conventional pattern for benthonic foraminiferal raises from the nearshore environment to the continental edge, further downward decreases

significantly towards

bathyal depths (Van Der

Zwaan et al., 1990). According to benthonic foraminiferal assemblages, many authors recognized

two

main

cosmopolitan 90

distinct, depth-controlled

benthic

Chapter Four

Depositional Environmenment and Paleoecology

foraminiferal assemblages that enjoyed a widespread geographic dispersal and equitable climatic conditions during Maastrichtian and Paleocene. The continental shelf fauna, termed as "Midway-type fauna" (MF), and a lower continental slope and abyssal plain fauna termed as "Velasco-type fauna" (VF). (Alegret and Thomas, 2001; Samir, 2002) The paleodepth indicated by benthonic foraminiferal assemblages are clearly of great value for the interpretation of the environment of deposition of the Cretaceous/Tertiary clastic unit (Alegret et al. 2003) The paleobathymetric estimation in this study also depends on the occurrence and abundancy of depth-dependent benthonic foraminiferal assemblages. The paleodepth can be derived from previous studies of other authors (Fig 4.2) which show the main patterns of occurrence of benthonic foraminifera at different depths, as well as the distribution of Midway and Velasco-type faunas. In the present study, the qualitative and quantitative foraminiferal counting is carried out in detail for about 50gm

of the residue of some

selective sample in each biozones, the Agglutinated / Calcareous ratios and the quantity of both planktonic and benthic forams are calculated for each sample to determine the environmental conditions that prevailed during the deposition of the Maastrichtian - Early Paleocene sequence in the studied area. In addition, their lithologic characters are significant indicators for the paleodepth. Moreover, the pattern of sea-level oscillations is also inferred by calculating the P/B ratio, the Aggl. /Calc. ratio, the planktonic diversity and distribution of the planktonic groups

as well as the benthonic associations.

The foraminiferal distribution is a function of the water depth available over the shelf during any particular interval, (Canud et al, 1991); Elnady & Shahin, 2001; Samir, 2002; Maestas et al., 2003; Chacon and MartinChivelet, 2005)

91

Chapter Four

Depositional Environmenment and Paleoecology

Fig (4.2) Upper depth limits and paleobathymetric distribution of Upper Cretaceous and Lower Paleogene benthonic foraminifera (1): van Morkhoven et al. fold out (1986), p.8, fig,5; (2): Speijer (1994), p. 84,fig.6; (3):Tjalsma and Lohmann (1983); (4): Widmark (2000), p.376; (5):Berggren and Aubert (1975); (6):R. Speijer, press. Comm., 2001; (7): Widmark and Speijer 1997a; (8): Kaminski et al.1988 ;( 1c): modified after van Morkhoven et al.(1986),(from Alegret and Thomas 2001)

92

Chapter Four

Depositional Environmenment and Paleoecology

4.4.1- Maastrichtian The Maastrichtian succession represented by upper most part of Shiranish Formation (samples 1-5), Reddish to pale brown succession (Shiranish-Tanjero transition unit), (Samples, 6-40) and Tanjero Formation (samples, 41-113) in Smaquli area, while in the other localities, the studied part of Late Maastrichtian succession, represented by the upper part of the Tanjero Formation (in Dokan, Qala Cholan, Barzinja and Sirwan valley)

is

characterized by the following parameters: 1- The most diverse assemblage of planktonic foraminiferal species richness ranged from 45 – 55, P/B ratios from

65-80%

and Aggl/Calc

percent from 15-25% (From CF8 – CF2) Zones, with decreasing the species richness in (CF1) Zone which is being 34-27 and slightly increasing in Agglutinated/Calcareous percent to 35%, In Smaquli section (Fig. 4, 3). 2- Planktonic foraminifera species richness from 35 – 45, P/B ratios from 50-70% and Aggl/Calc percent from 15-20% with decrease in species richness

in

(CF1)

Zone

from

24-20

and

slight

increase

of

Agglutinated/Calcareous percent to 30%, In Qulka section (Fig. 4 ,4). 3- Planktic foraminiferal species richness is ranged between 35 -45, P/B ratios between 55-70% and Aggl./Calc. percent from 18-30%, with decreasing the species richness from

(CF2 &CF1) Zones from 30-22 and slightly

increasing in Aggl./Calcar. Percent 50% within the upper most part of (CF1), In Sirwan section (Fig. 4, 5). 4- Planktonic foraminiferal species richness is 25, P/B ratios are 45% and Aggl./Calc. Percent ranged between 35-40% in the lower part of Qishlagh section (sample 1-11) with decreasing in Agglu./Calc. percent 10–20 in the middle part (sample 12-33) and increasing to 35-40% in (samples 35-46) (Fig. 4 ,6). 5- Planktonic foraminifera species richness is 30, P/B ratios are 45% and Aggl/Calc percent is 23% in the lower part of Kato section (samples, 1-19) 93

Chapter Four

Depositional Environmenment and Paleoecology

with decreasing in Agglu./Calc. Percent between 15 – 20 in the middle part (samples, 23-29)

Fig (4.3): The main Foraminiferal parameters derived from the quantitative analysis with the proposed paleodepth curve in the Late Cretaceous/Early Paleocene succession in Gali section (Smaquli area)

The typical Tanjero and kolosh Formations characteristically are poor in macrofauna's exactly at Smaquli, Sirwan and Dokan area, which is abundant in 94

Chapter Four

Depositional Environmenment and Paleoecology

neritic deposits as in upper part of Tanjero Formation in Qala Cholan and Barzinja area. The planktonic assemblages of the lower part in Smaquli area from Zone (CF8) to (CF1) and (CF5) to (CF2) Zones at Dokan and Sirwan valley are characterized by high values in the percentages of planktonic foraminifera, P/B ratios, species richness, low Agglutinated percentages and general benthonic morphotypes of Upper Cretaceous/Early Paleocene Paleodepth indicators reveal deeper water bathymetry of upper bathyal

around 300-600m depth. In

Smaquli area and the outer neritic-upper bathyal around 200-400m depth in Dokan and Sirwan area, (Depending on all the above mentioned references evaluation). The paleobathymetric curve shows regular trend in their values where they exhibit high

to moderate percentages values, since the

preservation of foraminiferal species is generally good. The terminal decreases in species richness 34 starts from the base to the end of Zone CF1 (Gali section) and continued upwards till the upper most part of

Cretaceous biozone Zone CF1, where the species richness becomes

27. This decline coincides with the LA of Plummerita hantkeninoides and reaches to 20 in Qulka section and 22 in Sirwan section. The decline is also coupled with the trend of decrease in species richness, in the percentages of planktonic foraminifera

and p/b ratios. On the other hand, a slight

increase is recorded in the percentages of arenaceous morphotypes. These criteria indicate shallowing regressive phase in the end of Maastrichtian basin where the estimated water depth according to Van Der Zwaan et al.,(1990) ranges from middle to outer shelf, around 50 to 150m depth. The present paleobathymetric interpretation is further confirmed

and

sustained by the components of the cosmopolitans associated benthonic assemblage, which resembles that recorded by Van Morkhoven et al.(1986); Speijer (1994; Tjalsma and Lohmann (1983); Aubert (1975); R. Speijer, press. Comm., 2001; 95

Widmark (2000; Berggren and Widmark and Speijer 1997a;

Chapter Four

Depositional Environmenment and Paleoecology

Kaminski et al.1988; van Morkhoven et al.(1986), fold out; modified after Van Morkhoven et al.(1986),(from Alegret and Thomas 2001) (Fig 4. 2)

Fig (4.4): The main Foraminiferal parameters derived from the quantitative analysis with the proposed paleodepth curve in the late Cretaceous/Early Paleocene succession in Qulka section (Dokan area)

The planktonic assemblages of the lower part in Qishlagh section from (CF5) Zone to lower most part of (CF4) Zone (samples 1-10) characterized by low to moderate values in

(Fig 4. 6) are

planktonic foraminiferal

percentage, p/b ratios are 45, species richness 25, low to moderate 96

Chapter Four

Depositional Environmenment and Paleoecology

Agglutinated percentages 40-45 and general benthonic morphotypes of Upper Cretaceous/Early Paleocene Paleodepth indicators reveal

middle

to outer

shelf bathymetry around 100 to 200m. depth. The paleobathymetric curve shows the regular trend in its values where it exhibits low

to moderate

percentages values, since the preservation of foraminiferal species is generally good.

Fig (4.5): The main Foraminiferal parameters derived from the quantitative analysis with the proposed paleodepth curve in the late Cretaceous/Early Paleocene succession inSirwan section (Sirwan valley)

97

Chapter Four

Depositional Environmenment and Paleoecology

The remaining interval of this section is represented by thick succession 115m. of Aqra limestone Formation ,characterized by common occurrence of coral like rudists which constitute the original part of the carbonates with other great number of bivalve pelecypods, in addition to the echinoids, gastropods, brachiopods, coral and large foraminiferal assemblages with common smaller benthonic too. (Fig. 4.6) It is convenient to mention that the occurrence of Planktonic foraminifera not observed

till the end of this section except for the

lowermost few meters of this interval. It is well known that rudist growth and their nourished during late Cretaceous shallow marine quiet environment with low agitation or dynamic action of watermass within depositional environment, the bathymetry not exceeds than 30m depth. The Aqra interfingering limestone represents submerged high reefal facies relatively represent a time span of quite and shallowing within the mobile foreland basin of Tanjero trough. (AlOmari 1989, Al-Mutwali 1992, Lawa et al., 1998.) The Aqra Limestone Formation followed by 67m. of alternation of bluish white marl, marly limestone, siltstone, recrystallized fossiliferous limestone sandy limestone, with weathered friable sandstone, olive green sandstone, dark grey shale and calcareous shale. This interval characterized by continuation of the same benthonic foraminiferal assemblages of Aqra Limestone without macrofossils growth in situ ,it is characterized by increasing in agglutinated percent from 20 to 45 in the middle and upper part of this interval. The depositional environment and paleobathymetry of this unit may represent upper part of inner neritic shoal from 10 to 30m. depth. This interval characterized by no evidence of any porcelaneous foraminiferal assemblages which indicate no restriction, high agitation of watermass, and high rate of deposition

which

may

cause

the

dilution

of

planktonic

foraminiferal

survivorship. The planktonic assemblages of the lower part in Kato section from (CF4) Zone to lower most part of (CF3) Zone (Fig. 4. 7) are characterized by low to moderate values in the percentages of planktonic foraminifera, P/B ratios 98

Chapter Four

Depositional Environmenment and Paleoecology

Fig (4.6): The main Foraminiferal parameters derived from the quantitative analysis with the proposed paleodepth curve in the late Cretaceous/Early Paleocene succession in Qishlagh section (Qala Cholan area)

Between 42-45, species richness is between 25-30, low to moderate agglutinated percentages 20-30 and general benthonic morphotypes of Upper Cretaceous/Early Paleocene paleodepth indicators reveal

middle

to outer

shelf bathymetry around 100 to 200m depth. But controversy to the above mentioned conception it is appropriate to emend this abstraction because the 99

Chapter Four

Depositional Environmenment and Paleoecology

occurrence of these foraminiferal assemblages (all planktonic and most of benthonic foraminifera) are restricted to the thin beds of shale, marl and marly limestone intercalation within thick beds of interfingering Aqra Limestone Formation which is famous by its components of macro and microfossils as mentioned in Qishlagh section. Consequently the reliable bathymetry of this unit is not greater than 30m. depth with cyclical deepening during the deposition of shale or marly limestone intercalations. The Aqra Limestone Formation followed by 35m. of alternation of bedded limestone grey shale, marl, friable sandstone, marly limestone, calcareous fossiliferous sandstone sandy limestone, with detrital fossiliferous limestone and claystone. This interval characterized by little benthonic foraminiferal assemblages of larger size without macrofossils growth in situ ,it is characterized by decreasing in agglutinated percent from 20 to 10 in the upper part of this interval. The depositional environment and paleobathymetry of this unit may represent upper part of inner neritic shoal from 10 to 30m depth. This interval characterized by no evidence of any porcelaneous foraminiferal assemblages as Qishlagh section which indicates no restriction, high agitation of watermass, and high rate of deposition which may cause the dilution of planktonic foraminiferal survivorship. 4.4.2- Paleocene A progressive shallowing of depositional environment started from the Pseudoguembelina palpebra Zone (CF2) in all studied sections especially at Gali, Qulka and Sirwan section from 65.5my upward and continued to the lower Paleocene cretacea

through Plummerita hantkeninoides Zone (CF1),Guembelitria Zone

(P0),

Parvularugoglobigerina

eugubina

Zone

(Pá),

Parvularugoglobigerina eugubina-Subbotina triloculinoides Zone (P1a) and Subbotina

triloculinoides-Praemurica

inconstans

(P1b).

This

trend

of

shallowing integrated and contributed with stacking pattern of high rate sedimentation which display extreme climax rate around Cretaceous/Tertiary boundary with the rate of deposition about 100m/my. (Figs 4. 11, 12 & 13) 100

Chapter Four

Depositional Environmenment and Paleoecology

Fig (4.7: The main Foraminiferal parameters derived from the quantitative analysis with the proposed paleodepth curve in the late Cretaceous/Early Paleocene succession in Kato section (Barzinja area)

In the studied area, the nature of Cretaceous-Tertiary contact characterized by vanishing, obliteration and complete extermination of planktonic foraminiferal assemblages,

except

of

two

species(Hedbergella monmothensis

&

Guembelitria cretacea) which they turnover the K/T boundary and forming the new chain of genetic radiation and phylogenetic reconstruction of the Early 101

Chapter Four

Depositional Environmenment and Paleoecology

Paleocene

planktonic foraminifera (Liu & Olsson 1992 and Olsson et al., 2000)

consequently the biotic parameters or factors which play an important role

on

the environmental output based on quantitative analysis of planktonic foraminiferal assemblages is of little values when it is compared with qualitative investigation in the base of Paleocene age. 1-The

Early

Paleocene

episode

characterized

by

low

Planktonic

foraminiferal species richness 18 in Pá decreased to 12 species in P1b, P/B ratios are 65 in Pá and 40 in P1b, Aggl./Calc. percent ranged between 40-25in Gali section. 2- In Qulka section species richness is 14 in P1a decreased to 11 species in P1b, P/B ratios are 45 in P1a and 50

in P1b, Aggl. /Calc. percent ranged

between 30-20- . 3-Species richness is 17 in P1a decreased to 15 species in P1b, P/B ratios are 50 and Aggl. /Calc. percent is 35 in P1a and 25 in P1b in Sirwan section. The planktonic assemblages of the lower Danian in (P0) in Smaquli, and (P0 & Pá) from Dokan and Sirwan valley

are characterized by no recording

planktonic foraminiferal assemblage except for (Hedbergella monmothensis

of &

Guembelitria cretacea), in the last 25cm of (P0) at Smaquli section. Little increase in Agglutinated percent at Smaquli and Sirwan valley refers to the shallowing episode around 10-50m. (Olsson & Nyong, 1984 in Samir, 2002), (Keller, 1988; Li and Keller, 1998c: Keller and others, 2002b in Keller, 2004), (Abramovich. and Keller, 2002). Afterward the planktonic foraminiferal species richness was recognized from Smaquli, Sirwan and Dokan are 18, 17, and 14 species

respectively from (Pá, P1a), it decreased to 11, 15 and 12 in (P1b).

P/B ratios shows normal percent varied between 40 to 50% during the total interval low Agglutinated percentages around 20 to 25. These environmental parameters and general benthonic morphotypes of Upper Cretaceous/Early Paleocene Paleodepth indicators reveal shallow water bathymetry of innermiddle neritic around 50 - 70m depth. (Keller, 1988; Li and Keller, 1998c: Keller

102

Chapter Four

Depositional Environmenment and Paleoecology

and others, 2002b in Keller, 2004), (Abramovich. and Keller, 2002). (Samir, 2002),

4.5- The Nature of Maastrichtian/Paleogene boundary At Smaquli, Qulka and Sirwan valley extremely rich in microfauna especially planktonic foraminifera. High resolution biostratigraphic analysis of these sections

indicates

a

major

biotic

change

in

planktonic

foraminiferal

assemblages. Neither burrows (trace fossils) nor sedimentary structures, condensed sections, hard ground, mineralization bed of glauconitic, Iron oxide, silicate, silica spheres, microtectites have been

or any Phosphatic minerals

found at the K/T boundary. In addition, the great similarities in

the lithologic components below and above the contact line between Tanjero and Kolosh Formations, in which impossible to distinguish or to differentiate between them lithologically in the field.

The planktonic

foraminiferal biozones recorded in the studied area reveals continuous sedimentation without evidence of any hiatus (Figs 3.1-3.8) in addition to the appearance of the new lower most Danian Planktonic forams which indicate the

gradual contact at Smaquli area. These data are similar to those

identified from El Kef in Tunisia (Keller et al., 1995); Agost, Caravaca, Zumaya, in Spain (Canudo et al., 1991: Pardo et al., 1996: Molina et al., 1996, 1998); Ain Settara in Tunisia (Arenillas et al.. 2000); Caravaca S E Spain ( Smit, 2005); Egypt (Shahin, 1992), (Samir, 2002), ((Keller, 2002),(Obaidalla, 2005) and Israel (Keller ,2004). The extinction pattern of the Late Maastrichtian fauna has been a matter of controversy. In this connection, Smit (2005) studied the planktonic foraminiferal pattern of extinction across the (K/P) boundary at Caravaca SE Spain, and believed that the bolide impact event caused the extinction of all Cretaceous fauna, except for one species (G. cretacea) which considered the occurrence of Cretaceous individuals above the K/P boundary as due to reworking. Keller (1988) in Obaidalla, 2005 proposed that the 14 Cretaceous 103

Chapter Four

Depositional Environmenment and Paleoecology

species became extinct below the (K/P) boundary while l0 species survived well into the Danian sediments at El Kef (GSSP) in Tunisia, a phenomena which indicate in their opinion that the extinction is unrelated to an impact event. In the present study the available data show both gradual and sudden catastrophic extinction pattern for partially or halve number in planktonic foraminiferal species before the (K/T) boundary and complete species extinction at or near the (K/T) boundary which indicate no Cretaceous planktonic foraminiferal survivorship into the Danian except of (G. cretacea) and (H. monmothensis) in the lower most Danian. In contrast, benthonic foraminifera were not affected by major global extinction at the Cretaceous/Tertiary boundary, and as fact that could not differentiate between the Danian and Maastrichtian in the point of benthonic foraminiferal assemblage point of view (Alegret et al., 2003). In the studied area, the same document was observed and recorded, in general benthonic foraminifera were little affected during the K/T mass extinction which was distinguished by reducing the number of benthonic species at Smaquli from 1211 species at Plummerita hantkeninoides Zone (CF1) to 7 species in Guembelitria cretacea zone (P0) , then increased again upward to 11 species in Parvularugoglobigerina eugubina zone (Pá) becomes 20 species in (P1a) and lately 18 species in Subbotina triloculinoides – Praemurica inconstans Zone (P1b) (Fig. 3.8) In Qulka section (Dokan area), the number of species remains stable 12 species at the end of Plummerita hantkeninoides Zone (CF1) through Late Maastrichtian to (P0 & Pá) Earliest Danian, then increased upward to 18 species in (P1a) Parvularugoglobigerina eugubina - Subbotina triloculinoides Zone. and decreased to 12 species in Subbotina triloculinoides- Praemurica inconstans Zone (P1b) (Fig. 3.6)

104

Chapter Four

Depositional Environmenment and Paleoecology

The number of benthonic species at Sirwan valley decreased from 12 species at Plummerita hantkeninoides Zone (CF1) to 7 species in (P0 & Pá), then increased again upward to 20 species in both Parvularugoglobigerina eugubina- Subbotina triloculinoides Zone (P1a) and Subbotina triloculinoidesPraemurica inconstans Zone(P1b) (Fig. 3.2) The benthonic foraminiferal assemblage represented by calcareous tests about %80 in all studied sections, except for the lower and middle part of the Qishlagh section decreased to %60 while at the Cretaceous/Tertiary boundary, from the upper part of Pseudoguembelina palpebra zone (CF2) to (P0 & Pá) lowest Danian, there was slightly increasing in agglutinated percent to about 30-40 in all studied section (Gali, Qulka and Sirwan valley). (Figs. 4.3 - 4.5),

4.6- Method of graphical correlation

The American stratigrapher AB. Shaw devised a new technique of semiquantitative correlation of biostratigraphical sequences. Shaw's method utilizes a single stratigraphical section which is taken as the standard likely present. In the study area, the Gali section is selected as standard because it represented the most simple continuous section and unaffected tectonically by structural complications. From this section, the limit boundary of (First appearance datum event FAD and last appearance datum event LAD) for standard zonal scheme of biostratigraphic zonation utilized and recorded and

constructed in state of

total ranges of species, with particular importance being assigned to the first and last appearance of fossil species. A graph can be constructed using the data collected from all stratigraphical section. The first and last datum events of the Biozones provide points on the graph, then the best-fit line is constructed. Any Changes in the gradient or the graph (dog-legs) indicate changes in the rate of sedimentation which is observed in graphical correlation between Gali section (Smaquli area) and both Dokan and Sirwan sections (Figs 4. 8, 4. 9) which refer to low sedimentation rate in initial part on (R. fructicosa Zone) at Smaquli area, compared with highest sedimentation rate at both Qulka and 105

Chapter Four

Depositional Environmenment and Paleoecology

Sirwan sections and later one from P.hariaensis Zone to S. triloculinoides Zone (Upper Late Maastrichtian-Lower Danian), the graphical line shows best-fit line of 450 which indicate similar rate of depositions. If a best-fit line can be constructed completely, the sections can be correlated, (Sirwan and Qulka) (Fig 4.10) which show the same rate of deposition in the same geologic time from Late Maastrichtian- Early Danian. This technique provides a clear graphical method which aids in the correlation or sequences.

Fig (4.8): Graphic correlation shows the depositional rate of sediment between Smaquli and Qulka sections, Note: Change in the gradient in the early stage (dog-Leg) indicate deposition in Qulka section than Smaquli section

106

highest rate of

Chapter Four

Depositional Environmenment and Paleoecology

Fig (4.9): Graphic correlation shows the depositional rate of sediment between Smaquli and Sirwan sections. Note: Change in the gradient in the early stage (dog-Leg) indicate highest rate of deposition in Sirwan section than Smaquli section

Fig (4.10): Graphic correlation shows the depositional rate of sediment between Qulka and Sirwan sections. Note: NO Change in the gradient observed, a best-fit line constructed completely which indicate similar rate of deposition in Qulka and Sirwan section.

107

Chapter Four

Depositional Environmenment and Paleoecology

4.7- Sedimentation rate around Cretaceous/Tertiary boundary Sediments principally consist of two different components: -Allochthonous clastic or detrital sediments which are derived from land sources outside of depositional area.-Autochthonous, sediment produced in the depositional area mostly biogenic or chemically precipitated sediments. The sedimentation rates of clastic sediments are controlled mainly by the size and characteristics of the source area. Furthermore, the distances of the depositional area from the site of sediment input play a role. The sedimentation rates of sediments on siliciclastic shelf or foreland basin were proposed by several authors from low rate of deposition by 10m/ma to high rate of deposition by 100m/ma, in (Ensele, 2000, Fig, 10.3, page. 458) The magnetostratigraphy of Maastrichtian and lower Paleocene showed magnetochrons 32n to 28n (Figs 3. 12, 3.13). These paleomagnetic data are available to determine and calculate the sedimentation rates of the studied sections and establishment the chronostratigraphy of the Cretaceous/Tertiary boundary events as mentioned in previously discussed chapter three. To identify the presence of possible hiatuses, due to the non documentation of some zones and the overall poor recovery, high rate of sediment accumulation in thick interval of biozones, or thin interval of slow rate, non deposition and condensed sections, the high resolution planktonic foraminiferal biostratigraphic zonation plays an important role in determining such sedimentary rate with the aid of paleomagnetic Chron, the age and duration of each faunal event and the age of datum events achieved by several authors in the study

of high resolution biostratigraphic zonations around

Cretaceous/Tertiary boundary in different localities of the global Earth.( e.g: Berggren et al., 1995; Berggren & Norris, 1997; Li & Keller,1998a,b; Abramovich et al., 2002; Olsson et al., 2000); Keller, 2002, 2004; (Figs 3.12-13) The mean sedimentation rate or average sediment rate by biozone (m/myr) or years/meter was estimated 108

previously. In this chapter just try to

Chapter Four

Depositional Environmenment and Paleoecology

point out the general sedimentation rate of total studied stratigraphic successions from the upper part of Tanjero Formation and lower part of Kolosh Formation around K/T boundary. Based on the time scale as shown in (Figs 4.11 - 4.13) the sedimentation rate varies from zone to zone. In particular, low rates of sediment accumulations in the Gali section were observed from the base of Maastrichtian at upper most part of Globotruncana aegyptiaca Zone (CF8) to the end of Pseudoguembelina hariaensis Zone (CF3) (Fig4.11) Low to moderate rate of depositions recorded in both Qulka and Sirwan sections for Racemiguembelina fructicosa zones CF 4.and Pseudoguembelina hariaensis Zone (CF3) (Figs, 4.-12, 4.13) In the sequences above, the Pseudoguembelina hariaensis Zone(CF3), and from the base of Pseudoguembelina palpebra zone (CF2) in all three mentioned localities the sedimentation rate rapidly increased and recorded high rate sedimentation just 0.5myr below the K/T boundary to the lower Paleocene age through out the Pseudoguembelina palpebra zone (CF2, Plummerita hantkeninoides zone (CF1),Guembelitria cretacea (p0), Parvularugoglobigerina eugubina (pá), Parvularugoglobigerina

eugubina-Subbotina triloculinoides

(P1a) and Subbotina triloculinoides – Praemurica inconstans (P1b). It is worthy to mention that the sedimentation rates in all three mentioned studied sections from 65.5my to 64.5my were around 75 -100m/ma. 0.5my below and above the Cretaceous/Tertiary boundary, which reveal continuations and increasing the sediment accumulation without interruption or any gaps to be disclosed along the contact of K/T boundary. Note: The depositional rate of studied sequences in Qulka and Qishlagh sections was not introduced due to incomplete high resolution biostratigraphic zonation which was evidenced by interruption of planktonic foraminiferal assemblages and change in the environmental and depositional system.

109

Chapter Four

Depositional Environmenment and Paleoecology

Fig (4.11): Sedimentation rate of the Upper Cretaceous/Lower Tertiary Succession from Gali section (Smaquli area) plotted vs. planktonic foraminiferal zonal scheme. The age (Time) of foraminiferal datum events shown (in MY)

Fig (4.12): Sedimentation rate of the Upper Cretaceous/Lower Tertiary Succession from Qulka section Dokan area plotted vs. planktonic foraminiferal zonal scheme. The age (Time) of foraminiferal datum events shown (in MY)

110

Chapter Four

Depositional Environmenment and Paleoecology

Fig (4.13): Sedimentation rate of the Upper Cretaceous/Lower Tertiary Succession from Sirwan section

plotted vs. planktonic foraminiferal zonal scheme. The age (Time) of

foraminiferal datum events shown (in MY)

111

Chapter Five

Conclusion

CHAPTER FIVE

CONCLUSIONS

In the biostratigraphic and paleoecologic study of the Cretaceous-Tertiary succession in the studied sections at (Gali, Qulka. Qishlagh, Kato and Sirwan valley) in Sulaimani area, Kurdistan region, northeast of Iraq, the

consecutive

preference deductions manifested as the end result of this effort to apprize the summit trail which imply the following points: 1- Choosing the optimum method for preparation and separation foraminiferal test from the rock type of soft, friable, porous, and permeable rock and used for different lithologic type, e.g (claystone, shale, marl, marly limestone and limestone.

2- A detailed study includes the well description and high resolution lithologic constitution and field work investigation carried on the well exposed of the most upper part of the Upper Cretaceous/Lower Tertiary successions incorporated the upper part of Tanjero Formation in Sirwan valley, Kato, Qishlagh and Dokan section included with the lower most part of Kolosh Formation and Red Bed Series of the Early Tertiary, while in the Gali section (Smaquli area) the studied stratigraphic units include the Upper part of Shiranish Formation, ShiranishTanjero transition unit (Reddish to pale brown succession), Tanjero Formation and Kolosh Formation

and the fieldwork at different settings is presented

towards a reasonable and meaningful subdivision of the studied sections. In addition to that, the studied sections included the interfingering of Aqra Limestone unit, occurred within the upper part of Tanjero Formation in Qishlagh, Kato and Qulka sections.

3- Due to the great similarities in the lithologic characters between the two formal units of Tanjero and Kolosh Formations in the field, it is quit difficult for 112

Chapter Five

Conclusion

any geologist to observe the contact line or differentiated between them exactly at Smaquli, Dokan and Sirwan valley. Consequently, it is reliable to conclude that the two formations were sharing the same continuous depositional basin around Upper Maastrichtian/Lower Paleocene Epochs.

4- The lateral and vertical relation of reddish to pale brown succession is quite conformable with both underlying Shiranish and overlying Tanjero Formations.

5-The well exposed reddish to pale brown succession has its own special monotonous, conventional

lithologic character

differ from both underlying

Shiranish Formation and overlying Tanjero Formation, geographically extended for more than 75Km and it has mapable thickness which reaches 72m.in Smaquli Gali Gorge, with relevant feasible geologic age of Lower Maastrichtian about 2My duration. Consequently I propose the name of Smaquli Formation as a new formal lithologic unit to display an incipient effort of formation rank according to international stratigraphic nomenclature cod.

6- The planktonic foraminifera occurs continuously within the Upper Cretaceous sequences in the sedimentary succession of the studied section at Smaquli, Dokan and Sirwan valley, generally shows incessant in sedimentary sequence without any interruptions.

7- The upper most part of Kolosh Formation in Smaquli area is characterized by the attendance of five red claystone beds at the last 10 meters which start from 30cm. to 2m. respectively, and overly by Gercus Formation, the contact is seemed to be conformable by lithologic evidence of graditional change from dark grey organic rich sediments of Kolosh Formation to red, purple mudstone, sandstone, gritty marl, pebbly sandstone and conglomerates. The contact is placed on the line where the sediment colour mainly began with red lithology. 113

Chapter Five

Conclusion

Paleontologically there were no significant evidences of fossils record in this interval of lower most part of Gercus Formation in which six samples were studied for both foraminiferal and palenomorphs. Consequently it is convenient to mention that the geologic age of the Gercus Formation in Smaquli area, inferred conformable gradditional nature, and may began from the Danian (Lower Paleocene) instead of Middle Eocene age. 8- The Tanjero Formation was completely studied in Smaquli area which represented by 72m. And subdivided lithologically into three distinct units based on field observation and lithologic characters. Chronostratigraphically represents Late Maastrichtian Epoch. 9- The total number of planktonic and benthonic foraminiferal species was identified from all studied sections as follow: A - Gali section 82 planktonic species were belonging to 23 Genus in ShiranishTanjero transition unit but in Tanjero Formation 21 planktonic species were belonging to 14 Genus in Kolosh Formation, while 66 benthonic species were belonging to 38 Genus in Shiranish-Tanjero transition unit and Tanjero Formation, 50 benthonic species are belonging to 30 Genus in Kolosh Formation. B- Qulka section 53 planktonic species were belonging to 18 Genus in Tanjero Formation and 16 planktonic species are belonging to 9 Genus in Kolosh Formation, but 52 benthonic species were belonging to 36 Genus in Tanjero Formation and 43 benthonic species are belonging to 31 Genus in Kolosh Formation. C - Sirwan section 62 planktonic species were belonging to 20 Genus in Tanjero Formation and 18 planktonic species are belonging to 11 Genus in Kolosh Formation, but 58 benthonic species was belonging to 36 Genus Tanjero Formation and 52 benthonic species are belonging to 32 Genus in Kolosh Formation.

114

Chapter Five

Conclusion

D - Qishlagh section 26 planktonic species were belonging to 13 Genus in Tanjero Formation, while 42 benthonic species were belonging to 28 Genus in Tanjero Formation. E - Kato section 30 planktonic species were belonging to 14 Genus in

Tanjero

Formation, while 38 benthonic species were belonging to 25 Genus in Tanjero Formation. 10- Based on the geologic range and relative abundance of Planktonic foraminiferal species, the studied sections along (K/T) boundary are precisely divided into the numbers of biostratigraphic zones, depending on

the new

zonal scheme as high resolution biostratigraphic studies, which are quietly adequate and commonly used in low and middle latitudes. In addition to that, these biostratigraphic zones were correlated to their equivalents in and outside of the region and with world wide standard biostratigraphic zones with the aid of datum events which show the age of planktonic foraminiferal zones. The distinguished biostratigraphic zones in the studied sections are the following from the base upward. A - Gali section (Smaquli area) a1 - upper part of Globotruncana aegyptiaca Interval Zone (CF8), (Upper part of Shiranish Formation and Lower most part of Reddish to pale brown succession) (Early Maastrichtian) a2- Gansserina gansseri Interval Zone (CF7), (Reddish to pale brown succession) (Early Maastrichtian) a3 - Contusotruncana contusa Interval Zone (CF6), (Reddish to pale brown succession), (Early Maastrichtian) a4 - Pseudotextularia intermedia Interval Zone (CF5) (Reddish to pale brown succession), (Early Maastrichtian) a5 -Racemiguembelina fructicosa Interval Zone (CF4), (upper most part of Reddish to pale brown succession and lower part of Tanjero Formation) (Late Maastrichtian) a6 - Pseudoguembelina hariaensis Interval Zone (CF3), (Tanjero Formation), 115

Chapter Five

Conclusion

(Late Maastrichtian) a7 - Pseudoguembelina palpebra Interval Zone (CF2), (Tanjero Formation), (Late Maastrichtian) a8 – Plummerita hantkeninoides total range Zone (CF1), (Tanjero Formation), (Late Maastrichtian) a9 - Guembelitria cretacea Interval Zone (p0), (Kolosh Formation), Earliest Paleocene (Danian). a10 - Parvularugoglobigerina eugubina total range Zone (pá), (Kolosh Formation), Earliest Paleocene (Danian). a11 - Parvularugoglobigerina eugubina - Subbotina triloculinoides Interval Zone (P1a), (Kolosh Formation), Early Paleocene (Early Danian) a12 - Subbotina triloculinoides – Praemurica inconstans Interval Zone (P1b), (Kolosh Formation), Early Paleocene (Danian)

B - Qulka section (Dokan area) b1 – Upper part of Pseudotextularia intermedia Interval Zone (CF5) (Tanjero Formation), (Late Early Maastrichtian) b2 - Racemiguembelina fructicosa Interval Zone (CF4), (Tanjero Formation and Interfingering Aqra Limestone) (Late Maastrichtian) b3 - Pseudoguembelina hariaensis Interval Zone (CF3), (Interfingering Aqra Limestone and Tanjero Formation), (Late Maastrichtian) b4 - Pseudoguembelina palpebra Interval Zone (CF2), (Tanjero Formation), (Late Maastrichtian) b5 – Plummerita hantkeninoides total range Zone (CF1), (Tanjero Formation), (Late Maastrichtian) b6 - Guembelitria cretacea- Parvularugoglobigerina eugubina Interval Zone (p0 & pá), (Kolosh Formation), Earliest Paleocene (Danian).

b7 - Parvularugoglobigerina eugubina - Subbotina triloculinoides Interval Zone 116

Chapter Five

Conclusion

(P1a), (Kolosh Formation), Early Paleocene (Early Danian) b8 - Subbotina triloculinoides – Praemurica inconstans Interval Zone (P1b), (Kolosh Formation), Early Paleocene (Danian)

C - Sirwan section (Sirwan valley) c1 - Pseudotextularia intermedia Interval Zone (CF5) (Tanjero Formation), (Late early Maastrichtian) c2 -Racemiguembelina fructicosa Interval Zone (CF4), (Tanjero Formation), (Late Maastrichtian) c3 - Pseudoguembelina hariaensis Zone (CF3), (Tanjero Formation), (Late Maastrichtian) c4 - Pseudoguembelina palpebra Interval Zone (CF2), (Tanjero Formation), (Late Maastrichtian) c5 – Plummerita hantkeninoides total range Zone (CF1), (Tanjero Formation), (Late Maastrichtian) c6 - Guembelitria cretacea and Parvularugoglobigerina eugubina Interval Zone (p0 & pá), (Kolosh Formation), Earliest Paleocene (Danian). c7 - Parvularugoglobigerina eugubina - Subbotina triloculinoides Interval Zone (P1a), (Kolosh Formation), Early Paleocene (Early Danian) c8 - Subbotina triloculinoides – Praemurica inconstans Interval Zone (P1b), (Kolosh Formation), Early Paleocene (Danian)

D- Qishlagh section (Qala Cholan area) d1 - Pseudotextularia intermedia Interval Zone (CF5) (Tanjero Formation), (Late early Maastrichtian) d2 – Initial interval of Racemiguembelina fructicosa Interval Zone (CF4), (at lower most part of Interfingering Aqra Limestone), (Late Maastrichtian)

117

Chapter Five

Conclusion

E- Kato section (Barzinja area) e1 – Upper part of Racemiguembelina fructicosa Interval Zone (CF4), (Interfingering Aqra Limestone), (Late Maastrichtian) e2 - Pseudoguembelina hariaensis Interval Zone (CF3), (Interfingering Aqra Limestone), (Late Maastrichtian)

11– Gali, Dokan and Sirwan sections in the studied area represent the most continuous sedimentary sequences across the K/P mass extinction boundary. The planktonic foraminiferal assemblages are very rich to moderate diversified and an excellent to good state of preservation respectively. These assemblages are similar to those of EL Kef, Tunisia and other continuous K/P boundary sections.

12- It is relevant to declare that one of the results within these accessible conclusions of this dissertation will sustain the inferred assumption by AlBarzinjy 2005, which proved that the Red Bed Series and Kolosh Formation sharing the same depositional basin and having the same tectonic setting. Moreover, both are representing lateral facies change of each other, in addition to that the foreland basin of Tanjero Formation during the Cretaceous/Tertiary boundary extended laterally and transversally in northeast and occupied the area from Sirwan, Halabja, Barzinja, Qala Cholan and Sura Qalat representing proximal area which gradually changed to the Red Bed Series (Kato and Qishlagh section) as conformable boundary in a rapid subsiding costal area. While in the southwest distal area of this basin the Tanjero Formation gradually changed to the

Kolosh basin in Dokan and Smaquli area, the deeper part of

depositional environment.

13- Quantitative high-resolution biostratigraphic analysis of planktonic foraminifera at studied sections indicates that the extinction occurred over a short period of time. At Smaquli area 22 species of the Cretaceous planktonic 118

Chapter Five

Conclusion

foram became extinct below the K/T boundary at lower part or before the P. hantkeninoides zone), where as the remaining 28 species became extinct at or near the K/T boundary and (G. cretacea) with (H. monmothensis) crossed the boundary and survived into the lower most part of Danian sediments. (The occasion was applied on both Qulkqa and Sirwan sections also). This sudden extinction is a catastrophic event may contain an evidence of asteroid impact. The extinct species are from both of the large, complex and small tropicalsubtropical forms. While the survivor species are of the small, cosmopolitan and simple forms. Consequently the data on stratigraphic range chart strongly imply that the planktonic foraminiferal record across the K/T boundary transition can be explained by earth derived environmental changes and that if an extraterrestrial bolide impact occurred, its effect on marine plankton foraminifera was

of the catastrophic

character that is usually assumed, which hesitated and terminated the Cretaceous planktonic fauna in the studied area. 14- In general, benthonic foraminifera were little affected during the K/T mass extinction which was distinguished by reducing the number of benthonic species at all studied sections, at Plummerita hantkeninoides zone (CF1)

and

increased again upward in (P1a) and (P1b)

15- The planktonic assemblages of the lower part from (CF8) to (CF1) in Smaquli area and (CF5) to (CF2) at Dokan and Sirwan valley are characterized by high values in the percentages of planktonic foraminifera, p/b ratios, species richness, low Agglutinated percentages and general benthonic morphotypes of Upper Cretaceous/Early Paleocene Paleodepth indicators reveal deeper water bathymetry of upper bathyal

around 300-600m. depth In Smaquli area, the

outer neritic-upper bathyal depth around 200-400m. depth in Dokan and Sirwan area. Middle to outer neritic depth around 100-200m. lower part of Qishlagh and inner to middle neritic depth 50-100m. in lower part of Kato section.

119

Chapter Five

Conclusion

16- The terminal decrease in species richness began from the base to the end of Zone CF1 (Gali section) and continued upwards till the upper most part of

Cretaceous biozone Zone CF1, the same thing in Qulka and Sirwan

sections. The decline is also coupled with the trend of decrease in p/b ratios. On the other hand, a slight increase is recorded in the percentages of arenaceous morphotypes. These criteria indicate shallowing regressive phase in the end of Maastrichtian basin where the estimated water depth ranges from middle to outer shelf, around 50 to 150m. depth.

17- The planktonic assemblages of the lower Danian in (P0) in Smaquli area, and (P0&Pá) from Dokan and Sirwan valley characterized by no recording

are

of planktic foraminiferal assemblage

except for (Hedbergella monmothensis

& Guembelitria cretacea), in the

last 25cm of (P0) at Smaquli section. Little increase in Agglutinated percent at Smaquli and Sirwan valley refers to the shallowing episode around 10-50m.

Afterward planktic foraminiferal assemblage, p/b ratios,

Agglutinated percentages and species richness from Smaquli, Sirwan valley and Dokan in (Pá, P1a &p1b) (Early Paleocene), indicate shallow water bathymetry of inner to middle neritic around 50 - 70m. depth.

18- A graphical method of correlation constructed by using the data collected from all stratigraphical section. As indicated, low sedimentation rate in initial part on (R. fructicosa Zone) at Smaquli area compared with highest sedimentation rate at both Qulka and Sirwan sections. Later one from P.hariaensis Zone to S. triloculinoides Zone (Upper Late Maastrichtian-Lower Danian), the graphical line shows best-fit line of 450 which indicate similar rate of depositions.

19- The mean sedimentation rate or average sediment rate by biozone (m/myr) or years/meter was estimated in all studied stratigraphic successions 120

Chapter Five

Conclusion

from the upper part of Tanjero Formation and lower part of Kolosh Formation around K/T boundary. Based on the time scale, the sedimentation rate varies from zone to zone. In particular, low rates of sediment accumulations in the Gali section were observed from the base of Maastrichtian at upper most part of (CF8) to the end of (CF3).Low to moderate rate of depositions were recorded in both Qulka and Sirwan sections for CF4 .and (CF3). In the sequences above the (CF3), and from the base of

(CF2) in all

three mentioned localities, the sedimentation rate rapidly increased and recorded high rate sedimentation just 0.5myr below the K/T boundary to the lower Paleocene age through out the

(CF2,

(CF1), (p0), (pá),

(P1a) and

(P1b). It is worthy to mention that the sedimentation rates in all three mentioned studied sections from 65.5my to 64.5my were around 75 -100m/ma. 0.5my below and above the Cretaceous/Tertiary boundary, which reveal continuations and increasing the sediment accumulation without interruption or any gaps to be disclosed along the contact of K/T boundary.

121

REFERENCES Abawi, T. S. Abdel-Kireem, M. R. and Yousef G. M., 1982. Planktonic foraminiferal stratigraphy of the Shiranish Formation, Sulaimaniah- Dokan region Northeastern Iraq. Revista Espanola de Micropaleontologia, 14(1), pp.153--164. Abdel-Kireem, M. R., 1983. A study of the paleoecology and bathymetry of the foraminiferal assemblages of the Shiranish Formation (Upper Cretaceous). Northeastern Iraq. Paleogeography, Paleoclimatology, paleoecology. Vol. 43, pp. 169-180, 2 figs. Abdel-Kireem, M. R., 1986a. Planktonic foraminifera and stratigraphy of the Tanjero Formation (Maastrichtian), northeastern Iraq. Micropaleontology,vol. 32, no.3, pp.215-231. Abdel-Kireem, M. R., 1986b. Contribution to the stratigraphy of the Upper Cretaceous and Lower Tertiary of the Sulaimaniya – Dokan region, Northeastern Iraq. N. Jb. Geol. Paleont. Abh.172 (1) pp.121-139. Abdel-Kireem, M. R., 1986c. Microfaunistic parameters of the chalk Formations (Upper Cretaceous), Bahariya Oasis, Egypt. Revista Espanola De Micropaleontologia, Vol. XVIII, num.1, pp. 27-46. Abdel-Kireem, M. R. & Samir, A. M., 1995., Biostratigraphic implications of Maastrichtian-Lower Eocene sequence at the north gunna section, Farafra Oasis, Western Desert, Egypt. Marine Micropaleontology.vol. 26, pp.329-340. Abramovich, S.

Keller, G.

Adatte, T. Stinnesbek, W.

Hottinger, L.

Stueben, D. Berner, Z. Ramanivosa, B. and Randriamanantenasoa, A., 2002. Age and paleoenvironment of Maastrichtian to Paleocene of the mahajanga

Basin,

Madagascar:

a

multidisciplinary

approach.

Marine

Micropaleontology.vol. 47, pp.17-70. Abramovich, S. and Keller, G., 2003. Planktonic foraminiferal response to the Latest Maastrichtian abrupt warm event: a case study from South Atlantic DSDP Site 525A. Marine Micropaleontology. vol. 48, pp.225-249.

122

Al-Ameri, T. K., Al-Rawi, I. K. and Khoshaba, B.N., 1990. Palynology of Unit one of Suwais Red Beds, Chwarta, Northeast Iraq.

Iraqi Journal of

Science. Vol.31, No.1. Al-Barzinjy, S. T. M., 2005. Stratigraphy and basin analysis of Red Bed Series at Northeast Iraq. Kurdistan region. Unpublised Ph.D. thesis, University of Sulaimani University, 159p. Alegret, L. and Thomas, E., 2001. Upper Cretaceous and Lower Paleogene benthonic foraminifera from northeastern Mexico.Micropaleontology, vol.47, no. 4, pp. 269-316, text-figures 1-3, plates 1-10, table 1. Alegret, L. Molina, E. and Thomas, E., 2003. Benthonic foraminiferal turnover across the Cretaceous /Paleogene boundary at Agost (southeastern Spain): Paleoenvironmental inferences. Marine Micropaleontology, Vol. 48, pp. 251-279. Al-Hashimi, H. A. J. and Amer, R. M., 1985. Tertiary microfacies of Iraq. D. G. Geol. Surv. Min. Invest. puli., Baghdad, 56 pp, 17 fig., 159 pls. (S. O. M) Al-Mehaidi, H. M., 1975. Tertiary Geol.

Nappe in Mawat Range, N.E

Iraq, Jour.

Soc. Iraq, vol. 8, pp. 31-44. .

Al-Mutwali, M. M., 1983. Biostratigraphy of Kolosh Formation and the nature of its contact with upper Cretaceous rocks in Shaqlawq area. M.Sc. Thesis. University of Mosul, 154p Al-Mutwali, M. M., 1992. Foraminifera, Stratigraphy and Sedimentology of the Upper Cretaceous – Lower Tertiary in selected boreholes around Khleisia Anah- ramadi area. Unpublished PhD. thesis, University of Mosul, MoyslIraq.300p. Al-Mutwali, M. M., 1996. Planktonic foraminiferal biostratigraphy of the Shiranish Formation. Khashab well no. 1, Hemren area. Northeastern Iraq.Jour. Geol. Sci.Iraq, 7(1) pp. 129-136.

Al-Mutwali, M. M. and Abawi T. S., 2005. Stratigraphy of the Tayarat Formation (Upper Cretaceous) in selected wells, western Iraq. Rafidain Journal of Science, Vol. 16, No. 1, Geology, Special Issue. Pp 17-32. (In Arabic) Al-Mutwali, M. M. and Al-Jubouri, F. N., 2005.Litho and Biostratigraphy of Shiranish Formation (Late Campanian-Late Maastrichtian) In Sinjar area,

123

Northwestern Iraq. Rafidain Journal of Science, Vol. 16, No. 1, Geology, Special Issue. Pp 152-176. Al-Omari, F. S., 1970. Upper Cretaceous and lower Cenozoic foraminifera of the three Oil wells in northwestern Iraq. Pd.D. Thesis, university of Missouri at Rolla, 208p. Al-Omari, F. S. Al-Radwani, M. A. and Al-Mutwali, M. M., 1988. (issued 1993) Biostratigraphy of Kolosh formation at Shaqlawa area, northeastern Iraq. Journ. Geol. Soc. Iraq. Vol. 21, No.2, pp. 91-104. Al-Omari, F. S. Al-Radwani, M. A. and Lawa, F. A., 1989. Biostratigraphy of Aqra Limestone formation (Upper Cretaceous), northern Iraq. Journ. Geol. Soc. Iraq. Vol. 22, No.2, pp. 44-55. Al-Omari,

F.

S.,

1995.

(Issued

in

1997).Biostratigraphy

of

Upper

Cretaceous/Lower Tertiary in Butmah Well no.9 North West Iraq. Iraqi Geological Journal, Vol.28, no.2, pp.112-119 Al-Qayim, B. A., 1992. (issued 1993) Bioturbated rhythmite of the Shiranish Formation, type-locality,NW Iraq. Iraqi Geological Journal, Vol.25, no. I, pp.185-194 Al-Qayim, B. A., 1994. Evolution of flysch basin along the northestern margin of the Arabian plate. 5th Jordan geological conference & 3rd conference on the geology of the Middle East (Geocome III), pp 347-373. Al-Qayim, B. A., 2000. Sedimentation and tectonic environment of the Suwais Red Beds, NE-Margin of the Arabian plate-5th international on the geology of the Arab world, Egypt. Abstract book, p.112. Al-Qayim, B. A. and Al-Shaibahi, S. K., 1989. Stratigraphic anlysis of Cretaceous-Tertiary contact, Northwest Iraq.Journ. Geol. Soc. Iraq. Vol. 22, No.1, pp. 41-52. Al-Qayim, B. A. and Al-Shaibahi, S. K., 1993. Stratigraphic evolution of Paleogen sequence. Haibat-Sultan, Northeastern Iraq. Journ. Geol. Soc. Iraq. Vol. 21, No.2, pp. 51-65. Al- Rawi, I. K., 1981. Sedimentology and Petrography of Tanjero Clastic Formation From north and NE, Iraq. Unpub. Ph.D. Thesis, University of Baghdad, 295p.

124

Al- Rawi, D. and Al-hamadani, T. A., 1985. Microfacies study of Aqra limestone in the type section and Gali Zinta section and reconstruction of the paleoclimate. Journ. Geol. Soc. Iraq. Vol. 18, No.1, pp. 115-161. Al- Rawi, Y. T. and Al-Rawi, I. K., 2002. Tanjero Formation from northeast th

and

north Iraq.A turbidite example of flysch type. Proceeding of 15 Iraqi

Geological Conference, 15-18Dec.2002, Baghdad. Al- Shaibahi, S. K., 1973. Microfossils from Shiranish Formation in northeastern Iraq, Sulaimania, Asmar region. Journal of Geological Society of Iraq, vol.VI, p p 49-65. Al-Shaibahi, S. K.

Al-Qayim, B. A. and Salman, L., 1986. Stratigraphic

analysis of Tertiary Cetaceous contact, Dokan area, North Iraq, Journal of Geological Society of Iraq, vol.19, no.2.(7th IGC) p.26. Al-Shaibani, S. K., Al- Hashimi, H. A., and Ghafor, I. M., 1993. Biostratigraphy of the Cretaceous-Tertiary boundary in well Tel-Hajer No-1, Sinjar area, northwest Iraq. Iraqi Geological Journal, Vol.26, no.2, pp.77-97. Arenillas, I. Arz, J. A. Molina, E. and Dupis, C., 2000a. An independent test of planktonic foraminiferal turnover across the Cretaceouc/Paleocene (K/P) boundary at at EL Kef, Tunisia: Catastrophic mass extinction and possible survivorship .Micropalentology, vol.46, no.1, pp. 31-49. Arenillas,

I.

Arz,

J.

A.Molina,

E.

and

Dupis,

C.,

2000b.The

Cretaceous/Paleocene (K/P) boundary at Ain Settara, Tunisia: sudden catastrophic mass extinction in planktonic foraminifera. journal of foraminiferal research, v.30,no.3, pp. 202- 218. Bak, K. Bak, M. Geroch, S. and Manecki, M., 1997. Biostratigraphy and paleoenvironmental analysis of benthonic foraminfera and radiolarians in Paleocene variegated shales in the Skole unit, Polish flysch Carpathians. Annales Societatis Geologorum Poloniae, vol. 67. pp 135-154. Bakkal, K. K. Ghafor, I. M. and Kassab, I. I. M., 1993. Biostratigraphy of Shiranish Formation in Hijran area Northeastern Iraq. journal of Science and Nature,(University of Salahaddin) Vol. 2, No. 2, pp. 34-39. Bandy, O. L., 1964. Cenozoic planktonic foraminiferal zonation .Micropaleo. Vol. 10, no. 1, pp.1-17, tex.figs. 1-6.

125

Bandy, O. L., 1967. Cretaceous

planktonic foraminiferal zonation

.Micropaleo. Vol. 13, no. 1, pp.1-31, tex.figs. 1-13. Barrera, E. and Savin, S. M., 1999. Evolution of the Late Campanian – Maastrichtian marine climates and oceans. in Barrera, E. and Joohnson, C. C. eds., Evolution of the Cretaceous Ocean- climate system: Boulder, Colorado, Geological Society of America Special paper , 332, pp.245-282. Bellen, R. C. Van, Dunnington, H. V., Wetzel, R. and Morton, D., 1959. Lexique Stratigraphique, Interntional. Asie, Iraq, vol. 3c. 10a, 333 p. Berggren, W. A. and Miller, K. G., 1988.

Paleogene tropical planktonic

foraminiferal biostratigraphy and magnetobiochronology. Micropaleontology. Vol. 34, No. 4, pp. 362-380. Berggren, W. A., Kent, D. V., Swisher, III, C. C. and Aubry, M.-P., 1995. A revised Cenozoic geochronology and chronostratigraphy in Berggren, W. A. and Norris, R. D. 1997. Biostratigraphy, phylogeny and systematics of Paleocene trochospiral planktonic foraminifera. Micropaleontology, vol.43, supplements. 1, pp. 1-116, text figures 1-17, plates 1-16, tables 1-5, and appendix 1. Berggren, W. A. and Norris, R. D., 1997. Biostratigraphy, phylogeny and systematics

of

Paleocene

trochospiral

planktonic

foraminifera.

Micropaleontology, vol.43, supplements. 1, pp. 1-116, text figures 1-17, plates 1-16, tables 1-5, and appendix 1. Blow, W, H., 1979. The Cenozoic Globigerinidae, Vol. 1-3, Leiden, E. J.,Brill, 1413p., 264pls. Boersma, A., 1984a. Cretaceous-Tertiary planktonic forams from the south Atlantic.Walvis Ridge area, deep Sea Drilling Project leg 74.Init. Rep.DSDP 74, 501-523. Bolli, H. M., 1966. Zonation of Cretaceous to Pliocene marine sediments based on planktonic foraminifera. Bol. Inform. Asoc. Vonezolana Geol. Min. Ret .En., vol. 9, no.1, pp. 3-32, 4 tables. Bolton, C. M. G., 1958. The geology of Ranya area. Site Inv Co. Unpubl. Report, SOM. Library. Baghdad.

126

Boltovskoy, E. Watanabe, S. Totah, V. I. and Ocampo, J. V., 1992. Cenozoic

benthonic

foraminifers

of

DSDP

Site

548

(North

Atlantic).Micropaleontology, vol. 38, no. 2, pp. 183-207, plates 1-4, text figs 15, tables 1-4, appendix 1. Boltovskoy, E. Watanabe, S., 1993. Cenozoic monothalamous foraminifers from DSDP Site 525 (southern Atlantic) Micropaleontology vol. 37, no.1, pp. 127, plates 1-7, text figures 1-4, tables 1-4. BouDagher-Fadel. M. K, Banner. F. T, and Whittaker. J. E., 1997. The Early evolutionary history of planktonic foraminifera. Chapman and Hall. London. 289 p., 15 Figs., 52 plates. Brohi, i. A., 1994. Late Cretaecous and Early Tertiary benthonic foraminiferal Biostratigraphy in Khuzdar District, Balochistan, Pakistan, with Special reference to the Influence of the Tethyan Sea Closure. Joun. Sci. Hiroshima. Univ., Ser. Vol.10, No.1, pp.25-81. Buday, T., 1980. Regional Geology of Iraq: Vol. 1, Stratigraphy, I.I.M Kassab and S.Z. Jassim (Eds) D. G. Geol. Surv. Min. Invest. Publ. 445p. Buday, T. and Jassim, S. Z., 1987. The Regional geology of Iraq: Tectonism, Magmatism and Metamorphism. I. I. Kassab and M.J. Abbas (Eds), Baghdad, 445 p. Canudo, J. I. Keller, G. and Molino, E., 1991. Cretaceous/Tertiry boundary extinction pattern and faunal turnover at Agost and Caravaca, S.E.Spain. Marine Micropaleontology .vol, 17. pp, 319-341. Caron, M., 1985. Cretaceous planktic foraminifera. In BOLLI, H.M., SAUNDERS

, J.B. and PERCH-NIELSEN, K.,(Eds) Planktonic

Stratigraphy, pp 17-87., 37 figs. Cambridge Univ. Press. Chacon. B. and Martin-Chivelet. J., 2005. Major Paleoenvironmental changes in the Campanian to Paleocene sequence of Caravaca (Subbetic Zone, Spain) journal of Iberian Geology 31 (2) pp 299-310. Chungkham, P. and Jafar, S. A., 1998. Late Cretaceous (SantonianMaastrichtian) integrated Cocolith- Globotruncanid Biostratigraphy of pelagic

127

limestone from the accretionary prism of Manipur, northeastern India. Micropaleontology, vol. 44, no. 1, pp. 69-83. Ditmar, V.

and Iraqi Soviet team., 1971. Geological conditions and

hydrocarbon prospects of the republic of Iraq, northern and central part.Technoexport report. INOC Library, Baghdad. D, Hont, S. and Keller, G., 1991. Some patterns of planktonic foraminiferal assemblage

turnover

at

the

Cretaceous/Tertiary

boundary.

Marine

Micropaleontology .vol, 17. pp, 77-118. Dunnington, H. V., 1955. The Tertiary – Cretaceous boundary problem in N. Iraq. No IR/ HVD/ 611. Baghdad. INOC Library, Un published report. Pp.1-66, figs1-3. Dunnington, H. V., 1957. The Paleocene –Cretaceous unconformity at Aqra. Un published report.ivo. IR/ MUD /691. INOC Library.Baghdad, Einsele, G., 2000. Sedimentary basins, Evolution, Facies and Sediment Budget. Springer-Verlag, Berlin, Heidelberg, New York with 354 figures. El-Dawy, M. H., 2001. Paleocene benthonic foraminiferal Biostratigraphy and paleobathymetry in the sections between El Sheikh Fadl and Ras Gharib, Eastern Desert, Egypt. Micropaleontology, vol. 47, no.1, pp. 23 - 46, textfigures1-8, plates 1-3, Elnady H. and Shahin A., 2001. Planktonic Foraminiferal biostratigraphiy and paleobathymetry of the Late Cretaceous – Early Tertiary succession at northeast Sinai, Egypt. Egypt. Jour. Paleontol., Vol. 1, pp. 193-227. El-Naggar, Z, R., and Ashour, M. M., 1983. Microbiostratigraphic analysis of the Late Cretaceous - Early Paleocene successions in Egypt (typified by the Dakhala, Nile vally and Red sea coast sections) Proceed. Lst. Jord. Geol. Conf. (1982, Amman) pp.112-180, pls. 1-17, figs. 1-3. El-Nakhal, H. A., 1983. The occurance of the foraminiferal Genus Rugoglobigerina in the Late Cretaceous succession of Kuwait. Journ. Of Geol. Soc.Iraq. Vol. 16-17. pp. 149-183. El-Nakhal, H. A., 1984. Kassabella, anew Late Cretaceous planktonic foraminiferal Genus with meridional rogosity.Journal of foraminiferal research, Vol. 14, no.2, pp.140-141.

128

Faris, M., 1984. Biostratigraphy of the Upper Cretaceous-Lower Tertiary succession

of

Duwi

Range,

Quseir

district,

Egypt.Revue

De

Micropaleontolocie, Vol. 27, No. 2, pp. 107-112. Faris, M., 1985. Stratigraphy of the Late Cretaceous-Early Tertiary sediments in the Ghanima and Amur sections, Kharga area, Egypt.Newsl. stratigr.vol.14, no.1, pp. 36-47. Fluegeman, Jr., R. H. Berggren, W. A. and Briskin, M., 1990.Paleocene benthonic foraminiferal biostratigraphiy of the eastern Gulf Coastal Plain. Micropaleontoloy, Vol. 36, No. 1, pp. 56-64. Ganssen, G. M. and Kroon, D., 2000. The isotopic signature of planktonic foraminifera

from

NE

Atlantic

surface

sediment: implication

for

the

reconstruction of past oceanic conditions.Journal of Geological Society, London, Vol.157, pp. 693-699. Georgescu, M. D., 1996. Santonian –Masstrichtian planktonic foraminifers (Globigerinelloididae, Rugoglobigerinidae)

Hedbergellidae, in

the

Romanian

Globotrucanidae black

Sea

and offshore.

Micropaleontology.vol. 42, no.4, pp 305- 333, text-figures 1-7, plates 1-12. Georgescu, M. D., 2002. An Interactive Guide to Planktonic Foraminifera; A. Cretaceous taxa. Published from Web. www.http://Services.chronos/guide plankforam/index.htm. , An HTmL -based illustrated guide to the taxonomy and descriptive morphology of Cretaceous planktonic foraminifera. Ghafor, I. M., 1988. Planktonic foraminifera and Biostratigraphy of the Aaliji Formation and the nature of its contact with the Shiranish Formation in Well Tel- Hajar No.1, Sinjar area , Northwestern Iraq. Unpublised MSc. thesis, University of Salahaddin-Iraq. 206 p. Ghafor, I. M. and Kareem, K. H., 1999. Biostratigraphy of Upper part of the Kolosh Formation from Sartaq-Bamo Northeastern Iraq.JDU (Sci)-Special issue: The first Scientific Conference of Dohuk University, Vol. 2, No. 4. pp, 493-510. Ghlis, M. and Bellier, et Jean-Pierre., 1989. Comparative distribution of planktonic foraminifera and calcareous nanofossils in the Upper most

129

Cretaceous of the south Constantine area: a framework for Algeria. Revue de Micropaleontologie Vol. 32, no, 4. pp. 261-276. Govindan, A. Ravindran, C. N. and Rangaraju, M. K., 1996. Cretaceous stratigraphy and planktonic foraminifera Zonation of Cauvery Basin, Soyth India. Memoir Geological Society of India. No.37, pp. 155-187. L Roma Rao Volume, Cretaceous stratigraphy and Paleoenvironment. Ashok Sahni Editor. Gradstein, F. M, Kaminski, M. A. and Berggren, W. A., 1988. Cenozoic foraminiferal Biostratigraphy of the central North Sea. Abh. Geol. B.-A. Band. 41, pp 97-108, with 2 figures and 2 ntables. Gradstein, F. M, Kristiansen, I. K. Loemo, L. and Kamniski, M. A., 1992. Cenozoic foraminiferal and dinoflagellate cyst Biostratigraphy of central North Sea. Micropaleontology vol.38, no.2, pp. 101-137. Gradstein, F. M, Kamniski, M. A. Berggren, W. A. Kristiansen, I. L. and D, Iorio, M. A., 1994. Cenozoic biostratigraphy of the North Sea and Labrador Shelf. Micropaleontology , vol.40, supplement for 1994, pp. 1-152, plates 1-22, text figures 1-40, tables 1-17, & A1-A5, appendices 1-4. Gradstein, F. M. and Backstrom, S., 1996. Cainozoic Biostratigraphy and Paleobathymetry, northern North Sea and Haltenbanken. Norsk Geologisk Tidsskrift, Vol. 76, pp. 3-32. Oslo. Gradstein, F. M and Kamniski, M. A., 1997. New species of Paleogene deep-water agglutinated foraminifera from the North Sea and Norwegian Sea. Annales Societatis Geologorum polonoae. Vol.67: pp. 217-229. Gradstein, F. M. Ogg. J. G. Smith, A. G. Bleeker, W. And Lourens, L. J., (2004). Anew Geologic Time Scale, with special reference to Precambrian and Neogene. Episodes, Vol. 27, No. 2, pp. 83-100. Grafe, K. U., 2005. Late Cretaceous benthonic foraminifera from the BasqueCantabrian Basin, Northern Spain. Journal of Iberian Geology, vol. 31, no. 2, pp. 277-298. Hammoudi, R, A., 2000. Planktonic foraminiferal biostratigraphy of the Shiranish Formation (Upper Cretaceous) in Jambur well no.13 Northern Iraq.Raf.Jour.Sci. vol.11, No. 4, pp. 50-58

130

Houston, R. M. Huber, B. T. and Spero, H. J., 1999. Size related isotopic trend

in

some

Maastrichtian

planktonic

foraminifera:

methodological

comparisons, intraspecific variability, and evidence for photosymbiosis. Marine Micropaleontology, 36, pp.169-188.

Hradecka, L. Lobitzer, F. O. Savabenicka, L. and Svobodova, M., 1999. Biostratigraphy and Facies of selected Exposures in the Grunbach-Neue Welt Gosau-Group (Coal bearing Series, Inoceramus-Marl and ZweiersdorfFormation, Late Cretaceous and Paleocene, Lower Austria): Abhandlungen der Geologischen Bundesanstalt, Band 56/2, pp.519- 551. Huber. B. T., 1990. Masstrichtian planktonic foraminifer biostratigraphy of the Maud Rise (WeddellSea, Antarctica): ODP Leg 113 Hole 689B and 689 C. proc. ODP, and Sci. Results 113,489-514. Huber. B. T., 1992. Paleobiogeography of Campanian – Maastrichtian foraminifera in the southern high latitudes. Paleogeogr., Paleoclimat., Paleoecol. 92,325-360. Huber. B. T. and Boersma, A., 1994. Cretaceous origination of Zeauvigerina and its relationship to Paleocene biserial planktonic foraminifera. Journal of Foraminiferal research, vol. 24, no. 4, pp. 268-287. Hudson, J. D., 1998. Duscution on the Cretaceous –Tertiary biotic transition. Journal of geological sosity, London, vol. 155, pp. 413-419. Hulsbos, R. E. Kroom, D. Jansen, H. S. M. and van Hinte, J. E., 1989. Lower Eocene benthonic foraminifera and Paleoenvironment of the outer Voring Plateau, Norwegian Sea (DSDP Site 338) Micropaleontology, Vol. 35, no.3, pp. 256-273, pls 1-3, Hunter, R. S. T. Arnold, A. J. and Parker, W. C., 1988. Evolution and homeomorphy

in

the

development

of

the

Paleocene

planorotalites

pseudomenardii and the Miocene Globorotalia (Globorotalia) margaritae lineages. Micropaleontology, vol.34, no.2, pp. 181-192. Jacob, V. S., 1978 Ms. Biostratigraphy and age determination of upper Cretaceous rocks (section 2) Dohuk area, North Iraq. S.O.M. (D.G.Geol. Surv. Min. Invest.) Library Baghdad.

131

James, G. A. and Wynd, J. G., 1965. Stratigraphic nomenclature of Iranian Oil Consurtium agreement area.AAPG Bull., Vol. 49, No. 12, pp.2182-2245, Figs. 98, Table.1. Tulso, Oklahoma Jassim, S. Z and Goff, J, C., 2006. Geology of Iraq. Published by Dolin, Brague Moravian Museum, Berno. 345p. Jaza, I. M., 1992. Sedimentary facies analysis of the Tanjero Formation in Sulaimaniya District, NE-Iraq. Unpubl. M. Sc. Thesis, Salahaddin University, 121p. Jenkins, D. G. and Murray, J. W., 1981. Stratigraphic atlas of fossil foraminifera. Ellis Horwood limited publ. 310 p., 48 Figs., 66pls. Jones, G. D., 1988. A paleoecological model of Late Paleocene flysch-type agglutinated foraminifera using the paleoslope transect approach, Viking Graben, North Sea. Abh. Geol. B.-A. Band 41, pp. 143-153. With 5 figures and 2 plates. Kaddouri, N., 1989. Stratigraphy of the Mesozoic and Cenozoic sediments in Sinjar depression. . Journ. Geol. Soc. Iraq. Vol. 22, No.2, pp. 35-43. Kaminski, M. A. Gradstein, F. M. Berggren, W. A. Geroch, S. and Beckmann J. P., 1988. Flysch type agglutinated foraminiferal assemblages from Trinidad: Taxonomy, stratigraphy and Paleobathymetry. Abh. Geol. B. A. Band. 41, pp. 155-227, with 8 figures, 10 plates and 4 tables. Kaminski, M. A. and Crespo de Cabrera, S., 1999. Anew species of primitive Reticulophragmium (foraminifera) from the Paleocene Vidono Formation of northeastern Venezuela. Annales Societatis Geologorum Poloniae, vol. 69, pp. 189-193. Karim, K. H., 2004. Basin analysis of Tanjero Formation in Sulaimaniya area, NE-Iraq. Unpublised Ph.D. thesis, University of Sulaimani University, 135p. Karim, K .H., 2006.Environment of Tanjero Formation

as inferred from

sedimentary structures, Sulaimanyia area, NE-Iraq. JAK, Vol.4, No.1.pp. 1-18. Karim, K.H and Surdashy, A. M., 2005a. Paleocurrent analysis of Upper Cretaceous Foreland basin: a case study for Tanjero Formation in Sulaimanyia area, NE-Iraq, , Journal of Iraqi Science, Vol. 5, No.1, pp.30-44.

132

Karim, K. H. and Surdashy, A. M., 2005b. Tectonic and depositional history of Upper Cretaceous Tanjero Formation in Sulaimaniya area NE-Iraq. JZS, Vol.8, No.1. pp. 47-62. Karim, K.H. and Surdashy, A. M., 2006. Sequence stratigraphy of Upper Cretaceous

Tanjero Formation in Sulaimaniya area, NE-Iraq. KAJ, Vol.4.

No.1.pp. 19-43. Karim, K.H. Sharbazheri, K. M. and Amin, B. M., 2007. Stratigraphic study of the contact between Kometan and Shiranish formation (Upper Cretaceous) Sulaimaniya Governorate, Kurdistan Region, NE- Iraq. Journal of geological society of Iraq Vol.39, No.1 (in press) Karim, S. A., 1975. Biostratigraphy of the Red Bed Series, Chwarta, NE-Iraq. Jour. Geol. Soc. Iraq, special issue, pp.147-156. Karim, S. A. and Jassim. S. Z., 1988. (issued in 1993) Biostratigraphy and environmental reconstruction of the Paleocene Phosphatic sequence, Western Desert, Iraq. Journ. Geol. Soc. Iraq. Vol. 21, No.2, pp. 129-151. Kassab, A, S. and Keheila, E. A., 1994. Paleocene Biostratigraphy and sea level change of the Northern Eastern Desert of Egypt. Newsl. Stratigr. 31 (2), pp.85-100.Berlin. Stuttgart. Kassab, I. I. M., 1972. Ms. Micropaleontology of Upper Cretaceous –Lower Tertiary of north Iraq . Univ. london, Phd. Thesis, 310 p, 29pls, 18text-figes., 14 charts. Kassab, I. I. M., 1974a. The genus Heterohelix (Foraminiferida) from Northern. Iraq. Journal of Geological Society of Iraq, vol.VII, pp. 75-94 Kassab, I. I. M., 1974b., Biostratigraphy of Upper Cretaceous – Lower Tertiary of

North Iraq, v.1, Colloque Africaia de micropaleontology- Tunis.pp 277-325.

Kassab, I. I. M., 1975a. Globotruncana falsocalcarata Kerdany and Abdelsalam from northern Iraq. Micropaleontology, vol.21, no.3, pp. 346-351,2 pls,2 figs. Kassab, I. I. M., 1975b. Biostratigraphic study of the subsurface Upper Cretaceous – Lower Tertiary of Well Injana No. 5, Northestern Iraq. Journal of Geological Society of Iraq, Special issue, pp.181-199,2 pls, 5 figs.

133

Kassab, I. I. M., 1975c. Planktonic foraminifera range in the type Tanjero Formation (Upper Campanian-Maastrichtian) of N. Iraq. Journal of Geological Society of Iraq, vol.8, pp.73-86, 2figs. Kassab, I. I. M., 1975d. The genus Globigerinelloides from Northern. Iraq. Journal of Geological Society of Iraq, vol.8 , pp. 8-105. Kassab, I. I. M., 1976a. Planktonic foraminiferal ranges in the type Kolosh Formation (Middle-Upper Paleocene) of NE Iraq. Journal of Geological Society of Iraq, vol.IX, pp. 54-99. 30 text- figs., 4 pls. Kassab, I. I. M., 1976b. Some Upper Cretaceous planktonic foraminiferal genera from northern Iraq. Micropaleontology, Vol .22, no.2, pp.215-238, pls.14. Kassab, I. I. M., 1978b. Planktonic foraminiferal of the subsurface Lower Tertiary of northern Iraq. Journal of Geological Society of Iraq, vol.11, pp. 119159. 7 pls, 5 figs. Kassab, I. I. M. Al-Omari, F. S. and Al- Safawee, N. M.,

1986. The

Cretaceous – Tertiary boundary in Iraq (represented by the subsurface section of Sasan well No.1, N.W. Iraq) Journal of Geological Society, Iraq, vol.19, No.2, pp.129-167. Keller, G., 1988.

Extinction survivorship and evolution of planktonic

foraminifera across the Cretaceous/Tertiary boundary at El Kef, Tunisia: Marine Micropaleontology. vol. 13, pp. 239-263. Keller, G., 1996. The Cretaceous – Tertiary Mass Extinction in planktonic foraminifera: Biotic Constraints for catastrophe Theories. Cretaceous –

Tertiary Mass Extinction: Biotic and Environmental Changes.by Norman MacLeod and Gerta Keller, W.W Norton Company, New York- London, pp. 4984. Keller, G., 2001. The end-Cretaceous mass extinction in the marine realm: year 2000 assessment: Planetary and Space Science, V. 49, pp. 817-830. Keller, G., 2002. Guembelitria-dominated Late Maastrichtian planktonic foraminiferal assemblage mimics early Danian in central Egypt. Marine Micropaleontology.vol. 47, pp.129-167.

134

Keller, G., (2004). Low diversity, Late Maastrichtian and Early Danian planctonic foraminiferal assemblages of the eastern Tethys. Journal of Foraminiferal Research, vol.34, no, 1, p.49-73. Keller, G. Li, L. and Maclleod, N., 1995. The Cretaceous/ Tertiary boundary stratotype section at El Kef, Tunisia: how catastrophic was the mass extiniction? Paleogeography. Paleoclimatology. Paleoecology. 199, pp 221254. Khalil H. and Mashaly S., 2004. Stratigraphy and stage boundaries of the Upper Cretaceous and Lower Paleogene

succession in Gabal Musaba

salama area ,Southwestern Sinai Egypt. Egypt. Jour. Paleont. Vol.4, pp.1-38. Kuhnt, W. and Moullade, M., 1991. Quantitative analysis of Upper Cretaceous abyssal agglutinated foraminiferal distribution in the north Atlantic –paleoceanographic implications. Revue De Micropaleontologie, Vol. 34, no.4, pp. 313- 349. Kuhnt, W., 1990. Agglutinated foraminifera of western Mediterranean Upper Cretaceous pelagic limestones (Umbrian Spennines, Italy, and Betic Cordillera, Southern Spain). Micropaleontology. vol. 36, no. 4, pp. 297-330, 6 pls. Kuhnt, W. and Kaminski, M. A., 1997.Cenomanian to Lower Eocene DeepWater

agglutinated

foraminifera

from

the

Zumaya

section, Northern

Spain.Annales Societatis Geologorum Poloniae, vol. 67, pp. 257-270. Lawa, F.A. Al-Karadakhi, A. I, Ismail, K. M., 1998. An interfingering of the Upper Cretaceous rocks from Chwarta-Mawat Region (NE-Iraq). Iraqi Geol. Journal, vol.31, no.2. Li, L. and Keller, G., 1998a. Maastrichtian climate, productivity and faunal turnover in planctonic foraminifera in South Atlantic DSDP sites 525A and 21. Marine Micropaleontology. vol.33, pp.55-86. Li, L. and Keller, G., 1998b. Diversification and extinction in Campanian Maastrichtian planktonic foraminifera of northwest Tunisia. Ecol. Geol. Helv.,91:pp 75-107. Lirer F., 2000 . A new technique for retrieving calcareous microfossils from lithified lime deposits. Micropaleontology , Vol. 46, no. 4, pp.365-369.

135

Liu, C. and Olsson, R. K., 1992. Evolutionary radiation of microperforate planktonic foraminifera following the K/T mass extinction event. Journal of foraminiferal research, vol.22, no. 4, pp 328-346. Liu, C. and Olsson, R. K., 1994. On the origin of Danian normal perforate planktonic foraminifera from Hedbergella. Journal of foraminiferal research, vol.24, no. 2, pp 61-74. Liu, C. Browning, J. V. Miller, K, G. and Olsson, R. K., 1997. Upper Cretaceous to Miocene planktonic foraminiferal Biostratigraphy: Results of leg 150x, The NewJersey costal plain drilling project. Miller, K, G. and Snyder, S, W, (Eds) Proceeding of the Ocean drilling program, Scientific Resylts, Vol.150X, pp. 111-127. Loeblich, A. R. and Tappan, H., 1988. Foraminiferal genera and their Classification.Van Norstrand Reinhold Co., New York, 970 p. with 847 plates. Longoria,J. F., 1984. Cretaceous biochronology from the Gulf of Mexico region based on planktonic microfossils.Micropaleontology, vol. 30, no.3, pp.225-242. Longoria, J. F. and VonFeldt, A. E., 1991. Taxonomy, phylogenetics and biochronology of single-keeled globotruncanids (Genus Globotruncanita Reiss). Micropaleontology, vol. 37, no.2, pp197-243. Luger, P., 1988. Campanian to Paleocene agglutinated foraminifera from fresh water influenced marginal marine (Deltaic) sediments of southern Egypt. Abh. Geol. B.-A. Band 41, pp. 255-263. With 3 figures and 2 plates. Luning, S. Kuss, J. Bachmann, M. Marzouk, A. M. and Morsi, A. M., 1998. Sedimentary response to basin inversion: Mid Cretaceous- Early Tertiary Preto syndeformational deposition at the Areif El Naqa anticline (Sinai, Egypt) Institut fur palaontologie der Universitat Erlangen-Nurnberg. Facies. 38, pp.103- 136, pl. 35-37, 12 figs. Ly, A. and Kuhnt, W., 1994. Late Cretaceous benthonic foraminiferal assemblages of the Casamance shelf (Senegal, NW Africa) indication of the Late Cretaceous oxygen minimum zone.Revue De Micropaleontologie, vol. 37, no. 2, pp. 49-74.

136

MacLeod,

N.,

1996.

Nature

of

the

Cretaceous-Tertiary

Planktonic

Foraminiferal record: Stratigraphic Confidence Intervals, Signor-Lipps Effect, and Patterns of Survivorship. Cretaceous – Tertiary Mass Extinction: Biotic and Environmental Changes.by Norman MacLeod and Gerta Keller, W.W Norton Company, New York- London, pp. 85-138. Maestas, y. Macleod, K. G. Douglas, R. Self-Trail J. and Ward, P. D., 2003. Late Cretaceous Foraminifera, Paleoenvironments, and Paleoceanography of the Rosario Formation, San Antonio Del Mar, Baja California, Mexico. Journal of Foraminiferal Research, V.33, No. 3, pp. 179-191, Mancini, E. A., 1984. Biostratigraphy of Paleocene strta in southwestern Alabama. Micropaleontology, Vol. 30, No. 3, pp. 268-291. Martines, R. J. I., 1989. Foraminiferal biostratigraphy and paleoenvironments of

the

Maastrichtian

Colon

mudstone

of

northern

South

America.

Micropaleontology. vol. 35, no. 2 pp.97-113. Pl. 1. Masters,

B.,

1977.

Oceanic

Micropaleontology.

Mesozoic

planktonic

foraminifera. A. T. S. Ramsay (Edit) Academic press. London. Vol.1, pp 301731., 7 Tables. 146 Figs., 58 pls Miller, K. Gradstein, F. M. and Berggren, W. A., 1982. Late Cretaceous Early Tertiary agglutinated benthonic foraminifera in the Labrdor Sea. Micropaleontology, vol. 28, no.1, pp 1-30, pls. 1-3. Minas, H. A. A., 1997. Sequence stratigraphic analysis of the Upper Cretaceous succession of Central and Northern Iraq. Unpubl. Ph. D. Thesis, Univ. Baghdad.188p. Molain, E. Algret, L. Arnellas, I. and Arz, J.A., 2005. The Cretaceous / Paleocene boundary at the Agost section revisted: Paleoenvironmental reconstruction

and mass extinction pattern. Journal of Iberian Geology .vol.

31(1).2005.pp, 135-148. Molina, E. Arenillas, I. and Arz, J. A., 1996. The Cretaceous / Tertiary boundary mass extinction in planktonic foraminifera at Agost, Spain. Revue de Micropaleontologie, vol.39, pp. 225-243.

137

Molina, E. Arenillas, I. and Arz, J. A., 1998. Mass extinction in planktonic foraminifera at the Cretaceous / Tertiary boundary in subtropical and temperate latitudes:Bulletin Societe geologique de France, vol.169, no. 3, pp. 351-363. Morlotti, E., 1988. Late Cretaceous flysch-type agglutinated foraminifera from the northern Italian Apennines. Abh. Geol. B.-A. Band 41, pp. 265-285. Munim, A. A., 1976 MS. Upper Cretaceous and Lower Tertiary planktonic foraminifera of North Iraq, Dohuk area, Ustredni Ustav Geol .Praha. S.O.M. Unpubl. Report. Baghdad, 57 pp, 15 pls, 2 figs. Munim, A. A., and Said V. K., 1979. Micropaleontology and larger forams of the Upper Cretaceous and Tertiary sediments of Arbil-Shaqlawa-Koisinjaq, Kaidr

area,

North

Iraq,

Direct.

General.

Geology.

Surv.

&

Mines.

Invest.Paleont. Dept. Baghdad. Unpublished.Rep.pp.1-109. Neagu, TH., 1987. White chalk foraminiferal fauna in southern Dobrogea (Romania). Revista Espanola De Micropaleontologia, Vol. XIX, Num. 2, pp. 281-314. Nederbragt, A. J., 1991. Late Cretaceous biostratigraphy and development of Heterohelicidae (planktonic foraminifera).Micropaleontology. Vol. 37, No.4, pp. 329-372. Nomura, R., 1995. Paleogene to Neogene deep-sea paleoceanography in the eastern Indian Ocean: Benthonic Foraminifera from ODP Site 747,757 and758.Micropaleontology, vol. 41, no.3, pp. 251-290, text-figures 1-17, plates 1-4, tables 1-2, appendices 1-4. Norris, R. D., 1992. Umbilical structures in Late Cretaceous Planktonic foraminifera. Micropaleontology, vol.38, no.2, pp 165-181. Obaidalla, N. A., 2005. Complete Cretaceous/Paleogene (K/P) boundary section at Wadi Nukhul, southwestern Sinai, Egypt: inference from planktonic foraminiferal biostratigraphy. Revue de Paleobiologic, Geneve (2005) Vol. 24. (1):pp 201-224.

138

Olsson, R. K. Hemleben, C. Berggren, W. A. Huber, B. and Members of Paleogene planktonic foraminifera working group., 2000. Paleocene

Planktonic

Atlas of

Foraminifera.

http://services.chronos.org/foramatlas/pages/home.htm. 281p, with 66 plates, 2 charts.and 29 paleogeographic mapes. Olsson, R. K. Hemleben, C. Berggren, W. A. and Liu, C., 1992. Wall texture classification of planktonic foraminifera Genera in the Lower Danian. Journal of foraminiferal research, vol, 22. no.3, pp, 195-213. Olsson, R. K. Wright, J. D. and Miller, K. G., 2001.Paleobiogeography of Pseudotextularia elegans during the latest Maastrichtian global warming event. Jour.of foram. Research, vol, 31. no.3, pp, 275-282. Oszczypko, N. Malata, E. Bak, K. Kedzierski, M. and Oszczypko-Clowes, M., 2005. Lithostratigraphy and Biostratigraphy of the Upper Albian – Lower/Middle Eocene flysch deposits in the bystrica and Raca subunits of the Magura Nappe; Western flysch Carpathians (Beskid Wyspowy and Gorce Ranges, Poland). Annales societatis Geologorum Poloniae, vol.75, pp. 2769.with 28 figs. Pardo, A. Ortiz, N. and Keller, G., 1996. Latest Maastrichtian and Cretaceous –Tertiary Boundary Foraminiferal Turmover and Environmental Changes at Agost, Spain. Cretaceous – Tertiary Mass Extinction: Biotic and Environmental Changes. by Norman MacLeod and Gerta Keller, W.W Norton Company, New YorkLondon, pp. 139-171. Pearson, P. N., 1998. Evolutionary Concepts in Biostratigraphy. Unlocking the stratigraphical record: Advanced in Modern Stratigraphy .Edited by P. Doyle and M. R. Bennett, John Wiley & Sons Ltd. Petrizzo, M. R., 2002. Paloceanographic and paleoclimatic inferences from Late Cretaceous planktonic foraminiferal assemblages from the Exmouth Plateau

(ODP

Site

762

and

763,

Micropaleontology, vol. 45, pp. 117-150.

139

eastern

Indian

Ocean)

Marine

Petters, S. W. EL-Nakhal, H. A. and Cifelli, R., 1983. Costellagerina, A new Late Cretaceous Globigerina Foraminiferal Genus. Journal of Foraminiferal Research, vol.13, no.4, pp. 247-251. Poag, C. W. and Commeau, J. A., 1995. Paleocene to Middle Miocene planktonic foraminifera of the southwestern Salisbury embayment, Virgenia and Maryland: Biostratigraphy, allostratigraphy, and sequence stragraphy. Journal of Foraminiferal Research, vol.25, no.2, pp.134-155. Postuma. J, A., 1971. Manual of planktonic foraminifera. 5: Mesozoic Planktonic Foraminifera. A world-wide review and anlysis. Elsevier Publ. Co., Amsterdam. 420p, 24 Figs., 162pls. Premoli Silva, I, and Sliter, W, V., 1981. Cretaceous planktonic foraminifera from the

Nauru Basin Leg 61 site 469, Western equatorial Pasific Initial

reports of the DSDP, LXI, Washington, pp 423-437. Premoli Silva, I. and Sliter,W. V., 1995. Cretaceous planktonic foraminiferal biostratigraphy and evolutionary trends from the Bottaccione section. Gubbio, Italy: Paleontographia Italica.v. 82. pp 1-89. Premoli Silva, I. and Sliter, W. V., 1999. Cretaceous Paloceanography: Evidence from planktonic foraminiferal evolution, in Barrera, geological society of America Special Paper 332, pp 301-328. Premoli Silva, I. Spezzaferi. S. and D Angelantonio A., 1998. Cretaceous foraminiferal bio-isotope stratigraphy of Hole 967E and Paleogene planktonic foraminiferal biostratigraphy of Hole 966E, Eastern Mediterranean. Robertson, A, H, F., Emeis, K.C., Richter, C., and Camerlenghi, A. (Eds) Proceedings of Ocean Drilling program, Scientific Result, Vol. 160, pp 377-394. Quilty, P. G. Shafik, S. Jenkins, C. J. and Keene, J. B., 1997. An Early Cenozoic (Paleocene) foraminiferal fauna with Fabiania from offshore eastern Australia. Alcheringa, an Australian Journal of Paleontology, Vol.21, no. 3-4, pp. 299-315. Radoicic, R., 1995. A contribution to the Cretaceous Biostratigraphy of Kaolos area, NE Iraq. Ann, Geol, Penins. Balk. 59. 1, pp. 27-52. Raffo, S. S. D., 1989. Planktonic foraminifera and biostratigraphy of Aaliji Formation and nature of the contact with Shiranish Formation in Mushorah

140

well No 1, Northwest Iraq. Unpublished MSc. thesis, University of Mosul, Moysl-Iraq.140p.(in Arabic) Robaszynski, F., Caron, M., Gonzalez, D. J. M. and Wonders, A. A. H., 1983-1984. Atlas of Late Cretaceous Globotruncanids Revue de Microp., 26, 3-4, pp145-305. Rodriguez, G. F. Bustamente, S. B. and Fluegeman, Jr. R. H., 1999. Paleocene –Eocene planktonic foraminiferal Biostratigraphy of western Cuba. Micropaleontology, Vol.45, supplement 2, pp. 27-42. Sainta-Marc, P. and Berggren, W. A., 1988.

Aquantitative analysis of

Paleocene benthonic foraminiferal assemblages in central Tunisia. Journal of foraminiferal Research, vol.18, no.2, pp. 97-113, pl. 1-4. Salaj, J., and Solakius, N., 1984. The genus Kassabiana Salaj, 1983 from the uppermost Maastrichtian of Tunssia. Con, J, Earth, Sci, Vol. 21, pp.1114-1204. Salsj, J.. 1986. The Cretaceous and Paleocene sections of Tunisia proposed as the hypostratotypes and their correlation with planktonic zones of Libya. Journal of Geological Socity of Iraq, Vol. 18, No. 1mpp. 38 -54. Samir, A. M., 2002. Biostratigraphy and paleoenvironmental changes in the upper Cretaceous-Early Paleogene deposits of Gabal Samara section, Southwestern Sinai, Egypt. Egypt. Jour. Paleontol., Vol. 2, pp. 1-40. Shaaban, M. N. A., 1997. Stable isotop stratigraphy across the K/T boundary and isotopic investigations of an Ignored Worm Bed, Eastern Desert, Egypt.Facies, vol. 37, pp. 137-146. Shahin, A., 1992. Contribution to the Foraminiferal biostratigraphy and paleobathymetry of the Late Cretaceous and Early Tertiary in the western central Sinai, Egypt .Revue de micropaleontology. Vol.35, No.2, pp 157-175. Sharbazheri, K. M., 2007a. Aging of Unconformity within Tanjero Formation in Chwarta Area

Northeast of Iraq (Kurdistan Region). Rafidain Journal of

Science , Vol. 7, No.1, pp. 37-54. Sharbazheri, K. M., 2007b. Planktonic foraminiferal biostratigraphy of the Upper Cretaceous Reddish to Pale brown succession from Smaquli Area, Northeast Iraq (Kurdistan Region) Iraqi Bulletin of Geology and Mining. State company of geological survey and mining. In press.

141

Sissakian, V. K., 2000. Geological map of Iraq. Sheets No.1, Scale 1:1000000, State establishment of geological survey and mining. GEOSURV, Baghdad, Iraq. Sliter, W. V., 1999. Cretaceous foraminiferal Biostratigraphy of the Calera Limestone, Northern California, USA. . Journal of Foraminiferal Research, vol.29, no.4, pp.318-339. Smit, J., 2005. The section of Barranco del Gredero (Caravaca, SE Spain): acrucial section for the Cretaceous/Tertiary boundary impact extinction hypothesis. Journal of Iberian Geology, vol. 31, pp. 179-191. Solakius, N. and Salaj, J., 1986. Anew Kassabiana species from the upper most

Maastrichtian

of

northeastern

Tunsia.

Revista

Espanola

de

Micropaleontologia, Vol.XVIII, Num.1, pp.71-77. Speijer, R. P. Schmitz, B. and Luger, P., 2000. Stratigraphy of Late Paleocene events in the Middle East: implication for low-to middle-latitude successions and correlations. Journal of Geological Society, London, Vol. 157, pp. 37-47. Speijer, R. P., 2003. Systematic and paleoecology of the foraminifer Neoeponides

duwi

(Nakkady)

from

the

Paleocene

of

Egypt.

Micropaleontology. Vol. 49, No.2, pp 146-150, text-figures 1, plates. 1. Stinnesbeck, W. Keller, G. Adatte, T. Harting, M. Stuben, D. Istrate, G. and Kramar, U., 2004: Yaxcopoil-1 and the Chicxulub impact .International Jour.of Sciences,

GR

Geologische

Rundschau.10.1007/s00531-004-431-6

http://www.geo.vu.nl/users.smit/forums, html/fulltext,html. Sultan, M. A. and Mohammad, H. M., 1997.The topographic development of the Paleocene –Eocene Depositional basin in the Northern and Central part of Iraq. Iraqi Geological Journal, Vol.30, no.2, pp.1- 7. ( In Arabic) Thomas, F. C., 1988.Taxonomy and stratigraphy of selected Cenozoic benthonic foraminifera , Canadian Atlantic margin. Micropaleontology, vol.34, no. 1, pp. 67-82.pls.1-2. Tibert, N. E. and Leckie, R. M., 2004. High-resolution estuarine sea level cycles from the Late Cretaceous: Amplitude constraints using agglutinated foraminifera. Journal of foraminiferal research, vol.32, no. 2, pp.130-143.

142

Uchman, A. Bubik, M. and Mikulas, R., 2005. The ichnological record across the Cretaceous/Tertiary boundary in turbiditic sediments at Uzgrun (Moravia Czech Republic). Geologica Carpathica, vol.56, pp. 57-65. Van Der Zwaan, g.

Jorissen, F., and Stigter, H., 1990. The depth

dependency of planktonic/Benthonic foraminiferal ratios: Constrains and application. Marine Micropaleontology, Vol. 95, pp. 1-16. Vergara, L. Rodriguez G. and Martinez, I., 1997. Agglutinated foraminifera and sequence stratigraphy from the CHipaque Formation (Upper Cretaceous) of El Crucero section, Colombia, South America. Micropaleontology. Vol.43, No.2, pp 185-201, text-figures 1-6, plates. 1-2 Volat, J-L. Hugo, B. and Bignoumba - Ilogue, J., 1996. Arenaceous foraminifera from the Late Cretaceous of Gabon. Bulletin, Centres, Derecherches. Exploration, Production, Elf Aquitaine. Vol.20, no.1, pp. 230275. Widmark, J. G. V. and Malmgren, B., 1992. Benthonic foraminiferal changes across the Cretaceous-Tertiary boundary in the deep sea; DSDP Sites 525, 527, and 465. Journal of foraminiferal research, vol. 22, no. 2, pp. 81-103.

143

EXPLANATION OF THE PLATES

PLATE -1 Scale bar represents magnification on the specimens

Figs 1- 3 Globotruncanita stuartiformis. (Dalbiez). 1- spiral view, 2- umbilical view, 3- side view, Reddish to pale brown succession, Early Maastrichtian, Smaquli, Specimen from G, gansseri Zone Figs 4-5 Globotruncanita conica. (White). 4- spiral view, 5- umbilical view, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from C. contuza Zone Figs 6-8 Contusotrancana contusa. (Cushman). 6- spiral view, 7- side view, 8- umbilical view, reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from C. contuza Zone Fig 9 Racemiguembelina fructicusa. (Egger) .Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone Fig 10 Racemiguembelina powelli. Smith&Pessango, reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone Fig 11 Gublerina cuvillieri. Kikoine, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from Contusotruncana contusa Zone Fig 12 Pseudotextularia elegans. (Rzehak). Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone

PLATE -2 Scale bar represents magnification on the specimens Figs. 1-3 Gansserina gansseri (Bolli). 1- spiral view, 2- side view, 3- umbilical view, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G., gansseri Zone Figs. 4-6 Gansserina wiedenmayeri (Gandolfi). 4- side view , 5- spiral view, 6- umbilical view. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone Figs. 7-8 Contusotrancana plicata (White). 7- umdilical view, 8 spiral view. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone Fig. 9 Pseudotextularia intermedia De Klasz . Reddish to pal brown succession, Early Maastrichtian, Smaquli, Sample from P. intermedia Zone Figs. 10-12 Globotruncana aegyptiaca Nakkady.10- spiral view, 11- umbilical view, 12- side view, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone

PLATE -3 Scale bar represents magnification on the specimens

Figs. 1-3 Contusotruncana fornicata. (Plumer). 1-umdilical view, 2- spiral view, 3- side view, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone Figs. 4-6 Globotruncanita stuarti. (De Lapparent). 4- side view, 5- spiral view, 6- umdilical view. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone Figs. 7-9 Globotruncana orientalis. El-Naggar. 7- spiral view, 8- side view, 9- umbilical view. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from P. hariaensis Zone Figs. 10-12 Globotruncanita pettersi. (Gandolfi). 10- umbilical view , 11-side view, 12- spiral view. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone

PLATE -4 Scale bar represents magnification on the specimens Figs. 1-3 Globotruncana ventricosa. White. 1- spiral view, 2- umbilical view, 3- side view. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone Figs. 4-5 Globotruncana arca. (Cushman). 4- side view, 5- spiral view, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone Fig. 6 Guembelitria dammula. (Voloshina). Reddish to pal brown succession, Early Maastrichtian, Smaquli, Sample from P. hariaensis Zone Figs. 7-9 Globotruncana bulloides. Vohgler . 7- spiral view, 8- umbilical view, 9- side view. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from Gtr. aegyptiaca Zone Figs.10-12 Globotruncanita angulata. Tilev. 10- umbilical view, 11 spiral view, 12- side view. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone

PLATE -5 Scale bar represents magnification on the specimens Figs.1-2 Globotruncana dupeublei. Caron, Gonzalez, Donoso, Robaszynski & wonders.1- side view, 2- spiral view,. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G.gansseri Zone Fig. 3 Globotruncana rosetta. (Carsey). umbilical view, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from P. intermedia Zone Fig. 4 Abathomphalus intermedius. (Bolli) , umbilical view, reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from C. contusa Zone Fig. 5 Globotruncana falsostuarti. Sigal, side view, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone Fig. 6 Globotruncana insignis. Gandolfi, umbilical view, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone Fig.7 Globotruncana mariei. Banner&Blow, umbilical view, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone Figs. 8-9 Globigerinelloides volutes. (White), 8- umbilical view, 9- peripheral view. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone Figs. 10-12 Rugoglobigerina rugosa. (Plummer), 10- umbilical view, 11- side view, 12- spiral view. Reddish to pal brown succession, Early Maastrichtian, Smaquli , Specimen from R. fructicusa Zone

PLATE -6 Scale bar represents magnification on the specimens Figs. 1-3 Rugoglobigerina milamensis. Smith & Pessagno.1- umbilical view, 2- side view, 3- spiral view. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone Figs. 4-6 Rugoglobigerina hexacamerata. Bronnimann. 4- umbilical view, 5- spiral view, 6- side view, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone Figs.7-9 Rugoglobigerina macrocephala. Bronnimann. 7- umbilical view, 8- spiral view, 9-. side view, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone Figs. 10-11 Rugoglobigerina rotundata. Bronnimann. 10- umbilical view, 11- spiral view. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone Fig. 12 Planoglobulina acervulinoides. (Egger). Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone

PLATE -7 Scale bar represents magnification on the specimens Fig. 1 Heterohelix globulosa.(Ehrenberg). Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone Fig. 2 Heterohelix striata. (Ehrenberg). Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone Fig. 3 Heterohelix nauttalli. (Voorwijk). Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone Fig. 4 Heterohelix globulosa. (Ehrenberg) reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone Fig. 5 Heterohelix punctulata. (Cushman), Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone Fig. 6 Heterohelix reussi . (Cushman). Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone Figs. 7-8 Globotruncanella havanensis. (Voorwijk), 7- spiral view, 8- umbilical view , Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone Fig. 9 Globotruncanella pschadae. (Keller), spiral view. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone Figs.10-12 Globotruncanella petaloidia. (Gandolfi), 10- side view, 11- umbilical view, 12- spiral view. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone

PLATE -8 Scale bar represents magnification on the specimens Fig. 1 Pseudotextularia deformis. (Kikoine). Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone Fig. 2 Pseudogumbelina costulata. (Cushman). Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from P. intrmidia Zone Fig. 3 Pseudotextularia elegans. (Rzehak). Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone Figs. 4-6 Rugoglobigerina pennyi. Bronnimann, 4- spiral view, 5- umbilical view, 6- side view. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone Figs.7-9 Rugotruncana subcircumnodifer. (Gandolfi), 7- umbilical view, 8- spiral view, 9- side view. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone Figs. 10-11 Rugotruncana circumnodifer. Finlay, 10- spiral view, 11- umbilical view. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone Fig. 12 Globotruncanita Sp. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen R. fructicusa Zone

PLATE -9 Scale bar represents magnification on the specimens Fig. 1 Hedbergella monmuthensis (Olsson). Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone Fig. 2 Globigerinelloides prairiehillensis Pessango. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from P. intermedia Zone Fig. 3 Globigerinelloides multispinata (Lalicker), Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from C.contusa Zone Fig. 4-6 Kuglerina rotundata (Bronnimann). 4- umbilical view, 5- side view, 6- spiral view. Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from P. hariaensis Zone Fig. 7 Archaeoglobigerina carteri (Kassab). Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from P. intermedia Zone Fig. 8-9 Costellagerina cf. bulbosa Belford, 8- spiral view, 9- umbilical view , Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from P. hariaensis Zone Fig. 10-12 Hedbergella monmuthensis (Olsson), 10- umbilical view, 11- Side view, 12- spiral view, Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from P.hariaensis Zone .

PLATE -10

Scale bar represents magnification on the specimens Fig. 1 Lenticulina gunderbookaensis. Crespin. Shiranish Formation, Late CampanianEarly Maastrichtian, Smaquli. Specimen from Glt.aegyptiaca Zone.

Fig. 2 Lenticulina navicula. ( d Orbigny). Shiranish Formation, Late CampanianEarly Maastrichtian, Smaquli. Specimen from Glt.aegyptiaca Zone .

Fig. 3 Gavelinella micra. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone

Figs. 4 Oolina apiculata. Reuss, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone . Figs. 5 Coryphostomata midwayensis. (Cushman) Shiranish Formation, Late CampanianEarly Maastrichtian, Smaquli. Specimen from Glt.aegyptiaca Zone . Figs. 6 Dentalinoides sp., Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone Figs. 7, 8 Ammodiscus preuvianus. Berry, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone

Fig. 9 Spiroplectamina laevis. (Roemer), Shiranish Formation, Late CampanianEarly Maastrichtian, Smaquli Specimen from Glt.aegyptiaca Zone .

Fig.10,11 Bolivina incrassata. Reuss, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone

Fig. 12 Cibicidoides excavata. Brotzen, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone

PLATE -11 Scale bar represents magnification on the specimens Fig. 1,2 Gyroidina girardana. (Reuss), Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone

Fig. 3 Dorothia sp. Shiranish Formation, Late Campanian- Early Maastrichtian, Smaquli. Specimen from Glt.aegyptiaca Zone.

Fig. 4 Pullenia quinqueloba ( Reuss). Reddish to pal brown succession, Early Maastrichtian, Smaquli, Sample from G. gansseri Zone Figs. 5 Lenticulina navicula. (d Orbigny). Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone Figs. 6,7 Cibicides subcarinatus Cushman&Deaderi. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone

Figs. 8,9 Paralabamina hillebrandti. (Fisher) Reddish to pal brown succession, Early Maastrichtian, Smaquli. Specimen from G. gansseri Zone Fig. 10 Clavulinoides globulifera. Ten Dam & Sigal, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone

Fig, 11 Bolivinoides draco. ( Marson). Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone

Fig. 12 Bolivinoides miliaris . Hilterman & Koch, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from R. fructicusa Zone

PLATE -12

Scale bar represents magnification on the specimens Fig. 1 Nodosaria minor. Hantken, Reddish to pal brown succession, Early Maastrichtian, Smaquli. Specimen from G. gansseri Zone Fig. 2 Dorothia retusa. Reddish to pal brown succession, Early Maastrichtian, Smaquli. Specimen from G. gansseri Zone Fig. 3 Globorotalites sp. Reddish to pal brown succession, Early Maastrichtian, Smaquli. Specimen from G. gansseri Zone Figs. 4 Lagena hispida Reuss. Reddish to pal brown succession, Early Maastrichtian, Smaquli. Specimen from G. gansseri Zone Figs. 5 Dorothia smokynensis Wall. Reddish to pal brown succession, Early Maastrichtian, Smaquli. Specimen from G. gansseri Zone Figs. 6 Lenticulina sp. Reddish to pal brown succession, Early Maastrichtian, Smaquli. Specimen from G. gansseri Zone Fig. 7 Dorothia roseta, Reddish to pal brown succession, Early Maastrichtian, Smaquli. Specimen from G. gansseri Zone Fig, 8 Palliolatella sp. Reddish to pal brown succession, Early Maastrichtian, Smaquli. Specimen from C.contusa Zone

Fig. 9 Lagena sp, Reddish to pal brown succession, Early Maastrichtian, Smaquli. Specimen from C.contusa Zone Fig. 10 ,11 Cibicidoides dayi (White) Reddish to pal brown succession, Early Maastrichtian, Smaquli. Specimen from P.intermedia Zone Fig. 12 Saracenaria navicula (d Orbigny) Reddish to pal brown succession, Early Maastrichtian, Smaquli. Specimen from P.intermedia Zone

PLATE -13

Scale bar represents magnification on the specimens Fig. 1, 2 Praebulimina laevis. (Beissel) , Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from P.intermedia Zone Fig. 3 Oolina globosa.(Montagu) Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from P.intermedia Zone Fig. 4 Gyroidinoides subangulatus. (Plummer) Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from P.intermedia Zone Figs. 5 Nodosaria cf. limbata d,Orbigny. Reddish to pal brown succession, Early Maastrichtian, Smaquli. Specimen from P.intermedia Zone Figs. 6 Marsonella oxycona (Reuss). Reddish to pal brown succession, Early Maastrichtian, Smaquli. Specimen from P.intermedia Zone Figs. 7 Ammodiscus cretaceus (Reuss). Tanjero Formation, Late Maastrichtian, Smaquli. Specimen from R. fructicusa Zone Fig. 8 Dentalinoides canulina. Marie, Tanjero Formation, Late Maastrichtian, Smaquli. Specimen from R. fructicusa Zone Fig, 9 Oolina apiculata. Reuss, Tanjero Formation, Late Maastrichtian, Smaquli. Specimen from R. fructicusa Zone Fig. 10 Dentalina inornata. (d, Orbigny), Tanjero Formation, Late Maastrichtian, Smaquli. Specimen from R. fructicusa Zone FIG. 11 Gyroidinoides globosus. (Hagenow) Tanjero Formation, Late Maastrichtian, Smaquli. Specimen from R. fructicusa Zone Fig. 12 Praebulimina carseyae (Plummer) Tanjero Formation, Late Maastrichtian, Smaquli. Specimen from P.hariaensis Zone

PLATE -14 Scale bar represents magnification on the specimens Fig. 1, 2 Noneonella insecta. (Schwager), Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from R. fructicusa Zone Fig. 3 Gyroidinoides globosus. (Hagenow) ,Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from P.hariaensis Zone Fig. 4,5 Gaudryna pyramidata. Cushman, Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from R. fructicusa Zone

Figs. 6 Gaudryna pyramidata. Cushman,., Shiranish/Tanjero Smaquli, Specimen from C.contusa Zone

transition unit,

Figs. 7 Pullenia jarvisi. Cushman, Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from P.hariaensis Zone Figs. 8 Dentalina elegans. d Orbigny, Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from P.hariaensis Zone

Fig. 9 Textularia astutia. Lalicker ., Tanjero Formation. Smaquli, Specimen from P.hariaensis Zone Fig, 10 Pleurostomella subnodosa. (Reuss), Reddish to pal brown succession, Early Maastrichtian, Smaquli. Specimen from C.contusa Zone Fig. 11 Bolivinoides sp. Tanjero Formation, Late Maastrichtian, Smaquli,. Specimen from P.hariaensis Zone Fig. 12 Ellipsodimorphina sp. Reddish to pal brown succession, Early Maastrichtian, Smaquli. Specimen from G. gansseri Zone

PLATE -15 Scale bar represents magnification on the specimens Fig 1 Lenticulina muennsteri. Tanjero Formation, Late Maastrichtian, Kato, Specimen from R. fructicusa Zone Fig 2 Ammosphaeroidina pseudopauciloculata (Mjatliuk) Tanjero Formation, Late Maastrichtian, Qishlagh, Specimen from P. hariaensis Zone Fig 3 Omphalocyclus macroporus (Lamarck), Tanjero Formation , Late Maastrichtian, Kato, Specimen from R. fructicusa Zone Fig 4 Orbitoides medius (d archaic), Tanjero Formation , Late Maastrichtian, Kato , Specimen from R. fructicusa Zone Figs. 5,6 Cibicides subcarinatus Cushman & deaderi. Tanjero Formation, Late Maastrichtian, Kato, Specimen from R. fructicusa Zone Figs. 7, 8 Osangularia navarrana (Cushman). Tanjero Formation, Late Maastrichtian Kato, Specimen from R. fructicusa Zone Fig. 9 Neoflabellina rugosa. (d Orbigny). Tanjero Formation, Late Maastrichtian, Dokan, Specimen from R. fructicusa Zone Figs. 10 pullenia jarvici Cushman. Tanjero Formation, Late Maastrichtian, Kato, Specimen from P. hariaensis Zone Fig. 11 Praebulimina quadrata. Tanjero Formation, Late Maastrichtian, Kato, Specimen from P. hariaensis Zone Fig. 12 Ammodiscus cretaceus (Reuss). Tanjero Formation Late Maastrichtian, Kato , Specimen from R. fructicusa Zone Fig. 13 Spiroplectamina sp. Tanjero Formation, Early Maastrichtian, Kato, Specimen from G. gansseri Zone Fig. 14 Dorothia crassa, Tanjero Formation, Late Maastrichtian, Kato, Specimen from R. fructicusa zone Figs. 15, 16 Globotruncanan gagnebini Tilev. Late Maastrichtian, Kato, Specimen From P. hariaensis Zone

PLATE -16 Scale bar represents magnification on the specimens Figs 1-3 Abathomphalus mayaroensis (Bolli) . 1, 2 spiral view, 3 umbilical view, Tanjero Formation, Late Maastrichtian. Dokan, Specimen from R. fructicosa Zone Figs 4, 5 Pseudoguembelina costulata (Cushman), Tanjero Formation, Late Maastrichtian, Sirwan, Specimen from P. hariaensis Zone Fig 6 Pseudoguembelina hariaensis. Nederbragt. Tanjero Formation, Late Maastrichtian. Dokan, Specimen from P. hariaensis Zone Figs 7, 8 Pseudoguembelina palpebra. Bronnimann & Brown. . Tanjero Formation, Dokan, Specimen from P. palpebra Zone Fig 9 Laeviheterohelix glabrans (Cushman) Tanjero Formation, Late Maastrichtian. Sirwan, Specimen from P. hariaensis Zone Figs 10, 11 Pseudoguembelina excolata (Cushman) Tanjero Formation, Late Maastrichtian. Sirwan, Specimen from P. hantkeninoides Zone Fig 12 Plummerita hantkeninoides (Bronnimann). Tanjero Formation Late Maastrichtian Dokan, Specimen from P. hantkeninoides Zone

PLATE -17

Figs 1- 3 Globotruncana aegyptiaca Nakkady, 100X, 1- Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone, 2&3 Tanjero Formation, Late Maastrichtian, Dokan, Specimen from R. fructicusa Zone Figs 4-5 Globotruncana linneiana (d Orbigny), 100X,Shiranish Formation, Late CampanianEarly Maastrichtian, Smaquli, Specimen from Globotruncana aegyptiaca Zone. Fig 6 Globotruncana ventricosa White. 100X. Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone. Figs 7-9 Globotruncana arca. (Cushman). 100X, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone. Fig 10-12 Globotruncana bulloides , Vohgler,100X, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone. Fig 13-15 Globotruncana orientalis. El-Naggar, 100X, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone.

PLATE -18 Figs 1-2 Globotruncana falsostuarti. Sigal, 100X, 1- Tanjero Formation, Late Maasrtichtian, Dokan, Specimen from R. fructicusa Zone, 2- Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone. Fig 3 Globotruncana lapparenti. Brotzen.100X, Shiranish Formation, Late CampanianEarly Maastrichtian, Smaquli, Specimen from Globotruncana aegyptiaca Zone. Figs. 4-6 Globotruncana dupeublei. Caron, Gonzalez, Donoso, Robaszynski & wonders, 100X, Tanjero Formation, Late Maastrichtian, 4&5- Smaquli, Specimen from R. fructicusa Zone, 6-Sirwan. Specimen from P. hariaensis Zone. Figs. 7-8 Globotruncana rosetta (Carsey).100X, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from P. intermedia Zone . Fig. 9-11 Contusotrancana falsocalcarata. Kerdany & Abdelsalam, 100X, Tanjero Formation. Late Maastrichtian, 9-Smaquli, 10-Dokan, 11-Serwan, Specimen from Plummerita hantkeninoides Zone. Figs. 12-14 Gansserina gansseri (Bolli), 100X, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone . Fig 15 Gansserina wiedenmayeri (Gandolfi),100X, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone.

PLATE -19 Figs. 1 Gansserina wiedenmayeri (Gandolfi), 100X, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from Contusotrancana contusa Zone. Figs. 2-5 Globotruncanita stuarti. (De Lapparent).100X, 2&3- Shiranish Formation, Late Campanian- Early Maastrichtian, Smaquli, Specimen from Globotruncana aegyptiaca Zone, 4&5- Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone. Figs. 6-8 Globotruncanita stuartiformis. (Dalbiez).100X, 6-Tanjero Formation, Late Maastrichtian, Kato, Specimen from R. fructicusaZone. 7- Tanjero Formation, Late Maastrichtian, Dokan, Specimen from R. fructicusaZone. 8- Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from R. fructicusaZone. Figs 9-13 Globotruncanita conica White, 100X, 9&10 -Tanjero Formation, Late Maastrichtian, Dokan, Specimen from R. fructicusaZone.11- Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from R. fructicusaZone. 12&13- Tanjero Formation, Late Maastrichtian, Qishlagh, Specimen from R. fructicusaZone

Fig 14 Globotruncanita pettersi, Gandulfi.100X, Tanjero Formation, Late Maastrichtian, Sirwan, Specimen from R. fructicusaZone. Fig 15 Globotruncanita angulata, Tilev. Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from R. fructicusaZone.

PLATE -20 Figs 1-3 Contusotruncana fornicata (Plumer).100X, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from Contusotrancana contusa Zone. Figs 4-5 Contusotrancana patelliformis (Gondolfi), 100X, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from Contusotrancana contusa Zone. Figs 6-9 Contusotrancana contusa (Cushman), 100X, 6&7- Tanjero Formation, Late Maastrichtian, Sirwan, Specimen from P. hariaensis Zone. 8- Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from Contusotrancana contusa Zone. 9-Tanjero Formation, Late Maastrichtian, Dokan, Specimen from P. hariaensis Zone. Figs 11-12 Contusotrancana walfischensis. Todd, 100X, Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from P. hariaensis Zone. Figs 10, 13, 14 Contusotrancana sp. 100X, Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from P. hariaensis Zone. Figs 15 Contusotrancana plicata White.100X, Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from P. hariaensis Zone.

PLATE -21 Figs 1-2 Abathomphalus mayaroensis (Bolli), 100X, 1- Tanjero Formation, late Maastrichtian, Smaquli, Specimen from R. fructicusa Zone.2- Tanjero Formation, late Maastrichtian, Sirwan, Specimen from P. hariaensis Zone. Figs 3-5 Abathomphalus intermedius. (Bolli), 100X, Tanjero Formation, Late Maastrichtian, Smaquli Specimen, from R. fructicosa Zone Fig 6 Globotruncanella pschadae, (Keller), 100X, Tanjero Formation, Late Maastrichtian, Sirwan, Specimen from P. hariaensis zones, Figs 7-8 Globotruncanella petaloidea (Gandolfi).100X, Tanjero Formation, Late Maastrichtian,7- Smaquli, 8- Sirwan, Specimen from P. hariaensis Zone. Fig 9 Globotruncanella havanensis (Voorwijk), 100X, Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from R. fructicosa zones, Figs10-12 Plummerita hantkeninoides (Bronnimann), 100X, Tanjero Formation, Late Maastrichtian, 10-Sirwan,11- Dokan, 12- Smaquli, Specimen from Plummerita hantkeninoides Zone., Figs 13-14 Archaeoglobigerina cretacea. (d Orbigny)100X, , Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone. Fig 15 Archaeoglobigerina blowi. Pessango,100X, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone.

PLATE -22 Fig 1 Archaeoglobigerina blowi. Pessango, 100X, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone. Figs 2-5 Rugoglobigerina rugosa. (Plummer), 100X, Tanjero Formation, late Maastrichtian, 2&3-Dokan, 4&5-Sirwan, Specimen from P.haiaensis Zone., Figs. 6 Rugoglobigerina macrocephala. Bronnimann.100X, Tanjero Formation, Late Maastrichtian, Sirwan, Specimen from P. hariaensis Zone. Figs. 7 Rugoglobigerina pennyi Bronnimann, 100X, Tanjero Formation, late Maastrichtian, Dokan, Specimen from P.hariaensis Zone Fig 8 Rugoglobigerina reicheli .Bronnimann.100X, Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from P. hariaensis Zone. Figs. 9-11 Rugoglobigerina hexacamerata. Bronnimann. 100X, Tanjero Formation, Late Maastrichtian, 9- Dokan, 10-Qishlagh,11-Smaquli, Specimen from R. fructicusa Zone Fig 12 Rugoglobigerina rotundata Bronnimann.100X, Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from P. hariaensis Zone. Fig 13 Rugotruncana subcircumnodifer ( Gandolfi), 100X, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone. Fig. 14-15 Hedbergella monmuthensis (Olsson), 100X, Tanjero Formation, Late Maastrichtian, 14- Sirwan, 15-Dokan, Specimen from Plummerita hantkeninoides Zone.

PLATE -23 Fig. 1 Globigerinelloides multispina .(Lalicker), 100X, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone. Fig 2 Globigerinelloides subcarinata.(Bronnimann, 100X, Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from P. hariaensis Zone. Fig. 3 Globigerinelloides ultramicra.(Subbotina),100X, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G. gansseri Zone Fig. 4 Pseudotextularia intermedia (De Klasz). 100X, Tanjero Formation, Late Maastrichtian, Sirwan, Specimen from P. hariaensis Zone. Figs 5-6 Pseudotextularia elegans. (Rzehak),100X, Tanjero Formation, Late Maastrichtian, Dokan, Specimen from P .hariaensis Zone. Figs 7-8 Racemiguembelina fructicosa (Egger) , 100X, Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from R. fructicusa Zone Fig. 9 Planoglobulina acervulinoides (Egger). 100X, Tanjero Formation, Late Maastrichtian, Dokan, Specimen from P. hariaensis Zone. Fig. 10 Heterohelix nauttalli (Voorwijk), 100X, Reddish to pal brown succession, Early Maastrichtian, Smaquli, Specimen from G gansseri Zone Fig. 11 Heterohelix globulosa (Ehrenberg),100X, Tanjero Formation, Late Maastrichtian, Dokan, Specimen from P .hariaensis Zone. Fig. 12 Heterohelix punctulatus (Cushman),100X, Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from R. fructicusa Zone. Fig 13 Trinitella scotti. Bronnimann, 100X, Tanjero Formation, late Maastrichtian, Smaquli, Specimen from Plummerita hantkeninoides Zone. Fig. 14 Kuglerina rotondata (Bronnimann). 100X, Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from Plummerita hantkeninoides Zone Fig 15 Globotruncanella sp.100X, Tanjero Formation, Late Maastrichtian, Smaquli, Specimen from Plummerita hantkeninoides Zone

PLATE -24 Scale bar represents magnification on the specimens Figs 1-4 Subbotina triloculinoides (Plummer), 1: side view. 2, 4: spiral view. 3: umbilical view, Early Paleocene, Kolosh Formation, Dokan, Specimen from (P1b) Subbotina triloculinoides-Globanomalina compressa/Praemurica inconstans Zone Figs 5-8 Subbotina trivals (Subbotina), 5: umbilical view. 6: side view. 7, 8: spiral view, Early Paleocene, Kolosh Formation, Smaquli, Specimen from (Pá) Parvularugoglobigirina eugubina Zone Figs 9-14 Parvularugoglobigirina eugubina (Luterbacher & Premoli Silva). 9, 10 : spiral view, 11, 14 : side view, 12,13 : umbblical view. Early Paleocene, Kolosh Formation, Smaquli, Specimen from (Pá) Parvularugoglobigirina eugubina Zone Figs 15-17 Woodringina claytonensis Loeblich & Tappan, Early Paleocene, Kolosh Formation, Smaquli, Specimen from (Pá) Parvularugoglobigirina eugubina Zone Figs 18, 19 Chilogumbelina morsei (Kline) Early Paleocene, Kolosh Formation, Smaquli, Specimen from (P1a) Parvularugoglobigirina eugubina- Subbotina triloculinoides Zone Fig 20 Chilogumbelina midwayensis (Cushman), Early Paleocene, Kolosh Formation, Smaquli, Specimen from (P1a) Parvularugoglobigirina eugubina- Subbotina triloculinoides Zone

PLATE -25 Scale bar represents magnification on the specimens Figs 1-6 Parasubbotina aff pseudobulloides (Olsson et al). 1, 4, 5: spiral view, 2: side view, 3,6 :umbilical view, Early Paleocene, Kolosh Formation, Smaquli, Specimen from (Pá) Parvularugoglobigirina eugubina Zone Figs 7-10 Parasubbotina pseudobulloides (Plummer), 7: side view, 8, 10: umbilical view 9: spiral view, Early Paleocene, Kolosh Formation, Dokan, Specimen from (P1a) Parvularugoglobigirina eugubina- Subbotina triloculinoides Zone Figs 11-16 Praemurica taurica (Morozova), 11: spiral view. 12, 16: side view. 13-15 umblical view, Early Paleocene, Kolosh Formation, Smaquli, Specimen from (Pá) Parvularugoglobigirina eugubina Zone Figs 17-18 Parvularugoglobigirina extensa (Blow), 17: umbilical view. 18: spiral view, Early Paleocene, Kolosh Formation, Smaquli, Specimen from(Pá) Parvularugoglobigirina eugubina Zone Figs 19-20 Globoconusa daubjergensis (Bronnimann), spiral view, Early Paleocene, Kolosh Formation, Smaquli, Specimen from (Pá) Parvularugoglobigirina eugubina Zone

PLATE -26 Scale bar represents magnification on the specimens Figs 1-5, 19-20 Eoglobigerina simplicissima Blow, 1, 4, 19: spiral view. 2: side view. 3, 5, 20: umbilical view, Early Paleocene, Kolosh Formation, Smaquli, Specimen from (Pá) Parvularugoglobigirina eugubina Zone Figs 6-10 Eoglobigerina eobulloides Morozova, 6, 8: side view. 7, 9: umbilical view. 10: spiral view, Early Paleocene, Kolosh Formation, Smaquli, Specimen from (Pá) Parvularugoglobigirina eugubina Zone Figs 11-15 Eoglobigerina edita (Subbotina), 11: spiral view. 12, 13:umbilical view. 14-15: side view, Early Paleocene, Kolosh Formation, Smaquli, Specimen from (Pá) Parvularugoglobigirina eugubina Zone Fig 16 Parvularugoglobigirina extensa (Blow), spiral view, Early Paleocene, Kolosh Formation, Smaquli, Specimen from (Pá) Parvularugoglobigirina eugubina Zone Figs 17-18 Guembelitria cretacea Cushman, Early Paleocene, Kolosh Formation, Smaquli, Specimen from (Pá) Parvularugoglobigirina eugubina Zone

PLATE -27 Scale bar represents magnification on the specimens Figs 1-5 Globanomalina archaeocompressa (Blow), 1, 3: spiral view.2, 4: umbilical view. 5: side view, Early Paleocene, Kolosh Formation, Dokan, Specimen from (P1a) Parvularugoglobigirina eugubina- Subbotina triloculinoides Zone Figs 6-11 Globoconusa daubjergensis (Bronnimann), 6, 9: umbilical view. 7, 10 and 11: spiral view. 8: side view, Early Paleocene Kolosh Formation, Smaquli, Specimen from, (Pá) Parvularugoglobigirina eugubina Zone Figs 12-13 Hedbergella monmouthensis (Olsson), 12: spiral view. 13: umbilical view, Early Paleocene Kolosh Formation, Smaquli, Specimen from, (Pá) Parvularugoglobigirina eugubina Zone Fig 14 Rectoguembelina cretacea Cushman, Early Paleocene, Kolosh Formation, Dokan, Specimen from(P1a) Parvularugoglobigirina eugubina- Subbotina triloculinoides Zone Fig 15 Ellipsonodosaria plumerae (Cushman). Early Paleocene, Kolosh Formation, Dokan, Specimen from(P1a) Parvularugoglobigirina eugubina- Subbotina triloculinoides Zone Fig 16 Neoflabellina delicatissima (Plummer), Early Paleocene, Kolosh Formation, Dokan, Specimen from (P1a) Parvularugoglobigirina eugubina- Subbotina triloculinoides Zone Fig 17 spiroplectamina dentata (Alth), Early Paleocene, Kolosh Formation, Dokan, Specimen from (P1a) Parvularugoglobigirina eugubina- Subbotina triloculinoides Zone Fig 18 Pseudonodosaria appressa Loeblich & Tappan, Early Paleocene, Kolosh Formation, Dokan, Specimen from (P1a) Parvularugoglobigirina eugubina- Subbotina triloculinoides Zone Fig 19 Bolivinoides delicates Cushman, Early Paleocene, Kolosh Formation, Dokan, Specimen from (P1a) Parvularugoglobigirina eugubina- Subbotina triloculinoides Zone Fig 20 Bolivinoides sp. Early Paleocene, Kolosh Formation, Dokan, Specimen from (P1a) Parvularugoglobigirina eugubina- Subbotina triloculinoides Zone Fig 21 pseudonodosaria sp. Early Paleocene, Kolosh Formation, Dokan, Specimen from (P1a) Parvularugoglobigirina eugubina- Subbotina triloculinoides Zone

»êĪīĥðħĤÊīŇĤ¼ĤÊì   ħºĥō±ħĤѵĪ¼ĤÊìģŎ¯  Ħçĥōì ħŎ¹  ¼Ĥ˵ħ¯ĪËĤ   ħĜ»ê  ħôëŇÔĪ¼ðËÕōëµ»ĪīÕõō  ħ¹Ė  ħÎ ħō  ĒÊëŇĈ¼ÔŋħĨ±łļ»êīµËÎ  ĢËÕðæêīµ¼ġņêħĨ  ¼ĤËġŇĝð  

ħµ  ħō  ħĠËĤ   ĖĦĪ¼ĤËġŇĝð»Ń¶ĤÊì  ÓñĤÊ컲ŇĜѵ¼ĤħĠīÝĤ   ħÎ ħÈ  ĦĪÊëµò   ħµóŇª  ħĐ  ħñĜ  ħĐ  »  ħĝª¼ĤËĥŇĨÓð   ħμĤ˵ Ħæ   ħŎÕñ ōĪÊçŇªħĜ  êħµĪÊ  ĪħÔ¼  ęŇôħÎ  Êæ¼ÜŃĜŃŎÜ»êÊīÎħĜÊêŃÕµæ 

 Ģħōĸ   ħĜ  »Ľņ±ËÎêËôěŎĈËġðÊæīġáĠçĜËä  –ž˜ĿøīĠ»Ń¶ĤÊìÊæ¼ÜŃĜŃŎܼÕñĤÊìħĜêħÕðËĠ    ¼Õôêħªêħð  ëņ±ħĜ   êīđČæīġáĠæËġĈæ¼ġŎĉĥĜÊçġáĠçġàÊĢËāáĔæ êĦæ  ĦçōêËō»êŃñŎĐłĽª  êĦæ  ĦçōêËō»êŃñŎĐłĽª   

  ¼ĥōÊì —•• ĞĦĪĪæ¼ĤīĤ˵»æêīµ —œ•œ ¼ŀËðêËÏĤÊëĐħÎ 

 ħÕäīª

ħ”Ĝ  ħ”µ  »ħ”ĤËōë§   ”µħ”¹ĽÎĪ ħ   ħÈ¼Ô  ħÏōËÔ  ħÎ»ê  ħÎĪêĪ ĦæĪ¼ĤËġŇĝð¼Ĥ˵ħ¯ĪËĤħĜ ħ””ĤĪħ””µĦæ  ĦĪÊêæĞ˔”ÝĤħ””Èêħ””ðħ””ĜĢ˔”ōħ””µĦĪ  ħ””ĥō²ņīÔĪĢĪī””ÔĪħ””µêĦæ»Ī   Ħì»ĪĪļê ħ””ð ¼”ōÊêħ”λ   ħĥŇÕõ”ª Ī¼ŀĪīĔËġ”ðĪĢ˔µĪæ»ħ”¯ĪËĤ¼Ĥ˔µ   ħ”Î˔Ŏ¯» Ħìê   ħ¯» ĦĪËĠ   ħĥŇÕõª ĪĢĸє¯ŋħ””Ĕ¼Ĥ˔”µħ””¯ĪËĤ¼Ĥ˔”µĦĪÊìäÊ甔µħ””ōêħ””ðħ””ÎĪĢ˔”µĦĪī¯Ê甔µħ””ōħ””Î˔”Ŏ¯Ħ디ŎÝĤì »ħՔ”ðÊļËÈħ””ÎģŇõ””µĦæĪ  ĦĪ  ħ””ĥÎĦæ²””ņêæħ””Ĥ˯ĪËĤĞħ””ÈĦĪ  ĢÊĪëŎ””ð¼””ŀłæĪħ””ÝĤìêħ””Î ¼”ŁŇĨħÎÍōê   ħÔĪ´ōìĤĪ¸Ĥ  ħÔ¼µ  ħŎōÊê  ħΐÒŋ ħÎ   ħĨ±łļ»ĪêÊīäŃÎÊĪËȱłļ»ĪĪê  ħð ĒÊëŇĈĪĢÊëŇȼÔŋĪĪĪæêħĨ»êĪīĥð  Ħ디§ħ””µêħ””ðħ””Ĝ»Ń””äħ””Õņë¹Ħæ»ê˔”µĦæêĪ  Ī¼””µħ””ŎōçĤħ””ġÔħ””ÏōËÔħ””ōĦĪ  ħ””ĥō²ņīÔĞħ””È Īæêħ”Ĩ¼Ĥ˔µ   ħ”ōë§  ħ”ĥŎ¯¼ĥÕõ”ō ħ”µ   ħ”¹³  ħ”Î ħ”ō   »êĪīĥ”ð ¼ŁŇĨħĤÊīŇĤ  ¼Ĥ˵ĦĪīÕõŎĤ  êħ”ð  ĦĪêÊī”ä¼Ĥ˔µ   ħ”Ġ ħ”Ĥ  ħ”ÔєÎĦĪ   ħ”Õņļ  Ħæ ħ”¹  ħ”µ  »êħôëŇÔĪ¼ðËÕōëµ¼ĤËĠ   ħð Ħæê  Êç”ōËŎÔħ”µ»Ī   Ħì»Ń”¹»ĪĪ²ŇĠ»  ħŀËðĢŃŎĝĠÛĥŇªĪÓð   ›š ¼ĤħĠ ħô  ħÔ¼ŁŇĨ   ħĤÊīŇĤ ¼””ĤÊĽÎÊĪæĪĢĪī¯Ī˔”Ĥħ””Ĝ»ĪĪļħ””ĜÒ˔”ĨÊ甔ōĪĦì»Ń””¹»ĪĪļêħ””ðħ””ÎĦêĪ  ħ””¹»ê˔”¶ĤÊļŃ¹ ħ”ōê˶ĤÊļŃ¹Ī   ħ”È»ŃĨ  ħÎËðĪ  ħȼĤ˵  ħºĥō± ħŎō   ħĠѵ¼Ĥī°¶ŇÔĪĢÊêÊçĤËŎ¹ ħŀ  »ħÎêĪĪì  ÒËĨÊæ»ĪĦì»ÊĪ   ħĨĪò  ħð ħµê  ħÎ  ħµ»   ĦêĪ ħō  ħ¹  ħ”Î  ĦĪÊêæ  Ğ˔ÝĤħ”Èê   ħ”ĜĢ˔ō ħ”ð   ĦĪ ħ”µ  ħ”ĥō²ņīÔ   ħ”µ»  ħĤÊĪīÕõ”ŎĤ  ħ”ōë§  ħµ ħµ  ħōĪ  ħÈ  ħ”µ   Flysch óҔĝĐ»êєÜ¼Ĥ˔µĦĪīÔËĨ˵   ħōÊĪĪæ  ħŎĤ ħÎ  ħÕõŎĤ   ¯ħĜģņæėŇª¼Õõ¹ ħĥŎ  łêħÝĤËÔ   ¼Ĥ˵  ħµ ħōë§  ħĥŎ¯³   ĦĪĢĪīÎÓðĪê漶ŎĤ˶ŎĠ»êŃܼĤ˵  ħåōì ħŎŀ   ħÎ Ħæê  ħĜ  Ħæê  ħ”μĤ˔µ   ħ”ÔËĩ¶ŇªĢ˔ō ĢÊĪëŎð¼ŀłæĪħ¶ŀīĔĪ¼Ĝ   ħ¹¼Ĥ˵  ħ¹ĽÎ  ħĤ˪  ħĜò ŃŀѵĪ ħ””ĥŎ¯  є”ÎĦĪ  ħ””Õņļ   ĦæóŎ””Ġ ħ””¹   ħ””µ ħ””È   Flysch - Molasse îŋє”Ġє”ÎóҔ”ĝĐ¼””åōì Ģ˔”ō Red Bed ¼Ĥ˔”µĦêĪī””ð   ħ””ĥŎ¯  Ħ디ŎÝĤì¼Ĥ˔”µ  ħ””µє”Îłê Ħ디§   ħ””ÝĤËÔ¼Ĥ˔”µ  ħ””ōë§  ħ””µ ĊŌõĔĦĪĪīÔ   ħµ»  ħ¯ĪËĤ»  ÎħĤ˪ ħ¹Ľ   ħĜïņ  īð»  ħĠѵ ħŀ  ħ””Ĥ  ħ””ōĸ¼””Ĥæ뵾   ħÕŎ””ôĪ  ħ””ĥŎŀѶŇĜ ĦĪ   ħ””ÎÊêæ¼””ºĤë¹Êæ  ĦĪ ħ””ō  ħ””ĥō²ņīÔ   Ħ±łĽ””ªĞ  ħ””Ĝ  ħ”Ŏōê˶ōæêĪĪ   ħ”Îæīä˔ō Ī   ĦĪÊ딵  ħ”ĤóҔª  ħ”Ĝ ĦĪ  ħ”µ  ħĤÊĪīÕõŎĤ  Ħë§  ħµĪ  ħȼĤ˵   ĦêËōæËĤ ģŎ””¯Ħ甔ĥōì   Lithostratigraphy ¼””ĤÊìģŎ””¯ħ””ĥōë§   ħ””µ»ĪĪļ  ħ””Ĝ  ĦĪÊêæ  ħ””ĤĞ˔”ÝĤ  ħ””È ħ”””Ŏ  ōħ”””¹  ģ”””ō±   ħĥÕõ”””ŎĤ¼Õ”””ôĪĪëð»ê˔””λ  ħ”””Ĥ ĦĪ  æëµĢĪĪļĦĪ  Biostratigraphy ¼”””ĤÊì Ģ˔”””µħ””””Ĥѵ   ħ””””ºĥō±¼Õ””””ôĪëð   Paleoenvironmental deposition Ģ˔”””µħ””””Ĥѵ ĦĪ   ħ””””ō ¼Ĥ˔”µĦ디§  ħ””µ¼ĥÕõ””ō   ħ””¹Ė  ħ””Î ħ””ō   Contact ¼””ŁŇĨħ””ĤÊīŇĤĦĪ  Paleoenvironment Ħê  ĦĪ  ħ”””ĤĪīÎ»êє””ÜĪ»ë”””§ħ”””µ»ħ”””ÔËĩ¶Ňª»ĪĪļħ”””Ĝ»êħ”””ôëŇÔĪ¼”””ðËÕōëµ¼”””ĠĦæê  ħ”””ð ħ”ÎĪĢÊç”ĠËÝĤ   ħ”ÈĪ  Ê딧 ħ”Ĥ  ħµĪ  ħȼÜŃĜŃŎܼĤ   ħÔ¼Ĥæëµ»êËōæ ħĠ   Ģ˵ĦĪīÎæê ĦĪ   ħÎ ħÎ  ¼Õ””ðËÈêħ””ð   ħ””ĜĢæ디µæêĪÊê  ħ””ÔÊĪ»ìÊĪ˔”ŎÜĪĢĪī””°µ ħ””Î   ħ””Ĝ»ĪĪļ¼ĤĪī””¯ÊæÊĪæ ħ””ō 

ħ”µ»   ħ”ĤËĤĪī¯ŃÎĪêËŎ”ðëªĪ  ħ”ÈєÎĖ  ĦĪ ħ”ō  ħ”ĤÊçĠŋ   ĦĪĖ  ĦĪò  ħȐ ħĠ  ¼ĤËĩŎÜĪ¼ōħ¯ĪËĤ  ĦĪ  ħ””ĤËĥō²ņīÔĪħ””ȼĠ˔”ÝĤħ””Èħ””ĜæêĪĪ¼””ÝĤêħ””ðĪĦĪ  ħ””ĥŎŀѶŇĜĪħõ””ҵ»ħ””ō˵ħ””ĤĪħ””µĦæ  ėŇŀħĠѵĢ   ħōĸ  ħōÊæĪ ħĜ   ħĜĪ ĦëÎ  ħĠÊĪ  Ħæê  ħÎê  ħĨòËÕñŇÈËÔ   ĢËōĪĦĪÊêæĞËÝĤ ħĨ   ħµ ħÈ  »ĦĪ  Ħê  ĦæĪ  ħ””µħ””¯ĪËĤ¼Õ””ðËÈêħ””ðħ””ĜĦĪ  ĦĪĪļĞ  ħ””Ĝ˔”ĤÊīÔħ””μĤ˔ ðħ””µĪĦĪ  Ħê  Ħ²ņī””Ôħ””Ĝ Īħ”Ĝ  ¼”ĤÊìĥŎ¯Ħ딧  ħ”µê   ħ”Ĝ ħ”ð  ĦĪÊêæĞ˔ÝĤ   ħÈÌËōËĤĪæêĪĪ¼µ  ĦĪ ħō  ħĥŎŀѶŇĜóŎĔÊëŇĈ  »ĦĪ  Ħê  ħ”ð¼Ĥ˔µ   ĦĪīÔ˔Ĩ˵  ħ”ōÊĪæ  ħ”ÎєÎ »ĪĦì»ĪĪļê   ħ”ĜĢĪīÔĪ ħ”ð   Ħæ ħµê  ħµ»   ħĤÊë§  ħµ ĪĊŌõ”ĔĪħ”¶ŀīĔ¼Ĥ˔µ   ħ”¹ĽÎ  ħ”Ĥ˪   łêħ”ÝĤËÔ» ħ”Ĝ   ħ”ÔËĩ¶Ňª»  Ħêħð¼ô ĦĪ   ¼ðËÕōëµ ħÎ ¼”ôħÎ   »êħôëŇÔ»   ĦêÊīä¼Ĥ˵ ĦĪ   ĦĪīÔËĨ˵  ħōÊĪæ  ħÎËĨ  ħĨ ĦĪê  ĦĪĢÊĪëŎð¼ŀłæĪ  īÔħµ   ïņīð¼Ĥ˵ĦêĪīð   ħĥŎ¯  ĦëŎÝĤìĪòŃŀѵ»  ħÔËĩ¶Ňª»  ĦêÊīä ĦĪ  »ħ”¹ĽÎ   ħ”Ĥ˪  ħ”ĜĦĪÊêæ Ğ˔ÝĤħ”Èê   ħĜĢËō ħ”ð   ħŎŀѶŇĜ ĦĪ   ħµ»  ħĤËōë§  ħµ ħµ  ħōĪ  ħÈ  ĦĪ  »ħ”µ  ħ”ōóĤÊëŎ”ô»   ħ”ÔËĩ¶Ňª»  Ħê ĦĪ  ħð¼ô   ħĜģŎÕōëÎ ħÎ   ¼ŀĪīĔËġð»ħ¯ĪËĤ   ¼Ĝħ¹   Shiranish Tanjero transition unit łêħÝĤËÔŃÎóĤÊëŎô   »çĤħÎ  ħĤÊīŇĤ  »ĦĪ  Ħê  Ħìņī¹  Ğ ħ  ”ÈÊæħ  ”ōĦĪħ”ĥō²ņīÔĞ   òєŀѵ»ħÔËĩ¶Ňª» ħ”Ĝ   ĦêÊīä¼ô ĦĪ   ĦĪłê ħÎ   ħÝĤËÔ»  ħÔËĩ¶Ňª ¼Õ”ôĪĪëð»ê˔λĦĪ  ħ”Ĥæ뵾   ħÕŎ”ôĪæêĪĪ¼”ÝĤê  ħ”ðë”ņ±  ħ”ĤīÔĪ ħ”Ô   ħ”ĤËōë§ ħ”µ   ħ”µ ħ”µ  ħō  ħ”ĜĢ˔ŎĤ˵   ħ”Ġ ħ”ŎĤ  ħ”ÔĪ¼”ĐÊë¹  ī”Üħ”ōçĤ   ħªĪĢËŎĥÔËĨ˵ Ħī”ō   ħōÊĪæ  ħλêŃÜĪ¼ō  ħºŁŇµ ģŎŀŃªĦêËÎĪĪæĪĢ˵   ħµĪī°Î  ĦĪËĤ ħōçĤ   ħōŃÎĢ ħµ  ËōĦĪ  ħĤæëµò   ħÎÊæ  ĦĪÊçōëÕµ  ħōľ  ħ¹ ÛĤ˔”ĠËȼĤ甔ĤŌĠħ””äĪĢæë¶õ””ä   ħ””ĤÊëō± ħ””ª  Ī디ÔæêĪĪ¼Õ””ðËÈêħ””ð  ħ””ĜĢ˔”ō   ħ””Ĥæëµ ĦĪ  Ğ˔ÝĤħ”Èê   ħĜ» ħ”ð   ħĥō²ņīÔħµĖ ĦĪ   ħ¹ĽÎ ħō  ħĤ˪êħĨŃÎĢ˵   ħĠËÝĤ  ħȼĤÊæ  ħÕð ĦĪ  Ħæ  ħÎĪ  ĦĪÊêæ  ħ”ŀ  ħ”Ġѵ   Ӕð ħ”Î  Ħī”ō  ħ”ª¼”¹   Ħç”ĥōì  ħĥŇÕõ”ªӔô  ħĨÊæ  ĦĪ ħō  ħĥō²ņīÔĞ   ħȼĠËÝĤ  ħĜ ħÈ   ħ””ÔËĩ¶Ňªħ””Ĝ  Ê디µ»ê˔”ōæ»Ī˔”Èêħ””ð»ÊëŇđŎĥĠÊêє”Đ¼Ĥ˔”µ   ĦĪī””Îæê  ħ””Î ħ””Î  ħ””ō¼””¹   Ħ甔ĥōì  »ĦĪ  Ħê  Ħìņī”¹  »ç”ĤħÎ  ħĤÊīŇĤ»   ħōĪóĤÊëŎô» ħµ   ħÔËĩ¶Ňª»  Ħê ĦĪ  ħð¼ô   ħμĤ˵  ħµ ħōë§   ¼””Ĝħ””¹»ħ””¹ĽÎħ””Ĥ˪ħ””Ĝłêħ””ÝĤËÔ»ħ””ÔË¶ŇªĦĪ  łêħ””ÝĤËÔє”ÎóĤÊëŎ””ô¼Ĥ˔”µħ””ÔËĩ¶Ňª ħ”””¹ĽÎÓõ”””¹   ħ”””Ĝłê  ħ”””ÝĤËÔ»  ħ”””ÔËĩ¶Ňª»  Ħê ĦĪ  ħ”””ð¼”””ô   ĦĪ ħ”””Î   ¼ŀĪīĔËġ”””ð»ħ”””¯ĪËĤ  ħĥŇÕõ””ªêÊī””¯¼””Ĥæëµ»ê˔”ōæ˔”ĨĦĪê  ħ””ĨĦĪ  ħ””µĦĪ  ħ””ĥŎŀѶŇĜ¼Ĥ˔”µħ””¯ĪËĤ¼Ĥ˔”µĦĪÊê²ņī””Ô ¼Ĥ˔µĦĪīÔ˔Ĩ˵   ħ”ōÊĪæ  ħ”ĥŎ¯ ħ”Î  ŃλĪËÈêħð»ÊëŇđŎĥĠÊêŃĐ¼Ĥ˵   ĦĪīÎæê  ħÎ ħÎ  ¼¹  Ħçĥōì  ħ””Ĝ ģŎ””ðŃŎĜ˪»ĦĪ  ĦêÊī””ä òє”ŀѵ»ħ””ÔËĩ¶Ňª»ĦĪ  ĦêÊī””ä¼””ôħ””λêħ””ôëŇÔ»ĦĪ  ĦêÊī””ä Ģ˵łæĪ¼ŀĪīĔËġðĪĢÊĪëŎð¼ŀłæ¼Ĥ˵ħ¯ĪËĤ  ħ”Ĝ  ħĠѵĢÊīŇĤ»ìÊĪËŎÜĪĢĪī°µ   ħĜ»ĪĪļ ħō   ħĜĢæëµæêĪÊê  ħÎÒ ħÎ   ħÏōËÔ»êÊĪīÎ  ħĜ ¼Ĥ˔µħ”¯ĪËĤĪī”Ġ   ħ”ĜĢ˔µ ħ”Ĩ   ĦĪÊ딵»ê˔ōæħ”Ŏ¹  Ħç”ĥōì  ħĥŇÕõ”ªê  ħ”Ĝ ħ”ð  ĦĪ  ħ  Ĥ˵ħŎ¹  Ħçĥōì  ĢĪī”°µħ”ō  ħ”Ĝ»ĪĪļ¼Ĥ˵   ħōĸ ħĤ   ĦĪÊêæĞËÝĤ  ĦĪÊëµ»êËōæŅĜ» ħÈ   ħ¹ĽÎ  ħĤ˪  ĦĪÊê²ņīÔ ħµ  ĦĪÊê²ņī”Ô¼Ĥ˔µ   ħ¯ĪËĤ  ħĜëÔ¼µ  ħ¹ĽÎŃÎ ħō   ħµ ĦĪ  ħō  ħ¹ĽÎê   ħĜÊêçŇª ħĨ   Ħ±ËĠËÈ»ìÊĪËŎÜĪ »ĪĪļħ””ĤÊīŇĤêħ””ðħ”ĤĪħ””µĦæ  ħ”µ»  ħ””ĤÊĪīÔËĨ˵ħ””ōÊĪĪæħ”Î  Ħ디§ħ”µ  ħ””ĥŎ¯Īħ””ȼ”Ôħ””ÏōËÔħ”Î 

є”ΐ»êħ””ôëŇÔĪ¼””ðËÕōëµ¼Ĥ˔”Ġ   ħ””ðĪĪæê Ħæê    ¼ĥÕõ””ōħ””¹Ė ħ””Ĩ   ħ””μ””ŁŇĨ ħ””ō   ħ””ĤÊīŇĤ ĪĒÊë”ŇĈєÎ¼”µĦê  ĦæĪ¼”µ   ĦĪ˔Ĥ¼ÕðËÈê  ħĜËĨ ħð   ħĨ ĦĪê  ĦĪ  ĦĪÊê²ņīÔ»   ħ¯ĪËĤ¼Ĥ˵  ħ¹ĽÎ óŎĤËĩŎÜĦĪ»êħÎĪêĪ   Ħæ єÎ»ĪËÈêħð»ÊëŇđŎĥĠÊêŃĐ¼ĤÊìģŎ¯   Ħçĥōìê ħŎ¹   ħĜĢËĠ ħð   ĦĪ ħµ  ħĥō²ņīÔ¼ĠËÝĤ   ħĜ ħÈ  Ħêĸ»ħ¹ĽÎ   ħĜĢ˵  ĦêĪīðĪ  ħĠħŎō ħĝō   ĦĪËĔ¸Ĥ  ħŎðËÕōëµ» Ħļ   Ħê ĦĪ  ħð¼Ĥ˵   ħµħĥŎ¯ ĦëĐ   ¼ŀĪīĔËġ””ð»ħ””¯ĪËĤ   Awagird mountain plunge toe æ디¹ĦĪ˔”ȼä˔”ô»Īī””¯łļ   »êħ”ÎĪêĪ   ĦæĪ¼ŀĪīĔËġð»  ħ¯ĪËĤ  ħĜÊëµĢ˵  ħµ Ħë§  ħĥŎ¯   ĦìËÔ¼µ ħĜ   ħµ ħō  ħō»êËŎĥõŇª  ¼ōħºŁŇµ»ê˵»êÊĪīÎ   ħĜģŎÕõō  ħ¹¼Ňª  ĦĪ ħµ  ħĥō²ņīÔ¼ĠËÝĤ   ħĜ» ħÈ   ħĤʱËĠËÈĪ  ħð ħÈê  ħĜ  ¼Ĥ˔µħ”ōë  §ħ”µ  ħ”µ  ħ”ōľ   ħ”Ĝ ħ”¹  ħ”ō  Ħì˔Ô   ħ”ōĞ ħ”µ   ħȼĤĪīÕðĪ¼ōŃðËÈ»çĤ  ħª»êŃÜĪ Ħīō  ħ”Îńë”Ĥ   ĦæÊæ  Ħì˔Ô ħ”ō   ħ”ōë§  ħ”µ ħ”µ  ħ”ōĞ   ħ”ÈÊ甶ŇÔ˵  »ŃäêÊĪīäĦĪĪê ħ”Ĝ   ĪŅðĪËĨ ħð ħĥŇÕõ”ªò   ħ”ôÊëĤÊī”Ô  ĦĪłê  ħ”ÝĤËÔєÎóĤÊë”ô¼Ĥ˔µ  ħ”ÔËĩ¶ŇªŃÎ»ë§  ħµ»çĤ  ħĤÊīŇĤ ħÎ  »ê˔ōæ»Ī˔Èêħ”ð»ÊëŇđŎĥĠÊêєĐ¼Ĥ˔µ   ĦĪī”Îæê  ħ”ÎєÎ ħ”Î   ħµ ħō  ħōĞ  ħÎÒ   ħÏōËÔ¼¹  Ħçĥōì »ħ”µ  ħō»ĪËĤóōĪ   ħµ ħÈ  ħō  ĦìËÔ   ħµ ħōë§  ħµ  ħōĞ  ħÈŃÎĞ   ĦæėņĪËĤ»ìËŎĥõŇª ħµ   ńë¶Î ĦĪ ¼”ōĦĪ  ħ”Ô  ħ”Ĥī”ŇĤ»   ĦëºĤєµ¼Ĥ˔µ  ħ”ŎōËġĥņļ¼”Ňª   Smaquli Formation ħ”ō¼ŀĪīĔËġ”ð ħ”Î  Êæ¼ĤÊìĥŎ¯»êÊĪīÎħĜńīĤ¼µ   ħµ ħō  ħō¼ĤËĤĪËĤŃÎ  ¼ĠĦæ  êħð¼ŁŇĨ   ħĤÊīŇĤ¼Ĥ˵  ĦĪīÔËĨ˵  ħōÊĪæ  ħÔËĩ¶Ňª ħÎ  ¼Ĥѵ»ħºĥō±   ħĥÕõŎĤÊëĤÊīÔ  ĒÊë”ŇĈ¼”ÔŋħĨ±łļ»  êīµËÎ ¼ĤËġŇĝð¼Ĥ˵ħ¯ĪËĤ   ħĜńë¶Î»êËōæ»ê  ħôëŇÔĪ¼ðËÕōëµ ¼Ĥ˔µħ”Ĥ  ħ”Ġ  ħ”ÔєÎ»Ī˔Èģ”ÎĪ»ĪËÈê   ħð»ÊëŇđŎĥĠÊêŃĐ¼Ĥ˵  ĦĪīÎæê  ħμĤËĥŇĨê˵ ħÎ   ħÎ ħÎ  Late Maastrichtian – Early Ģ˔ŎĤÊæ»ĪĪêÊĪī”äĦĪ  ¸”ĤĦêæ¼ĤËŎÕåōëՔðËĠ¼”Ġ   ħ”ð Ħæê  »ħ”ÔËĩ¶ŇªĢ˔ō  ÊæĦĪÊê²ņī”Ô»   ħ”¯ĪËĤ  ħ”ĜòŃŀѵĪłê  ħÝĤËÔ¼Ĥ˵  ħÔËĩ¶Ňª   Danian ħĜ »ĦĪ  ĦêÊī”ä¼Ĥ˔µ   ħ”Ġ ħ”Ĥ  ħÔ   Red Bed Series ¼Ĥ˵ĦêĪīð   ħĥŎ¯  ĦëŎÝĤìľ  ħĜłê ħ¹   ÝĤËÔ ħ »êħôëŇÔ¼Ġ   ħð Ħæê  Ī  Paleoenvironment ħ”ºĥō±ħ”Ĥѵ¼”Ĥæëµ»ê˔ōæ   ĦĪ ħ”ō  ħ”ĥō²ņīÔĞ   ˔ĨĦĪê ħ”È  ħĨ  ĦĪ  ¼””Ôħ””ŎĤŃ¯»   ħ””ºņļ  ħ””Ĝæ디µ»ê˔”ōæ¼””ðĪīĤËŎĔŃÈ  Paleobathymetry »ī””Ň«ŀĪīĔħ””Ĥѵ  ĪĢæ딵ê˔Ġ±ħ”È  ħ”λĪËÈģÎĪ»ĪËÈê   ħð»ÊëŇđŎĥĠÊêŃĐ¼Ĥ˵  ĦĪīÎæê  ħμĤĪīÎò ħÎ   ħÎÊæ ê˔Ġ±ħ”È  ħ”Îó”ōĪ   ħ”ÈÊëŎđŎĥĠÊêєĐ¼Ĥ˔µ  ĦêєÜĪī”Ġ  ¼ÕņçĤħ¯Ī¼ÕŇĤŃ¯»êËλ ħĨ   ħĤÊīŇª »ÊëŇđŎĥĠÊêєĐ»Ħ²”ņļ   ĦĪ»Ī˔Èģ”ÎĪ»ĪËÈê  ħð»ÊëŇđŎĥĠÊêŃĐĪīĠ  ħĨŃλêËĠËÈ ¼Ĥæëµ êÊī””ōæє”ÎĢ˔”µħŎñ””ĝµ ĊĪ˔”Ĕ êÊī””ōæ»ÊëŇđŎĥĠÊêє”Đ»Ħ²””ņļĦĪ»Ī˔”Èģ””Îє”λĪ˔”Èêħ””ð Ģ˵ħŎō  ĦĪÊëµŃµ  ¼Ĥ˔”µĦĪī””Îæêħ””Îħ””μ””ĤÊìĥŎ¯ħ””ŎŎ¹Ħ甔ĥōìêħ””ðħ””Ĝħ””µĦĪ  ħ””ĥō²ņĪīÔ¼Ġ˔”ÝĤħ””ÈêĦæ  ¼ĥÕõ”ŎĤ»êÊæ딵ħ”µÒĪ   Ħæ ħ”µê  ÊæĦĪÊê²ņī”Ô  »¼Ĥ˔µ   ”¯ĪËĤħ”Ĝ»Ī˔Èê ħ   ħ”ð»ÊëŇđŎĥĠÊêŃĐ ¼Ĥ˔µĦĪīÔ˔Ĩ˵   ħ”ōÊĪæ  ħ”ōë§ ħ”Î   ħ”ĥŎ¯єÎ ħ”µ   ĦĪīÎĞÊĪ  ħλ Ħæê   ĦīŇô  ħÎĢ˵  ħŎōë§  ħĥŎ¯ ħµ 

¼”µħ”ō  Ħç”ĥōËġĤ®Ŏ”ŎĨ»   ħ”ÈŅÎ ĦĪ   ħΐ»ê  ħôëŇÔĪ¼ð ËÕōëµ¼ŁŇĨħĤÊīŇĤêÊīä   ĦĪĪĪê  ħð ÓŇÎħĨģÕõŎĤ   ħĤĢËōģŇĜ  ħµĢÊĽ°ª êħ”ð»ÊëŇđŎĥĠÊêєР »êєÜ»ĦĪ  ħ”ĥōìłæĪĢæ딵»ê˔ōæ   ħ”ō ħ”µ  ĦĪ  ħ”È  ħ”ĤËĠ   ħĜëÔËōì  ĦĪ ģÕõ”ŎĤ»êÊæ딵ħ”µ  ĦĪ  ħ”Ô˵   ĦæĢĪĪļ  ħ”ÈĢ˔ŎĤÊæ» ĦĪ   ĦêÊīäĪËÔ ĦĪ   ħð¼Ĥ Ħê   ħÔŃλĪËÈ ħĠ  ĦĪ  ħ”Ô˶ÎĞ   ħµĖ  ĦĪīÎĢĪīÎæËōì ħĤ   ħĜĪĞÊĪ  ħÎóŎĥÕõŎĤ» Ħæê   Ħ²ņļ  ĦĪ  ĦĪīÎĞÊĪ  ħÎ Ħæê  ¼ŀĪīĔËġðĪĢ˵ĪæĪĢÊĪëŎð¼ŀłæ»ĦĪÊê²ņīÔ¼Ĥ˵   ħ¯ĪËĤ  ħĜ¼Ô  ħÏōËÔ  ħÎ ģÕõ”ŎĤ¼Õõ”¹»Ħ²”ņļÊëĤÊī”Ô   ħ”ō ħ”µ  ĦĪ  ħ”Èħ”ō   ħ”ĥō²ņīÔĞ ĦĪ   ħ”È»ë”Ô¼ºĤë¹¼¶ŇÔ  ħÎËÎ ¼Ĥ˔ĥŇĨê˵ħ”Î  ħ”Î  ĦĪ  ĦĪ  ħĤĪÊë”ðËĤ   ħ”µ¼Ĥ˔µ  ħ”ĥŎ¯  ħ”ō¼”¹  Ħçĥōì ĪīĠħĨŃÎ  ńë¶Î»êËōæ »ê˔ōæĢ˔µĦë”Đ  ħ”µ¼ĥÕõ”ŎĤ»   Ħ²”ņļ»ç”Ĥ  ĦĪ˔ĤÊëĤÊī”Ô  Graphic method ¼ÔËÏōËÔ»ħºņļ  ¼”ôħ”μ”Ô   ħ”ÏōËÔ  ħ”ÎĢ˵ ĦĪÊê²ņīÔħ¯ĪËĤ¼Ĥ˵ĦĪīÔËĨ˵   ħōÊĪæ  ħÎħōë§  ħĥŎ¯ŃÎńë¶Î ħµ  ħ”ĤÊīŇĤê   ħ”Ĝòєŀѵ» ħ”ð   ħ”ÔËĩ¶Ňª»  ĦêÊī”ä¼”ô ĦĪ   ħÎĪłê  ħÝĤËÔ»  ÔËĩ¶Ňª»ĦĪ ħ  Ħê  ħð  ħ”µÊæĢËõ”ŎĤ»   ħÈ ĦĪ  ĦĪ  ħĤËñōæò   ħÈ ħĠ  ħµ»ê   ħôëŇÔĪ¼ðËÕōëµ¼Ĥ  ħÔĢÊī ħĠ  ŇĤ¼ŁŇĨ »Ë”ĨĦļÊç”ōŃä   ħ”Ĝ»Ń”ä  ħ”µ  ħ”Ô˶ÎĞ ĦĪ   ħ”µĖ  ĦĪīÎĢĪīÎæËōìĪ ħĤ   ħÎģÕõŎĤ»êÊæëµ Ħê  ¼ŁŇĨħĤÊīŇĤê   ħĜģÕõŎĤ ħð   ħĤĢËōģŇĜ  ħµĢÊĽ°ªĖ  ħĤÒÊæ  ĦæĢËõŎª ĞÊĪĦæê  ħμĥÕõŎĤ  »êħôëŇÔĪ¼ðËÕōëµ     

     



   

ϦϴΑϞλΎϔϟ΍ΪΤϠϟΔϤϳΪϘϟ΍ΔΌϴΒϟ΍ϭΔϴΗΎϴΤϟ΍ΔϴϗΎΒτϟ΍ ϥΎΘγΩέϮ̯ˬΔϴϧΎϤϴϠδϟ΍ΔϘτϨϣˬ̶ΛϼΜϟ΍̶γΎΘϳή̰ϟ΍ ϕ΍ήόϟ΍ϕήηϝΎϤη



 ΔϟΎγέ ΔϴϧΎϤϴϠδϟ΍ΔόϣΎΟϡϮϠόϟ΍ΔϴϠ̯ΓΩΎϤϋ̶ϟ΍ΔϣΪϘϣ ΔϔδϠϓϩ΍έϮΘ̯ΩΔΟέΩϞϴϧΕΎΒϠτΘϣϦϣ˯ΰΠ̯ ̶ϓ νέϻ΍ϢϠϋ  

ϞΒϗϦϣ 

̵ήϳ̫ΎΑέΎηϞϴϋΎϤγ΍ΩϮϤΤϣΪϟΎΧ

˺̂́˼ϞλϮϣΔόϣΎΟνέϻ΍ϢϠϋ̶ϓήϴΘδΟΎϣ   ϑ΍ήη΍ΖΤΗ  έϮϔϏΩϮϤΤϣΩΎϤϋΩ̶ϤϴόϨϟ΍ΪϤΤϣΪϤΣ΍ϥΎτΤϗΩ ΪϋΎδϣΫΎΘγ΍ΪϋΎδϣΫΎΘγ΍    ˻˹˹̶́ϧΎΜϟ΍ϥϮϧΎ̯˺˽˻́ΔΠΤϟ΍ϭΫ



 κϠΨΘδϤϟ΍ 

ϕΎѧѧτϧ̶ѧѧϓϊѧѧϘΗΔѧѧγ΍έΪϟ΍ϖσΎѧѧϨϣ̶ѧѧϓΔϔθѧѧ̰ϨϤϟ΍ϭ̶ѧѧΛϼΜϟ΍ϭ̵ήϴѧѧηΎΒτϟ΍̵ήμѧѧϋϦϴѧѧΑαΎѧѧϤΘϟ΍Ε΍ΪѧѧΣϭϥ΍   ϥϻϮ̩ΔόϠϗϖσΎϨϣ ϒΣΰϟ΍ϕΎτϧ̶ϓΎϴ΋ΰΟϭ  ΐ̯΍ήΘϟ΍ϕΎτϧϭ ̶ϟϮϗΎϤδϟ΍ϭϥΎ̯ϭΩ̶ΘϘτϨϣ ΔϴϟΎόϟ΍ΕΎϴτϟ΍ ̵ί΍ϮѧϣϭΐѧϳήϗϖϴѧοςѧΨ̯ϕήѧηΏϮѧϨΟΏήѧϏϝΎϤѧηϩΎѧΠΗΎΑΪѧΘϤΗ̶Θϟ΍ϭˬ ϥ΍ϭήϴγ̵Ω΍ϭϭΔΠϧίήΑϭ

 Flysch ζϴѧϠϔϟ΍ωϮѧϧϦѧϣΕΎѧόΑΎΘΗϦѧϣ̶δѧϴ΋έϞ̰θѧΑϒϟΎѧΘΗΕ΍ΪΣϮϟ΍ϩάϫϥ΍ϭΔϴϧ΍ήϳϻ΍Δϴϗ΍ήόϟ΍ΩϭΪΤϠϟ ϭΔ̰ϟϮϗϭ̶Ϡ̳ ϊσΎϘϣ̶ϓεϮϟϮ̯ϭϭήΠϧΎΗ̶ϨϳϮ̰ΘϟΔϴΗΎΘϔϟ΍έϮΨμϟ΍ϦϣΔ̰ϴϤγΕΎϘΒσϦϣϥϮ̰ΘϤϟ΍ϭ

ΔϠδѧϠγϭϭήΠϧΎѧΗϦϳϮѧ̰ΘϟΓΪѧ΋Ύόϟ΍ Flysch- Molasse αϻϮѧϤϟ΍̶ѧϟ΍ζϴѧϠϓωϮѧϧϦѧϣϥϮ̰ΘΗϭ΍ ϥ΍ϭήϴγ

 ύϼ  θϗϭϮΗΎ̯ ̶ότϘϣ̶ϓ βϳϮδϟ΍ΔϋϮϤΠϣ ˯΍ήϤΤϟ΍ΕΎϘΒτϟ΍

ϭˬΔϳέΎΨμѧϟ΍ΔѧϴϗΎΒτϟ΍ϞΜϣϦϳϭΎ̰Θϟ΍ϩΪϬϟΔϨϴόϤϟ΍ήϴϏΕΎϤδϟ΍Ϟ̯ϞϴϠΤΗ̶ϠϋΔγ΍έΪϟ΍ϩάϫΕΰ̯ήΗϭ ̵ήμѧϋϦϳϭΎѧ̰ΗϦϴѧΑαΎѧϤΘϟ΍ΔѧόϴΒσϭˬΔѧϤϳΪϘϟ΍ΔѧΌϴΒϟ΍ϭΔϤϳΪϘϟ΍ΔϴΒϴγήΘϟ΍ΔΌϴΒϟ΍˯ΎϨΑϭΔϴΗΎϴΤϟ΍ΔϴϗΎΒτϟ΍

˯΍ήѧѧѧΟ΍ϭˬΕ΍ΪѧѧѧΣϮϟ΍ήѧѧѧϤϋΪѧѧѧϳΪΤΗϭˬ̶ΗΎѧѧѧϴΤϟ΍ϭ̵έΎΨμѧ ѧϟ΍̵ϮѧѧѧΘΤϤϟ΍ΚѧѧѧϴΣϦѧѧѧϣ̶ѧѧѧΛϼΜϟ΍ϭ̵ήϴѧѧѧηΎΒτϟ΍ ϭΙϮѧΤΒϟ΍ϝϼѧΧϦѧϣΡήτΗΖϟ΍ίΎϣ̶Θϟ΍ϭΔΣϭήτϤϟ΍ΔϠΌγϻ΍ϦϣήϴΜ̶̯ϠϋΔΑΎΟϼϟΔϴϤϴϠϗϻ΍ΕΎϫΎπϤϟ΍ ϪΟέΎΧϭϕ΍ήόϟ΍ϞΧ΍ΩϦϣϦϴΜΣΎΑϞΒϗϦϣϦϴϨδϟ΍Ε΍ήθϋάϨϣΓΪϳΪόϟ΍ΕΎγ΍έΪϟ΍

̶ѧѧϠϋϻ΍̵ήϴѧѧηΎΒτϟ΍ΕΎѧѧόΑΎΘΘϟ̵ϮѧѧϠόϟ΍ϒθѧѧ̰ϨϤϟ΍˯ΰѧѧΠϟ΍̶ѧѧϠϋΔϴϠϴμѧѧϔΗΔѧѧϴϗΎΒσΔϳέΎΨѧѧλΔѧѧγ΍έΩΖѧѧϳήΟ΍ Ύπϳ΍ΖϠϤηϭˬϥ΍ϭήϴγ̵Ω΍ϭϭϮΗΎ̯ϭύϼθϗϭ  Δ̰ϟϮϗϊσΎϘϣ̶ϓ ϭήΠϧΎΗϦϳϮ̰ΗϦϣ̵ϮϠόϟ΍˯ΰΠϟ΍

Ε΍ΪѧΣϮϟ΍ΖϨϤπѧΗΎѧϤϨϴΑˬ̶ѧΛϼΜϟ΍ήѧϤόϟ΍Ε΍Ϋ˯΍ήѧϤΤϟ΍ΕΎѧϘΒτϟ΍ΔϠδϠγϭεϮϟϮ̯ϦϳϮ̰ΗϦϣ̶Ϡϔδϟ΍˯ΰΠϟ΍ ΔѧϴϟΎϘΘϧϻ΍Ε΍ΪѧΣϮϟ΍ϭζϧ΍ήѧηϦϳϮѧ̰Θϟ̵ϮϠόϟ΍˯ΰΠϟ΍ ̶ϟϮϗΎϤδϟ΍ΔϘτϨϣ ̶Ϡ̳ϊτϘϣ̶ϓΔγϭέΪϤϟ΍ΔϴϗΎΒτϟ΍ Δѧγ΍έΩ̶ѧϟ΍ϦϳϭΎѧ̰Θϟ΍ϩάѧϫΖόπѧΧΚѧϴΣˬεϮѧϟϮ̯ϭϭήΠϧΎѧΗ̶ϨϳϮѧ̰ΗϭϭήΠϧΎѧΗϭζϧ΍ήѧη̶ϨϳϮ̰ΗϦϴΑ

ΔγϭέΪϤϟ΍ϊσΎϘϤϟ΍̶ϓϑΩΎϬϟ΍ϭϝϮϘόϤϟ΍̵ϮϧΎΜϟ΍ϢϴδϘΘϟ΍ϩΎΠΗΎΑΔϔϠΘΨϣϊϗ΍ϮϤϟΔϠϣΎηΔϴϠϘΣ

ϦϳϮѧ̰ΗϦѧϣ̵ϮѧϠόϟ΍˯ΰѧΠϟ΍ϦѧϣΔϴϓΎτϟ΍΍ήϴϔϨϣ΍έϮϔϟ΍ΕΎόϤΠΗΰϴϤΗαΎγ΍̶ϠϋΔϴΗΎϴΣΔϘτϧ΍ΔϴϧΎϤΛΖϠΠγ ΔѧϘτϨϣ ̶ѧϠ̳ϊѧτϘϣ̶ѧϓϭήΠϧΎѧΗϦϳϮѧ̰ΗϭϭήΠϧΎѧΗϭζϧ΍ήѧη̶ϨϳϮѧ̰ΗϦϴѧΑΔѧϴϟΎϘΘϧϻ΍Ε΍ΪѧΣϮϟ΍ϭζϧ΍ήη

ΔѧϘτϧ΍ΔѧόΑέ΍ΰѧϴϤΗϢѧΗϚϟάѧ̯ϭΔѧγϭέΪϤϟ΍ϊσΎѧϘϤϟ΍ΔϓΎ̶̯ϓϭήΠϧΎΗϦϳϮ̰ΗϦϣ̵ϮϠόϟ΍˯ΰΠϟ΍ϭ ̶ϟϮϗΎϤδϟ΍ ̶ϟϮϗΎϤδϟ΍ϭϥΎ̯ϭΩϭˬϥ΍ϭήϴγϖσΎϨϣ̶ϓ Ϟϔγϻ΍ϦϴγϮϴϟΎΒϟ΍ εϮϟϮ̯ϦϳϮ̰Θϟ̶Ϡϔδϟ΍˯ΰΠϟ΍ϦϣΔϴΗΎϴΣ

Ε΍ΫΎѧϬϟΔΌϓΎ̰Ϥϟ΍ΔϘτϧϻ΍ϊϣΔγ΍έΪϟ΍ϩάϫ̶ϓΕΰϴϣ̶Θϟ΍ΔϴΗΎϴΤϟ΍ΔϘτϧϻ΍ϦϴΑΔϧέΎϘϣΓΎϫΎπϣΖϳήΟ΍ ϕ΍ήόϟ΍ΝέΎΧϭϞΧ΍Ω̶ϓ̶ΛϼΜϟ΍ϭ̵ήϴηΎΒτϟ΍ϦϴΑαΎϤΘϟ΍ΩϭΪΣϝϮΣϊ΋Ύθϟ΍ϝΎϤόΘγϻ΍

 

̶ѧϟ΍ήѧϤΣϻ΍ϥϮѧϠϟ΍Ε΍Ϋ̶ѧϠϋϻ΍̵ήϴѧηΎΒτϟ΍ΕΎѧόΑΎΘΗ̶ѧϠϋΔϴϓΎτϟ΍΍ήϴϔϨϣ΍έϮϔϠϟΔϴΗΎϴΤϟ΍ΔϴϗΎΒτϟ΍Δγ΍έΪϟ΍ϥ΍

ΓΪѧϳΪΟΔѧγϮϤϠϣΔѧϴϗΎΒσΓΪѧΣϭΖѧΣήΘϗ΍ ̶ϟϮϗΎϤδѧϟ΍ΔѧϘτϨϣ Ωήѧ̳ϭ΍ϞΒΟβσΎϏϊτϘϣ̶ϓΐΣΎθϟ΍̶΋΍ϮϬϘϟ΍

ϦϳϭΎѧѧ̰Θϟ΍ϊѧѧϣΓΪѧѧΣϮϟ΍ϩάѧѧϬϟΔϴϠϴμѧѧϔΘϟ΍ΔѧѧϴϗΎΒτϟ΍ΕΎѧѧϗϼόϟ΍ϭΔѧѧϴϠϘΤϟ΍ΕΎѧ ψΣϼϤϟ΍ΐѧѧΟϮϤΑΔѧѧϘτϨϤϟ΍ϩάѧѧϫ̶ѧѧϓ ΔΘѧγΰѧϴϤΗϢΗϭˬϭήΠϧΎΗϦϳϮ̰Ηϭζϧ΍ήηϦϳϮ̰ΗϦϴΑ̶ϟΎϘΘϧ΍̶ϨΤγήϴϐΗΓΪΣϮϟ΍ϩάϫϞΜϤΗΚϴΣΓέϭΎΠϤϟ΍ ΔϳήΨμϟ΍ΓΪΣϮϟ΍ϩάϫϞΧ΍ΩΔϴϓΎτϟ΍΍ήϴϔϨϣ΍έϮϔϟ΍ϦϣΔϴΗΎϴΣΔϘτϧ΍

ΔѧϘτϨϣ̶ϓ̶ΛϼΜϟ΍ϭ̵ήϴηΎΒτϟ΍̵ήμϋϦϴΑαΎϤΘϟ΍ϦϳϭΎ̰ΗΕΎόΑΎΘΘϟΔϤϳΪϘϟ΍ΔϴΒϴγήΘϟ΍ΔΌϴΒϟ΍ΪϳΪΤΗϢΗ

̶ѧϟ΍ήΧΎѧΘϤϟ΍ϥΎϴΘΨϳήΘѧγΎϤϟ΍ΓήѧΘϔϟΔѧϴϋΎϘϟ΍ϭΔѧϴϓΎτϟ΍΍ήϴϔϨϣ΍έϮѧϔϟ΍ϡ΍ΪΨΘѧγΎΑ ϕ΍ήόϟ΍ϕήηϝΎϤη ΔϴϧΎϤϴϠδϟ΍

ϭϭήΠϧΎѧΗ̶ϨϳϮѧ̰ΘΑΎϳέΎΨѧλΔѧϠΜϤΘϤϟ΍ Late Maastrichtian-Early Danian ή̰ΒϤϟ΍ϥΎϴϧ΍Ϊϟ΍ΓήΘϓ Δγ΍έΪϟ΍ΔϘτϨϣ̶ϓ˯΍ήϤΤϟ΍ΕΎϘΒτϟ΍ΔϠδϠγϭϭήΠϧΎΗϦϳϮ̰ΗϭΎϴϤϴϠϗ΍εϮϟϮ̯

ϭΔѧѧϴϓΎτϟ΍΍ήϴϔϨϣ΍έϮѧ ϔϟ΍ϊѧѧϳίϮΗρΎѧѧϤϧ΍ϝϼѧѧΧϦѧѧϣΔѧѧϤϳΪϘϟ΍ϕΎѧѧϤϋϻ΍ϭΔѧѧΌϴΒϟ΍ΪѧѧϳΪΤΗϞѧѧϣ΍ϮϋΔѧѧγ΍έΩΖѧѧϤΗ ̶΋ΎμѧѧΣϻ΍ϭ̵έΎθѧΘϧϻ΍ϞѧѧϴϠΤΘϟ΍ϭ΍ήϴϔϨϣ΍έϮѧϔϟ΍ω΍Ϯѧѧϧϻ̶ѧϠ̰ϟ΍ΩΪѧѧόϟ΍Ϟѧϣ΍Ϯόϟ΍ϩάѧϫΖϨϤπѧΗΚѧϴΣˬΔѧϴϋΎϘϟ΍ έ΍ΪѧΠϟ΍Ε΍Ϋ΍ήϴϔϨϣ΍έϮѧϔϟ΍ΔΒδѧϧϭˬΔѧϴϋΎϘϟ΍̶ѧϟ΍ΔѧϴϓΎτϟ΍΍ήϴϔϨϣ΍έϮѧϔϟ΍ΔΒδѧϧϭΔѧϴϋΎϘϟ΍ϭΔѧϴϓΎτϟ΍΍ήϴϔϨϣ΍έϮϔϠϟ ̶΋ΎϘΘϧϻ΍έ΍ΪΠϟ΍Ε΍Ϋ̶ϟ΍̶δϠ̰ϟ΍

ΐϴѧѧγήΘϟ΍ΩϮѧѧΟϭΔѧ γ΍έΪϟ΍ΔѧѧϘτϨϣ̶ѧѧϓΔϓϮѧѧλϮϤϟ΍ΔѧѧϴϓΎτϟ΍΍ήϴϔϨϣ΍έϮѧ ϔϠϟΔѧ ϴΗΎϴΤϟ΍Δѧ Ϙτϧϻ΍Ζδѧѧ̰ϋϭ ϥΎϓϚϟΫ̶ϟ΍ΔϓΎοϻΎΑˬωΎτϘϧϻ΍Ϟ΋ϻΩΩϮΟϭϥϭΪΑϭ̶ΛϼΜϟ΍ϭ̵ήϴηΎΒτϟ΍ϦϴΑαΎϤΘϟ΍ΪΣ̶ϠϋήϤΘδϤϟ΍ ̶ΠϳέΪѧѧΗΐϴѧγήΗΩϮѧΟϭ̶ѧϠϋΖѧϟΩ Danian ϥΎѧϴϧ΍ΩήѧѧϤϋΕ΍ΫΔѧϴϓΎτϟ΍΍ήϴϔϨϣ΍έϮѧϔϟ΍Ϧѧϣω΍Ϯѧϧ΍ΰѧϴϤΗ

̶ϟϮϗΎϤδϟ΍ϭϥΎ̯ϭΩϭϥ΍ϭήϴγϖσΎϨϣ̶ϓήϤΘδϣ

ΓΩΎѧѧѧΘόϤϟ΍ΔѧѧѧϘϳήτϟ΍ΖϣΪΨΘѧѧѧγ΍ϭˬΔϓϮѧѧѧλϮϤϟ΍ΔѧѧѧϴΗΎϴΤϟ΍ΔѧѧѧϘτϧϻ΍ΔѧѧѧϓΎ̰ϟΐϴѧѧѧγήΘϟ΍ϝΪѧѧѧόϣΩΎѧѧѧΠϳ΍ϢѧѧѧΗϭ ΔѧѧѧϴΗΎϴΤϟ΍ΔѧѧѧϘτϧϻ΍ϭΐϴѧѧѧγήΘϟ΍‫׻‬ΪѧѧѧόϣςѧѧѧγϮΘϣϡ΍ΪΨΘѧѧѧγΎΑϚѧѧѧϟΫϭΔѧѧѧγ΍έΪϟ΍ϩάѧѧѧϫ̶ѧѧѧϓ Graphic method

ΪΣϝϮΣεϮϟϮ̯ϦϳϮ̰ΗϦϣ̶Ϡϔδϟ΍˯ΰΠϟ΍ϭϭήΠϧΎΗϦϳϮ̰ΗϦϣ̵ϮϠόϟ΍˯ΰΠϠϟΔϴϗΎΒτϟ΍ΕΎόΑΎΘΘϠϟΔϓϮλϮϤϟ΍ ΪѧΤϟ΍ϝϮѧσ̶ѧϠϋΐϴѧγήΘϟ΍̶ѧϓΓΩΎѧϳΰϟ΍ϭήϤΘδϤϟ΍ΐϴγήΘϟ΍Ζδ̰ϋ̶Θϟ΍ϭ̶ΛϼΜϟ΍ϭ̵ήϴηΎΒτϟ΍ϦϴΑαΎϤΘϟ΍ ΐϴγήΘϟ΍̶ϓωΎτϘϧ΍̵΍ΩϮΟϭϥϭΪΑϭ̶ΛϼΜϟ΍ϭ̵ήϴηΎΒτϟ΍̵ήμϋϦϴΑϞλΎϔϟ΍