Sep 14, 2015 - It can also be seen that every test pile during static load testing ... As it travels down the pile, it generates dynamic friction along the pile-soil plug interface ...... 80 80.00 0.410 0.800 0.900. 5.5 .... 50 70.00 0.580 0.760 0.860. 5.5.
Bottom Plugging Effect of Open-Ended Displacement Pipe Pile in Loose Sandy Soil
Md. Azijul Islam Riyadul Amin Arman
DEPARTMENT OF CIVIL ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY September, 2015
1
Bottom Plugging Effect of Open-Ended Displacement Pipe Pile in Loose Sandy Soil
A Thesis Submitted by Md. Azijul Islam (Student No. 0904001) Riyadul Amin Arman (Student No. 0904085)
In partial fulfillment of the requirement for the degree of
BACHELOR OF SCIENCE IN CIVIL ENGINEERING
DEPARTMENT OF CIVIL ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY September, 2015
ii
Certification The thesis titled “Bottom Plugging Effect of Open-Ended Displacement Pipe Pile in Loose Sandy Soil” submitted by Md. Azijul Islam (0904001) and Riyadul Amin Arman (0904085) has been accepted satisfactorily in fulfillment of the requirement for the degree of Bachelor of Science in Civil Engineering on 14th September, 2015.
Dr. Md. Zoynul Abedin Professor Department of Civil Engineering Bangladesh University of Engineering and Technology (Thesis Supervisor)
iii
Acknowledgments
We would like to express our profound gratitude to our Supervisor Dr. Md. Zoynul Abedin, Professor of Department of Civil Engineering, BUET for his sincere supervision, constructive comments, lively encouragement and useful suggestions throughout the research work. His devotion for guidance and constant encouragement strongly supported us to complete the present research work in this manner. It was a huge honor to work under his supervision and it would have been impossible to carry out the study without his guidance and inspirations. We are greatly in debt to the technicians of Geotechnical Engineering Laboratory of BUET, especially to Mr. Md. Habibur Rahman for his help and cooperation during the laboratory work required for this study. We would like to convey special thanks to Department of Civil Engineering of BUET and to the members of the Geotechnical laboratory for their continuous assistance and co-operation during research work. We will ever be grateful to our parents and friends for their continuous inspiration and blessings.
iv
ABSTRACT Open-ended pipe piles are often used for the foundations of both land and offshore structures because of their relatively low driving resistance. During driving of an openended displacement pile the soil is entering through the pile toe into the profile. This plug can close up the pile toe completely. Two terms are used to measure the plugging behaviour: (i) Plug Length Ratio (PLR) and (ii) Incremental Filling Ratio (IFR), which are used to indicate the degree of soil plugging in open-ended piles. In this study, a series of tests were conducted on model pipe piles installed in sands with different soil conditions in order to evaluate the effect of pile diameter, pile material, soil type, soil density and water table condition on plugging behaviour of open ended pipe pile. The experimental results show that, in general plug length increases with the increase of pile diameter, with the decrease of relative density of soil and grain size (D50). However, it was observed that, for water table condition PLR increases with the increase of water table, and decreases after a certain height of water table. The study yielded interesting relationships between plugging behaviour with soil parameters that can be expressed by statistical equations.
v
Table of Contents Certification
iii
Acknowledgments
iv
ABSTRACT
v
Table of Contents
vi
List of Figures
viii
List of Tables
xi
Chapter 1
1
Introduction
1
1.1
General
1
1.2
Background
1
1.3
Objective of the Research
2
1.4
Organization of the Thesis
3
Chapter 2
4
Literature Review
4
2.1
General
4
2.2
Pipe Piles
4
2.3
Soil Plugging
4
2.3.1
Soil Plugging Mechanism in Cohesionless Soil
6
2.3.2
Plug Length Ratio and Incremental Filling Ratio
8
2.3.3
Effect of Soil Plug in Open-Ended Pipe Piles
9
2.3.4
Influence of Driving Method
10
2.3.5
Press-in Pile Driving
12
2.4
Study on Pile Plugging
13
2.5
Concluding Remarks
20
Chapter 3
21
Test Program and Procedure
21
3.1
General
21
3.2
Materials Used
21
3.2.1
Sand
21
3.2.2
Pipe Piles
21
3.3 3.3.1
Experimental Program
24
Experimental Setup
24
(a)
Fabrication of tank for holding sand bed
24
(b)
Depth measuring tool
25
(c)
Holder
25 vi
(d)
Proving ring
25
(e)
Load frame setup for press-in pile
27
3.3.2
Calibration of Density
28
3.3.2
Sand Bed Preparation
29
Chapter 4
33
Test Results and Discussions
33
4.1
General
33
4.2
Analysis of Test Data
33
4.3
Effect of Pile Diameter on Plugging at Different Water Table Conditions
36
4.4
Effect of Relative Density on Plugging for Different Particle Sizes and Pipe Materials 40
4.5
Effect of Water Table on Plug-in for Different Pipe Materials and Diameters
43
4.6
Effect of Density on Plug-in for Different Pipe Diameters
45
Chapter 5
51
Conclusion and Recommendation
51
5.1
General
51
5.2
Conclusion
51
5.3
Recommendation for Future Study
52
References
54
APPENDIX- A: TEST DATA
56
APPENDIX- B: PLOTS OF TEST DATA
93
vii
List of Figures Figure 1.1: Pile plug....................................................................................................... 1 Figure 2.1: Conditions of plugging effect (modified from Paikowsky et al. 1989)....... 5 Figure 2.2: Illustration of the different stages of soil plugging. X illustrates the penetration distance of the pile. ..................................................................................... 5 Figure 2.3: Left: Illustration of arching principle. Right: Soil formation indicative of passive arching (Paikowsky, 1989)................................................................................ 6 Figure 2.4: Unplugged and plugged penetration............................................................ 7 Figure 2.5: Soil plugging mode ..................................................................................... 8 Figure 2.6: Void ratio distribution within the internal soil column after simulation of jacked and vibratory driving (Henke & Grabe, 2008). ................................................ 11 Figure 2.7: A press-in pile driver ................................................................................. 13 Figure 2.8: Development of soil plug .......................................................................... 14 Figure 2.9: Incremental filling ratio versus penetration depth for test piles ................ 15 Figure 2.10: IFR and soil plug length versus penetration depth for open ended pile. . 16 Figure 2.11: Results of PLR and IFR measurement: (a) TP-1; (b) TP-2; (c) TP-3. .... 18 Figure 3.1: Grain size distribution of fine (River) sand. .............................................. 22 Figure 3.2: Grain size distribution of coarse (Sylhet) sand. ........................................ 22 Figure 3.3: Aluminum pipes (1 inch, 1.5 inch, 2 inch diameter) ................................. 23 Figure 3.4: Stainless Steel pipes (0.5 inch, 1 inch, 1.5 inch diameter) ........................ 24 Figure 3.5: Sand bed holding tank (schematic diagram) ............................................. 25 Figure 3.6: Measuring rods with different diameters................................................... 26 Figure 3.7: Device for holding pipe piles to the proving ring ..................................... 26 Figure 3.8: Proving ring ............................................................................................... 27 Figure 3.9: Mechanical setup for press-in pile............................................................. 27 Figure 3.10: Standard cone .......................................................................................... 28 Figure 3.11: Standard container ................................................................................... 28 Figure 3.12: Preparation of sand bed ........................................................................... 29 Figure 3.13: SS pipe pile in fine sand..... ..................................................................... 30 Figure 3.14: Al pipe pile in coarse sand ...................................................................... 30 Figure 3.15: Plugged length after driving of piles to a certain depth. ......................... 31 Figure 4.1: PLR vs Pipe Dia Curve at Different Water Table Condition (D50=8.66x10-3 inch, Dr=11.5%).................................................................................. 36 Figure 4.2: PLR vs Pipe Dia Curve at Different Water Table Condition (D50=8.66x10-3 inch, Dr=22.3%).................................................................................. 36
viii
Figure 4.3: PLR vs Pipe Dia Curve at Different Water Table Condition (D50=8.66x10-3 inch, Dr=26.3%).................................................................................. 37 Figure 4.4: PLR vs Pipe Dia Curve at Different Water Table Condition (D50=22.44x10-3 inch, Dr=20%)................................................................................... 37 Figure 4.5: PLR vs Pipe Dia Curve at Different Water Table Condition (D50=22.44x10-3 inch, Dr=24.2%)................................................................................ 37 Figure 4.6: PLR vs Pipe Dia Curve at Different Water Table Condition (D50=22.44x10-3 inch, Dr=30.4%)................................................................................ 38 Figure 4.7: PLR vs Pipe Dia Curve at Different Water Table Condition (D50=8.66x10-3 inch, Dr=11.5%).................................................................................. 38 Figure 4.8: PLR vs Pipe Dia Curve at Different Water Table Condition (D50=8.66x10-3 inch, Dr=22.3%).................................................................................. 38 Figure 4.9: PLR vs Pipe Dia Curve at Different Water Table Condition (D50=8.66x10-3 inch, Dr=26.3%).................................................................................. 39 Figure 4.10: PLR vs Pipe Dia Curve at Different Water Table Condition (D50=22.44x10-3 inch, Dr=20%)................................................................................... 39 Figure 4.11: PLR vs Pipe Dia Curve at Different Water Table Condition (D50=22.44x10-3 inch, Dr=24.2%)................................................................................ 39 Figure 4.12: PLR vs Pipe Dia Curve at Different Water Table Condition (D50=22.44x10-3 inch, Dr=30.4%)................................................................................ 40 Fig. 4.13: PLR vs Relative Density Curve for Different Particle Sizes and Pipe Materials
(1” Dia pipe, No WT) .............................................................................. 41
Fig. 4.14: PLR vs Relative Density Curve for Different Particle Sizes and Pipe Materials
(1” Dia pipe, WT at mid height) .............................................................. 41
Fig. 4.15: PLR vs Relative Density Curve for Different Particle Sizes and Pipe Materials
(1” Dia pipe, WT at GL) .......................................................................... 41
Fig. 4.16: PLR vs Relative Density Curve for Different Particle Sizes and Pipe Materials
(1.5” Dia pipe, No WT) ........................................................................... 42
Fig. 4.17: PLR vs Relative Density Curve for Different Particle Sizes and Pipe Materials
(1.5” Dia pipe, WT at mid height) ........................................................... 42
Fig. 4.18: PLR vs Relative Density Curve for Different Particle Sizes and Pipe Materials
(1.5” Dia pipe, WT at GL) ....................................................................... 42
Figure 4.19: PLR vs water table conditoin for different pipe material (D50=8.66x10-3 inch, Dr=11.5%).................................................................................. 43 Figure 4.20: PLR vs water table conditoin for different pipe material (D50=8.66x10-3 inch, Dr=22.3%).................................................................................. 44 ix
Figure 4.21: PLR vs water table conditoin for different pipe material (D50=8.66x10-3 inch, Dr=26.3%).................................................................................. 44 Figure 4.22: PLR vs water table conditoin for different pipe material (D50=22.44x10-3 inch, Dr=20%) ................................................................................... 44 Figure 4.23: PLR vs water table conditoin for different pipe material (D50=22.44x10-3 inch, Dr=24.2%) ................................................................................ 45 Figure 4.24: PLR vs water table conditoin for different pipe material (D50=22.44x10-3 inch, Dr=30.4%)................................................................................ 45 Figure 4.25: PLR vs Pipe Diameter for different densities (D50=8.66x10-3 inch, no WT, Al) ................................................................................. 46 Figure 4.26: PLR vs Pipe Diameter for different densities (D50=8.66x10-3 inch, WT at mid height, Al)................................................................ 46 Figure 4.27: PLR vs Pipe Diameter for different densities (D50=8.66x10-3 inch, WT GL, Al) ............................................................................... 46 Figure 4.28: PLR vs Pipe Diameter for different densities (D50=8.66x10-3 inch, no WT, SS) ................................................................................ 47 Figure 4.29: PLR vs Pipe Diameter for different densities (D50=8.66x10-3 inch, WT at mid height, SS) ............................................................... 47 Figure 4.30: PLR vs Pipe Diameter for different densities (D50=8.66x10-3 inch, WT GL, SS) ............................................................................... 47 Figure 4.31: PLR vs Pipe Diameter for different densities (D50=22.44x10-3 inch, no WT, Al) ............................................................................... 48 Figure 4.32: PLR vs Pipe Diameter for different densities (D50=22.44x10-3 inch, WT at mid height, Al).............................................................. 48 Figure 4.33: PLR vs Pipe Diameter for different densities (D50=22.44x10-3 inch, WT GL, Al) ............................................................................. 48 Figure 4.34: PLR vs Pipe Diameter for different densities (D50=22.44x10-3 inch, no WT, SS) .............................................................................. 49 Figure 4.35: PLR vs Pipe Diameter for different densities (D50=22.44x10-3 inch, WT at mid height, SS) ............................................................. 49 Figure 4.36: PLR vs Pipe Diameter for different densities (D50=22.44x10-3 inch, WT GL, SS) ............................................................................. 49
x
List of Tables
Table 3.1: Physical properties of soil ......................................................................... 223 Table 3.2: Calibration of Density & Density Index.....................................................28 Table 3.3: Test scheme for the experimental study ..................................................... 31 Table 3.4: Test scheme for the experimental study ..................................................... 32 Table 4.1: PLR values for Fine Sand (D50 = 8.66x10-3 inch) for different conditions (After 12 inch penetration)........................................................................................... 34 Table 4.2: PLR values for Coarse Sand (D50 = 22.44x10-3 inch) for different conditions (After 12 inch penetration) ......................................................................... 35
xi
Chapter 1 Introduction 1.1
General
Open-ended displacement piles are piles, which are open at the pile toe like pipe piles, H-profiles or composed of sheeting piles. Open-ended piles are often used for deep offshore foundations. Compared to close ended piles, an open-ended pile can be installed more easily at the penetration depth required for tension capacity. During installation of such a pile, given the limited cross section of the pile, a limited amount of soil is pushed aside, deformed and compacted. However, soil will also flow into the pile, which can lead to the formation of a soil plug in the pile as shown in Fig. 1.1. If this occurs, only a limited amount of soil will enter the pile during further penetration and the pile will behave more like a closed-ended pile during further penetration. The soil properties and stress state around the pile and in the soil plug are altered during pile installation but more so if plugging occurs. This implies that a prediction of the pile bearing capacity or the driving resistance, based on the undistorted soil properties, should incorporate these installation effects in order to be as accurate as possible.
Fig. 1.1: Pile plug 1.2
Background
The soil inside an open-ended pile may form a plug during the driving process, preventing new soil from entering at the toe, referred to as soil plugging. Soil plugging changes the driving characteristics of the open-ended pile to that of a closed-ended pile, often accompanied by increased driving resistance. It follows that if the plugging 1
behavior of the pile is not correctly understood, the result is either that unnecessarily powerful and costly hammers are used because of high predicted driving resistance or that the pile plugs unexpectedly such that the hammer cannot achieve further penetration. The latter is referred to as premature refusal during driving and may result in insufficient bearing capacity of the pile. The mechanisms involved in soil plugging of open-ended piles have been shown by Paikowsky (1989) to involve arching in cohesion-less soil which may result in significant internal shaft resistance and capacity of the internal soil column (Randolph, et al., 1991). Soil plugging is however not fully understood in terms of drivability aspects and it is also affected by the driving method as shown by Henke and Grabe (2008) and De Nicola and Randolph (1997) among others. Additionally, Byrne (1995) and De Nicola and Randolph (1997) found that open-ended piles equipped with an internal sleeve near the toe may either gain or lose drivability compared to an openended pile without sleeve depending on the geometry of the sleeve and the stress conditions. Drivability prediction models currently used by the industry are generally not able to determine if and when an open-ended pile plugs. Today the user is therefore required to model the pile response on the basis of a plugged or unplugged pile, indicating a need to be able to evaluate soil plugging prior to performing the drivability analysis or before using the results as basis for decision. 1.3
Objective of the Research
The present study was aimed to investigate the bottom plugging behavior of model open ended pipe installed in sandy soil in order to meet the following objectives (i)
To establish relationship between plugging characteristics with pipe pile diameter.
(ii)
To determine the nature of plugging with respect to pile materials.
(iii)
To estimate plug length for different soil type.
(iv)
To investigate the effect of water table on plugging.
(v)
To study the effect of soil densities on plugging behaviour.
2
1.4
Organization of the Thesis
The present study is reported in this thesis consisting of five chapters outlined as under. Chapter 1 is the Introduction that describes the problem statement, background of the research work and objectives of the study. Chapter 2 is the Literature Review that reports the existing available literature on the study of plugging behaviour. Chapter 3 Test Program and Procedure provides a detailed description of the testing equipment, properties of material used in this study and the total experiment scheme. Results and Discussions are provided in Chapter 4. Finally conclusions of the study and recommendations for future study are reported in Chapter 5.
3
Chapter 2 Literature Review 2.1
General
The present investigation is concerned with the study of plugging effect of soil during installation of open ended pipe pile. The aim of this chapter is to provide a conceptual framework of the present research problem by reviewing the existing available literature on the subject especially of plugging in steel pipe piling. The review mainly deals with fundamentals of soil plugging which depends on pile diameter, pile material, soil density, soil type, pile driving method etc. A summary of literature review undergone is presented in the following sections. 2.2
Pipe Piles
Steel pipe piles can be divided into two categories: open-ended piles and closed-ended piles. Closed-ended pipe piles are displacement piles. For larger diameter steel pipe piles (500 mm in diameter or larger), the piles are installed as open ended. The behavior of open-ended piles is more complex, with a response generally intermediate between that of non-displacement and displacement piles. 2.3
Soil Plugging
The term soil plugging generally refers to the state where the soil within the pile has mobilized enough frictional force to overcome the toe resistance and prevent additional soil from entering the pile. When an open-ended pipe pile is driven into the ground, it is very likely that the soil enters inside of the pile in the initial stage of pile driving at very shallow depths. If pile penetration depth is equal to the soil plug length, this behavior is referred to as “fully coring” or “unplugging” behaviour. As an open-ended pile is driven into the soil, a soil column (or soil plug) forms inside the pile. The length of this plug may be equal to or less than the pile driving depth. If it is the same, the pile has been driven in a fully coring or unplugged mode throughout. If driving takes place in a partially or fully plugged mode at least during part of the way, the length of the soil plug within the pile will be less than that of the pile. It may be possible to observe all three driving modes (fully coring, partially plugged or fully 4
plugged), as illustrated in Figs. 2.1 and 2.2, during the driving of a single pile (Paikowski et al. 1989). In Fig. 2.2, X illustrates the penetration distance of the pile.
(a)
(b)
(c)
Fig. 2.1: Conditions of plugging effect (modified from Paikowsky et al. 1989)
Fig. 2.2: Illustration of the different stages of soil plugging The plugging effect of a steel pipe pile can be divided into three conditions: unplugged; partially plugged; and fully plugged, as shown in Fig. 2.1. During the initial pile driving,
5
the soil plug length in the pile is equal to the penetration depth, and the pile is in an unplugged condition (Fig. 2.1a). As pile penetration continues, inner shaft frictional resistance occurs between the soil plug and the inner pile. Because of this, the length of the soil plug becomes less than the penetration depth and the pile is partially plugged (Fig. 2.1b). Eventually, the pile penetrates into soil but the soil plug length does not change, thus creating a fully plugged condition (Fig. 2.1c). 2.3.1
Soil Plugging Mechanism in Cohesionless Soil
The mechanism for redistribution of stresses within the soil body has been shown by Paikowsky (1989) to involve arching in cohesionless soils. The arching mechanism is well recognized and covered in the original Silo theory by Janssen (1895), used for situations where the soil undergoes settlement in a laterally confined space. During installation of open-ended piles the pile walls move relative to the soil body, referred to by Paikowsky (1989) as passive arching (as opposed to active arching in the Silo theory). Passive arching in an open-ended pile will cause concave soil formation at the pile toe level, shown in Fig. 2.3. The arching mechanism is able to transfer axial stress acting on the internal soil column at the toe of the pile to the pile walls in the form of horizontal (normal) stress, giving rise to increased internal shaft friction.
(a)
(b)
Fig. 2.3: (a) Illustration of arching principle; (b) Soil formation indicative of passive arching (Paikowsky, 1989). 6
During unplugged penetration, the pile moves downwards relative to the internal soil column, in the manner of a sampler tube (Fig. 2.4a). Penetration is resisted by shaft friction on the inside (Qsi) and outside (Qso) of the pile and by base resistance on the annulus of pile wall (Qw). As the pile is driven deeper into the soil, the soil friction on the inside of the pile wall increases until a “soil plug” is formed which may prevent or partially restrict additional soil from entering the inside of the pipe. This behavior is referred to as “plugging”, and the length of soil plug is less than the pile penetration depth. During plugged penetration the internal soil column is dragged downwards (Fig. 2.4b), and the pile assumes the characteristics of a closed ended pile (Paikowsky et. al, 1989). Penetration is resisted by shaft friction on the outside of the shaft (Qso) and by base resistance on the pile wall (Qw) and the soil plug (Qp)
Fig. 2.4: Unplugged and plugged penetration
𝑄𝑢𝑛𝑝𝑙𝑢𝑔𝑔𝑒𝑑 = 𝑄𝑠𝑜 + 𝑄𝑠𝑖 + 𝑄𝑤
(2.1)
𝑄𝑝𝑙𝑢𝑔𝑔𝑒𝑑 = 𝑄𝑠𝑜 + 𝑄𝑤 + 𝑄𝑝 − 𝑊𝑝
(2.2)
When a tubular pile is being installed by the press-in method, (or is being loaded to failure- these events are analogous), penetration will occur by which ever mechanism is the weakest (Raines et al, 1992). If the shaft friction on the inside of the pile (Qsi) (plus the weight of the soil column) is greater than the base resistance of the soil column (Qp), the pile will penetrate in a plugged manner. Hence, when predicting the driving 7
load in order to select a machine type, the profiles of both unplugged and plugged penetration resistance with depth should be estimated. The lower bound of these two mechanisms will form the driving load. Normally formation of the plug requires that the pile penetrates into the plugging soil layer not less than 10d length, where d is the diameter of the pile. 2.3.2
Plug Length Ratio and Incremental Filling Ratio
Even though soil plugging behavior of open-ended pipe piles has been a recognized issue (Kishida and Isemoto 1977; Klos and Tejchman 1977), the efforts to quantify the degree of soil plugging have been very rare. The two most widely used indicators of soil plugging are plug length ratio (PLR) and incremental filling ratio (IFR), respectively, defined as 𝑃𝐿𝑅 = 𝐿/𝐷
(2.3)
𝐼𝐹𝑅 = ∆𝐿/∆𝐷
(2.4)
Where, 𝐷
= pile penetration depth;
𝐿
= length of soil plug;
∆𝐷 = increment of pile penetration depth; and ∆𝐿
= increment of soil plug length corresponding to an increment of pile penetration depth ∆𝐷 (Fig. 2.2).
By definition, IFR is a first derivative of PLR, meaning that IFR is a slope of curve of plug length versus pile penetration depth plot. As shown in Fig. 2.5, in the case of a fully coring mode, PLR and IFR must be equal to 1.
Fig. 2.5: Soil plugging mode 8
An IFR = 1 means that the surface of the plug does not penetrate into the soil during driving in comparison to the last measurement. Only the pile penetrates into the soil. This means that no plugging effect takes place. In contrast an IFR = 0 means that the surface of the plug penetrates into the soil with the same value as the pile. In this case the pile is fully plugged and all the soil has to be displaced sideways. In the case of fully plugging mode, however, IFR at final penetration must be equal to zero because additional soils do not enter inside of the pile after the previous penetration, but PLR is not necessarily zero at that depth. Typically, open-ended piles for onshore applications are driven in partially plugging mode in sandy soils (Paikowsky et al. 1989; Paik and Salgado 2003). PLR is a good indicator of degree of overall soil plugging, and researchers proposed to use PLR for estimation of limit unit skin friction of open-ended pipe piles (Paik and Salgado 2003). The better indicator of soil plugging on estimation of end bearing values may be IFR, as it can represent the condition of soil plugging at the final penetration depth from final pile driving. Paik and Salgado (2003) proposed an equation, derived from model pile tests in calibration chamber, for estimating the unit end bearing value in sandy soils using IFR. They showed that the unit end bearing normalized to horizontal effective stress increases with increasing relative density and decreasing IFR. 2.3.3
Effect of Soil Plug in Open-Ended Pipe Piles
For open-ended steel tubes, consideration will need to be given to assessing whether the pile will act in a plugged mode or unplugged mode. When subject to working load, an open-ended pile with soil plug does not behave in the same way as a closed-ended pile driven to the same depth. This is because in the former case, the soil around and beneath the open end is not displaced and compressed to the same extent as that beneath a closed-ended pipe. Tomlinson (1994) suggested that for open-ended pipe piles driven in cohesion less materials, the ultimate bearing capacity can be taken as the sum of the skin friction along the external perimeter of the shaft and the ultimate base resistance, i.e. ignoring the internal skin friction between soil plug and pile. The skin friction and ultimate base resistance can be determined as if the pile were closed-ended, but a reduction factor of 0.8 and 0.5 respectively should be applied. The base resistance should be calculated using the gross cross-sectional area of the pile. 9
The size of soil plug in a pipe pile driven into granular soil is very limited. The Ultimate bearing capacity of the pile can be taken as the sum of the external and internal shaft friction and the base resistance on the net cross-sectional area of the pile toe; or the end bearing resistance of the plug, whichever is less (American Petroleum Institute, 1987). Tomlinson(1994), based on field observations, suggested that the base resistance of open ended pipe piles should be limited to 5Mpa irrespective of the diameter of the pile or of the density of the soil in to which they are driven. This limiting value should be used in conjunction with a safety factor of 2.5. Test results showed that the hammer blow count necessary to drive a pile to a required depth decreases not only with increasing driving energy for the same fall height, but also with increasing hammer weight at constant driving energy. The IFR of driven piles tends to decrease as the driving energy level increases for the same hammer fall height or as the hammer weight increases at constant driving energy. Accordingly, pile bearing capacity was observed to increase with increasing hammer weight for the same driving energy and with increasing driving energy for a given fall height. It was observed that the rate of change of shaft capacity with changes in driving energy or hammer weight was higher than that of base capacity. So shaft capacity is much more affected by the pile driving parameters than base capacity. The tests also show that the jacked pile became fully plugged (IFR=0) early in the penetration process, while the driven piles never reached a fully plugged state during driving. The bearing capacity of the jacked pile is larger than that of an identical driven pile under similar soil conditions because of the better formation of soil plugging. 2.3.4
Influence of Driving Method
Finite element analysis was carried out by Henke and Grabe (2008) to study the soil plugging mechanisms during jacked, impact and vibratory driving. All models used the 1
same medium dense sand, internal shaft friction tan 𝛿 = 𝜑′ and internal pile diameter 3
0.61 m. The jacked installation was simulated using displacement control to a depth of 5 m (8D) and the results clearly showed the mechanisms associated with soil plug formation. The internal, horizontal stress distribution, showed a distinct stress concentration at the lower part of the pile. Values of internal horizontal stress peaked 10
near the pile walls and at the center of the pile it was still many times higher than the external horizontal stress. Void ratio distribution along the inside of the pile indicated that no significant compaction of the soil body took place, enabling the build-up of the large horizontal stresses that were observed. Vibratory driving was simulated by Henke and Grabe (2008) for 4 m (6.5D) of driving. In contrast to the results from the simulation of jacked driving, the void ratio had decreased down to values near the minimum void ratio of the soil, indicating a high degree of compaction which corresponds to the lack of internal horizontal stress build-up that was observed. Internal values of horizontal stress were still higher than external values. Void ratio distributions for the jacked and vibratory simulations are illustrated in Fig. 2.6. During field measurements of pile driving in medium dense to dense soil Henke and Grabe (2013) concluded that during the vibratory part of the driving process there was not a significant increase in internal horizontal stress at the toe of the piles, compared to outside. This finding is consistent with the results from the simulation of the vibratory installation process previously mentioned.
Fig. 2.6: Void ratio distribution within the internal soil column after simulation of jacked and vibratory driving (after Henke and Grabe, 2008). Impact driving was simulated by Henke and Grabe (2008) using a dynamic finite element model with a simplified load-curve and the results for approximately 4 m (6.5D) driving were presented. The simulation results showed lower values of void ratio along the internal soil body, corresponding to compaction of the soil. Internal and external horizontal stresses were similar in magnitude and significantly lower than during the jacked driving simulation. The main reasons for the lack of soil-plug 11
formation are thought to be the higher degree of soil compaction caused by the driving process and the acceleration such that the inertia of the soil body did not allow plugging to occur. Contrary to the simulation results, Henke and Grabe (2013) observed a significant increase in internal horizontal stress compared to external horizontal stress during field measurements of impact driven piles. The observed ratio was above 4 for piles with an internal diameter of 0.686 m and a length of 15 m, corresponding to a penetration of 22D. It is likely that part of the reason that the field measurements showed a build-up of internal horizontal stress was the significantly deeper penetration of the pile in relation to its diameter (22D vs 6.5D). A value was found based on cone penetration resistance measurements inside the pile. Back-calculation using Equations (2.3) and (2.4) presented above was then used to find a shaft friction value. The value is low compared to the plots and seems to indicate that friction fatigue has taken place during driving. A CASE analysis performed during driving indicated a characteristic slope change to a more constant value of vertical capacity during the later stages of driving, indicative of plug formation. CAPWAP analysis confirmed a significant increase in shaft resistance over the lower section of the pile, also indicative of a soil plug formation based on the ratio of internal to external horizontal stress that was measured. 2.3.5
Press-in Pile Driving
Press-in pile driving machines provide an alternative method for installing pre-formed tubular or sheet piles. These machines use hydraulic rams to press piles into the ground using the negative shaft friction of previously-driven piles to provide reaction force (Fig. 2.7). This technique eliminates the vibration, hammering and noise pollution associated with dynamic installation methods. The press-in method is particularly suited for retrofit renewal of existing structures where the disruption of existing services must be avoided. Press-in pilers are capable of operating alongside. Appropriate selection of machinery is more critical to operators of press-in pilers than conventional pile driving equipment. The driving load of a pressin pile is limited by the force capacity of the hydraulic rams. If unexpected resistance is met when driving with an undersized pile hammer or vibrator, penetration will be slowed, but total refusal is rare. In contrast, if the unexpected resistance exceeds the force capacity of the press-in piler, penetration is impossible. 12
Fig. 2.7: A press-in pile driver When using dynamic installation methods, appropriate pile driving equipment is selected by predicting penetration resistance through dynamic analysis or an energy method (e.g. Hiley, 1925). In contrast, since press-in pile installation applies a quasistatic load to the pile, static equilibrium analysis can be carried out to select an appropriate size of machine. Driving load can be predicted in the same manner as ultimate load by summing shaft friction and base resistance. The state of plugging of the pile is determined on the basis of the difference between the ground levels inside and outside the pile. 2.4
Study on Pile Plugging
Pipe piles, driven with open toes to reduce driving resistance, are often used for the foundations of both land and offshore structures. During driving of a pipe pile, a soil plug is formed within the pile. The bearing capacity of a pipe pile depends strongly on the degree of soil plugging achieved during pile installation (Kindel 1977; Paikowsky and Whitman 1990; Miller and Luteneggar 1997). It is generally acknowledged that the degree of soil plugging in piles varies with soil state (stress state and density), type of soil, pile characteristics (pile diameter, penetration depth, and roughness of pile surface), and installation technique (Kraft 1991).
13
Kyuho Paik and Rodrigo Salgado (2002) conducted calibration chamber tests on model pipe piles installed in sands with different soil conditions in order to investigate the effects of the pile installation method on penetration parameters and bearing capacity. The incremental filling ratio (IFR), which is used to indicate the degree of soil plugging in open-ended piles, decreased (i) with increasing hammer weight for the same driving energy, and (ii) with increasing hammer weight at the same fall height. The behavior of open-ended piles is governed by the degree of plugging, and the degree of plugging for piles is usually quantified by the incremental filling ratio (IFR). Figures 2.1 and 2.2 show how the soil plug length and IFR change with pile penetration depth. The behavior of open-ended piles is governed by the degree of plugging, and the degree of plugging for piles is usually quantified by the incremental filling ratio (IFR). Figures 2.8 and 2.9 show how the soil plug length and IFR change with pile penetration depth.
Fig. 2.8: Development of soil plug
14
Fig. 2.9: Incremental filling ratio versus penetration depth for test piles It is seen that the soil plug length developed during pile installation decreases as the driving energy increases for a given fall height and as the hammer weight increases for the same driving energy. It can also be seen that every test pile during static load testing advances in fully plugged mode, irrespective of the pile installation method and the degree of plugging during pile installation. The load tests appear as short vertical lines in Fig. 2.8, meaning that penetration depth increases while soil plug length remains unchanged. Figure 2.9 shows that IFR is high at the start of pile driving, but then decreases sharply with penetration depth, stabilizing in the 40 to 70 % range depending on the driving parameters. Notice, however, that while the driven piles never reached a fully plugged state. Kyuho Paik et al. (2001) have carried out a study to investigate the effect of diameter and relative densities on soil plug formation. If a pile is driven in a fully coring (or fully unplugged mode), soil enters the pile at the same rate as it advances. On the other hand, if a pile is driven under plugged or partially plugged conditions, a soil plug finally attaches itself to the inner surface of the pile, preventing additional soil from entering the pile. A pile driven in the plugged mode behaves similarly as a closed-ended pile. Typically, a large-diameter pipe pile (such as used in offshore piling) driven in sand will tend to be driven in a fully coring mode, while smaller diameter piles will be 15
plugged, at least partially. Larger penetration depths and lower relative densities facilitate soil plug formation.
Fig. 2.10: IFR and soil plug length versus penetration depth for open ended pile. Gudavalli et.al. (2013) measured plug lengths at final penetration depths for open-ended driven pipe piles with different pile diameters. This analyses indicated that the PLR (plug length ratio), ratio of length of soil, values increased with the increase in pile diameter in the given soil conditions. Lüking and Kempfert (2012) have carried out a research work and investigated the influence of different factors on the plugging effect and hence the change in the loadbearing behavior mainly in non-cohesive soils using experimental, numerical and statistical methods. The maximum pile diameter in which a plugging effect could occur is about 1.5 m, (Jardine et al. 2005). Brucy et al. (1991) and Bruno and Randolph (1999) have shown that the increase of driving energy by increasing the fall height leads to higher IFR. However, examination of the results of Brucy et al. (1991) shows that the IFR decreases with increasing driving energy for the same fall height. Therefore, we can conclude that the IFR is more strongly affected by the hammer fall height than by the driving energy. It is also observed that the IFR tends to a limit value for high driving energy values or for large hammer weights at the same driving energy. 16
According to the test results of Ata and Vipulanandan (1999), the shear strength of sand increases rapidly with increasing loading rate. According to these authors, the strength of Ottawa sand was observed to change by more than 200 % as the loading rate increases 100-fold. Thus, the higher the driving energy, the higher the interface shear strength between the pile and soil plug during pile driving. Szechy (1959) and Raines et al. (1992) reported that the IFR decreases as the pile-soil plug interface friction angle increases. Therefore, piles driven by heavier hammers tend to plug more than piles driven with lighter hammers, even at the same driving energy. However, the IFR tends to stabilize as the driving energy and/or hammer weight increase beyond a certain level. For driven piles, the driving energy induces a compressive wave in the pile. As it travels down the pile, it generates dynamic friction along the pile-soil plug interface, so that a compressive wave is also induced in the soil plug. The compressive wave, however, travels more rapidly in the pile than in the soil plug, because of the large difference in the elastic modulus of steel and soil. Consequently, the pile moves down earlier than the soil plug. Only after the pile has reached its final set, the soil plug determines its own final set that depends on the resistance it encounters at the pile base. Therefore, driven piles are usually driven in partially plugged mode. It is known that a short open-ended pile has lower load capacity than an equivalent closed-ended pile. However, as pile length (or penetration depth) increases, the load capacity of the open-ended pile approaches that of the equivalent closed-ended pile. This is due to the greater degree of soil plugging with larger penetration depth (Klos and Tejchman, 1981; Paikowsky and Whitman, 1990). According to Szechy (1961), the settlement of an open-ended pile is greater than that of a closed-ended pile under the same load and soil conditions. This means that, if ultimate load capacity is defined with reference to a standard settlement of 10% of the pile diameter, for example, the load capacity of open-ended piles is typically lower than that of closed-ended piles. However, the difference in load capacities varies within a wide range, depending on the degree of soil plugging during driving. Lehane and Randolph (2001), for example, postulate that pipe piles driven in fully coring mode have base capacity only slightly higher than that of non-displacement piles, while piles driven in fully plugged mode develop base capacities that approach those of closed-ended piles.
17
Both the PLR and IFR were measured on three instrumented piles to investigate the plugging effect on different pile diameters. The measurement results are presented in Fig. 2.11 in terms of the depth versus both PLR and IFR. Test piles TP-1 (Fig 2.11a), TP-2 (Fig 2.11b), and TP-3(Fig 2.11c) were considered to be partially plugged because the IFR of all piles were between 0 and 100. It was also shown that the PLR sharply decreased in the early stage of penetration (roughly 2.0– 3.0 m) in all cases. As the pile driving process continued, the PLR of TP-1, TP-2, and TP-3 reached 0.44, 0.76, and 0.85 at the end of penetration, respectively. Based on these results, it is shown that the plugging effect of open-ended piles decreases with an increase of the pile diameter. This is consistent with most works by other researchers (e.g. Szechy 1959; Kishida 1967; Paikowsky 1989), which show that largediameter pipe piles are typically not in a plugged condition but rather in a partially plugged condition.
Fig. 2.11: PLR and IFR measurement: (a) TP-1 (after Lehane and Randolph, 2001)
18
Fig. 2.11(contd.): PLR and IFR measurement: (b) TP-2; (c) TP-3.
19
Lehane and Gavin (2001), Gavin and Lehane (2003) and Foye et al. (2009) demonstrated experimentally that plugging increased both the shaft and base resistance of piles installed in sand and proposed correlations between pile resistance and IFR. Both Jardine et al (2005) and Lehane et al (2005) incorporated plugging into design practice in the ICP-05 and UWA-05 design approaches, for piles in sand, which are included in the commentary of the latest American Petroleum Institute (API) design code. 2.5
Concluding Remarks
Both open-ended and closed-ended pipe piles are often used in practice, but highquality information available on the plugging of these piles is very limited. The load response of open-ended pipe piles is primarily affected by the degree to which a soil plug develops within the pile. Experimental data found in the literature suggest that the degree of plugging for piles varies with so many factors like soil properties, pile characteristics as well as installation method (driving or jacking, driving energy, and hammer weight). However, no published literature was available on the study of plugging effect of pile in Bangladesh soil. The use of pipe piles in Bangladesh are increasing day by day in large projects in bridges, jetty structures and also in the form sand compactions piles for soil improvement. As such, it was felt necessary that a study should be carried out on the plugging aspect of pipe piles.
20
Chapter 3 Test Program and Procedure 3.1
General
This chapter presents the details about materials used and methods followed for the determination of bottom plugin effect of open-ended displacement pipe pile with different types of soils and pipe diameter. For convenience, this chapter is divided into two parts: (i) material properties and (ii) experimental program. Collection of materials and their physical properties are briefly described in the first part. The experimental setup, test program procedure and instrumental description are presented in the later part of the chapter. 3.2
Materials Used
The sand samples were collected from different location of Bangladesh namely, Sylhet (coarse sand) and Turag River (fine sand) which were used for the test. Both samples were sieved through ASTM #4 sieve (0.187 inch) in order to separate the sand particles. Tests were done by varying the densities of the soil sample. 3.2.1
Sand
As mentioned earlier, two types of sand were used in this study, fine sand and coarse sand. Several tests were performed in order to determine the physical and engineering properties of the samples. These tests are Specific gravity (according to ASTM D854), Grain size analysis (according to ASTM D422), Minimum density (according to ASTM D4254), Maximum density (according to ASTM D4255) and Permeability Test (according to ASTM D5084). Grain size distribution of the samples is shown in Figs. 3.1 and 3.2. The properties of the fine and coarse sand derived from these standard tests are also presented in Table 3.1. 3.2.2
Pipe Piles
In this study, two types of pipe piles were used as pile: (i) Aluminum and (ii) Stainless Steel (SS). Three different types of diameters are used for each type of pile material. For aluminum pipe pile 1 inch, 1.5 inch and 2 inch outer diameter pipes were used. For SS pipe pile 0.5 inch, 1 inch and 1.5 inch outer diameter pipes were used. All pipes 21
were 18″ long with different diameters. Photographs of the pile piles are shown in Figs. 3.3 and 3.4. 100
Percent Finer
80
60
40
20
0 0.01
0.1
1
10
Particle Size (mm) Fig. 3.1: Grain size distribution of fine sand (Turag sand) 100
Percent Finer
80
60
40
20
0 0.01
0.1
1
Particle Size (mm) Fig. 3.2: Grain size distribution of coarse sand (Sylhet sand)
22
10
Table 3.1: Physical properties of soil Properties
Soil Sample Fine Sand Coarse Sand
Particle Specific Gravity
2.71
2.69
Effective size, D10 (inch)
3x10-3
6x10-3
D30 (inch)
6.7 x10-3
0.356.7 x10-3
D50 (inch)
6.7 x10-3
13.78 x10-3
D60 (inch)
9.84 x10-3
28.35 x10-3
Uniformity Coefficient, Cu
3.247
4.645
Coefficient of curvature, Cz
1.501
1.098
Fineness Modulus
1.07
2.38
Minimum Density (lb/ft3)
79.87
93.60
Maximum Density (lb/ft3)
103.58
117.31
Loose state (5 blow/layer)
28.80 10-3
56.06 10-3
Medium Dense (10 blow/layer)
27.07 10-3
48.99 10-3
Dense (15 blow/layer)
26.14 10-3
29.28 10-3
Permeability of Soil (ft/sec)
2 inch
1.5 inch
1 inch
Fig. 3.3: Aluminum pipes (1 inch, 1.5 inch and 2 inch diameter)
23
0.5 inch
1 inch
1.5 inch
Fig. 3.4: Stainless Steel pipes (0.5 inch, 1 inch and 1.5 inch diameter) 3.3
Experimental Program
The experimental programs were performed to estimate the plugging length of different pipe diameters and materials along with different soil samples. For this purpose, a sand tank and measuring rods are fabricated. A number of tests were conducted at different densities and different water table conditions. The variation of plugging length with densities and water table are shown in the following Chapter 4. The details of the experimental setup, preparation of soil sample and experimental procedure are described in the following subsections. 3.3.1
Experimental Setup
The experimental setup used in this investigation mainly consisted of a tank, pipes (Al and SS), measuring rods, holder, proving ring and mechanical setup for press-in pile. The descriptions of these apparatus are given below: (a)
Fabrication of tank for holding sand bed
A metallic tank designed and fabricated using 0.08 inch thick steel was used as the container to retain the soil sample. Thus the tank is known as the tank for soil bed formation. The inside dimension of the tank was same to make cubic sand bed having length, width and depth dimensions of 20 inch. Schematic diagram of the tank is shown in Fig. 3.5. 24
Figure 3.5: Schematic diagram sand bed holding tank (b)
Depth measuring tool
A very small diameter rod was used for each pipe to measure the plugging length, as shown in Fig. 3.6. At the bottom of the rod a circular thin plate was attached whose diameter is slightly less than the inner diameter of each pipe such that the rod can easily move into the pipe. The weight of the measuring tool was very light so that it has negligible effect on the plugging of soil. (c)
Holder
Three holders are used to fit different diameters of pipe in the same loading frame setup. A clamp is attached to the top of the holder to join with the proving ring so that load comes from the proving ring can be evenly distributed to all pipes. Holding device is shown in Fig. 3.7. (d)
Proving ring
A proving ring device was used to measure the load applied to the pile. It consists of an elastic ring with a measuring device located in the center of the ring. Proving ring with strain dial gauge is shown in Fig. 3.8.
25
The proving ring consists of two main elements, the ring itself and the diametermeasuring system, Fig. 3.8. Forces are applied to the ring through external bosses. The resulting change in diameter or the deflection of the ring, is measured with a micrometer screw and vibrating reed mounted diametrically within the ring. Calibration of the proving ring was done before using.
Fig. 3.6: Depth measuring rods having different base diameters
Fig. 3.7: Device for holding pipe piles 26
Fig. 3.8: Proving ring with dial gauge (e)
Load frame setup for press-in pile
Press-in pile driving machines provide an alternative method for installing pre-formed tubular or sheet piles. These machines use hydraulic rams to press piles into the ground. This technique eliminates the vibration, hammering and noise pollution associated with dynamic installation methods.
Fig 3.9: Electrical load frame setup for press-in pile 27
The setup consists of a metal rod (1.5 inch dia), a gear box and a motor. There are two sensors which automatically turn of the device when the pipe reaches to extreme ends. 3.3.2
Calibration of Density
Sand bed density was calibrated using a standard cone and a standard container whose volume and initial weight was known. A standard cone is shown in Fig. 3.10 and standard container is shown in the Fig. 3.11. The container was filled with sand falling from the cone at different height. Three heights were used in order to achieve three types of density. Falling from 2 inch height was referred to as loose sand. Similarly, falling height 1ft refers to medium dense and falling height 2 ft. refers to dense sand. Table 3.2 shows the calibrated densities with respect to certain falling height.
Fig. 3.10: Standard cone
Fig. 3.11: Standard container
Table 3.2: Calibration of density and density index Height of fall (inch)
Coarse sand (Sylhet sand) Bulk density (lb/ft3)
2
97.406
12
98.281
24
99.590
Min. density (lb/ft3)
93.413
Max. density (lb/ft3)
117.499
Fine sand (Turag sand)
Density index (%)
Bulk density (lb/ft3)
20.0
82.243
24.2
84.302
30.4
85.176
28
Min. density (lb/ft3)
Max. density (lb/ft3)
Density index (%) 11.5
80.122
103.459
22.3 26.3
3.3.2
Sand Bed Preparation
Sand bed was prepared in the fabricated steel framed experimental cubic tank. Free falling method from a certain height was used to fill the experimental tank in order to achieve uniform density. The step by step procedures for preparing soil sample for this experiment are as follows. They are illustrated in Fig. 3.12. (i)
Soil samples were sieved through #4 sieve (0.187 inch) to exclude the impurities.
(ii)
A standard cone was used to fill the tank from a known height.
(iii) Continuous filling was used so that uniform density can be ensured. (iv) The top of the sand bed was levelled with straight edge to produce a smooth surface. (v)
For the tests where water table was needed, water was provided from the bottom of the sand bed by hose pipe.
(vi) Transparent hose pipe was used to maintain water table at different levels.
(a) 2” falling height
(b) 12” falling height
(c) 24” falling height
Fig. 3.12: Preparation of sand bed with various falling height
29
3.3.3
Test Procedures for Plug-in
The plug-in test for all combinations of pile diameter and sand bed densities were done in the sand bed tank using the loading frame. The step by step test procedures are described below and are illustrated in Figs. 3.13 and 3.14. (i)
Sand bed was prepared in accordance with the procedures described in Section 3.3.2.
(ii)
Three pipes were attached at a time with the holder to the proving ring.
(iii) Measuring rods was placed in each pipe carefully and their initial position was recorded. (iv) Load was given from the press in pile driving machine gradually. (v)
The proving ring dial reading were recorded per ½ inch penetration.
(vi) Plugging length of each pipe was measured continuously using measuring tape at every 0.5 inch penetration depth. (vii) For each setup, the test piles were driven up to 12 inch and the necessary data were recorded.
Fig. 3.13: SS pipe pile in fine sand
Fig. 3.14: Al pipe pile in coarse sand
(No water table)
(Water table at ground level)
30
Proving Ring Dial Gauge Guide rod Plugged Length Fig. 3.15: Plugged length after driving of piles to a certain depth. 3.3.4
Test Program for Plug-in Observation
In total 36 tests were conducted for various water table conditions, densities and pipe materials. The test schemes are tabulated in Tables 3.3 and 3.4. Table 3.3: Test scheme for the experimental study (Sand bed of fine soil) Relative Density
Dr =11.5%
WT condition
Pipe Material
Test Designation
No WT
Al
F-1
WT at mid height
Al
F-2
WT at GL
Al
F-3
No WT
SS
F-4
WT at mid height
SS
F-5
WT at GL
SS
F-6
31
Relative Density
Dr = 22.3%
Dr = 26.3%
WT condition
Pipe Material
Test Designation
No WT
Al
F-7
WT at mid height
Al
F-8
WT at GL
Al
F-9
No WT
SS
F-10
WT at mid height
SS
F-11
WT at GL
SS
F-12
No WT
Al
F-13
WT at mid height
Al
F-14
WT at GL
Al
F-15
No WT
SS
F-16
WT at mid height
SS
F-17
WT at GL
SS
F-18
Table 3.4: Test scheme for the experimental study (Sand bed of coarse soil) Relative Density
Dr = 20%
Dr = 24.2%
Dr = 30.4%
WT condition
Pipe Material
Test Designation
No WT
Al
C-1
WT at mid height
Al
C-2
WT at GL
Al
C-3
No WT
SS
C-4
WT at mid height
SS
C-5
WT at GL
SS
C-6
No WT
Al
C-7
WT at mid height
Al
C-8
WT at GL
Al
C-9
No WT
SS
C-10
WT at mid height
SS
C-11
WT at GL
SS
C-12
No WT
Al
C-13
WT at mid height
Al
C-14
WT at GL
Al
C-15
No WT
SS
C-16
WT at mid height
SS
C-17
WT at GL
SS
C-18
32
Chapter 4 Test Results and Discussions 4.1
General
This chapter covers the results and discussions of the laboratory investigation on the plugging effect of open ended pipe pile. Experimental results are presented here to evaluate the plugging effect for varying parameters like pipe diameter, water table condition, soil type, pipe material and soil densities. Based on the data obtained, analyses of the results and discussions are presented in the following sections. 4.2
Analysis of Test Data
In total 36 tests were carried out using two types of soil having different coarsenesses (Fineness Modulus 1.07 and 2.38), termed as fine and coarse, with varying soil densities, pile diameter, pile materials, and water table. Piles were pushed into the prepared sand bed of desired density using a motorized loading frame and load settlement readings were recorded along with plug-in height/length of the soil into the pipe. The two most widely used indicators of soil plugging, plug length ratio (PLR) and incremental filling ratio (IFR) were estimated using the following relationships as mentioned earlier in Chapter 2. 𝑃𝐿𝑅 = 𝐿/𝐷
(2.3)
𝐼𝐹𝑅 = ∆𝐿/∆𝐷
(2.4)
Where, 𝐷
= pile penetration depth;
𝐿
= length of soil plug;
∆𝐷 = increment of pile penetration depth; and ∆𝐿
= increment of soil plug length corresponding to an increment of pile penetration depth ∆𝐷 (Fig. 2.2).
All the test data from 36 tests with estimated PLR and IFR values are summarized in Appendix-A.
33
From each set of experimental data for a test, 4 graphs were plotted; Plugging Length vs Load, Plugging Length vs Penetration Depth, Plug Length Ratio (PLR) vs Penetration Depth and Penetration Depth vs Incremental Filling Ratio (IFR). They are presented in Appendix-B. The test results are summarized in Tables 4.1 and 4.2 for fine and coarse soils respectively. Table 4.1: PLR values for Fine Sand (FM = 1.07, D50 = 8.66x10-3 inch) for various soil density and submergence different conditions Dr = 11.5% Pile Diameter (inch)
0.5
1.0
1.5
2.0
PLR (Al, no WT)
0.321
0.575
0.838
PLR (Al, WT at mid height)
0.333
0.617
0.846
PLR (Al, WT at GL)
0.321
0.604
0.833
PLR (SS, no WT)
0.171
0.671
0.821
PLR (SS, WT at GL)
0.179
0.433
0.792
PLR (SS, WT at GL)
0.121
0.342
0.588
1.0
1.5
2.0
PLR (Al, no WT)
0.275
0.433
0.571
PLR (Al, WT at mid height)
0.250
0.475
0.621
PLR (Al, WT at GL)
0.263
0.392
0.604
Dr = 22.2% Pile Diameter (inch)
0.5
PLR (SS, no WT)
0.138
0.396
0.646
PLR (SS, WT at GL)
0.138
0.483
0.742
PLR (SS, WT at GL)
0.142
0.388
0.733
1.0
1.5
2.0
PLR (Al, no WT)
0.246
0.346
0.508
PLR (Al, WT at mid height)
0.404
0.433
0.575
PLR (Al, WT at GL)
0.192
0.304
0.538
Dr = 26.3% Pile Diameter (inch)
0.5
PLR (SS, no WT)
0.133
0.463
0.604
PLR (SS, WT at GL)
0.146
0.588
0.700
PLR (SS, WT at GL)
0.250
0.392
0.525
34
Table 4.2: PLR values for Coarse Sand (FM = 2.38, D50 = 22.44x10-3 inch) for various soil density and submergence different conditions Dr = 20% Pile Diameter (inch)
0.5
1.0
1.5
2.0
PLR (Al, no WT)
0.242
0.446
0.663
PLR (Al, WT at mid height)
0.275
0.438
0.771
PLR (Al, WT at GL)
0.213
0.200
0.292
PLR (SS, no WT)
0.450
0.113
0.638
PLR (SS, WT at GL)
0.083
0.392
0.596
PLR (SS, WT at GL)
0.096
0.379
0.558
1.0
1.5
2.0
PLR (Al, no WT)
0.221
0.388
0.633
PLR (Al, WT at mid height)
0.267
0.400
0.621
PLR (Al, WT at GL)
0.225
0.367
0.421
Dr = 24.2% Pile Diameter (inch)
0.5
PLR (SS, no WT)
0.067
0.233
0.521
PLR (SS, WT at GL)
0.104
0.408
0.700
PLR (SS, WT at GL)
0.050
0.354
0.475
1.0
1.5
2.0
PLR (Al, no WT)
0.108
0.213
0.350
PLR (Al, WT at mid height)
0.296
0.458
0.767
PLR (Al, WT at GL)
0.250
0.400
0.596
Dr = 30.4% Pile Diameter (inch)
0.5
PLR (SS, no WT)
0.046
0.221
0.458
PLR (SS, WT at GL)
0.096
0.396
0.692
PLR (SS, WT at GL)
0.075
0.342
0.633
In the subsequent sections, the test results are presented graphically to depict the relationship among different parameters that affect plugging behaviour. The PLR values at 12 inch penetration depth for all conditions are taken into consideration.
35
4.3
Effect of Pile Diameter on Plugging at Different Water Table Conditions
The variations of PLR with pile diameter for aluminum pipe pile are presented in Figs. 4.1 to 4.6, and those for steel piles are presented in Figs. 4.7 to 4.11. It can be observed that the PLR value in general increases with the increasing pile diameter. 0.90 0.80 0.70 0.60
PLR
0.50 0.40 0.30 No WT 0.20
WT at Mid Height WT at GL
0.10 0.00 1 INCH DIA
1.5 INCH DIA
2 INCH DIA
Fig. 4.1: PLR vs Pipe Dia Curve at Different Water Table Condition (Aluminum pipe, Fine sand, D50=8.66x10-3 inch, Dr=11.5%)
0.70 0.60 0.50
PLR
0.40 0.30 0.20
No WT WT at Mid Height
0.10
WT at GL
0.00 1 INCH DIA
1.5 INCH DIA
2 INCH DIA
Fig. 4.2: PLR vs Pipe Dia Curve at Different Water Table Condition (Fine sand, D50=8.66x10-3 inch, Dr=22.3%)
36
0.70 0.60 0.50
No WT WT at Mid Height WT at GL
PLR
0.40 0.30 0.20 0.10 0.00 1 INCH DIA
1.5 INCH DIA
2 INCH DIA
Fig. 4.3: PLR vs Pipe Dia Curve at Different Water Table Condition (Aluminum pipe, Fine sand, D50=8.66x10-3 inch, Dr=26.3%) 0.90 0.80 0.70 0.60
No WT WT at Mid Height WT at GL
PLR
0.50 0.40 0.30 0.20 0.10 0.00 1 INCH DIA
1.5 INCH DIA
2 INCH DIA
Fig. 4.4: PLR vs Pipe Dia Curve at Different Water Table Condition (Aluminum pipe, Coarse sand, D50=22.44x10-3 inch, Dr=20%) 0.70 0.60 0.50
No WT WT at Mid Height WT at GL
PLR
0.40 0.30 0.20 0.10 0.00 1 INCH DIA
1.5 INCH DIA
2 INCH DIA
Fig. 4.5: PLR vs Pipe Dia Curve at Different Water Table Condition (Aluminum pipe, Coarse sand, D50=22.44x10-3 inch, Dr=24.2%) 37
0.90 0.80 0.70 0.60
No WT WT at Mid Height WT at GL
PLR
0.50
0.40 0.30 0.20 0.10 0.00 1 INCH DIA
1.5 INCH DIA
2 INCH DIA
Fig. 4.6: PLR vs Pipe Dia Curve at Different Water Table Condition (Aluminum pipe, Coarse sand D50=22.44x10-3 inch, Dr=30.4%) 0.90 0.80 0.70
No WT WT at Mid Height WT at GL
0.60
PLR
0.50 0.40 0.30 0.20 0.10
0.00 0.5 INCH DIA
1 INCH DIA
1.5 INCH DIA
Fig.4.7: PLR vs Pipe Dia Curve at Different Water Table Condition (Steel pipe, Fine sand, D50=8.66x10-3 inch, Dr=11.5%) 0.80 0.70 0.60
PLR
0.50
No WT WT at Mid Height WT at GL
0.40 0.30 0.20 0.10 0.00 0.5 INCH DIA
1 INCH DIA
1.5 INCH DIA
Fig. 4.8: PLR vs Pipe Dia Curve at Different Water Table Condition (Steel pipe, Fine sand, D50=8.66x10-3 inch, Dr=22.3%) 38
0.80 0.70
0.60
No WT WT at Mid Height WT at GL
PLR
0.50 0.40 0.30 0.20 0.10 0.00 0.5 INCH DIA
1 INCH DIA
1.5 INCH DIA
Fig. 4.9: PLR vs Pipe Dia Curve at Different Water Table Condition (Steel pipe, Fine sand D50=8.66x10-3 inch, Dr=26.3%) 0.70 0.60
No WT WT at Mid Height WT at GL
0.50
PLR
0.40 0.30 0.20 0.10 0.00 0.5 INCH DIA
1 INCH DIA
1.5 INCH DIA
Fig. 4.10: PLR vs Pipe Dia Curve at Different Water Table Condition (Steel pipe, Coarse sand, D50=22.44x10-3 inch, Dr=20%) 0.80 0.70 0.60
No WT WT at Mid Height WT at GL
PLR
0.50 0.40 0.30 0.20 0.10 0.00 0.5 INCH DIA
1 INCH DIA
1.5 INCH DIA
Fig. 4.11: PLR vs Pipe Dia Curve at Different Water Table Condition (Steel pipe, Coarse sand, D50=22.44x10-3 inch, Dr=24.2%) 39
0.80 No WT WT at Mid Height WT at GL
0.70 0.60
0.50
PLR
0.40 0.30 0.20 0.10 0.00 0.5 INCH DIA
1 INCH DIA
1.5 INCH DIA
Fig. 4.12: PLR vs Pipe Dia Curve at Different Water Table Condition (Steel pipe, Coarse sand, D50=22.44x10-3 inch, Dr=30.4%)
Plugging behaviour was found similar for different pipe materials though PLR value was larger for stainless steel pipe might be because of smaller skin friction. Plug-in was found to decrease with the increase of diameter of the pipe. It was found that for 1.5 inch diameter pipe plugging decreases 80%-90% compared to 1 inch dia pipe. On the contrary, plugging decreases only 30%-40% for 2 inch diameter pipe compared to 1.5 inch diameter pipe. Statistical analysis of the data yielded the relationships as presented in Chapter 5. 4.4
Effect of Relative Density on Plugging for Different Particle Sizes and
Pipe Materials The variations of PLR with relative density for different particle size as well as different pipe materials are arranged in Figs. 4.13 to 4.18. It can be observed that the PLR value usually decreases with the increasing relative density.
40
0.800 0.700 0.600 D50=8.66x10^-3 inch,Al D50=8.66x10^-3 inch,SS D50=22.44x10^-3 inch,Al D50=22.44x10^-3 inch,SS
PLR
0.500 0.400 0.300 0.200 0.100 0.000 0
5
10
15
20
25
30
35
Reative Density (%) Fig. 4.13: PLR vs Relative Density Curve for Different Particle Sizes and Pipe Materials (1” Dia pipe, No WT) 0.700 0.600
PLR
0.500 D50=8.66x10^-3 inch,Al D50=8.66x10^-3 inch,SS D50=22.44x10^-3 inch,Al D50=22.44x10^-3 inch,SS
0.400 0.300 0.200 0.100 0.000 0
5
10
15
20
25
30
35
Reative Density (%) Fig. 4.14: PLR vs Relative Density Curve for Different Particle Sizes and Pipe Materials (1” Dia pipe, WT at mid height) 0.450 0.400 0.350
PLR
0.300 D50=8.66x10^-3 inch,Al D50=8.66x10^-3 inch,SS D50=22.44x10^-3 inch,Al D50=22.44x10^-3 inch,SS
0.250 0.200 0.150 0.100
0.050 0.000 0
5
10
15
20
25
30
35
Reative Density (%) Fig. 4.15: PLR vs Relative Density Curve for Different Particle Sizes and Pip Materials (1” Dia pipe, WT at GL)
41
0.900 0.800 0.700
PLR
0.600 D50=8.66x10^-3 inch,Al D50=8.66x10^-3 inch,SS D50=22.44x10^-3 inch,Al D50=22.44x10^-3 inch,SS
0.500 0.400 0.300
0.200 0.100 0.000 0
5
10
15
20
25
30
35
Reative Density (%) Fig. 4.16: PLR vs Relative Density Curve for Different Particle Sizes and Pipe Materials (1.5” Dia pipe, No WT) 0.900 0.800 0.700
PLR
0.600
D50=8.66x10^-3 inch,Al D50=8.66x10^-3 inch,SS D50=22.44x10^-3 inch,Al D50=22.44x10^-3 inch,SS
0.500 0.400 0.300 0.200 0.100 0.000 0
5
10
15
20
25
30
35
Reative Density (%) Fig. 4.17: PLR vs Relative Density Curve for Different Particle Sizes and Pipe Materials (1.5” Dia pipe, WT at mid height) 0.800 0.700 0.600
PLR
0.500
D50=8.66x10^-3 inch,Al D50=8.66x10^-3 inch,SS D50=22.44x10^-3 inch,Al D50=22.44x10^-3 inch,SS
0.400 0.300 0.200 0.100 0.000 0
5
10
15
20
25
30
35
Reative Density (%) Fig. 4.18: PLR vs Relative Density Curve for Different Particle Sizes and Pipe Materials (1.5” Dia pipe, WT at GL)
42
Plugging behaviour was found quite different for different particle sizes though PLR value was smaller for higher relative density. This is due to greater compactness of the soil. Plug-in was found to increase faster with the decrease of D50 of soil sample. It was found that for fine sand (D50=8.66x10-3 inch) PLR decreases 15%-55% for same pipe material. On the contrary, PLR decreases 3%-100% for coarse sand (D50=22.44x10-3 inch). Statistical analysis of the data yielded the relationships as presented in Chapter 5. 4.5
Effect of Water Table on Plug-in for Different Pipe Materials and
Diameters The plug length ratio data obtained are plotted, in Figs. 4.13 to 4.18, against water table for both steel and aluminum piles of different diameters. The plug length ratio was found to increase initially with the increase in water table and then found to decrease with the increase of water table. PLR increases 5%-15% in case of water table at mid height compared to dry condition of soil. On the other hand conditions for fully saturated condition PLR decreases around 8%. Statistical analysis of the data yielded the relationships as presented in Chapter 5.
0.90 0.80 0.70 0.60
0.50 PLR
0.40 0.30 0.20
1" Dia Al
1.5" Dia Al
0.10
1" Dia SS
1.5" Dia SS
0.00
No WT
WT at Mid Height
WT at GL
Water Table Condition
Fig. 4.19: PLR vs Water Table Condition for Different Pipe Material (Fine sand, D50=8.66x10-3 inch, Dr=11.5%)
43
0.80 0.70 0.60 0.50
PLR
0.40 0.30 0.20 0.10 0.00
No WT
1" Dia Al
1.5" Dia Al
1" Dia SS
1.5" Dia SS
WT at Mid Height
WT at GL
Water Table Condition
Fig. 4.20: PLR vs Water Table Condition for Different Pipe Material (Fine sand, D50=8.66x10-3 inch, Dr=22.3%) 0.80 0.70 0.60 0.50
PLR
0.40 0.30 0.20 1" Dia Al 1" Dia SS
0.10
1.5" Dia Al 1.5" Dia SS
0.00
No WT
WT at Mid Height
WT at GL
Water Table Condition
Fig. 4.21: PLR vs Water Table Condition for Different Pipe Material (Fine sand, D50=8.66x10-3 inch, Dr=26.3%) 0.70 0.60 0.50 0.40
PLR
0.30
0.20 0.10
1" Dia Al
1.5" Dia Al
0.00
1" Dia SS
1.5" Dia Al
No WT
WT at Mid Height
WT at GL
Water Table Condition
Fig. 4.22: PLR vs Water Table Condition for Different Pipe Material (Coarse sand, D50=22.44x10-3 inch, Dr=20%) 44
0.80 0.70 0.60 0.50
PLR
0.40 0.30 0.20 0.10 0.00
No WT
1" Dia Al
1.5" Dia Al
1" Dia SS
1.5" Dia SS
WT at Mid Height
WT at GL
Water Table Condition
Fig. 4.23: PLR vs Water Table Condition for Different Pipe Material (Coarse sand, D50=22.44x10-3 inch, Dr=24.2%) 0.80 0.70 0.60 0.50
PLR
0.40 0.30 0.20 0.10 0.00
No WT
1" Dia Al
1.5" Dia Al
1" Dia SS
1.5" Dia SS
WT at Mid Height
WT at GL
Water Table Condition
Fig. 4.24: PLR vs Water Table Condition for Different Pipe Material (Coarse sand, D50=22.44x10-3 inch, Dr=30.4%)
4.6
Effect of Density on Plug-in for Different Pipe Diameters
The plug-in ratio data were plotted against pipe diameter for different soil densities for various water table conditions, in Figs. 4.19 to 4. It is observed that plug length reduces with the increase of relative density for considerable number of setups. The reduction of PLR is within the range of 35%. But for other cases some absurd behaviour is noticed. This phenomena may be occurred due to loose deposit of soil.
45
PLR
0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0.000
Dr=11.5% Dr=22.3% Dr=26.3%
0
0.5
1
1.5
2
2.5
Pipe Diameter (inch)
Fig. 4.25: PLR vs Pipe diameter for Different Densities
PLR
(Fine sand, D50=8.66x10-3 inch, No WT, Al- pipe)
0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0.000
Dr=11.5% Dr=22.3% Dr=26.3%
0
0.5
1
1.5
2
2.5
Pipe Diameter (inch)
Fig. 4.26: PLR vs Pipe diameter for Different Densities
PLR
(Fine sand, D50=8.66x10-3 inch, WT at mid height, Al) 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0.000
Dr=11.5% Dr=22.3% Dr=26.3%
0
0.5
1
1.5
2
Pipe Diameter (inch)
Fig. 4.27: PLR vs Pipe diameter for Different Densities (Fine sand, D50=8.66x10-3 inch, WT at GL, Al-pipe) 46
2.5
PLR
0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0.000
Dr=11.5% Dr=22.3% Dr=26.3%
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.4
1.6
Pipe Diameter (inch)
Fig. 4.28: PLR vs Pipe diameter for Different Densities
PLR
(Fine sand D50=8.66x10-3 inch, no WT, SS-pipe)
0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0.000
Dr=11.5% Dr=22.3% Dr=26.3%
0
0.2
0.4
0.6
0.8
1
1.2
Pipe Diameter (inch)
Fig. 4.29: PLR vs Pipe diameter for Different Densities (Fine sand, D50=8.66x10-3 inch, WT at mid height, SS-pipe)
0.800 Dr=11.5%
0.700
Dr=22.3%
PLR
0.600
Dr=26.3%
0.500 0.400
0.300 0.200 0.100 0.000 0
0.2
0.4
0.6
0.8
1
1.2
1.4
Pipe Diameter (inch)
Fig. 4.30: PLR vs Pipe diameter for Different Densities (Fine sand, D50=8.66x10-3 inch, WT at GL, SS-pipe) 47
1.6
0.700
Dr=20%
0.600
Dr=24.2%
PLR
0.500
Dr=30.4%
0.400 0.300 0.200 0.100 0.000 0
0.5
1
1.5
2
2.5
Pipe Diameter (inch)
Fig. 4.31: PLR vs Pipe diameter for Different Densities
PLR
(Coarse sand, D50=22.44x10-3 inch, No WT, Al-pipe) 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0.000
Dr=20% Dr=24.2% Dr=30.4%
0
0.5
1
1.5
2
2.5
Pipe Diameter (inch)
Fig. 4.32: PLR vs Pipe diameter for Different Densities (D50=22.44x10-3 inch, WT at mid height, Al-pipe)
0.700 Dr=20%
0.600
Dr=24.2%
PLR
0.500
Dr=30.4%
0.400
0.300 0.200 0.100 0.000 0
0.5
1
1.5
2
Pipe Diameter (inch)
Fig. 4.33: PLR vs Pipe diameter for Different Densities (Coarse sand, D50=22.44x10-3 inch, WT at GL, Al-pipe)
48
2.5
0.700 Dr=20%
0.600
Dr=24.2%
PLR
0.500
Dr=30.4%
0.400 0.300 0.200 0.100 0.000 0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.4
1.6
Pipe Diameter (inch)
Fig. 4.34: PLR vs Pipe diameter for Different Densities (Coarse sand, D50=22.44x10-3 inch, No WT, SS)
PLR
0.800 0.700
Dr=20%
0.600
Dr=24.2%
0.500
Dr=30.4%
0.400 0.300 0.200 0.100 0.000 0
0.2
0.4
0.6
0.8
1
1.2
Pipe Diameter (inch)
Fig. 4.35: PLR vs Pipe diameter for Different Densities (Coarse sand, D50=22.44x10-3 inch, WT at mid height, SS) 0.700 Dr=20%
0.600
Dr=24.2%
PLR
0.500
Dr=30.4%
0.400 0.300 0.200 0.100 0.000 0
0.2
0.4
0.6
0.8
1
1.2
1.4
Pipe Diameter (inch)
Fig. 4.36: PLR vs Pipe Diameter for Different Densities (Coarse sand, D50=22.44x10-3 inch, WT at GL, SS) 49
1.6
The following comments can be made from the test results: a)
For 1 inch dia Aluminum pipe IFR becomes zero for all conditions which indicates fully plugged condition. For 1.5 inch dia Al pipe, IFR varies in between 10%-20% indicating near plugging condition. But for 2 inch dia Al pipe, IFR lies around 50%-60% which indicates unplugged condition.
b)
It is observed that fully plugged condition is achieved at 6-7 inch penetration depth for 0.5 inch Al pipe pile in fine sand (D50=8.66x10-3 inch, Dr=11.5%). It decreases with the increase of density. At Dr=26.3% the fully plugged condition is achieved at 4-5 inch penetration depth, irrespective of water table condition.
c)
Stainless steel pipe behaves quite similar to Al pipe except its plug length is higher than the Al pipe. For 1 inch pipe, plug length is 30%-40% higher in SS pipe compared to Al pipe.
d)
IFR values tends to zero for smaller dia pipes for both SS and Al.
e)
For coarse sand (D50 = 22.44x10-3 inch) the length at which fully plugged condition occurs decreases with increasing density. For 1 inch dia Al pipe , at penetration depth 8-9 inch, fully plugged condition is achieved whereas it is 6-7 inch for fine sand (D50= 22.44x10-3 inch)
f)
IFR decreases with the increase of pipe diameter. For smaller diameter pile, IFR becomes zero after certain penetration depth. Larger diameter piles remains unplugged for greater penetration depth.
g)
SS pipe behaves quite similar to Al pipe except its plug length is higher than the Aluminum pipe. For 1 inch pipe, plug length is 35%-45% higher in SS pipe compared to Al pipe.
h)
IFR values tends to zero at smaller dia pipes for both SS and Al.
50
Chapter 5 Conclusion and Recommendation 5.1
General
This chapter summarizes conclusion on the test results and major findings of the study. Major objectives of this study were to find out the effect of different parameters on soil plugging. These effects were investigated on limited experimental analysis. 5.2
Conclusion
The following conclusions can be drawn from the present study. a) The PLR value increases with the increase of water table after a certain value, decreases with the increase of water table. Although the studied piles show some deviation, the best fitting of the PLR with the water table height was found by the polynomial expression: PLR = -0.3005x2 + 0.2808x + 0.3934
(5.1)
Where x= ratio of height of water table to total depth b) Plug length increases with the increase of diameter. PLR value can be correlated with the diameter for different pipe materials and soil condition. For the best fit of PLR with the pile diameter, following equation is used PLR = 0.2909x1.2071
(5.2)
Where x = pipe diameter (in inch) c) PLR value decreases with the increase of relative density. PLR value can be correlated with the relative density for different particle sizes and pipe materials. For the best fit of PLR with the relative, following equation is used PLR = -0.0001x3 + 0.0072x2 - 0.1624x + 1.5934
(5.3)
Where x = relative density (%) d) PLR can be correlated with different independent variables using regression analysis. The following two linear equations are suggested for the four independent variables i.e. pile diameter, Particle size (D50), Relative Density (Dr) and water table height. For Aluminum Pile: PLR = 0.4D-1.9617D50-0.00634Dr-0.00432WT
51
(5.4)
For Stainless Steel Pile: PLR = 0.51026D-5.5843D50-0.00145Dr—0.01235WT
(5.5)
Where, D= pile diameter (in inch), D50 = Particle size (in inch), Dr= Relative Density (%), WT= ratio of height of water table to total depth. 5.3
Recommendation for Future Study
Soil plugging of open-ended piles is a highly relevant area, both in terms of drivability and the magnitude of resistance that can be mobilized for the piles. The fact that soil plugging is so strongly related to the driving method and soil conditions means that it is both hard to predict and to model the behavior of the piles. Below is a list of suggested areas for future studies: (i)
The tests were carried out on only two types of soil samples. Other types of soil sample (eg. Clay, Silt, Viti sand etc) can be used to observe the effects on those samples.\
(ii)
Only 12 inch driving of pile is done to notice the plugging behaviour. More depths can be used.
(iii) The pore water pressure near the pile toe has great influence on the soil plug capacity through the effective stresses generated during driving. Although studies have been made to investigate effect of water table on the plugging, this is still an area where more knowledge is needed since the results are sensitive to the soil and pile properties. (iv) More available computing power these days allows for FEM analysis based on more advanced soil models, finer meshing, adaptive meshing and an increased number of components included in the model. Soil plugging during driving is consequently increasingly feasible to model in a realistic setup. The possibility of modelling the entire driving scenario and comparing the results to field measurements from the actual driving situation is definitely an interesting are for future research. (v)
In this study, Al & SS – two types of pipe pile are used. Other materials like GI pipe, Carbon and alloy steel, Corrugated Steel Pipe, Polymer Pre-coated etc. can be investigated.
(vi) Layered soil sample can be used with alternating layers in different depths. 52
(vii) The experiment of this study was done in drained condition. Undrained condition and more water table depths can be used for further study. (viii) Comparison with field data can be done in order to judge the lab model data with field data.
53
References American Petroleum Institute (API) (1993) RP2A: Recommended practice of planning, designing and constructing fixed offshore platforms- Working stress design, 20th edition, Washington 59-61. Brucy, F., Meunier, J., and Nauroy, J. F., (1991), “Behavior of Pile Plug in Sandy Soils During and After Driving,”Proceedings, 23rd Annual Offshore Technology Conference, Vol. 1, pp. 145–154. Bruno, D. and Randolph, M. F., (1999), “Dynamic and Static Load Testing of Model Piles Driven into Dense Sand,”Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 11, pp. 988–998. Choi, Y. and O’Neill, M. W., (1997), “Soil Plugging and Relaxation in Pipe Pile During Earthquake Motion, “Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 10, pp. 975–982. Chow, F.C. (1997) “Investigations into behaviour of displacement piles for offshore structures”, PhD Thesis, Civ. Eng. Dept., University of London (Imperial College). De Nicola, A., (1996). “The Performance of Pipe Piles in Sand”. PhD Thesis, The University of Western Australia, Perth, Australia. De Nicola, A. and Randolph, M. F., (1997), “The Plugging Behavior of Driven and Jacked Piles in Sand,”Geotechnique, London, UK, Vol. 47, No. 4, pp. 841–856. Gudavalli, S., Safaqah, O. & Seo, H., (2013). “Effect of Soil Plugging on Axial Capacity of Open Ended Pipe Piles in Sands”, Paris, Presses des Ponts. Henke, S., and Grabe, J., (2008). “Numerical investigation of soil plugging inside openended piles with respect to the installation method”. Acta Geotechnica, 3(3), pp. 215– 223 Jeong, S., Ko, J. & Chung, M., (2014). “Analysis of Plugging Effect for Open-Ended Piles in Sandy Soil”. DFI/EFFC 11th International Conference on Piling and Deep Foundations, Stockholm, Sweden, Deep Foundations Institute, 139-148. Kishida, H. and Isemoto, N., (1977). “Behavior of sand plugs in open-end steel pipe piles”. Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, pp. 601-604. Kyuho Paik & Rodrigo Salgado (2009), “Effect of Pile Installation Method on Pipe Pile Behavior in Sands”, Geotechnical Testing Journal,Vol. 27, No. 1. Lehane, B. M. and Gavin, K. G., (2004). Discussion of “Determination of bearing capacity of open-ended piles in sand”. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 6, pp. 656–658.
54
Ogawa, N., Ishihara, Y., Yokotobi, T., Kinoshita, S., Nagayama, T., Kitamura, A., and Tagaya, K., (2008). “Soil Plug Behaviour of Open-Ended Tubular Pile During PressIn”. In Proceedings of 2nd IPA International Workshop, New Orleans, Lousiana, International Press-In Assocation, pp. 15–22. Paik, K. H. and Lee, S. R., (1993), “Behavior of Soil Plugs in OpenEnded Model Piles Driven into Sands,”Marine Georesources and Geotechnology, Vol. 11, pp. 353–373. Paik, K. H., Salgado, R., Lee, J. H., and Kim, B. J., (2003), “Behavior of Open- and Closed-Ended Piles Driven into Sands,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 129, No. 4, pp. 296–306. Paikowsky, S.G. (1989). “A static evaluation of soil plug behavior with application to the pile plugging problem”. D.Sc. thesis, Massachusetts Institute of Technology, Cambridge, Mass Paikowsky, S. G. and Whitman, R. V., (1990), “The Effects of Plugging on Pile Performance and Design,”Canadian Geotechnical Journal, Ottawa, Canada, Vol. 27, pp. 429–440. Paikowsky, S. G., Whitman, R. V., and Baligh, M. M., (1989), “A New Look at the Phenomenon of Offshore Pile Plugging,”Marine Geotechnology, Vol. 8, pp. 213–230. Raines D. R., Ugaz O. G. and O'Neill M. W. (1992) Driving characteristics of open-toe piles in dense sand ASCE Journal of Geotechnical Engineering 118(1): 72-88 Randolph M. F., Leong E. C., and Houlsby G. T. (1991) One-dimensional analysis of soil plugs in pipe piles Geotechnique 41(4): 587-598 Smith, I. M., To, P., and Wilson, S. M. “1986”. ‘‘Plugging of pipe piles.’’ Proc., 3rd Int. Conf. on Numerical Method in Offshore Piling, Nantes,France, 53–73 Yamahara, H. (1964). “Plugging effects and bearing mechanism of steel pipe piles”. Transportation of the Architectural Institute of Japan, 96: 28–35. Ko and Jeong 547 Published by NRC Research Press Can. Geotech. J.
55
APPENDIX- A: TEST DATA
56
Test No: F-1 Sand Type D50= 8.66x10-3 inch Drive Length (inch)
WT Condition No WT
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=11.5%
Plugging Length (inch)
Pipe Material Al
IFR
PLR
Pipe Diameter
1″
1.5″
2″
1″
1.5″
2″
1″
1.5″
2″
0
0
0
0
0
0
0
0
0
0
4
29.96
0.4
0.4
0.45
80
80
90
0.800
0.800
0.900
1.0
7.1
37.56
0.75
0.85
0.9
70
90
90
0.750
0.850
0.900
1.5
10
44.67
1.2
1.3
1.3
90
90
80
0.800
0.867
0.867
2.0
13.1
52.27
1.65
1.8
1.85
90
100
110
0.825
0.900
0.925
2.5
17.8
63.79
2.05
2.25
2.3
80
90
90
0.820
0.900
0.920
3.0
21.2
72.12
2.45
2.7
2.75
80
90
90
0.817
0.900
0.917
3.5
27
86.34
2.9
3.2
3.25
90
100
100
0.829
0.914
0.929
4.0
30.8
95.66
3.2
3.6
3.65
60
80
80
0.800
0.900
0.913
4.5
36
108.40
3.4
4
4.15
40
80
100
0.756
0.889
0.922
5.0
40.5
119.43
3.5
4.4
4.5
20
80
70
0.700
0.880
0.900
5.5
45
130.46
3.55
4.8
4.95
10
80
90
0.645
0.873
0.900
6.0
48.4
138.80
3.6
5.15
5.35
10
70
80
0.600
0.858
0.892
6.5
52.9
149.83
3.6
5.5
5.75
0
70
80
0.554
0.846
0.885
7.0
55.7
156.69
3.6
5.8
6.25
0
60
100
0.514
0.829
0.893
7.5
60
167.23
3.6
6
6.55
0
40
60
0.480
0.800
0.873
8.0
63.8
176.55
3.65
6.15
7
10
30
90
0.456
0.769
0.875
8.5
69.6
190.76
3.65
6.25
7.45
0
20
90
0.429
0.735
0.876
9.0
76
206.45
3.65
6.3
7.85
0
10
80
0.406
0.700
0.872
9.5
84.2
226.55
3.7
6.45
8.2
10
30
70
0.389
0.679
0.863
10.0
91.4
244.20
3.7
6.55
8.6
0
20
80
0.370
0.655
0.860
10.5
101.3
268.47
3.7
6.6
9
0
10
80
0.352
0.629
0.857
11.0
109.8
289.30
3.75
6.65
9.35
10
10
70
0.341
0.605
0.850
11.5
131.2
341.76
3.8
6.8
9.7
10
30
70
0.330
0.591
0.843
12.0
150.5
389.06
3.85
6.9
10.05
10
20
70
0.321
0.575
0.838
57
Test No: F-2 Sand Type D50= 8.66x10-3 inch Drive Length (inch)
WT Condition WT at Mid Height
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=11.5%
Plugging Length (inch)
Pipe Material Al
IFR
PLR
Pipe Diameter
1″
1.5″
2″
1″
1.5″
2″
1″
1.5″
2″
0
0
0
0
0
0
0
0
0
0
17
61.83
0.40
0.40
0.5
80
80
100
0.800
0.800
1.000
1.0
20.1
69.43
0.75
0.80
0.9
70
80
80
0.750
0.800
0.900
1.5
23
76.54
1.20
1.25
1.35
90
90
90
0.800
0.833
0.900
2.0
26.1
84.14
1.60
1.80
1.9
80
110
110
0.800
0.900
0.950
2.5
30.8
95.66
2.05
2.20
2.4
90
80
100
0.820
0.880
0.960
3.0
34.2
103.99
2.40
2.65
2.85
70
90
90
0.800
0.883
0.950
3.5
50
142.72
2.75
3.10
3.35
70
90
100
0.786
0.886
0.957
4.0
53.8
152.03
3.10
3.60
3.7
70
100
70
0.775
0.900
0.925
4.5
59
164.78
3.20
4.00
4.2
20
80
100
0.711
0.889
0.933
5.0
63.5
175.81
3.45
4.30
4.55
50
60
70
0.690
0.860
0.910
5.5
68
186.84
3.60
4.75
5
30
90
90
0.655
0.864
0.909
6.0
71.4
195.17
3.65
5.00
5.45
10
50
90
0.608
0.833
0.908
6.5
75.9
206.21
3.65
5.45
5.75
0
90
60
0.562
0.838
0.885
7.0
78.7
213.07
3.80
5.65
6.3
30
40
110
0.543
0.807
0.900
7.5
83
223.61
3.80
5.95
6.65
0
60
70
0.507
0.793
0.887
8.0
86.8
232.92
3.85
6.05
7.05
10
20
80
0.481
0.756
0.881
8.5
92.6
247.14
3.90
6.35
7.45
10
60
80
0.459
0.747
0.876
9.0
99
262.83
3.90
6.50
7.9
0
30
90
0.433
0.722
0.878
9.5
107.2
282.93
3.95
6.65
8.3
10
30
80
0.416
0.700
0.874
10.0
114.4
300.58
3.95
6.85
8.65
0
40
70
0.395
0.685
0.865
10.5
124.3
324.84
3.95
7.00
9
0
30
70
0.376
0.667
0.857
11.0
132.8
345.68
4.00
7.15
9.4
10
30
80
0.364
0.650
0.855
11.5
154.2
398.13
4.00
7.25
9.8
0
20
80
0.348
0.630
0.852
12.0
173.5
445.44
4.00
7.40
10.15
0
30
70
0.333
0.617
0.846
58
Test No: F-3 Sand Type D50= 8.66x10-3 inch Drive Length (inch)
WT Condition WT at GL
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=11.5%
Plugging Length (inch)
Pipe Material Al
IFR
PLR
Pipe Diameter
1″
1.5″
2″
1″
1.5″
2″
1″
1.5″
2″
0
0
0
0
0
0
0
0
0
0
13
52.02
0.35
0.35
0.45
70
70
90
0.700
0.700
0.900
1.0
16.1
59.62
0.7
0.75
0.85
70
80
80
0.700
0.750
0.850
1.5
19
66.73
1.15
1.2
1.3
90
90
90
0.767
0.800
0.867
2.0
22.1
74.33
1.55
1.75
1.85
80
110
110
0.775
0.875
0.925
2.5
21.8
73.60
2
2.15
2.35
90
80
100
0.800
0.860
0.940
3.0
25.2
81.93
2.3
2.55
2.75
60
80
80
0.767
0.850
0.917
3.5
41
120.66
2.65
3
3.25
70
90
100
0.757
0.857
0.929
4.0
44.8
129.97
3
3.5
3.6
70
100
70
0.750
0.875
0.900
4.5
50
142.72
3.1
3.9
4.1
20
80
100
0.689
0.867
0.911
5.0
54.5
153.75
3.35
4.2
4.45
50
60
70
0.670
0.840
0.890
5.5
59
164.78
3.5
4.65
4.9
30
90
90
0.636
0.845
0.891
6.0
62.4
173.11
3.55
4.9
5.35
10
50
90
0.592
0.817
0.892
6.5
66.9
184.14
3.55
5.35
5.65
0
90
60
0.546
0.823
0.869
7.0
69.7
191.01
3.75
5.6
6.25
40
50
120
0.536
0.800
0.893
7.5
71
194.19
3.75
5.9
6.6
0
60
70
0.500
0.787
0.880
8.0
74.8
203.51
3.8
6
7
10
20
80
0.475
0.750
0.875
8.5
80.6
217.73
3.8
6.3
7.4
0
60
80
0.447
0.741
0.871
9.0
87
233.41
3.8
6.45
7.85
0
30
90
0.422
0.717
0.872
9.5
95.2
253.51
3.8
6.5
8.15
0
10
60
0.400
0.684
0.858
10.0
102.4
271.16
3.8
6.7
8.5
0
40
70
0.380
0.670
0.850
10.5
112.3
295.43
3.8
6.85
8.85
0
30
70
0.362
0.652
0.843
11.0
120.8
316.26
3.85
7
9.25
10
30
80
0.350
0.636
0.841
11.5
142.2
368.72
3.85
7.1
9.65
0
20
80
0.335
0.617
0.839
12.0
161.5
416.03
3.85
7.25
10
0
30
70
0.321
0.604
0.833
59
Test No: F-4 Sand Type D50= 8.66x10-3 inch Drive Length (inch)
WT Condition No WT
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=11.5%
Plugging Length (inch)
Pipe Material SS
IFR
PLR
Pipe Diameter
1″
1.5″
2″
1″
1.5″
2″
1″
1.5″
2″
0
0
0
0
0
0
0
0
0
0
1
22.61
0.4
0.4
0.5
80
80
100
0.800
0.800
1.000
1.0
2.5
26.29
0.75
0.75
0.85
70
70
70
0.750
0.750
0.850
1.5
5.5
33.64
1.15
1.3
1.4
80
110
110
0.767
0.867
0.933
2.0
7.5
38.54
1.45
1.75
1.9
60
90
100
0.725
0.875
0.950
2.5
9.5
43.45
1.55
2.2
2.4
20
90
100
0.620
0.880
0.960
3.0
11
47.12
1.7
2.7
2.9
30
100
100
0.567
0.900
0.967
3.5
12.8
51.53
1.8
3.15
3.4
20
90
100
0.514
0.900
0.971
4.0
13.2
52.51
1.8
3.65
3.9
0
100
100
0.450
0.913
0.975
4.5
13.5
53.25
1.8
4.1
4.3
0
90
80
0.400
0.911
0.956
5.0
14.6
55.95
1.9
4.5
4.8
20
80
100
0.380
0.900
0.960
5.5
14.8
56.44
1.95
5
5.3
10
100
100
0.355
0.909
0.964
6.0
15.1
57.17
1.95
5.4
5.7
0
80
80
0.325
0.900
0.950
6.5
17
61.83
1.95
5.9
6.2
0
100
100
0.300
0.908
0.954
7.0
18.5
65.51
1.95
6.3
6.65
0
80
90
0.279
0.900
0.950
7.5
21.1
71.88
1.95
6.65
7.1
0
70
90
0.260
0.887
0.947
8.0
24.5
80.21
1.95
7
7.55
0
70
90
0.244
0.875
0.944
8.5
26.9
86.10
2
7.3
7.95
10
60
80
0.235
0.859
0.935
9.0
27
86.34
2
7.5
8.3
0
40
70
0.222
0.833
0.922
9.5
28.5
90.02
2
7.6
8.7
0
20
80
0.211
0.800
0.916
10.0
31.3
96.88
2
7.65
8.9
0
10
40
0.200
0.765
0.890
10.5
35.5
107.18
2
7.85
9.25
0
40
70
0.190
0.748
0.881
11.0
38
113.30
2
7.85
9.4
0
0
30
0.182
0.714
0.855
11.5
42.2
123.60
2
8
9.6
0
30
40
0.174
0.696
0.835
12.0
46
132.91
2.05
8.05
9.85
10
10
50
0.171
0.671
0.821
60
Test No: F-5 Sand Type D50= 8.66x10-3 inch Drive Length (inch)
WT Condition WT at Mid Height
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=11.5%
Plugging Length (inch)
Pipe Material SS
IFR
PLR
Pipe Diameter
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0
0
0
0
0
0
0
0
0
0
2.8
27.02
0.3
0.4
0.3
60
80
60.00
0.600
0.800
0.600
1.0
4.8
31.92
0.7
0.8
0.8
80
80
100.00
0.700
0.800
0.800
1.5
4.5
31.19
1.1
1.2
1.25
80
80
90.00
0.733
0.800
0.833
2.0
5.5
33.64
1.5
1.6
1.75
80
80
100.00
0.750
0.800
0.875
2.5
6.2
35.36
1.8
2
2.2
60
80
90.00
0.720
0.800
0.880
3.0
7.1
37.56
2
2.4
2.7
40
80
100.00
0.667
0.800
0.900
3.5
8.1
40.01
2.05
2.8
3.15
10
80
90.00
0.586
0.800
0.900
4.0
10.5
45.90
2.05
3.4
3.65
0
120
100.00
0.513
0.850
0.913
4.5
13.8
53.99
2.05
3.6
4.1
0
40
90.00
0.456
0.800
0.911
5.0
16.5
60.60
2.05
4
4.5
0
80
80.00
0.410
0.800
0.900
5.5
17.5
63.06
2.05
4.3
4.95
0
60
90.00
0.373
0.782
0.900
6.0
17.5
63.06
2.05
4.3
5.4
0
0
90.00
0.342
0.717
0.900
6.5
18.1
64.53
2.05
4.3
5.85
0
0
90.00
0.315
0.662
0.900
7.0
25
81.44
2.05
4.75
6.35
0
90
100.00
0.293
0.679
0.907
7.5
27.2
86.83
2.05
4.85
6.7
0
20
70.00
0.273
0.647
0.893
8.0
27.2
86.83
2.05
4.9
7.1
0
10
80.00
0.256
0.613
0.888
8.5
29.5
92.47
2.05
5.1
7.45
0
40
70.00
0.241
0.600
0.876
9.0
31.5
97.37
2.05
5.15
7.8
0
10
70.00
0.228
0.572
0.867
9.5
34.8
105.46
2.1
5.2
8.15
10
10
70.00
0.221
0.547
0.858
10.0
34.8
105.46
2.1
5.2
8.4
0
0
50.00
0.210
0.520
0.840
10.5
35.3
106.69
2.1
5.2
8.75
0
0
70.00
0.200
0.495
0.833
11.0
35.5
107.18
2.1
5.2
9.1
0
0
70.00
0.191
0.473
0.827
11.5
41.2
121.15
2.1
5.2
9.3
0
0
40.00
0.183
0.452
0.809
12.0
46.2
133.40
2.15
5.2
9.5
10
0
40.00
0.179
0.433
0.792
61
Test No: F-6 Sand Type D50= 8.66x10-3 inch Drive Length (inch)
WT Condition WT at GL
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=11.5%
Plugging Length (inch)
Pipe Material SS
IFR
PLR
Pipe Diameter
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0
0
0
0
0
0
0
0
0
0
5
32.42
0.3
0.4
0.4
60
80
80.00
0.600
0.800
0.800
1.0
5.6
33.89
0.65
0.9
0.9
70
100
100.00
0.650
0.900
0.900
1.5
6.5
36.09
1
1.3
1.4
70
80
100.00
0.667
0.867
0.933
2.0
7
37.32
1.2
1.8
1.9
40
100
100.00
0.600
0.900
0.950
2.5
8.5
40.99
1.25
2.2
2.35
10
80
90.00
0.500
0.880
0.940
3.0
10.5
45.90
1.3
2.65
2.8
10
90
90.00
0.433
0.883
0.933
3.5
12
49.57
1.35
3.05
3.25
10
80
90.00
0.386
0.871
0.929
4.0
13.5
53.25
1.4
3.4
3.7
10
70
90.00
0.350
0.850
0.925
4.5
14.8
56.44
1.4
3.7
4.1
0
60
80.00
0.311
0.822
0.911
5.0
16.2
59.87
1.4
3.9
4.5
0
40
80.00
0.280
0.780
0.900
5.5
18.2
64.77
1.4
4
4.85
0
20
70.00
0.255
0.727
0.882
6.0
20
69.18
1.4
4.1
5.2
0
20
70.00
0.233
0.683
0.867
6.5
21.1
71.88
1.4
4.1
5.4
0
0
40.00
0.215
0.631
0.831
7.0
22.2
74.58
1.45
4.1
5.65
10
0
50.00
0.207
0.586
0.807
7.5
24.5
80.21
1.45
4.1
5.8
0
0
30.00
0.193
0.547
0.773
8.0
24.8
80.95
1.45
4.1
5.85
0
0
10.00
0.181
0.513
0.731
8.5
25.5
82.66
1.45
4.1
5.95
0
0
20.00
0.171
0.482
0.700
9.0
28
88.79
1.45
4.1
6.15
0
0
40.00
0.161
0.456
0.683
9.5
30
93.70
1.45
4.1
6.15
0
0
0.00
0.153
0.432
0.647
10.0
30.8
95.66
1.45
4.1
6.3
0
0
30.00
0.145
0.410
0.630
10.5
32.3
99.33
1.45
4.1
6.5
0
0
40.00
0.138
0.390
0.619
11.0
34.7
105.22
1.45
4.1
6.6
0
0
20.00
0.132
0.373
0.600
11.5
37
110.85
1.45
4.1
6.85
0
0
50.00
0.126
0.357
0.596
12.0
42.2
123.60
1.45
4.1
7.05
0
0
40.00
0.121
0.342
0.588
62
Test No: F-7 Sand Type D50= 8.66x10-3 inch Drive Length (inch)
WT Condition No WT
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=22.3%
Plugging Length (inch)
Pipe Material Al
IFR
PLR
Pipe Diameter
1″
1.5″
2″
1″
1.5″
2″
1″
1.5″
2″
0
0
0
0
0
0
0
0
0
0
34
103.50
0.1
0.2
0.1
20
40
20
0.200
0.400
0.200
1.0
49
140.27
0.4
0.6
0.4
60
80
60
0.400
0.600
0.400
1.5
62
172.13
0.7
0.95
0.7
60
70
60
0.467
0.633
0.467
2.0
64.5
178.26
1.1
1.25
1
80
60
60
0.550
0.625
0.500
2.5
65
179.49
1.25
1.55
1.4
30
60
80
0.500
0.620
0.560
3.0
85
228.51
1.55
1.95
1.85
60
80
90
0.517
0.650
0.617
3.5
85.5
229.74
1.8
2.3
2.3
50
70
90
0.514
0.657
0.657
4.0
90
240.77
1.95
2.6
2.6
30
60
60
0.488
0.650
0.650
4.5
90
240.77
2.1
2.9
3.05
30
60
90
0.467
0.644
0.678
5.0
90
240.77
2.3
3.15
3.4
40
50
70
0.460
0.630
0.680
5.5
90
240.77
2.35
3.4
3.8
10
50
80
0.427
0.618
0.691
6.0
94
250.57
2.4
3.55
4.25
10
30
90
0.400
0.592
0.708
6.5
94
250.57
2.55
3.8
4.7
30
50
90
0.392
0.585
0.723
7.0
94
250.57
2.6
4
4.95
10
40
50
0.371
0.571
0.707
7.5
95
253.02
2.65
4.2
5.3
10
40
70
0.353
0.560
0.707
8.0
95.5
254.25
2.75
4.3
5.7
20
20
80
0.344
0.538
0.713
8.5
95.5
254.25
2.8
4.45
5.85
10
30
30
0.329
0.524
0.688
9.0
95.5
254.25
2.85
4.55
5.85
10
20
0
0.317
0.506
0.650
9.5
98
260.38
2.9
4.75
6.1
10
40
50
0.305
0.500
0.642
10.0
110
289.79
3
4.85
6.1
20
20
0
0.300
0.485
0.610
10.5
123
321.66
3.1
4.9
6.35
20
10
50
0.295
0.467
0.605
11.0
135
351.07
3.2
5
6.45
20
20
20
0.291
0.455
0.586
11.5
158
407.45
3.3
5.1
6.75
20
20
60
0.287
0.443
0.587
12.0
183
468.73
3.3
5.2
6.85
0
20
20.00
0.275
0.433
0.571
63
Test no: F-8 Sand Type D50= 8.66x10-3 inch Drive Length (inch)
WT Condition WT at Mid Height
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=22.3%
Plugging Length (inch)
Pipe Material Al
IFR
PLR
Pipe Diameter
1″
1.5″
2″
1″
1.5″
2″
1″
1.5″
2″
0
0
0
0
0
0
0
0
0
0
22
74.09
0.35
0.45
0.4
70
90
80
0.700
0.900
0.800
1.0
34
103.50
0.75
0.9
0.9
80
90
100
0.750
0.900
0.900
1.5
38
113.30
1.25
1.35
1.4
100
90
100
0.833
0.900
0.933
2.0
45
130.46
1.7
1.8
1.9
90
90
100
0.850
0.900
0.950
2.5
47
135.37
2.1
2.2
2.35
80
80
90
0.840
0.880
0.940
3.0
53
150.07
2.4
2.7
2.85
60
100
100
0.800
0.900
0.950
3.5
62
172.13
2.7
3.05
3.25
60
70
80
0.771
0.871
0.929
4.0
68
186.84
2.8
3.45
3.7
20
80
90
0.700
0.863
0.925
4.5
71
194.19
2.9
3.85
4.15
20
80
90
0.644
0.856
0.922
5.0
76
206.45
2.9
4.15
4.45
0
60
60
0.580
0.830
0.890
5.5
83
223.61
3
4.55
4.9
20
80
90
0.545
0.827
0.891
6.0
88
235.86
3
4.85
5.3
0
60
80
0.500
0.808
0.883
6.5
94
250.57
3
5.1
5.65
0
50
70
0.462
0.785
0.869
7.0
99
262.83
3
5.25
6.05
0
30
80
0.429
0.750
0.864
7.5
112
294.69
3
5.3
6.15
0
10
20
0.400
0.707
0.820
8.0
125
326.56
3
5.35
6.4
0
10
50
0.375
0.669
0.800
8.5
133
346.17
3
5.4
6.65
0
10
50
0.353
0.635
0.782
9.0
144
373.13
3
5.45
6.85
0
10
40
0.333
0.606
0.761
9.5
154
397.64
3
5.5
7
0
10
30
0.316
0.579
0.737
10.0
168
431.96
3
5.55
7.15
0
10
30
0.300
0.555
0.715
10.5
181
463.83
3
5.6
7.25
0
10
20
0.286
0.533
0.690
11.0
194
495.69
3
5.65
7.3
0
10
10
0.273
0.514
0.664
11.5
211
537.36
3
5.7
7.3
0
10
0
0.261
0.496
0.635
12.0
231
586.39
3
5.7
7.45
0
0
30
0.250
0.475
0.621
64
Test no: F-9 Sand Type D50= 8.66x10-3 inch Drive Length (inch)
WT Condition WT at GL
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=22.3%
Plugging Length (inch)
Pipe Material Al
IFR
PLR
Pipe Diameter
1″
1.5″
2″
1″
1.5″
2″
1″
1.5″
2″
0
0
0
0
0
0
0
0
0
0
13
52.02
0.4
0.25
0.35
80
50
70.00
0.800
0.500
0.700
1.0
14
54.48
0.8
0.8
0.8
80
110
90.00
0.800
0.800
0.800
1.5
14
54.48
1.25
1.25
1.25
90
90
90.00
0.833
0.833
0.833
2.0
15.5
58.15
1.7
1.65
1.7
90
80
90.00
0.850
0.825
0.850
2.5
18
64.28
2.05
2.1
2.15
70
90
90.00
0.820
0.840
0.860
3.0
20
69.18
2.4
2.5
2.65
70
80
100.00
0.800
0.833
0.883
3.5
25
81.44
2.6
2.9
3.1
40
80
90.00
0.743
0.829
0.886
4.0
25.5
82.66
2.8
3.25
3.6
40
70
100.00
0.700
0.813
0.900
4.5
33
101.05
2.8
3.55
3.95
0
60
70.00
0.622
0.789
0.878
5.0
35
105.95
2.9
3.8
4.3
20
50
70.00
0.580
0.760
0.860
5.5
39
115.76
2.95
4
4.7
10
40
80.00
0.536
0.727
0.855
6.0
44
128.01
3
4.1
5.05
10
20
70.00
0.500
0.683
0.842
6.5
48
137.82
3.05
4.2
5.35
10
20
60.00
0.469
0.646
0.823
7.0
59
164.78
3.05
4.35
5.65
0
30
60.00
0.436
0.621
0.807
7.5
64
177.04
3.05
4.45
5.8
0
20
30.00
0.407
0.593
0.773
8.0
75
204.00
3.05
4.45
6.05
0
0
50.00
0.381
0.556
0.756
8.5
81
218.71
3.1
4.5
6.1
10
10
10.00
0.365
0.529
0.718
9.0
92
245.67
3.1
4.55
6.4
0
10
60.00
0.344
0.506
0.711
9.5
105
277.54
3.1
4.55
6.45
0
0
10.00
0.326
0.479
0.679
10.0
110
289.79
3.15
4.6
6.45
10
10
0.00
0.315
0.460
0.645
10.5
119
311.85
3.15
4.65
6.65
0
10
40.00
0.300
0.443
0.633
11.0
131
341.27
3.15
4.65
6.9
0
0
50.00
0.286
0.423
0.627
11.5
143
370.68
3.15
4.7
7.15
0
10
50.00
0.274
0.409
0.622
12.0
145
375.58
3.15
4.7
7.25
0
0
20.00
0.263
0.392
0.604
65
Test No: F-10 Sand Type D50= 8.66x10-3 inch Drive Length (inch)
WT Condition No WT
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=22.3%
Plugging Length (inch)
Pipe Material SS
IFR
PLR
Pipe Diameter
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0
0
0
0
0
0
0
0
0
0
31
96.15
0.35
0.25
0.7
70
50
140.00
0.700
0.500
1.400
1.0
51
145.17
0.55
0.75
1.05
40
100
70.00
0.550
0.750
1.050
1.5
51
145.17
0.95
1.15
1.4
80
80
70.00
0.633
0.767
0.933
2.0
51
145.17
1.25
1.6
1.9
60
90
100.00
0.625
0.800
0.950
2.5
51
145.17
1.35
2.2
2.5
20
120
120.00
0.540
0.880
1.000
3.0
64
177.04
1.45
2.55
2.9
20
70
80.00
0.483
0.850
0.967
3.5
64
177.04
1.55
3.05
3.4
20
100
100.00
0.443
0.871
0.971
4.0
64
177.04
1.55
3.45
3.8
0
80
80.00
0.388
0.863
0.950
4.5
64
177.04
1.55
3.85
4.2
0
80
80.00
0.344
0.856
0.933
5.0
64
177.04
1.55
4.2
5
0
70
160.00
0.310
0.840
1.000
5.5
66
181.94
1.55
4.35
5.2
0
30
40.00
0.282
0.791
0.945
6.0
66
181.94
1.55
4.35
5.55
0
0
70.00
0.258
0.725
0.925
6.5
66
181.94
1.55
4.45
5.9
0
20
70.00
0.238
0.685
0.908
7.0
66
181.94
1.55
4.45
6.25
0
0
70.00
0.221
0.636
0.893
7.5
70.5
192.97
1.55
4.5
6.5
0
10
50.00
0.207
0.600
0.867
8.0
70.5
192.97
1.55
4.55
6.8
0
10
60.00
0.194
0.569
0.850
8.5
70.5
192.97
1.55
4.55
7
0
0
40.00
0.182
0.535
0.824
9.0
70.5
192.97
1.55
4.55
7.15
0
0
30.00
0.172
0.506
0.794
9.5
70.5
192.97
1.6
4.55
7.2
10
0
10.00
0.168
0.479
0.758
10.0
70.5
192.97
1.6
4.55
7.4
0
0
40.00
0.160
0.455
0.740
10.5
74
201.55
1.65
4.6
7.5
10
10
20.00
0.157
0.438
0.714
11.0
75.5
205.22
1.65
4.65
7.6
0
10
20.00
0.150
0.423
0.691
11.5
81
218.71
1.65
4.65
7.65
0
0
10.00
0.143
0.404
0.665
12.0
81
218.71
1.65
4.75
7.75
0
20
20.00
0.138
0.396
0.646
66
Test No: F-11 Sand Type D50= 8.66x10-3 inch Drive Length (inch)
WT Condition WT at Mid Height
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=22.3%
Plugging Length (inch)
Pipe Material SS
IFR
PLR
Pipe Diameter
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0
0
0
0
0
0
0
0
0
0
18
64.28
0.1
0.2
0.4
20
40
80.00
0.200
0.400
0.800
1.0
38
113.30
0.4
0.7
1.3
60
100
180.00
0.400
0.700
1.300
1.5
41
120.66
0.85
1.2
1.75
90
100
90.00
0.567
0.800
1.167
2.0
54
152.52
1.2
1.6
2.3
70
80
110.00
0.600
0.800
1.150
2.5
58
162.33
1.35
2.1
2.7
30
100
80.00
0.540
0.840
1.080
3.0
58
162.33
1.45
2.5
3.2
20
80
100.00
0.483
0.833
1.067
3.5
60
167.23
1.45
2.9
3.6
0
80
80.00
0.414
0.829
1.029
4.0
73
199.10
1.45
3.35
4.1
0
90
100.00
0.363
0.838
1.025
4.5
73
199.10
1.5
3.75
4.55
10
80
90.00
0.333
0.833
1.011
5.0
73
199.10
1.5
4.25
5.05
0
100
100.00
0.300
0.850
1.010
5.5
76
206.45
1.5
4.8
5.5
0
110
90.00
0.273
0.873
1.000
6.0
79
213.80
1.5
5.25
5.85
0
90
70.00
0.250
0.875
0.975
6.5
80
216.26
1.5
5.15
6.3
0
-20
90.00
0.231
0.792
0.969
7.0
80
216.26
1.55
5.4
6.85
10
50
110.00
0.221
0.771
0.979
7.5
86
230.96
1.55
5.55
7.2
0
30
70.00
0.207
0.740
0.960
8.0
97
257.93
1.55
5.65
7.6
0
20
80.00
0.194
0.706
0.950
8.5
97
257.93
1.6
5.7
8
10
10
80.00
0.188
0.671
0.941
9.0
97
257.93
1.6
5.7
8.3
0
0
60.00
0.178
0.633
0.922
9.5
97
257.93
1.6
5.75
8.4
0
10
20.00
0.168
0.605
0.884
10.0
97
257.93
1.65
5.8
8.6
10
10
40.00
0.165
0.580
0.860
10.5
97
257.93
1.65
5.8
8.7
0
0
20.00
0.157
0.552
0.829
11.0
100
265.28
1.65
5.8
8.8
0
0
20.00
0.150
0.527
0.800
11.5
114.5
300.82
1.65
5.8
8.85
0
0
10.00
0.143
0.504
0.770
12.0
116
304.50
1.65
5.8
8.9
0
0
10.00
0.138
0.483
0.742
67
Test No: F-12 Sand Type D50= 8.66x10-3 inch Drive Length (inch)
WT Condition WT at GL
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=22.3%
Plugging Length (inch)
Pipe Material SS
IFR
PLR
Pipe Diameter
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0
0
0
0
0
0
0
0
0
0
30
93.70
0.15
0.2
0.3
30
40
60.00
0.300
0.400
0.600
1.0
33
101.05
0.4
0.7
0.85
50
100
110.00
0.400
0.700
0.850
1.5
38
113.30
0.65
1.15
1.3
50
90
90.00
0.433
0.767
0.867
2.0
42
123.11
1
1.6
1.8
70
90
100.00
0.500
0.800
0.900
2.5
42
123.11
1.05
2.1
2.3
10
100
100.00
0.420
0.840
0.920
3.0
43
125.56
1.05
2.45
2.75
0
70
90.00
0.350
0.817
0.917
3.5
59
164.78
1.05
2.85
3.2
0
80
90.00
0.300
0.814
0.914
4.0
59
164.78
1.3
3.15
3.6
50
60
80.00
0.325
0.788
0.900
4.5
59
164.78
1.35
3.2
4.3
10
10
140.00
0.300
0.711
0.956
5.0
59
164.78
1.4
3.6
4.5
10
80
40.00
0.280
0.720
0.900
5.5
59
164.78
1.4
3.75
5
0
30
100.00
0.255
0.682
0.909
6.0
59
164.78
1.6
3.85
5.4
40
20
80.00
0.267
0.642
0.900
6.5
59
164.78
1.65
4
5.8
10
30
80.00
0.254
0.615
0.892
7.0
66
181.94
1.65
4.05
6.25
0
10
90.00
0.236
0.579
0.893
7.5
74
201.55
1.7
4.1
6.75
10
10
100.00
0.227
0.547
0.900
8.0
76
206.45
1.7
4.25
7.1
0
30
70.00
0.213
0.531
0.888
8.5
76
206.45
1.7
4.3
7.5
0
10
80.00
0.200
0.506
0.882
9.0
76
206.45
1.7
4.35
7.8
0
10
60.00
0.189
0.483
0.867
9.5
76
206.45
1.7
4.4
8.1
0
10
60.00
0.179
0.463
0.853
10.0
76
206.45
1.7
4.45
8.25
0
10
30.00
0.170
0.445
0.825
10.5
85
228.51
1.7
4.5
8.45
0
10
40.00
0.162
0.429
0.805
11.0
94
250.57
1.7
4.55
8.6
0
10
30.00
0.155
0.414
0.782
11.5
94
250.57
1.7
4.6
8.7
0
10
20.00
0.148
0.400
0.757
12.0
94
250.57
1.7
4.65
8.8
0
10
20.00
0.142
0.388
0.733
68
Test No: F-13 Sand Type D50= 8.66x10-3 inch Drive Length (inch)
WT Condition No WT
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=26..3%
Plugging Length (inch)
Pipe Material Al
IFR
PLR
Pipe Diameter
1″
1.5″
2″
1″
1.5″
2″
1″
1.5″
2″
0
0
0
0
0
0
0
0
0
0
31
103.5
0.3
0.4
0.4
60
80
80
0.600
0.800
0.800
1.0
38
140.27
0.7
0.8
0.9
80
80
100
0.700
0.800
0.900
1.5
50
172.13
1.1
1.3
1.4
80
100
100
0.733
0.867
0.933
2.0
61
178.26
1.6
1.7
1.8
100
80
80
0.800
0.850
0.900
2.5
66
179.49
2.05
2.15
2.35
90
90
110
0.820
0.860
0.940
3.0
71
228.51
2.4
2.5
2.75
70
70
80
0.800
0.833
0.917
3.5
75
229.74
2.7
2.95
3.15
60
90
80
0.771
0.843
0.900
4.0
79
240.77
2.8
3.25
3.55
20
60
80
0.700
0.813
0.888
4.5
83
240.77
2.8
3.5
3.9
0
50
70
0.622
0.778
0.867
5.0
86
240.77
2.8
3.65
4.25
0
30
70
0.560
0.730
0.850
5.5
90
240.77
2.8
3.65
4.45
0
0
40
0.509
0.664
0.809
6.0
90
250.57
2.8
3.7
4.6
0
10
30
0.467
0.617
0.767
6.5
90
250.57
2.8
3.7
4.7
0
0
20
0.431
0.569
0.723
7.0
94
250.57
2.8
3.75
4.85
0
10
30
0.400
0.536
0.693
7.5
101
253.02
2.8
3.75
4.95
0
0
20
0.373
0.500
0.660
8.0
109
254.25
2.8
3.75
5
0
0
10
0.350
0.469
0.625
8.5
118
254.25
2.8
3.8
5.1
0
10
20
0.329
0.447
0.600
9.0
126
254.25
2.8
3.8
5.2
0
0
20
0.311
0.422
0.578
9.5
130
260.38
2.8
3.85
5.35
0
10
30
0.295
0.405
0.563
10.0
142
289.79
2.8
3.95
5.45
0
20
20
0.280
0.395
0.545
10.5
162
321.66
2.85
4
5.65
10
10
40
0.271
0.381
0.538
11.0
183
351.07
2.85
4.05
5.75
0
10
20
0.259
0.368
0.523
11.5
208
407.45
2.9
4.15
5.95
10
20
40
0.252
0.361
0.517
12.0
247
468.73
2.95
4.15
6.1
10
0
30
0.246
0.346
0.508
69
Test No: F-14 Sand Type D50= 8.66x10-3 inch Drive Length (inch)
WT Condition WT at Mid Height
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=26..3%
Plugging Length (inch)
Pipe Material Al
IFR
PLR
Pipe Diameter
1″
1.5″
2″
1″
1.5″
2″
1″
1.5″
2″
0
0
0
0
0
0
0
0
0
0
34
103.5
0.25
0.35
0.3
50
70
60
0.500
0.700
0.600
1.0
35
140.27
0.65
0.8
0.75
80
90
90
0.650
0.800
0.750
1.5
40
172.13
1.2
1.3
1.25
110
100
100
0.800
0.867
0.833
2.0
48
178.26
1.7
1.75
1.75
100
90
100
0.850
0.875
0.875
2.5
57
179.49
2.1
2.2
2.25
80
90
100
0.840
0.880
0.900
3.0
68
228.51
2.65
2.65
2.7
110
90
90
0.883
0.883
0.900
3.5
71
229.74
3.1
3.1
3.2
90
90
100
0.886
0.886
0.914
4.0
85
240.77
3.5
3.45
3.55
80
70
70
0.875
0.863
0.888
4.5
98
240.77
3.9
3.85
4
80
80
90
0.867
0.856
0.889
5.0
110
240.77
4.15
4.05
4.3
50
40
60
0.830
0.810
0.860
5.5
123
240.77
4.35
4.4
4.7
40
70
80
0.791
0.800
0.855
6.0
127
250.57
4.45
4.55
5.05
20
30
70
0.742
0.758
0.842
6.5
134
250.57
4.5
4.7
5.3
10
30
50
0.692
0.723
0.815
7.0
143
250.57
4.5
4.75
5.5
0
10
40
0.643
0.679
0.786
7.5
149
253.02
4.5
4.75
5.7
0
0
40
0.600
0.633
0.760
8.0
161
254.25
4.5
4.85
5.85
0
20
30
0.563
0.606
0.731
8.5
170
254.25
4.55
4.9
6
10
10
30
0.535
0.576
0.706
9.0
183
254.25
4.55
4.95
6.1
0
10
20
0.506
0.550
0.678
9.5
195
260.38
4.55
5
6.2
0
10
20
0.479
0.526
0.653
10.0
215
289.79
4.55
5.1
6.25
0
20
10
0.455
0.510
0.625
10.5
232
321.66
4.6
5.1
6.5
10
0
50
0.438
0.486
0.619
11.0
248
351.07
4.65
5.15
6.65
10
10
30
0.423
0.468
0.605
11.5
268
407.45
4.75
5.2
6.75
20
10
20
0.413
0.452
0.587
12.0
290
468.73
4.85
5.2
6.9
20
0
30
0.404
0.433
0.575
70
Test No: F-15 Sand Type D50= 8.66x10-3 inch Drive Length (inch)
WT Condition WT at GL
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=26..3%
Plugging Length (inch)
Pipe Material Al
IFR
PLR
Pipe Diameter
1″
1.5″
2″
1″
1.5″
2″
1″
1.5″
2″
0
0
0
0
0
0
0
0
0
0
20
103.5
0.3
0.3
0.35
60
60
70
0.600
0.600
0.700
1.0
30
140.27
0.75
0.75
0.9
90
90
110
0.750
0.750
0.900
1.5
31.5
172.13
1.35
1.2
1.4
120
90
100
0.900
0.800
0.933
2.0
31.5
178.26
1.6
1.65
1.85
50
90
90
0.800
0.825
0.925
2.5
332
179.49
1.8
2.05
2.3
40
80
90
0.720
0.820
0.920
3.0
38
228.51
2
2.45
2.7
40
80
80
0.667
0.817
0.900
3.5
43
229.74
2.15
2.8
3.05
30
70
70
0.614
0.800
0.871
4.0
48
240.77
2.2
3
3.4
10
40
70
0.550
0.750
0.850
4.5
52
240.77
2.25
3.2
3.75
10
40
70
0.500
0.711
0.833
5.0
59
240.77
2.25
3.35
3.95
0
30
40
0.450
0.670
0.790
5.5
67
240.77
2.25
3.45
4.2
0
20
50
0.409
0.627
0.764
6.0
73
250.57
2.25
3.55
4.45
0
20
50
0.375
0.592
0.742
6.5
78
250.57
2.25
3.6
4.65
0
10
40
0.346
0.554
0.715
7.0
93
250.57
2.25
3.6
5
0
0
70
0.321
0.514
0.714
7.5
99
253.02
2.25
3.6
5.3
0
0
60
0.300
0.480
0.707
8.0
110
254.25
2.25
3.65
5.4
0
10
20
0.281
0.456
0.675
8.5
122
254.25
2.25
3.65
5.45
0
0
10
0.265
0.429
0.641
9.0
135
254.25
2.25
3.65
5.45
0
0
0
0.250
0.406
0.606
9.5
141
260.38
2.25
3.65
5.45
0
0
0
0.237
0.384
0.574
10.0
156
289.79
2.3
3.65
5.65
10
0
40
0.230
0.365
0.565
10.5
183
321.66
2.3
3.65
5.7
0
0
10
0.219
0.348
0.543
11.0
201
351.07
2.3
3.65
6.05
0
0
70
0.209
0.332
0.550
11.5
220
407.45
2.3
3.65
6.2
0
0
30
0.200
0.317
0.539
12.0
235
468.73
2.3
3.65
6.45
0
0
50
0.192
0.304
0.538
71
Test No: F-16 Sand Type D50= 8.66x10-3 inch Drive Length (inch)
WT Condition No WT
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=26..3%
Plugging Length (inch)
Pipe Material SS
IFR
PLR
Pipe Diameter
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0
0
0
0
0
0
0
0
0
0
2
25.06
0.35
0.5
0.4
70
100
80
0.700
1.000
0.800
1.0
4
29.96
0.85
0.85
1.05
100
70
130
0.850
0.850
1.050
1.5
6
34.87
1.15
1.4
1.55
60
110
100
0.767
0.933
1.033
2.0
10
44.67
1.35
2
2
40
120
90
0.675
1.000
1.000
2.5
13
52.02
1.4
2.45
2.4
10
90
80
0.560
0.980
0.960
3.0
16
59.38
1.4
2.85
2.9
0
80
100
0.467
0.950
0.967
3.5
19
66.73
1.4
3.3
3.3
0
90
80
0.400
0.943
0.943
4.0
22
74.09
1.45
3.65
3.7
10
70
80
0.363
0.913
0.925
4.5
26
83.89
1.45
4.05
4.15
0
80
90
0.322
0.900
0.922
5.0
31
96.15
1.45
4.45
4.7
0
80
110
0.290
0.890
0.940
5.5
32
98.60
1.5
4.75
5
10
60
60
0.273
0.864
0.909
6.0
35
105.95
1.55
4.95
5.5
10
40
100
0.258
0.825
0.917
6.5
38
113.30
1.55
5.05
5.8
0
20
60
0.238
0.777
0.892
7.0
42
123.11
1.55
5.1
6.1
0
10
60
0.221
0.729
0.871
7.5
44
128.01
1.55
5.15
6.35
0
10
50
0.207
0.687
0.847
8.0
46
132.91
1.55
5.3
6.6
0
30
50
0.194
0.663
0.825
8.5
50
142.72
1.55
5.35
6.7
0
10
20
0.182
0.629
0.788
9.0
52.5
148.85
1.55
5.4
6.75
0
10
10
0.172
0.600
0.750
9.5
52.5
148.85
1.55
5.45
6.9
0
10
30
0.163
0.574
0.726
10.0
55
154.98
1.55
5.45
7
0
0
20
0.155
0.545
0.700
10.5
59
164.78
1.55
5.45
7.15
0
0
30
0.148
0.519
0.681
11.0
62
172.13
1.6
5.45
7.15
10
0
0
0.145
0.495
0.650
11.5
67
184.39
1.6
5.5
7.2
0
10
10
0.139
0.478
0.626
12.0
69
189.29
1.6
5.55
7.25
0
10
10
0.133
0.463
0.604
72
Test No: F-17 Sand Type D50= 8.66x10-3 inch Drive Length (inch)
WT Condition WT at Mid Height
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=26..3%
Plugging Length (inch)
Pipe Material SS
IFR
PLR
Pipe Diameter
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0
0
0
0
0
0
0
0
0
0
15.5
58.15
0.3
0.45
0.45
60
90
90
0.600
0.900
0.900
1.0
22.5
75.31
0.7
1
1
80
110
110
0.700
1.000
1.000
1.5
27
86.34
1.05
1.45
1.45
70
90
90
0.700
0.967
0.967
2.0
29
91.24
1.35
2
1.95
60
110
100
0.675
1.000
0.975
2.5
30
93.70
1.55
2.5
2.35
40
100
80
0.620
1.000
0.940
3.0
30
93.70
1.6
2.95
2.85
10
90
100
0.533
0.983
0.950
3.5
30
93.70
1.65
3.4
3.25
10
90
80
0.471
0.971
0.929
4.0
30
93.70
1.65
3.85
3.7
0
90
90
0.413
0.963
0.925
4.5
30
93.70
1.65
4.25
4.1
0
80
80
0.367
0.944
0.911
5.0
30
93.70
1.65
4.7
4.55
0
90
90
0.330
0.940
0.910
5.5
30
93.70
1.65
5.05
4.95
0
70
80
0.300
0.918
0.900
6.0
30
93.70
1.65
5.55
5.35
0
100
80
0.275
0.925
0.892
6.5
30
93.70
1.65
5.85
5.75
0
60
80
0.254
0.900
0.885
7.0
31
96.15
1.65
6.1
6.1
0
50
70
0.236
0.871
0.871
7.5
34
103.50
1.65
6.35
6.55
0
50
90
0.220
0.847
0.873
8.0
40
118.21
1.65
6.45
6.8
0
20
50
0.206
0.806
0.850
8.5
42
123.11
1.65
6.55
7.05
0
20
50
0.194
0.771
0.829
9.0
44
128.01
1.65
6.6
7.35
0
10
60
0.183
0.733
0.817
9.5
55
154.98
1.7
6.7
7.7
10
20
70
0.179
0.705
0.811
10.0
62
172.13
1.7
6.75
7.75
0
10
10
0.170
0.675
0.775
10.5
74
201.55
1.75
6.85
7.95
10
20
40
0.167
0.652
0.757
11.0
84.5
227.29
1.75
6.9
8.15
0
10
40
0.159
0.627
0.741
11.5
89
238.32
1.75
7
8.3
0
20
30
0.152
0.609
0.722
12.0
96
255.47
1.75
7.05
8.4
0
10
20
0.146
0.588
0.700
73
Test No: F-18 Sand Type D50= 8.66x10-3 inch Drive Length (inch)
WT Condition WT at GL
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=26..3%
Plugging Length (inch)
Pipe Material SS
IFR
PLR
Pipe Diameter
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0
0
0
0
0
0
0
0
0
0
14
54.48
0.25
0.6
0.45
50
120
90
0.500
1.200
0.900
1.0
16
59.38
0.65
1
0.95
80
80
100
0.650
1.000
0.950
1.5
29
91.24
0.95
1.05
1.45
60
10
100
0.633
0.700
0.967
2.0
48
137.82
1
1.45
1.9
10
80
90
0.500
0.725
0.950
2.5
48
137.82
1
1.85
2.35
0
80
90
0.400
0.740
0.940
3.0
48
137.82
1.15
2.4
2.75
30
110
80
0.383
0.800
0.917
3.5
48
137.82
1.2
2.8
3.2
10
80
90
0.343
0.800
0.914
4.0
53
150.07
1.35
3.2
3.6
30
80
80
0.338
0.800
0.900
4.5
53
150.07
1.5
3.6
4
30
80
80
0.333
0.800
0.889
5.0
53
150.07
1.55
3.95
4.45
10
70
90
0.310
0.790
0.890
5.5
53
150.07
1.55
4.15
4.6
0
40
30
0.282
0.755
0.836
6.0
53
150.07
1.55
4.2
4.8
0
10
40
0.258
0.700
0.800
6.5
53
150.07
1.7
4.2
5
30
0
40
0.262
0.646
0.769
7.0
53
150.07
1.7
4.25
5.1
0
10
20
0.243
0.607
0.729
7.5
52
147.62
2
4.3
5.2
60
10
20
0.267
0.573
0.693
8.0
50
142.72
2.2
4.35
5.35
40
10
30
0.275
0.544
0.669
8.5
50
142.72
2.35
4.4
5.5
30
10
30
0.276
0.518
0.647
9.0
49
140.27
2.4
4.45
5.6
10
10
20
0.267
0.494
0.622
9.5
50
142.72
2.4
4.5
5.7
0
10
20
0.253
0.474
0.600
10.0
57
159.88
2.7
4.55
5.8
60
10
20
0.270
0.455
0.580
10.5
70
191.74
3
4.6
5.9
60
10
20
0.286
0.438
0.562
11.0
75.5
205.22
3
4.6
6.15
0
0
50
0.273
0.418
0.559
11.5
76
206.45
3
4.65
6.2
0
10
10
0.261
0.404
0.539
12.0
76
206.45
3
4.7
6.3
0
10
20
0.250
0.392
0.525
74
Test No: C-1 Sand Type D50= 22.44x10-3 inch Drive Length (inch)
WT Condition No WT
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=20%
Plugging Length (inch)
Pipe Material Al
IFR
PLR
Pipe Diameter
1″
1.5″
2″
1″
1.5″
2″
1″
1.5″
2″
0
0
0
0
0
0
0
0
0
0
10
44.67
0.45
0.45
0.5
90
90
100
0.900
0.900
1.000
1.0
18
64.28
0.75
0.75
0.95
60
60
90
0.750
0.750
0.950
1.5
21
71.63
1.15
1.15
1.35
80
80
80
0.767
0.767
0.900
2.0
22
74.09
1.45
1.5
1.7
60
70
70
0.725
0.750
0.850
2.5
22.5
75.31
1.75
1.9
2.15
60
80
90
0.700
0.760
0.860
3.0
23.7
78.25
1.95
2.25
2.55
40
70
80
0.650
0.750
0.850
3.5
26.5
85.12
2.1
2.55
3.05
30
60
100
0.600
0.729
0.871
4.0
27.8
88.30
2.15
2.7
3.3
10
30
50
0.538
0.675
0.825
4.5
32.5
99.82
2.2
2.75
3.75
10
10
90
0.489
0.611
0.833
5.0
32.8
100.56
2.25
3.25
4.1
10
100
70
0.450
0.650
0.820
5.5
33
101.05
2.35
2.75
4.35
20
-100
50
0.427
0.500
0.791
6.0
36
108.40
2.35
2.75
4.85
0
0
100
0.392
0.458
0.808
6.5
39
115.76
2.4
2.85
5.1
10
20
50
0.369
0.438
0.785
7.0
43.5
126.79
2.4
2.85
5.4
0
0
60
0.343
0.407
0.771
7.5
50.5
143.94
2.45
2.85
5.85
10
0
90
0.327
0.380
0.780
8.0
58.5
163.55
2.5
2.85
5.95
10
0
20
0.313
0.356
0.744
8.5
64
177.04
2.5
3.35
6
0
100
10
0.294
0.394
0.706
9.0
70
191.74
2.6
3.55
6.1
20
40
20
0.289
0.394
0.678
9.5
80
216.26
2.6
4.15
6.6
0
120
100
0.274
0.437
0.695
10.0
89
238.32
2.7
4.35
7.2
20
40
120
0.270
0.435
0.720
10.5
105
277.54
2.75
4.65
7.3
10
60
20
0.262
0.443
0.695
11.0
114
299.60
2.8
4.85
7.5
10
40
40
0.255
0.441
0.682
11.5
141
365.78
2.85
5.15
7.8
10
60
60
0.248
0.448
0.678
12.0
160
412.35
2.9
5.35
7.95
10
40
30
0.242
0.446
0.663
75
Test No: C-2 Sand Type D50= 22.44x10-3 inch Drive Length (inch)
WT Condition WT at Mid Height
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=20%
Plugging Length (inch)
Pipe Material Al
IFR
PLR
Pipe Diameter
1″
1.5″
2″
1″
1.5″
2″
1″
1.5″
2″
0
0
0
0
0
0
0
0
0
0
17
61.83
0.5
0.45
0.45
100
90
90
1.000
0.900
0.900
1.0
29
91.24
0.8
0.95
1
60
100
110
0.800
0.950
1.000
1.5
38
113.30
1.2
1.25
1.35
80
60
70
0.800
0.833
0.900
2.0
44
128.01
1.5
1.65
1.75
60
80
80
0.750
0.825
0.875
2.5
49
140.27
1.9
2
2.2
80
70
90
0.760
0.800
0.880
3.0
52
147.62
2.2
2.35
2.6
60
70
80
0.733
0.783
0.867
3.5
56
157.43
2.45
2.75
3.05
50
80
90
0.700
0.786
0.871
4.0
59
164.78
2.6
3.05
3.5
30
60
90
0.650
0.763
0.875
4.5
61.5
170.91
2.7
3.35
4.05
20
60
110
0.600
0.744
0.900
5.0
66
181.94
2.75
3.65
4.3
10
60
50
0.550
0.730
0.860
5.5
70
191.74
2.8
3.95
4.7
10
60
80
0.509
0.718
0.855
6.0
73
199.10
2.8
4.2
5.25
0
50
110
0.467
0.700
0.875
6.5
80
216.26
2.8
4.4
5.7
0
40
90
0.431
0.677
0.877
7.0
86
230.96
2.95
4.65
6.1
30
50
80
0.421
0.664
0.871
7.5
95
253.02
2.95
4.85
6.65
0
40
110
0.393
0.647
0.887
8.0
105
277.54
2.95
4.95
6.75
0
20
20
0.369
0.619
0.844
8.5
111
292.24
3
5
7.1
10
10
70
0.353
0.588
0.835
9.0
123
321.66
3
5.1
7.55
0
20
90
0.333
0.567
0.839
9.5
140
363.33
3.1
5.15
7.75
20
10
40
0.326
0.542
0.816
10.0
155.5
401.32
3.15
5.2
8.15
10
10
80
0.315
0.520
0.815
10.5
178
456.47
3.25
5.25
8.45
20
10
60
0.310
0.500
0.805
11.0
208
530.01
3.3
5.25
8.75
10
0
60
0.300
0.477
0.795
11.5
235
596.19
3.3
5.25
9.05
0
0
60
0.287
0.457
0.787
12.0
268
677.08
3.3
5.25
9.25
0
0
40
0.275
0.438
0.771
76
Test No: C-3 Sand Type D50= 22.44x10-3 inch Drive Length (inch)
WT Condition WT at GL
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=20%
Plugging Length (inch)
Pipe Material Al
IFR
PLR
Pipe Diameter
1″
1.5″
2″
1″
1.5″
2″
1″
1.5″
2″
0
0
0
0
0
0
0
0
0
0
28
88.79
0.5
0.35
0.45
100
70
90
1.000
0.700
0.900
1.0
32
98.60
0.7
0.55
0.8
40
40
70
0.700
0.550
0.800
1.5
35
105.95
0.95
0.8
1.2
50
50
80
0.633
0.533
0.800
2.0
40
118.21
1.1
0.95
1.5
30
30
60
0.550
0.475
0.750
2.5
45
130.46
1.1
0.95
1.85
0
0
70
0.440
0.380
0.740
3.0
46
132.91
1.15
1
2.2
10
10
70
0.383
0.333
0.733
3.5
51
145.17
1.25
1.1
2.5
20
20
60
0.357
0.314
0.714
4.0
51
145.17
1.5
1.35
2.75
50
50
50
0.375
0.338
0.688
4.5
52
147.62
1.65
1.5
2.9
30
30
30
0.367
0.333
0.644
5.0
55
154.98
1.7
1.55
3
10
10
20
0.340
0.310
0.600
5.5
59
164.78
1.75
1.6
3.1
10
10
20
0.318
0.291
0.564
6.0
60
167.23
1.8
1.65
3.2
10
10
20
0.300
0.275
0.533
6.5
67
184.39
1.95
1.8
3.2
30
30
0
0.300
0.277
0.492
7.0
75
204.00
2
1.85
3.2
10
10
0
0.286
0.264
0.457
7.5
82
221.16
2.1
1.95
3.2
20
20
0
0.280
0.260
0.427
8.0
90
240.77
2.25
2.1
3.25
30
30
10
0.281
0.263
0.406
8.5
97
257.93
2.4
2.25
3.25
30
30
0
0.282
0.265
0.382
9.0
105
277.54
2.5
2.35
3.35
20
20
20
0.278
0.261
0.372
9.5
120
314.30
2.5
2.35
3.35
0
0
0
0.263
0.247
0.353
10.0
130
338.82
2.55
2.4
3.4
10
10
10
0.255
0.240
0.340
10.5
141
365.78
2.55
2.4
3.4
0
0
0
0.243
0.229
0.324
11.0
155
400.10
2.55
2.4
3.5
0
0
20
0.232
0.218
0.318
11.5
182
466.28
2.55
2.4
3.5
0
0
0
0.222
0.209
0.304
12.0
198
505.50
2.55
2.4
3.5
0
0
0
0.213
0.200
0.292
77
Test No: C-4 Sand Type D50= 22.44x10-3 inch Drive Length (inch)
WT Condition No WT
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=20%
Plugging Length (inch)
Pipe Material SS
IFR
PLR
Pipe Diameter
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0
0
0
0
0
0
0
0
0
0
6
34.87
0.2
0.35
0.5
40
70
100
0.400
0.700
1.000
1.0
9
42.22
0.45
0.7
1
50
70
100
0.450
0.700
1.000
1.5
13
52.02
0.65
1.15
1.5
40
90
100
0.433
0.767
1.000
2.0
14
54.48
0.8
1.55
2
30
80
100
0.400
0.775
1.000
2.5
14
54.48
0.9
2
2.4
20
90
80
0.360
0.800
0.960
3.0
14
54.48
0.95
2.4
2.9
10
80
100
0.317
0.800
0.967
3.5
14.2
54.97
0.95
2.9
3.3
0
100
80
0.271
0.829
0.943
4.0
14.2
54.97
0.95
3.1
3.7
0
40
80
0.238
0.775
0.925
4.5
14.2
54.97
0.95
3.5
4.2
0
80
100
0.211
0.778
0.933
5.0
14.2
54.97
0.95
3.65
4.55
0
30
70
0.190
0.730
0.910
5.5
14.8
56.44
0.95
3.9
4.9
0
50
70
0.173
0.709
0.891
6.0
15.5
58.15
0.95
4.05
5.2
0
30
60
0.158
0.675
0.867
6.5
19.5
67.96
0.95
4.25
5.6
0
40
80
0.146
0.654
0.862
7.0
20.8
71.14
1.1
4.4
6
30
30
80
0.157
0.629
0.857
7.5
24.7
80.70
1.2
4.5
6.1
20
20
20
0.160
0.600
0.813
8.0
27
86.34
1.2
4.65
6.45
0
30
70
0.150
0.581
0.806
8.5
31
96.15
1.2
4.85
6.8
0
40
70
0.141
0.571
0.800
9.0
35
105.95
1.25
4.9
7
10
10
40
0.139
0.544
0.778
9.5
41
120.66
1.25
5.05
7.25
0
30
50
0.132
0.532
0.763
10.0
48.6
139.29
1.25
5.25
7.35
0
40
20
0.125
0.525
0.735
10.5
53.5
151.30
1.3
5.3
7.45
10
10
20
0.124
0.505
0.710
11.0
63.5
175.81
1.35
5.35
7.55
10
10
20
0.123
0.486
0.686
11.5
75
204.00
1.35
5.4
7.6
0
10
10
0.117
0.470
0.661
12.0
90
240.77
1.35
5.4
7.65
0
0
10
0.113
0.450
0.638
78
Test No: C-5 Sand Type D50= 22.44x10-3 inch Drive Length (inch)
WT Condition WT at Mid Height
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=20%
Plugging Length (inch)
Pipe Material SS
IFR
PLR
Pipe Diameter
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0
0
0
0
0
0
0
0
0
0
13
52.02
0.1
0.2
0.4
20
40
80
0.200
0.400
0.800
1.0
16
59.38
0.4
0.6
0.9
60
80
100
0.400
0.600
0.900
1.5
18
64.28
0.65
1.1
1.35
50
100
90
0.433
0.733
0.900
2.0
20
69.18
0.85
1.5
1.75
40
80
80
0.425
0.750
0.875
2.5
25
81.44
0.9
1.8
2.2
10
60
90
0.360
0.720
0.880
3.0
25.5
82.66
0.9
2.2
2.65
0
80
90
0.300
0.733
0.883
3.5
29
91.24
0.9
2.65
3.05
0
90
80
0.257
0.757
0.871
4.0
31
96.15
0.9
3.05
3.45
0
80
80
0.225
0.763
0.863
4.5
31.5
97.37
0.9
3.4
3.85
0
70
80
0.200
0.756
0.856
5.0
33
101.05
0.9
3.7
4.35
0
60
100
0.180
0.740
0.870
5.5
33
101.05
0.9
3.9
4.7
0
40
70
0.164
0.709
0.855
6.0
33
101.05
0.9
4
5.1
0
20
80
0.150
0.667
0.850
6.5
33
101.05
0.9
4.15
5.4
0
30
60
0.138
0.638
0.831
7.0
34
103.50
0.9
4.25
5.75
0
20
70
0.129
0.607
0.821
7.5
36
108.40
0.9
4.3
6.05
0
10
60
0.120
0.573
0.807
8.0
38
113.30
0.9
4.3
6.25
0
0
40
0.113
0.538
0.781
8.5
40
118.21
0.9
4.45
6.35
0
30
20
0.106
0.524
0.747
9.0
41.5
121.88
0.9
4.5
6.65
0
10
60
0.100
0.500
0.739
9.5
43
125.56
0.95
4.6
6.65
10
20
0
0.100
0.484
0.700
10.0
45
130.46
0.95
4.6
6.85
0
0
40
0.095
0.460
0.685
10.5
52
147.62
0.95
4.65
7
0
10
30
0.090
0.443
0.667
11.0
55
154.98
1
4.7
7.1
10
10
20
0.091
0.427
0.645
11.5
59
164.78
1
4.7
7.1
0
0
0
0.087
0.409
0.617
12.0
61
169.68
1
4.7
7.15
0
0
0
0.083
0.392
0.596
79
Test No: C-6 Sand Type D50= 22.44x10-3 inch Drive Length (inch)
WT Condition WT at GL
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=20%
Plugging Length (inch)
Pipe Material SS
IFR
PLR
Pipe Diameter
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0
0
0
0
0
0
0
0
0
0
13
52.02
0.25
0.4
0.5
50
80
100
0.500
0.800
1.000
1.0
13
52.02
0.35
0.8
0.85
20
80
70
0.350
0.800
0.850
1.5
15
56.93
0.4
1.2
1.2
10
80
70
0.267
0.800
0.800
2.0
15
56.93
0.5
1.65
1.7
20
90
100
0.250
0.825
0.850
2.5
18
64.28
0.5
2
2.05
0
70
70
0.200
0.800
0.820
3.0
19
66.73
0.5
2.3
2.55
0
60
100
0.167
0.767
0.850
3.5
20
69.18
0.55
2.6
2.9
10
60
70
0.157
0.743
0.829
4.0
20
69.18
0.55
2.9
3.25
0
60
70
0.138
0.725
0.813
4.5
23
76.54
0.55
3.25
3.75
0
70
100
0.122
0.722
0.833
5.0
24
78.99
0.65
3.45
4.1
20
40
70
0.130
0.690
0.820
5.5
24
78.99
0.8
3.5
4.55
30
10
90
0.145
0.636
0.827
6.0
24
78.99
0.9
3.55
4.75
20
10
40
0.150
0.592
0.792
6.5
24
78.99
0.95
3.6
5
10
10
50
0.146
0.554
0.769
7.0
24
78.99
0.95
3.65
5.2
0
10
40
0.136
0.521
0.743
7.5
25
81.44
0.95
3.8
5.45
0
30
50
0.127
0.507
0.727
8.0
29
91.24
0.95
3.95
5.6
0
30
30
0.119
0.494
0.700
8.5
32
98.60
1
4.15
5.75
10
40
30
0.118
0.488
0.676
9.0
35
105.95
1.1
4.2
6
20
10
50
0.122
0.467
0.667
9.5
41
120.66
1.1
4.3
6.25
0
20
50
0.116
0.453
0.658
10.0
52
147.62
1.1
4.4
6.3
0
20
10
0.110
0.440
0.630
10.5
58
162.33
1.1
4.5
6.35
0
20
10
0.105
0.429
0.605
11.0
65
179.49
1.15
4.55
6.5
10
10
30
0.105
0.414
0.591
11.5
66
181.94
1.15
4.55
6.65
0
0
30
0.100
0.396
0.578
12.0
69
189.29
1.15
4.55
6.7
0
0
10
0.096
0.379
0.558
80
Test No: C-7 Sand Type D50= 22.44x10-3 inch Drive Length (inch)
WT Condition No WT
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=24.2%
Plugging Length (inch)
Pipe Material Al
IFR
PLR
Pipe Diameter
1″
1.5″
2″
1″
1.5″
2″
1″
1.5″
2″
0
0
0
0
0
0
0
0
0
0
10
44.67
0.35
0.35
0.3
70
70
60
0.700
0.700
0.600
1.0
15
56.93
0.75
0.8
0.8
80
90
100
0.750
0.800
0.800
1.5
18
64.28
1.15
1.2
1.2
80
80
80
0.767
0.800
0.800
2.0
20
69.18
1.35
1.6
1.4
40
80
40
0.675
0.800
0.700
2.5
21
71.63
1.75
1.95
1.9
80
70
100
0.700
0.780
0.760
3.0
24
78.99
2
2.35
2.3
50
80
80
0.667
0.783
0.767
3.5
25
81.44
2.05
2.55
2.65
10
40
70
0.586
0.729
0.757
4.0
27.5
87.57
2.15
2.85
3
20
60
70
0.538
0.713
0.750
4.5
29
91.24
2.25
3.15
3.4
20
60
80
0.500
0.700
0.756
5.0
31
96.15
2.35
3.45
3.8
20
60
80
0.470
0.690
0.760
5.5
32
98.60
2.35
3.55
4.2
0
20
80
0.427
0.645
0.764
6.0
32
98.60
2.35
3.75
4.6
0
40
80
0.392
0.625
0.767
6.5
32
98.60
2.35
3.95
4.9
0
40
60
0.362
0.608
0.754
7.0
56
157.43
2.35
4.05
5.2
0
20
60
0.336
0.579
0.743
7.5
59
164.78
2.35
4.2
5.6
0
30
80
0.313
0.560
0.747
8.0
59
164.78
2.35
4.25
5.8
0
10
40
0.294
0.531
0.725
8.5
59
164.78
2.35
4.25
6.1
0
0
60
0.276
0.500
0.718
9.0
59
164.78
2.35
4.3
6.4
0
10
60
0.261
0.478
0.711
9.5
59
164.78
2.4
4.35
6.6
10
10
40
0.253
0.458
0.695
10.0
59
164.78
2.45
4.35
6.8
10
0
40
0.245
0.435
0.680
10.5
63
174.58
2.45
4.35
7.1
0
0
60
0.233
0.414
0.676
11.0
71
194.19
2.5
4.45
7.3
10
20
40
0.227
0.405
0.664
11.5
84
226.06
2.55
4.6
7.5
10
30
40
0.222
0.400
0.652
12.0
112
294.69
2.65
4.65
7.6
20
10
20
0.221
0.388
0.633
81
Test No: C-8 Sand Type D50= 22.44x10-3 inch Drive Length (inch)
WT Condition WT at Mid Height
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=24.2%
Plugging Length (inch)
Pipe Material Al
IFR
PLR
Pipe Diameter
1″
1.5″
2″
1″
1.5″
2″
1″
1.5″
2″
0
0
0
0
0
0
0
0
0
0
34
103.50
0.4
0.45
0.3
80
90
60
0.800
0.900
0.600
1.0
80
216.26
0.65
0.9
0.7
50
90
80
0.650
0.900
0.700
1.5
80
216.26
0.9
1.15
1
50
50
60
0.600
0.767
0.667
2.0
81
218.71
1.2
1.45
1.4
60
60
80
0.600
0.725
0.700
2.5
83
223.61
1.55
1.8
1.9
70
70
100
0.620
0.720
0.760
3.0
83
223.61
1.8
2.1
2.3
50
60
80
0.600
0.700
0.767
3.5
83
223.61
2.05
2.4
2.7
50
60
80
0.586
0.686
0.771
4.0
83
223.61
2.25
2.6
3.1
40
40
80
0.563
0.650
0.775
4.5
83
223.61
2.45
2.95
3.5
40
70
80
0.544
0.656
0.778
5.0
83
223.61
2.7
3.1
3.9
50
30
80
0.540
0.620
0.780
5.5
83
223.61
2.85
3.4
4.3
30
60
80
0.518
0.618
0.782
6.0
83
223.61
2.9
3.6
4.65
10
40
70
0.483
0.600
0.775
6.5
83
223.61
2.9
3.85
5
0
50
70
0.446
0.592
0.769
7.0
83
223.61
2.95
4
5.3
10
30
60
0.421
0.571
0.757
7.5
83
223.61
3
4.2
5.7
10
40
80
0.400
0.560
0.760
8.0
83
223.61
3
4.3
5.95
0
20
50
0.375
0.538
0.744
8.5
83
223.61
3
4.4
6.25
0
20
60
0.353
0.518
0.735
9.0
84
226.06
3
4.55
6.45
0
30
40
0.333
0.506
0.717
9.5
91
243.22
3.05
4.6
6.65
10
10
40
0.321
0.484
0.700
10.0
100
265.28
3.1
4.7
6.8
10
20
30
0.310
0.470
0.680
10.5
112
294.69
3.2
4.7
6.95
20
0
30
0.305
0.448
0.662
11.0
124
324.11
3.2
4.8
7.15
0
20
40
0.291
0.436
0.650
11.5
140
363.33
3.2
4.8
7.25
0
0
20
0.278
0.417
0.630
12.0
175
449.12
3.2
4.8
7.45
0
0
40
0.267
0.400
0.621
82
Test No: C-9 Sand Type D50= 22.44x10-3 inch Drive Length (inch)
WT Condition WT at GL
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=24.2%
Plugging Length (inch)
Pipe Material Al
IFR
PLR
Pipe Diameter
1″
1.5″
2″
1″
1.5″
2″
1″
1.5″
2″
0
0
0
0
0
0
0
0
0
0
38
113.30
0.25
0.35
0.35
50
70
70
0.500
0.700
0.700
1.0
50
142.72
0.65
0.75
0.8
80
80
90
0.650
0.750
0.800
1.5
53.5
151.30
1
1.15
1.2
70
80
80
0.667
0.767
0.800
2.0
56
157.43
1.3
1.5
1.55
60
70
70
0.650
0.750
0.775
2.5
65
179.49
1.6
1.85
1.9
60
70
70
0.640
0.740
0.760
3.0
80
216.26
1.8
2.15
2.3
40
60
80
0.600
0.717
0.767
3.5
88
235.86
1.95
2.4
2.6
30
50
60
0.557
0.686
0.743
4.0
92
245.67
2.1
2.6
2.95
30
40
70
0.525
0.650
0.738
4.5
92
245.67
2.25
2.8
3.25
30
40
60
0.500
0.622
0.722
5.0
92
245.67
2.3
2.95
3.6
10
30
70
0.460
0.590
0.720
5.5
96.5
256.70
2.35
3.15
3.9
10
40
60
0.427
0.573
0.709
6.0
96.5
256.70
2.4
3.35
4.2
10
40
60
0.400
0.558
0.700
6.5
96.5
256.70
2.4
3.5
4.4
0
30
40
0.369
0.538
0.677
7.0
96.5
256.70
2.5
3.7
4.5
20
40
20
0.357
0.529
0.643
7.5
96.5
256.70
2.6
3.8
4.55
20
20
10
0.347
0.507
0.607
8.0
97
257.93
2.6
3.9
4.6
0
20
10
0.325
0.488
0.575
8.5
102
270.18
2.65
4.05
4.75
10
30
30
0.312
0.476
0.559
9.0
111
292.24
2.65
4.1
4.85
0
10
20
0.294
0.456
0.539
9.5
125
326.56
2.65
4.15
4.95
0
10
20
0.279
0.437
0.521
10.0
138
358.42
2.65
4.25
5
0
20
10
0.265
0.425
0.500
10.5
150
387.84
2.65
4.25
5
0
0
0
0.252
0.405
0.476
11.0
163
419.70
2.7
4.4
5
10
30
0
0.245
0.400
0.455
11.5
181
463.83
2.7
4.4
5.05
0
0
10
0.235
0.383
0.439
12.0
189
483.44
2.7
4.4
5.05
0
0
0
0.225
0.367
0.421
83
Test No: C-10 Sand Type D50= 22.44x10-3 inch Drive Length (inch)
WT Condition No WT
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=24.2%
Plugging Length (inch)
Pipe Material SS
IFR
PLR
Pipe Diameter
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0
0
0
0
0
0
0
0
0
0
23
34.87
0.05
0.3
0.5
10
60
100
0.100
0.600
1.000
1.0
26
42.22
0.05
0.75
0.95
0
90
90
0.050
0.750
0.950
1.5
27
52.02
0.15
1.1
1.4
20
70
90
0.100
0.733
0.933
2.0
30
54.48
0.15
1.4
1.8
0
60
80
0.075
0.700
0.900
2.5
30
54.48
0.2
1.8
2.3
10
80
100
0.080
0.720
0.920
3.0
30
54.48
0.25
2
2.7
10
40
80
0.083
0.667
0.900
3.5
34
54.97
0.25
2
3.1
0
0
80
0.071
0.571
0.886
4.0
34
54.97
0.25
2
3.4
0
0
60
0.063
0.500
0.850
4.5
36
54.97
0.25
2.3
3.8
0
60
80
0.056
0.511
0.844
5.0
36.5
54.97
0.25
2.5
4.1
0
40
60
0.050
0.500
0.820
5.5
37.5
56.44
0.3
2.6
4.4
10
20
60
0.055
0.473
0.800
6.0
38
58.15
0.3
2.75
4.65
0
30
50
0.050
0.458
0.775
6.5
39
67.96
0.3
2.8
4.9
0
10
50
0.046
0.431
0.754
7.0
40
71.14
0.3
2.8
5
0
0
20
0.043
0.400
0.714
7.5
45
80.7
0.3
2.8
5.2
0
0
40
0.040
0.373
0.693
8.0
45.5
86.34
0.3
2.8
5.45
0
0
50
0.038
0.350
0.681
8.5
46
96.15
0.35
2.8
5.6
10
0
30
0.041
0.329
0.659
9.0
46
105.95
0.35
2.8
5.7
0
0
20
0.039
0.311
0.633
9.5
46
120.66
0.35
2.8
5.8
0
0
20
0.037
0.295
0.611
10.0
46
139.29
0.35
2.8
5.85
0
0
10
0.035
0.280
0.585
10.5
46
151.3
0.55
2.8
6.1
40
0
50
0.052
0.267
0.581
11.0
50
175.81
0.6
2.8
6.25
10
0
30
0.055
0.255
0.568
11.5
51
204
0.8
2.8
6.25
40
0
0
0.070
0.243
0.543
12.0
52
240.77
0.8
2.8
6.25
0
0
0
0.067
0.233
0.521
84
Test No: C-11 Sand Type D50= 22.44x10-3 inch Drive Length (inch)
WT Condition WT at Mid Height
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=24.2%
Plugging Length (inch)
Pipe Material SS
IFR
PLR
Pipe Diameter
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0
0
0
0
0
0
0
0
0
0
45
34.87
0.1
0.4
0.8
20
80
160
0.200
0.800
1.600
1.0
76
42.22
0.4
0.9
1.4
60
100
120
0.400
0.900
1.400
1.5
78
52.02
0.7
1.3
1.85
60
80
90
0.467
0.867
1.233
2.0
78
54.48
0.8
1.75
2.3
20
90
90
0.400
0.875
1.150
2.5
78
54.48
0.9
2.2
2.75
20
90
90
0.360
0.880
1.100
3.0
78
54.48
0.9
2.6
3.2
0
80
90
0.300
0.867
1.067
3.5
78
54.97
1
2.95
3.55
20
70
70
0.286
0.843
1.014
4.0
78
54.97
1.1
3.1
4
20
30
90
0.275
0.775
1.000
4.5
78
54.97
1.15
3.4
4.45
10
60
90
0.256
0.756
0.989
5.0
78
54.97
1.2
3.8
4.85
10
80
80
0.240
0.760
0.970
5.5
78
56.44
1.25
4
5.2
10
40
70
0.227
0.727
0.945
6.0
78
58.15
1.25
4.1
5.9
0
20
140
0.208
0.683
0.983
6.5
78
67.96
1.25
4.1
6.25
0
0
70
0.192
0.631
0.962
7.0
78
71.14
1.25
4.5
6.6
0
80
70
0.179
0.643
0.943
7.5
78
80.7
1.25
4.6
7.2
0
20
120
0.167
0.613
0.960
8.0
78
86.34
1.25
4.7
7.5
0
20
60
0.156
0.588
0.938
8.5
78
96.15
1.25
4.8
7.6
0
20
20
0.147
0.565
0.894
9.0
78
105.95
1.25
4.85
7.65
0
10
10
0.139
0.539
0.850
9.5
78
120.66
1.25
4.85
7.9
0
0
50
0.132
0.511
0.832
10.0
78
139.29
1.25
4.9
8.05
0
10
30
0.125
0.490
0.805
10.5
81
151.3
1.25
4.9
8.2
0
0
30
0.119
0.467
0.781
11.0
82
175.81
1.25
4.9
8.3
0
0
20
0.114
0.445
0.755
11.5
83
204
1.25
4.9
8.35
0
0
10
0.109
0.426
0.726
12.0
85
240.77
1.25
4.9
8.4
0
0
10
0.104
0.408
0.700
85
Test No: C-12 Sand Type D50= 22.44x10-3 inch Drive Length (inch)
WT Condition WT at GL
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=24.2%
Plugging Length (inch)
Pipe Material SS
IFR
PLR
Pipe Diameter
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0
0
0
0
0
0
0
0
0
0
47
34.87
0.25
0.35
0.45
50
70
90
0.500
0.700
0.900
1.0
50
42.22
0.3
0.75
0.95
10
80
100
0.300
0.750
0.950
1.5
53
52.02
0.35
1.15
1.4
10
80
90
0.233
0.767
0.933
2.0
65
54.48
0.35
1.5
1.9
0
70
100
0.175
0.750
0.950
2.5
73
54.48
0.4
1.9
2.35
10
80
90
0.160
0.760
0.940
3.0
73
54.48
0.45
2.3
2.8
10
80
90
0.150
0.767
0.933
3.5
75
54.97
0.5
2.65
3.1
10
70
60
0.143
0.757
0.886
4.0
75.5
54.97
0.5
3.05
3.6
0
80
100
0.125
0.763
0.900
4.5
79
54.97
0.6
3.3
4.05
20
50
90
0.133
0.733
0.900
5.0
80
54.97
0.6
3.55
4.45
0
50
80
0.120
0.710
0.890
5.5
82
56.44
0.6
3.65
4.8
0
20
70
0.109
0.664
0.873
6.0
82
58.15
0.6
3.8
5.4
0
30
120
0.100
0.633
0.900
6.5
82
67.96
0.6
3.95
5.65
0
30
50
0.092
0.608
0.869
7.0
83
71.14
0.6
4
5.65
0
10
0
0.086
0.571
0.807
7.5
83
80.7
0.6
4.05
5.65
0
10
0
0.080
0.540
0.753
8.0
83
86.34
0.6
4.2
5.65
0
30
0
0.075
0.525
0.706
8.5
83
96.15
0.6
4.2
5.7
0
0
10
0.071
0.494
0.671
9.0
83
105.95
0.6
4.25
5.7
0
10
0
0.067
0.472
0.633
9.5
83
120.66
0.6
4.25
5.7
0
0
0
0.063
0.447
0.600
10.0
83
139.29
0.6
4.25
5.7
0
0
0
0.060
0.425
0.570
10.5
85
151.3
0.6
4.25
5.7
0
0
0
0.057
0.405
0.543
11.0
89
175.81
0.6
4.25
5.7
0
0
0
0.055
0.386
0.518
11.5
89
204
0.6
4.25
5.7
0
0
0
0.052
0.370
0.496
12.0
91
240.77
0.6
4.25
5.7
0
0
0
0.050
0.354
0.475
86
Test No: C-13 Sand Type D50= 22.44x10-3 inch Drive Length (inch)
WT Condition WT at GL
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=24.2%
Plugging Length (inch)
Pipe Material SS
IFR
PLR
Pipe Diameter
1″
1.5″
2″
1″
1.5″
2″
1″
1.5″
2″
0
0
0
0
0
0
0
0
0
0
15
56.93
0.15
0.2
0.2
30
40
40
0.300
0.400
0.400
1.0
20
69.18
0.4
0.45
0.45
50
50
50
0.400
0.450
0.450
1.5
23
76.54
0.55
0.65
0.65
30
40
40
0.367
0.433
0.433
2.0
25
81.44
0.65
0.9
0.8
20
50
30
0.325
0.450
0.400
2.5
26
83.89
0.85
1.05
1.1
40
30
60
0.340
0.420
0.440
3.0
44
128.01
1
1.3
1.25
30
50
30
0.333
0.433
0.417
3.5
45
130.46
1.05
1.4
1.45
10
20
40
0.300
0.400
0.414
4.0
47.5
136.59
1.05
1.55
1.65
0
30
40
0.263
0.388
0.413
4.5
49
140.27
1.1
1.7
1.85
10
30
40
0.244
0.378
0.411
5.0
81
218.71
1.15
1.9
2.1
10
40
50
0.230
0.380
0.420
5.5
82
221.16
1.15
1.95
2.3
0
10
40
0.209
0.355
0.418
6.0
82
221.16
1.15
2.05
2.55
0
20
50
0.192
0.342
0.425
6.5
82
221.16
1.15
2.15
2.7
0
20
30
0.177
0.331
0.415
7.0
106
279.99
1.15
2.2
2.85
0
10
30
0.164
0.314
0.407
7.5
109
287.34
1.15
2.3
3.1
0
20
50
0.153
0.307
0.413
8.0
109
287.34
1.15
2.3
3.2
0
0
20
0.144
0.288
0.400
8.5
109
287.34
1.15
2.35
3.35
0
10
30
0.135
0.276
0.394
9.0
109
287.34
1.15
2.35
3.5
0
0
30
0.128
0.261
0.389
9.5
109
287.34
1.2
2.4
3.6
10
10
20
0.126
0.253
0.379
10.0
109
287.34
1.2
2.4
3.75
0
0
30
0.120
0.240
0.375
10.5
113
297.14
1.2
2.4
3.9
0
0
30
0.114
0.229
0.371
11.0
121
316.75
1.2
2.45
4
0
10
20
0.109
0.223
0.364
11.5
134
348.62
1.25
2.55
4.1
10
20
20
0.109
0.222
0.357
12.0
162
417.25
1.3
2.55
4.2
10
0
20
0.108
0.213
0.350
87
Test No: C-14 Sand Type D50= 22.44x10-3 inch Drive Length (inch)
WT Condition WT at Mid Height
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=30.4%
Plugging Length (inch)
Pipe Material Al
IFR
PLR
Pipe Diameter
1″
1.5″
2″
1″
1.5″
2″
1″
1.5″
2″
0
0
0
0
0
0
0
0
0
0
49
140.27
0.45
0.5
0.45
90
100
90
0.900
1.000
0.900
1.0
55
154.98
0.8
0.9
0.9
70
80
90
0.800
0.900
0.900
1.5
64
177.04
1.15
1.3
1.3
70
80
80
0.767
0.867
0.867
2.0
64
177.04
1.5
1.7
1.75
70
80
90
0.750
0.850
0.875
2.5
72
196.65
1.9
2.1
2.25
80
80
100
0.760
0.840
0.900
3.0
72
196.65
2.2
2.45
2.7
60
70
90
0.733
0.817
0.900
3.5
72
196.65
2.5
2.85
3.15
60
80
90
0.714
0.814
0.900
4.0
85
228.51
2.65
3.1
3.65
30
50
100
0.663
0.775
0.913
4.5
87
233.41
2.85
3.45
4.15
40
70
100
0.633
0.767
0.922
5.0
87
233.41
3
3.7
4.5
30
50
70
0.600
0.740
0.900
5.5
92
245.67
3.1
4.05
4.95
20
70
90
0.564
0.736
0.900
6.0
92.5
246.90
3.15
4.3
5.45
10
50
100
0.525
0.717
0.908
6.5
93
248.12
3.15
4.55
5.9
0
50
90
0.485
0.700
0.908
7.0
98
260.38
3.25
4.75
6.25
20
40
70
0.464
0.679
0.893
7.5
98
260.38
3.25
5
6.8
0
50
110
0.433
0.667
0.907
8.0
98
260.38
3.25
5.05
7
0
10
40
0.406
0.631
0.875
8.5
98
260.38
3.3
5.2
7.35
10
30
70
0.388
0.612
0.865
9.0
99
262.83
3.3
5.3
7.7
0
20
70
0.367
0.589
0.856
9.5
106
279.99
3.4
5.35
7.9
20
10
40
0.358
0.563
0.832
10.0
115
302.05
3.45
5.45
8.2
10
20
60
0.345
0.545
0.820
10.5
127
331.46
3.55
5.5
8.5
20
10
60
0.338
0.524
0.810
11.0
139
360.88
3.55
5.5
8.75
0
0
50
0.323
0.500
0.795
11.5
155
400.10
3.55
5.5
9
0
0
50
0.309
0.478
0.783
12.0
190
485.89
3.55
5.5
9.2
0
0
40
0.296
0.458
0.767
88
Test No: C-15 Sand Type D50= 22.44x10-3 inch Drive Length (inch)
WT Condition WT at GL
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=30.4%
Plugging Length (inch)
Pipe Material Al
IFR
PLR
Pipe Diameter
1″
1.5″
2″
1″
1.5″
2″
1″
1.5″
2″
0
0
0
0
0
0
0
0
0
0
40
118.21
0.35
0.4
0.4
70
80
80
0.700
0.800
0.800
1.0
52
147.62
0.7
0.9
0.95
70
100
110
0.700
0.900
0.950
1.5
55.5
156.20
1.1
1.2
1.25
80
60
60
0.733
0.800
0.833
2.0
58
162.33
1.4
1.6
1.65
60
80
80
0.700
0.800
0.825
2.5
67
184.39
1.75
1.9
2.05
70
60
80
0.700
0.760
0.820
3.0
72
196.65
2
2.25
2.45
50
70
80
0.667
0.750
0.817
3.5
90
240.77
2.2
2.6
2.8
40
70
70
0.629
0.743
0.800
4.0
92
245.67
2.35
2.8
3.2
30
40
80
0.588
0.700
0.800
4.5
96
255.47
2.5
3.1
3.65
30
60
90
0.556
0.689
0.811
5.0
96
255.47
2.5
3.3
3.95
0
40
60
0.500
0.660
0.790
5.5
100
265.28
2.6
3.55
4.3
20
50
70
0.473
0.645
0.782
6.0
100
265.28
2.6
3.75
4.7
0
40
80
0.433
0.625
0.783
6.5
100.5
266.50
2.6
3.95
5.05
0
40
70
0.400
0.608
0.777
7.0
100.5
266.50
2.65
4.15
5.3
10
40
50
0.379
0.593
0.757
7.5
100.5
266.50
2.75
4.3
5.6
20
30
60
0.367
0.573
0.747
8.0
101
267.73
2.75
4.4
5.7
0
20
20
0.344
0.550
0.713
8.5
106
279.99
2.8
4.5
5.9
10
20
40
0.329
0.529
0.694
9.0
115
302.05
2.8
4.6
6.2
0
20
60
0.311
0.511
0.689
9.5
129
336.36
2.9
4.65
6.35
20
10
30
0.305
0.489
0.668
10.0
142
368.23
2.9
4.7
6.6
0
10
50
0.290
0.470
0.660
10.5
154
397.64
2.95
4.75
6.7
10
10
20
0.281
0.452
0.638
11.0
167
429.51
3
4.8
6.9
10
10
40
0.273
0.436
0.627
11.5
185
473.63
3
4.8
7.05
0
0
30
0.261
0.417
0.613
12.0
193
493.24
3
4.8
7.15
0
0
20
0.250
0.400
0.596
89
Test No: C-16 Sand Type D50= 22.44x10-3 inch Drive Length (inch)
WT Condition No WT
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=30.4%
Plugging Length (inch)
Pipe Material SS
IFR
PLR
Pipe Diameter
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0
0
0
0
0
0
0
0
0
0
17
61.83
0.05
0.25
0.45
10
50
90
0.100
0.500
0.900
1.0
20
69.18
0.05
0.7
0.9
0
90
90
0.050
0.700
0.900
1.5
24
78.99
0.15
1.05
1.3
20
70
80
0.100
0.700
0.867
2.0
25
81.44
0.15
1.3
1.75
0
50
90
0.075
0.650
0.875
2.5
25
81.44
0.2
1.65
2.15
10
70
80
0.080
0.660
0.860
3.0
25
81.44
0.2
1.85
2.6
0
40
90
0.067
0.617
0.867
3.5
25.2
81.93
0.2
1.85
2.95
0
0
70
0.057
0.529
0.843
4.0
25.2
81.93
0.2
1.85
3.25
0
0
60
0.050
0.463
0.813
4.5
25.2
81.93
0.25
2.1
3.7
10
50
90
0.056
0.467
0.822
5.0
25.2
81.93
0.25
2.1
4.05
0
0
70
0.050
0.420
0.810
5.5
25.8
83.40
0.25
2.25
4.3
0
30
50
0.045
0.409
0.782
6.0
26.5
85.12
0.25
2.4
4.5
0
30
40
0.042
0.400
0.750
6.5
30.5
94.92
0.25
2.4
4.7
0
0
40
0.038
0.369
0.723
7.0
31.8
98.11
0.3
2.4
4.9
10
0
40
0.043
0.343
0.700
7.5
35.7
107.67
0.3
2.65
5.05
0
50
30
0.040
0.353
0.673
8.0
38
113.30
0.3
2.65
5.2
0
0
30
0.038
0.331
0.650
8.5
42
123.11
0.3
2.65
5.25
0
0
10
0.035
0.312
0.618
9.0
46
132.91
0.3
2.65
5.25
0
0
0
0.033
0.294
0.583
9.5
52
147.62
0.35
2.65
5.3
10
0
10
0.037
0.279
0.558
10.0
59.6
166.25
0.35
2.65
5.45
0
0
30
0.035
0.265
0.545
10.5
64.5
178.26
0.45
2.65
5.5
20
0
10
0.043
0.252
0.524
11.0
74.5
202.77
0.45
2.65
5.5
0
0
0
0.041
0.241
0.500
11.5
86
230.96
0.55
2.65
5.5
20
0
0
0.048
0.230
0.478
12.0
101
267.73
0.55
2.65
5.5
0
0
0
0.046
0.221
0.458
90
Test No: C-17 Sand Type D50= 22.44x10-3 inch Drive Length (inch)
WT Condition WT at Mid Height
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=30.4%
Plugging Length (inch)
Pipe Material SS
IFR
PLR
Pipe Diameter
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0
0
0
0
0
0
0
0
0
0
33
101.05
0.1
0.3
0.7
20
60
140
0.200
0.600
1.400
1.0
36
108.40
0.3
0.75
1.3
40
90
120
0.300
0.750
1.300
1.5
38
113.30
0.6
1.15
1.75
60
80
90
0.400
0.767
1.167
2.0
40
118.21
0.7
1.6
2.2
20
90
90
0.350
0.800
1.100
2.5
45
130.46
0.8
2.05
2.65
20
90
90
0.320
0.820
1.060
3.0
45.5
131.69
0.8
2.45
3.1
0
80
90
0.267
0.817
1.033
3.5
49
140.27
0.9
2.8
3.45
20
70
70
0.257
0.800
0.986
4.0
51
145.17
1
2.95
3.9
20
30
90
0.250
0.738
0.975
4.5
76.5
207.68
1.05
3.25
4.35
10
60
90
0.233
0.722
0.967
5.0
78
211.35
1.1
3.65
4.75
10
80
80
0.220
0.730
0.950
5.5
78
211.35
1.15
3.85
5.1
10
40
70
0.209
0.700
0.927
6.0
78
211.35
1.15
3.95
5.8
0
20
140
0.192
0.658
0.967
6.5
78
211.35
1.15
3.95
6.15
0
0
70
0.177
0.608
0.946
7.0
79
213.80
1.15
4.35
6.5
0
80
70
0.164
0.621
0.929
7.5
81
218.71
1.15
4.45
7.1
0
20
120
0.153
0.593
0.947
8.0
83
223.61
1.15
4.55
7.4
0
20
60
0.144
0.569
0.925
8.5
85
228.51
1.15
4.65
7.5
0
20
20
0.135
0.547
0.882
9.0
86.5
232.19
1.15
4.7
7.55
0
10
10
0.128
0.522
0.839
9.5
88
235.86
1.15
4.7
7.8
0
0
50
0.121
0.495
0.821
10.0
90
240.77
1.15
4.75
7.95
0
10
30
0.115
0.475
0.795
10.5
97
257.93
1.15
4.75
8.1
0
0
30
0.110
0.452
0.771
11.0
100
265.28
1.15
4.75
8.2
0
0
20
0.105
0.432
0.745
11.5
104
275.08
1.15
4.75
8.25
0
0
10
0.100
0.413
0.717
12.0
106
279.99
1.15
4.75
8.3
0
0
10
0.096
0.396
0.692
91
Test No: C-18 Sand Type D50= 22.44x10-3 inch Drive Length (inch)
WT Condition WT at GL
Proving Ring Dial Reading
Load (lb)
0
0
0.5
Density Dr=30.4%
Plugging Length (inch)
Pipe Material SS
IFR
PLR
Pipe Diameter
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0.5″
1.0″
1.5″
0
0
0
0
0
0
0
0
0
0
62
172.13
0.1
0.3
0.65
20
60
130
0.200
0.600
1.300
1.0
65
179.49
0.2
0.8
1.2
20
100
110
0.200
0.800
1.200
1.5
68
186.84
0.4
1.2
1.7
40
80
100
0.267
0.800
1.133
2.0
80
216.26
0.45
1.6
2.2
10
80
100
0.225
0.800
1.100
2.5
88
235.86
0.55
2.05
2.65
20
90
90
0.220
0.820
1.060
3.0
119
311.85
0.55
2.35
3.15
0
60
100
0.183
0.783
1.050
3.5
121.5
317.98
0.6
2.55
3.5
10
40
70
0.171
0.729
1.000
4.0
122
319.21
0.65
2.65
3.95
10
20
90
0.163
0.663
0.988
4.5
127
331.46
0.7
2.95
4.4
10
60
90
0.156
0.656
0.978
5.0
128
333.91
0.75
3.15
4.85
10
40
90
0.150
0.630
0.970
5.5
131
341.27
0.75
3.35
5.15
0
40
60
0.136
0.609
0.936
6.0
131
341.27
0.75
3.5
5.6
0
30
90
0.125
0.583
0.933
6.5
131
341.27
0.75
3.5
5.95
0
0
70
0.115
0.538
0.915
7.0
132
343.72
0.8
3.7
6.25
10
40
60
0.114
0.529
0.893
7.5
132
343.72
0.8
3.9
6.7
0
40
90
0.107
0.520
0.893
8.0
132
343.72
0.8
3.95
6.95
0
10
50
0.100
0.494
0.869
8.5
133.5
347.39
0.8
4
7
0
10
10
0.094
0.471
0.824
9.0
133.5
347.39
0.8
4.05
7.05
0
10
10
0.089
0.450
0.783
9.5
133.5
347.39
0.85
4.05
7.2
10
0
30
0.089
0.426
0.758
10.0
134
348.62
0.85
4.05
7.4
0
0
40
0.085
0.405
0.740
10.5
135
351.07
0.9
4.1
7.5
10
10
20
0.086
0.390
0.714
11.0
140.5
364.55
0.9
4.1
7.55
0
0
10
0.082
0.373
0.686
11.5
140.5
364.55
0.9
4.1
7.55
0
0
0
0.078
0.357
0.657
12.0
143
370.68
0.9
4.1
7.6
0
0
10
0.075
0.342
0.633
92
APPENDIX- B: PLOTS OF TEST DATA
93
B.1: Test No. F-1 Grain size (D50=8.66x10-3 inch), No WT, Dr=11.5%, Aluminum
PLUGGING LENGTH (inch)
12 1" Dia Pipe 1.5" Dia Pipe 2" Dia Pipe
10 8 6 4 2 0 0
50
100
150
200 250 LOAD (lb)
300
350
400
450
Fig. B.1: Plugging Length vs Load Curve for Aluminum Pipe Piles 12 1" Dia Pipe
10
PLUGGING LENGTH
1.5" Dia Pipe 8
2" Dia Pipe
6
4 2 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.2: Plugging Length vs Penetration Depth Curve for Aluminum Pipe Piles 1.00 0.90 0.80 0.70
PLR
0.60
0.50 0.40
1" Dia Pipe
0.30
1.5" Dia Pipe
0.20
2" Dia Pipe
0.10 0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.3: PLR vs Penetration Depth Curve for Aluminum Pipe Piles 94
14
0
20
40
IFR %
60
80
100
120
PENETRATION DEPTH (inch)
0
2 4
6 8 1" Dia Pipe 1.5" Dia Pipe 2" Dia Pipe
10 12
14
Fig. B.4: Penetration Depth vs IFR Curve for Aluminum Pipe Piles B.2: Test No. F-2 Grain size (D50=8.66x10-3 inch), WT at mid height, Dr=11.5%, Aluminum
PLUGGING LENGTH (inch)
12 1" Dia Pipe 1.5" Dia Pipe 2" Dia Pipe
10 8 6
4 2 0 0
50
100
150
200
250 LOAD (lb)
300
350
400
450
500
Fig. B.5: Plugging Length vs Load Curve for Aluminum Pipe Piles 12
PLUGGING LENGTH
10
1" Dia Pipe 1.5" Dia Pipe 2" Dia Pipe
8 6 4 2 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.6: Plugging Length vs Penetration Depth Curve for Aluminum Pipe Piles 95
14
1.20 1.00
PLR
0.80 0.60
0.40
1" Dia Pipe 1.5" Dia Pipe 2" Dia Pipe
0.20
0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.7: PLR vs Penetration Depth Curve for Aluminum Pipe Piles 0
20
40
IFR %
60
80
100
120
PENETRATION DEPTH (inch)
0 2 4 6 8 1" Dia Pipe
10
1.5" Dia Pipe 12
2" Dia Pipe
14
Fig. 8: Penetration Depth vs IFR Curve for Aluminum Pipe Piles B.3: Test No. F-3 Grain size (D50=8.66x10-3 inch), WT at GL, Dr=11.5%, Aluminum 12 1" Dia Pipe
PLUGGING LENGTH (inch)
10
1.5" Dia Pipe 8
2" Dia Pipe
6 4 2 0 0
50
100
150
200 LOAD (lb)
250
300
350
Fig. B.9: Plugging Length vs Load Curve for Aluminum Pipe Piles 96
400
450
PLUGGING LENGTH (Inch)
12 10
1" Dia Pipe 1.5" Dia Pipe
8
2" Dia Pipe
6 4 2 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.10: Plugging Length vs Penetration Depth Curve for Aluminum Pipe Piles 1.00 0.90 0.80 0.70
PLR
0.60 0.50 0.40
1" Dia Pipe
0.30
1.5" Dia Pipe
0.20
2" Dia Pipe
0.10 0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.11: PLR vs Penetration Depth Curve for Aluminum Pipe Piles 0
20
40
IFR % 60
80
100
120
PENETRATION DEPTH (inch)
0 2 4 6
8 1" Dia Pipe 1.5" Dia Pipe 2" Dia Pipe
10 12 14
Fig. B.12: Penetration Depth vs IFR Curve for Aluminum Pipe Piles
97
140
B.4: Test No. F-4 Grain size (D50=8.66x10-3 inch), No WT, Dr=11.5%, SS 12
PLUGGING LENGTH (inch)
10
0.5" Dia Pipe 1" Dia Pipe
8
1.5" Dia Pipe 6 4 2 0 0
20
40
60
80
100
120
140
LOAD (lb)
Fig. B.13: Plugging Length vs Load Curve for Stainless Steel Pipe Piles 12
PLUGGING LENGTH
10
0.5" Dia Pipe
1" Dia Pipe
8
1.5" Dia Pipe 6 4 2 0 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.14: Plugging Length vs Penetration Depth for Stainless Steel Pipe Piles 1.200 1.000
PLR
0.800 0.600 0.400
0.5" Dia Pipe 1" Dia Pipe
0.200
1.5" Dia Pipe 0.000 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.15: PLR vs Penetration Depth Curve for Stainless Steel Pipe Piles 98
14
0
20
IFR %
40
60
80
100
120
PENETRATION DEPTH (inch)
0 2 4 6 8 0.5" Dia Pipe
10
1" Dia Pipe
12
1.5" Dia Pipe
14
Fig. B.16: Penetration Depth vs IFR Curve for Stainless Steel Pipe Piles B.5: Test No. F-5 Grain size (D50=8.66x10-3 inch), WT at mid height, Dr=11.5%, SS 10 0.5" Dia Pipe 1" Dia Pipe 1.5" Dia Pipe
PLUGGING LENGTH (inch)
9 8 7 6
5 4 3 2 1 0 0
20
40
60
80 LOAD (lb)
100
120
140
160
Fig. B.17: Plugging Length vs Load Curve for Stainless Steel Pipe Piles 10 9 0.5" Dia Pipe 1" Dia Pipe 1.5" Dia Pipe
PLUGGING LENGTH
8 7
6 5 4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.18: Plugging Length vs Penetration Depth Curve for Stainless Steel Pipe Piles 99
14
1.00 0.90 0.80 0.70
PLR
0.60 0.50 0.40 0.30
0.5" Dia Pipe
0.20
1" Dia Pipe
0.10
1.5" Dia Pipe
0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.19: PLR vs Penetration Depth Curve for Aluminum Pipe Piles 0
20
40
IFR % 60
80
100
120
140
PENETRATION DEPTH (inch)
0 2 4 6 8 0.5" Dia Pipe
10
1" Dia Pipe 12
1.5" Dia Pipe
14
Fig. B.20: Penetration Depth vs IFR Curve for Stainless Steel Pipe Piles B.6: Test No. F-6 Grain size (D50=8.66x10-3 inch), WT at GL, Dr=11.5%, SS
PLUGGING LENGTH (inch)
8
7
0.5" Dia Pipe
6
1" Dia Pipe
1.5" Dia Pipe
5 4 3 2 1 0 0
20
40
60 LOAD (lb)
80
100
120
Fig. B.21: Plugging Length vs Load Curve for Stainless Steel Pipe Piles 100
140
8 0.5" Dia Pipe
7
1" Dia Pipe
PLUGGING LENGTH
6
1.5" Dia Pipe
5 4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.22: Plugging Length vs Penetration Depth for Stainless Steel Pipe Piles 1.000 0.900 0.800 0.700
PLR
0.600 0.500 0.400 0.300
0.5" Dia Pipe
0.200
1" Dia Pipe
0.100
1.5" Dia Pipe
0.000 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.23: PLR vs Penetration Depth Curve for Stainless Steel Pipe Piles 0
20
40
IFR %
60
80
100
PENETRATION DEPTH (inch)
0 2 4 6 8 0.5" Dia Pipe
10
1" Dia Pipe 12
1.5" Dia Pipe
14
Fig. B.24: Penetration Depth vs IFR Curve for Stainless Steel Pipe Piles
101
120
B.7: Test No. F-7 Grain size (D50=8.66x10-3 inch), No WT, Dr=22.3%, Aluminum 8 1" Dia Pipe
PLUGGING LENGTH (inch)
7
1.5" Dia Pipe
6
2" Dia Pipe
5 4 3 2 1 0 0
50
100
150
200
250 LOAD (lb)
300
350
400
450
500
Fig. B.25: Plugging Length vs Load Curve for Aluminum Pipe Piles 8 1" Dia Pipe
7
1.5" Dia Pipe
PLUGGING LENGTH
6
2" Dia Pipe
5 4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.26: Plugging Length vs Penetration Depth Curve for Aluminum Pipe Piles 0.80
0.70 0.60
PLR
0.50 0.40 0.30 1" Dia Pipe
0.20
1.5" Dia Pipe
0.10
2" Dia Pipe
0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.27: PLR vs Penetration Depth Curve for Aluminum Pipe Piles 102
14
0
10
20
30
40
IFR % 50
60
70
80
90
100
PENETRATION DEPTH (inch)
0 2 4 6 8 10
1" Dia Pipe 1.5" Dia Pipe
12
2" Dia Pipe
14
Fig. B.28: Penetration Depth vs IFR Curve for Aluminum Pipe Piles B.8: Test No. F-8 Grain size (D50=8.66x10-3 inch), WT at mid height, Dr=22.3%, Aluminum 8 1" Dia Pipe
PLUGGING LENGTH (inch)
7
1.5" Dia Pipe
6
2" Dia Pipe
5 4 3 2 1 0 0
100
200
300 LOAD (lb)
400
500
600
700
Fig. B.29: Plugging Length vs Load Curve for Aluminum Pipe Piles 8 1" Dia Pipe
7
1.5" Dia Pipe
PLUGGING LENGTH
6
2" Dia Pipe
5 4 3 2 1 0 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.30: Plugging Length vs Penetration Depth Curve for Aluminum Pipe Piles 103
14
1.00 0.90 0.80 0.70
PLR
0.60 0.50 0.40 0.30
1" Dia Pipe
0.20
1.5" Dia Pipe
0.10
2" Dia Pipe
0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.31: PLR vs Penetration Depth Curve for Aluminum Pipe Piles 0
20
40
IFR %
60
80
100
120
PENETRATION DEPTH (inch)
0 2 4 6 8 1" Dia Pipe
10
1.5" Dia Pipe
12
2" Dia Pipe
14
Fig. B.32: Penetration Depth vs IFR Curve for Aluminum Pipe Piles B.9: Test No. F-9 Grain size (D50=8.66x10-3 inch), WT at GL, Dr=22.3%, Aluminum 8
PLUGGING LENGTH (inch)
7 6 5 4 3 1" Dia Pipe
2
1.5" Dia Pipe
1
2" Dia Pipe
0 0
50
100
150
200 LOAD (lb)
250
300
350
Fig. B.33: Plugging Length vs Load Curve for Aluminum Pipe Piles 104
400
8
PLUGGING LENGTH (Inch)
7
1" Dia Pipe
6
1.5" Dia Pipe
5
2" Dia Pipe
4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.34: Plugging Length vs Penetration Depth Curve for Aluminum Pipe Piles 1.00 0.90 0.80 0.70
PLR
0.60 0.50 0.40 0.30
1" Dia Pipe
0.20
1.5" Dia Pipe
0.10
2" Dia Pipe
0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.35: PLR vs Penetration Depth Curve for Aluminum Pipe Piles IFR % 0
20
40
60
80
100
0
PENETRATION DEPTH (inch)
2 4 6
8 1" Dia Pipe
10
1.5" Dia Pipe 12
2" Dia Pipe
14
Fig.B.36: Penetration Depth vs IFR Curve for Aluminum Pipe Piles
105
120
B.10: Test No. F-10 Grain size (D50=8.66x10-3 inch), No WT, Dr=22.3%, SS 9 0.5" Dia Pipe 1" Dia Pipe 1.5" Dia Pipe
PLUGGING LENGTH (inch)
8 7 6
5 4 3 2 1 0 0
50
100
150
200
250
LOAD (lb)
Fig. B.37: Plugging Length vs Load Curve for Stainless Steel Pipe Piles 9 0.5" Dia Pipe
8
1" Dia Pipe
PLUGGING LENGTH
7
1.5" Dia Pipe
6 5 4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.38: Plugging Length vs Penetration Depth for Stainless Steel Pipe Piles 1.60 0.5" Dia Pipe
1.40
1" Dia Pipe
1.20
2" Dia Pipe
PLR
1.00 0.80 0.60 0.40 0.20 0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.39: PLR vs Penetration Depth Curve for Stainless Steel Pipe Piles 106
14
0
20
40
60
IFR % 80
100
120
140
160
180
PENETRATION DEPTH (inch)
0 2 4 6 8 0.5" Dia Pipe
10
1" Dia Pipe
12
1.5" Dia Pipe
14
Fig. B.40: Penetration Depth vs IFR Curve for Stainless Steel Pipe Piles B.11: Test No. F-11 Grain size (D50=8.66x10-3 inch), WT at mid height, Dr=22.3%, SS
PLUGGING LENGTH (inch)
10 9
0.5" Dia Pipe
8
1" Dia Pipe
7
1.5" Dia Pipe
6
5 4 3 2 1 0 0
50
100
150 LOAD (lb)
200
250
300
350
Fig. B.41: Plugging Length vs Load Curve for Stainless Steel Pipe Piles 10
0.5" Dia Pipe 1" Dia Pipe 1.5" Dia Pipe
9
PLUGGING LENGTH
8 7 6 5 4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.42: Plugging Length vs Penetration Depth Curve for Stainless Steel Pipe Piles 107
1.40 0.5" Dia Pipe
1.20
1" Dia Pipe
1.00
1.5" Dia Pipe
PLR
0.80 0.60 0.40 0.20
0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.43: PLR vs Penetration Depth Curve for Stainless Steel Pipe Piles 0
20
40
60
IFR % 80
100
120
140
160
180
200
PENETRATION DEPTH (inch)
0 2 4 6 8 10
0.5" Dia Pipe
12
1" Dia Pipe 1.5" Dia Pipe
14
Fig. B.44: Penetration Depth vs IFR Curve for Stainless Steel Pipe Piles B.12: Test No. F-12 Grain size (D50=8.66x10-3 inch), WT at GL, Dr=22.3%, SS 10 0.5" Dia Pipe 1" Dia Pipe 1.5" Dia Pipe
9
PLUGGING LENGTH
8 7 6
5 4 3 2 1 0 0
50
100 150 PENETRATION DEPTH (inch)
200
250
Fig. B.45: Plugging Length vs Load Curve for Stainless Steel Pipe Piles 108
300
PLUGGING LENGTH (Inch)
10 9
0.5" Dia Pipe
8
1" Dia Pipe
7
1.5" Dia Pipe
6 5 4 3
2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.46: Plugging Length vs Penetration Depth for Stainless Steel Pipe Piles 1.20 0.5" Dia Pipe 1.00
1" Dia Pipe 1.5" Dia Pipe
PLR
0.80 0.60 0.40 0.20 0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.47: PLR vs Penetration Depth Curve for Stainless Steel Pipe Piles IFR % 0
20
40
60
80
100
120
140
PENETRATION DEPTH (inch)
0 2 4 6 8 10
0.5" Dia Pipe 1" Dia Pipe
12
1.5" Dia Pipe
14
Fig. B.48: Penetration Depth vs IFR Curve for Stainless Steel Pipe Piles
109
160
B.13: Test No. F-13 Grain size (D50=8.66x10-3 inch), No WT, Dr=26.2%, Aluminum 7 1" Dia Pipe 1.5" Dia Pipe 2" Dia Pipe
PLUGGING LENGTH (inch)
6 5 4 3 2 1 0 0
50
100
150
200 250 LOAD (lb)
300
350
400
450
500
Fig. B.49: Plugging Length vs Load Curve for Aluminum Pipe Piles 7 1" Dia Pipe
PLUGGING LENGTH
6
1.5" Dia Pipe 2" Dia Pipe
5 4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.50: Plugging Length vs Penetration Depth Curve for Aluminum Pipe Piles 1.00 0.90 0.80 0.70
PLR
0.60 0.50 0.40 0.30
1" Dia Pipe
0.20
1.5" Dia Pipe
0.10
2" Dia Pipe
0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.51: PLR vs Penetration Depth Curve for Aluminum Pipe Piles 110
14
0
20
40
IFR %
60
80
100
120
PENETRATION DEPTH (inch)
0 2
4 6 8 10
1" Dia Pipe 1.5" Dia Pipe 2" Dia Pipe
12
14
Fig. B.52: Penetration Depth vs IFR Curve for Aluminum Pipe Piles B.14: Test No. F-14 Grain size (D50=8.66x10-3 inch), WT at mid height, Dr=26.2%, Aluminum 8 1" Dia Pipe
PLUGGING LENGTH (inch)
7
1.5" Dia Pipe
6
2" Dia Pipe
5 4 3 2 1 0 0
50
100
150
200 250 LOAD (lb)
300
350
400
450
500
Fig. B.53: Plugging Length vs Load Curve for Aluminum Pipe Piles 8 1" Dia Pipe 1.5" Dia Pipe 2" Dia Pipe
7
PLUGGING LENGTH
6 5 4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.54: Plugging Length vs Penetration Depth Curve for Aluminum Pipe Piles 111
14
1.00 0.90 0.80 0.70
PLR
0.60 0.50 0.40 0.30
1" Dia Pipe
0.20
1.5" Dia Pipe
0.10
2" Dia Pipe
0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.55: PLR vs Penetration Depth Curve for Aluminum Pipe Piles 0
20
40
IFR %
60
80
100
120
PENETRATION DEPTH (inch)
0 2 4 6 8 10
1" Dia Pipe 1.5" Dia Pipe 2" Dia Pipe
12 14
Fig. B.56: Penetration Depth vs IFR Curve for Aluminum Pipe Piles B.15: Test No. F-15 Grain size (D50=8.66x10-3 inch), WT at GL, Dr=26.2%, Aluminum 7
1" Dia Pipe
PLUGGING LENGTH (inch)
6
1.5" Dia Pipe
5
2" Dia Pipe
4 3 2 1 0 0
50
100
150
200 250 LOAD (lb)
300
350
400
450
Fig. B.57: Plugging Length vs Load Curve for Aluminum Pipe Piles 112
500
PLUGGING LENGTH (Inch)
7 1" Dia Pipe
6
1.5" Dia Pipe 5
2" Dia Pipe
4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.58: Plugging Length vs Penetration Depth Curve for Aluminum Pipe Piles 1.00 0.90
1" Dia Pipe
0.80
1.5" Dia Pipe
0.70
2" Dia Pipe
PLR
0.60 0.50 0.40 0.30
0.20 0.10 0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.59: PLR vs Penetration Depth Curve for Aluminum Pipe Piles 0
20
40
IFR % 60
80
100
120
PENETRATION DEPTH (inch)
0 2 4 6 8 10
1" Dia Pipe 1.5" Dia Pipe
12
2" Dia Pipe
14
Fig. B.60: Penetration Depth vs IFR Curve for Aluminum Pipe Piles
113
140
B.16: Test No. F-16 Grain size (D50=8.66x10-3 inch), No WT, Dr=26.2%, SS 8
PLUGGING LENGTH (inch)
7
0.5" Dia Pipe
6
1" Dia Pipe
5
1.5" Dia Pipe
4 3 2
1 0 0
20
40
60
80 100 LOAD (lb)
120
140
160
180
200
Fig. B.61: Plugging Length vs Load Curve for Stainless Steel Pipe Piles 8 0.5" Dia Pipe
7
1" Dia Pipe
PLUGGING LENGTH
6
1.5" Dia Pipe
5 4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.62: Plugging Length vs Penetration Depth for Stainless Steel Pipe Piles 1.20 0.5" Dia Pipe 1.00
1" Dia Pipe 1.5" Dia Pipe
PLR
0.80 0.60 0.40 0.20 0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.63: PLR vs Penetration Depth Curve for Stainless Steel Pipe Piles 114
14
0
20
IFR % 60
40
80
100
120
140
PENETRATION DEPTH (inch)
0 2 4 6 8 10
0.5" Dia Pipe 1" Dia Pipe 1.5" Dia Pipe
12
14
Figure 4.2.64: Penetration Depth vs IFR Curve for Stainless Steel Pipe Piles B.17: Test No. F-17 Grain size (D50=8.66x10-3 inch), WT at mid height, Dr=26.2%, SS 9 0.5" Dia Pipe
PLUGGING LENGTH (inch)
8
1" Dia Pipe
7
1.5" Dia Pipe
6 5 4
3 2 1 0 0
50
100
150
200
250
300
LOAD (lb)
Fig. B.65: Plugging Length vs Load Curve for Stainless Steel Pipe Piles
PLUGGING LENGTH
9 8
0.5" Dia Pipe
7
1" Dia Pipe
6
1.5" Dia Pipe
5 4 3 2
1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.66: Plugging Length vs Penetration Depth Curve for Stainless Steel Pipe Piles 115
1.20 0.5" Dia Pipe 1.00
1" Dia Pipe 1.5" Dia Pipe
PLR
0.80
0.60 0.40 0.20
0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.67: PLR vs Penetration Depth Curve for Stainless Steel Pipe Piles IFR % 0
20
40
60
80
100
120
PENETRATION DEPTH (inch)
0 2 4 6 8 0.5" Dia Pipe 1" Dia Pipe 1.5" Dia Pipe
10 12 14
Fig. B.68: Penetration Depth vs IFR Curve for Stainless Steel Pipe Piles B.18: Test No. F-18 Grain size (D50=8.66x10-3 inch), WT at GL, Dr=26.2%, SS 7 0.5" Dia Pipe
PLUGGING LENGTH (inch)
6
1" Dia Pipe
5
1.5" Dia Pipe
4 3 2 1 0 0
50
100 LOAD (lb)
150
200
Fig. B.69: Plugging Length vs Load Curve for Stainless Steel Pipe Piles 116
250
PLUGGING LENGTH (Inch)
7 6 5 4 3 0.5" Dia Pipe
2
1" Dia Pipe 1
1.5" Dia Pipe
0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.70: Plugging Length vs Penetration Depth Curve for Stainless Steel Pipe Piles 1.40 0.5" Dia Pipe
1.20
1" Dia Pipe
1.00
1.5" Dia Pipe
PLR
0.80 0.60 0.40 0.20 0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.71: PLR vs Penetration Depth Curve for Stainless Steel Pipe Piles 0
20
40
IFR % 60
80
100
120
PENETRATION DEPTH (inch)
0 2 4 6 8 10
0.5" Dia Pipe 1" Dia Pipe 1.5" Dia Pipe
12 14
Fig. B.72: Penetration Depth vs IFR Curve for Stainless Steel Pipe Piles
117
140
B.19: Test No. C-1 Grain size (D50=22.44x10-3 inch), No WT, Dr=20%, Aluminum
PLUGGING LENGTH (inch)
9 8
1" Dia Pipe
7
1.5" Dia Pipe
6
2" Dia Pipe
5 4 3 2 1 0 0
50
100
150
200 LOAD (lb)
250
300
350
400
450
Fig. B.73: Plugging Length vs Load Curve for Aluminum Pipe Piles 9 1" Dia Pipe
8
1.5" Dia Pipe
PLUGGING LENGTH
7
2" Dia Pipe
6 5 4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.74: Plugging Length vs Penetration Depth Curve for Aluminum Pipe Piles 1.20 1" Dia Pipe 1.00
1.5" Dia Pipe 2" Dia Pipe
PLR
0.80 0.60 0.40 0.20 0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.75: PLR vs Penetration Depth Curve for Aluminum Pipe Piles 118
14
0
20
40
0
60 % IFR
80
100
140
1" Dia Pipe 1.5" Dia Pipe 2" Dia Pipe
2
PENETRATION DEPTH (inch)
120
4 6 8 10 12 14
Fig. B.76: Penetration Depth vs IFR Curve for Aluminum Pipe Piles B.20: Test No. C-2 Grain size (D50=22.44x10-3 inch), WT at mid height, Dr=20%, Aluminum
PLUGGING LENGTH (inch)
10 9
1" Dia Pipe
8
1.5" Dia Pipe 2" Dia Pipe
7 6
5 4 3 2 1 0 0
100
200
300 400 LOAD (lb)
500
600
700
800
Fig. B.77: Plugging Length vs Load Curve for Aluminum Pipe Piles
PLUGGING LENGTH
10 9
1" Dia Pipe
8
1.5" Dia Pipe
7
2" Dia Pipe
6 5 4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.78: Plugging Length vs Penetration Depth Curve for Aluminum Pipe Piles 119
14
1.20 1.00
PLR
0.80 0.60 0.40
1" Dia Pipe 1.5" Dia Pipe
0.20
2" Dia Pipe
0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.79: PLR vs Penetration Depth Curve for Aluminum Pipe Piles 0
20
40
IFR %
60
80
100
120
PENETRATION DEPTH (inch)
0 2 4 6 8 10
1" Dia Pipe 1.5" Dia Pipe 2" Dia Pipe
12 14
Fig. B.80: Penetration Depth vs IFR Curve for Aluminum Pipe Piles B.21: Test No. C-3 Grain size (D50=22.44x10-3 inch), WT at GL, Dr=20%, Aluminum 4
PLUGGING LENGTH (inch)
3.5 3
2.5 2
1.5 1" Dia Pipe
1
1.5" Dia Pipe
0.5
2" Dia Pipe
0 0
100
200
300
400
500
LOAD (lb)
Fig. B.81: Plugging Length vs Load Curve for Aluminum Pipe Piles 120
600
4
PLUGGING LENGTH (Inch)
3.5 3
2.5 2 1.5 1" Dia Pipe
1
1.5" Dia Pipe 0.5
2" Dia Pipe
0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.82: Plugging Length vs Penetration Depth Curve for Aluminum Pipe Piles 1.20 1" Dia Pipe 1.00
1.5" Dia Pipe 2" Dia Pipe
PLR
0.80 0.60 0.40 0.20 0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.83: PLR vs Penetration Depth Curve for Aluminum Pipe Piles 0
20
40
IFR %
60
80
100
0
PENETRATION DEPTH (inch)
2 4 6 8 10
1" Dia Pipe 1.5" Dia Pipe 2" Dia Pipe
12 14
Fig. B.84: Penetration Depth vs IFR Curve for Aluminum Pipe Piles
121
120
B.22: Test No. C-4 Grain size (D50=22.44x10-3 inch), No WT, Dr=20%, SS 9 0.5" Dia Pipe
PLUGGING LENGTH (inch)
8
1" Dia Pipe
7
1.5" Dia Pipe
6 5
4 3 2
1 0 0
50
100
150
200
250
300
LOAD (lb)
Fig. B.85: Plugging Length vs Load Curve for Stainless Steel Pipe Piles 9 0.5" Dia Pipe
8
1" Dia Pipe
PLUGGING LENGTH
7
1.5" Dia Pipe
6 5 4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.86: Plugging Length vs Penetration Depth Curve for Stainless Steel Pipe Piles 1.20 0.5" Dia Pipe 1.00
1" Dia Pipe 1.5" Dia Pipe
PLR
0.80 0.60 0.40 0.20 0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.87: PLR vs Penetration Depth Curve for Stainless Steel Pipe Piles 122
14
0
20
40
IFR %
60
80
100
120
PENETRATION DEPTH (inch)
0 2 4 6 8
0.5" Dia Pipe 1" Dia Pipe 1.5" Dia Pipe
10 12
14
Figure 4.2.88: Penetration Depth vs IFR Curve for Stainless Steel Pipe Piles B.23: Test No. C-5 Grain size (D50=22.44x10-3 inch), WT at mid height, Dr=20%, SS 8
PLUGGING LENGTH (inch)
7
0.5" Dia Pipe
6
1" Dia Pipe
5
1.5" Dia Pipe
4 3 2 1 0 0
20
40
60
80 LOAD (lb)
100
120
140
160
180
Fig. B.89: Plugging Length vs Load Curve for Stainless Steel Pipe Piles 8
0.5" Dia Pipe
7
1" Dia Pipe
PLUGGING LENGTH
6
1.5" Dia Pipe
5 4 3
2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.90: Plugging Length vs Penetration Depth for Stainless Steel Pipe Piles 123
14
1.00 0.90
0.5" Dia Pipe
0.80
1" Dia Pipe
0.70
1.5" Dia Pipe
PLR
0.60 0.50 0.40 0.30 0.20 0.10
0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.91: PLR vs Penetration Depth Curve for Stainless Steel Pipe Piles 0
20
40
IFR %
60
80
100
120
PENETRATION DEPTH (inch)
0 2
4 6 8 10
0.5" Dia Pipe 1.5" Dia Pipe 1.5" Dia Pipe
12 14
Figure 4.2.92: Penetration Depth vs IFR Curve for Stainless Steel Pipe Piles B.24: Test No. C-6 Grain size (D50=22.44x10-3 inch), WT at GL, Dr=20%, SS
PLUGGING LENGTH (inch)
8 7
0.5" Dia Pipe
6
1" Dia Pipe 1.5" Dia Pipe
5 4 3 2 1 0 0
20
40
60
80 LOAD (lb)
100
120
140
160
Fig. B.93: Plugging Length vs Load Curve for Stainless Steel Pipe Piles 124
180
8
PLUGGING LENGTH (Inch)
7
0.5" Dia Pipe
6
1" Dia Pipe
5
1.5" Dia Pipe
4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.94: Plugging Length vs Penetration Depth Curve for Stainless Steel Pipe Piles 1.00 0.90
0.5" Dia Pipe
0.80
1" Dia Pipe
0.70
1.5" Dia Pipe
PLR
0.60 0.50 0.40 0.30
0.20 0.10 0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.95: PLR vs Penetration Depth Curve for Stainless Steel Pipe Piles 0
20
40
IFR %
60
80
100
0
PENETRATION DEPTH (inch)
2 4 6 8 10
0.5" Dia Pipe 1.5" Dia Pipe
12
1.5" Dia Pipe
14
Fig. B.96: Penetration Depth vs IFR Curve for Stainless Steel Pipe Piles
125
120
B.25: Test No. C-7 Grain size (D50=22.44x10-3 inch), No WT, Dr=24.2%, Aluminum 8 1" Dia Pipe
PLUGGING LENGTH (inch)
7
1.5" Dia Pipe
6
2" Dia Pipe
5 4 3 2 1 0 0
50
100
150 LOAD (lb)
200
250
300
350
Fig. B.97: Plugging Length vs Load Curve for Aluminum Pipe Piles 8 1" Dia Pipe
7
1.5" Dia Pipe
PLUGGING LENGTH
6
2" Dia Pipe
5 4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.98: Plugging Length vs Penetration Depth Curve for Aluminum Pipe Piles 0.900 0.800 0.700 0.600
PLR
0.500 0.400 0.300
1" Dia Pipe
0.200
1.5" Dia Pipe
0.100
2" Dia Pipe
0.000 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.99: PLR vs Penetration Depth Curve for Aluminum Pipe Piles 126
14
0
20
40
IFR %
60
80
100
120
PENETRATION DEPTH (inch)
0 2
4 6 8 10
1" Dia Pipe 1.5" Dia Pipe 2" Dia Pipe
12
14
Fig. B.100: Penetration Depth vs IFR Curve for Aluminum Pipe Piles B.26: Test No. C-8 Grain size (D50=22.44x10-3 inch), WT at mid height, Dr=24.2%, Aluminum 8 1" Dia Pipe
PLUGGING LENGTH (inch)
7
1.5" Dia Pipe
6
2" Dia Pipe
5 4 3 2 1 0 0
50
100
150
200 250 LOAD (lb)
300
350
400
450
500
Fig. B.101: Plugging Length vs Load Curve for Aluminum Pipe Piles 8
PLUGGING LENGTH
7
1" Dia Pipe
6
1.5" Dia Pipe
5
2" Dia Pipe
4
3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.102: Plugging Length vs Penetration Depth Curve for Aluminum Pipe Piles 127
14
1.00 0.90 0.80 0.70
PLR
0.60
0.50 0.40 0.30
1" Dia Pipe
0.20
1.5" Dia Pipe
0.10
2" Dia Pipe
0.00 0
2
4PENETRATION6DEPTH (inch)8
10
12
14
Fig. B.103: PLR vs Penetration Depth Curve for Aluminum Pipe Piles IFR % 0
20
40
60
80
100
120
PENETRATION DEPTH (inch)
0 2 4 6 8 10
1" Dia Pipe 1.5" Dia Pipe 2" Dia Pipe
12 14
Fig. B.104: Penetration Depth vs IFR Curve for Aluminum Pipe Piles B.27: Test No. C-9 Grain size (D50=22.44x10-3 inch), WT at GL, Dr=24.2%, Aluminum
PLUGGING LENGTH (inch)
6 5 4 3 2
1" Dia Pipe 1.5" Dia Pipe
1
2" Dia Pipe 0 0
100
200
300
400
500
LOAD (lb)
Fig. B.105: Plugging Length vs Load Curve for Aluminum Pipe Piles 128
600
PLUGGING LENGTH (Inch)
6 5 4 3 2
1" Dia Pipe 1.5" Dia Pipe
1
2" Dia Pipe 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.106: Plugging Length vs Penetration Depth for Aluminum Pipe Piles 0.90 0.80
1" Dia Pipe
0.70
1.5" Dia Pipe
0.60
2" Dia Pipe
PLR
0.50 0.40 0.30
0.20 0.10 0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.107: PLR vs Penetration Depth Curve for Aluminum Pipe Piles 0
10
20
30
IFR % 40
50
60
70
80
90
PENETRATION DEPTH (inch)
0 2 4 6 8 10
1" Dia Pipe 1.5" Dia Pipe
12
2" Dia Pipe
14
Fig. B.108: Penetration Depth vs IFR Curve for Aluminum Pipe Piles
129
100
B.28: Test No. C-10 Grain size (D50=22.44x10-3 inch), No WT, Dr=24.2%, SS 7
PLUGGING LENGTH (inch)
6 0.5" Dia Pipe
5
1" Dia Pipe 1.5" Dia Pipe
4 3 2 1 0 0
50
100
150
200
250
300
LOAD (lb)
Fig. B.109: Plugging Length vs Load Curve for Stainless Steel Pipe Piles 7 0.5" Dia Pipe
PLUGGING LENGTH
6
1" Dia Pipe
5
1.5" Dia Pipe
4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.110: Plugging Length vs Penetration Depth for Stainless Steel Pipe Piles 1.20 0.5" Dia Pipe 1" Dia Pipe 1.5" Dia Pipe
1.00
PLR
0.80 0.60 0.40 0.20 0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.111: PLR vs Penetration Depth Curve for Stainless Steel Pipe Piles 130
14
0
20
40
IFR %
60
80
100
120
PENETRATION DEPTH (inch)
0 2 4 6 8 10
0.5" Dia Pipe 1" Dia Pipe 1.5" Dia Pipe
12
14
Fig. B.112: Penetration Depth vs IFR Curve for Stainless Steel Pipe Piles B.29 Test No. C-11 Grain size (D50=22.44x10-3 inch), WT at mid height, Dr=24.2%, SS 9
PLUGGING LENGTH (inch)
8 7 6 5 4
0.5" Dia Pipe
3
1" Dia Pipe
2
1.5" Dia Pipe
1 0 0
50
100
150
200
250
300
LOAD (lb)
Fig. B.113: Plugging Length vs Load Curve for Stainless Steel Pipe Piles
PLUGGING LENGTH
9 8
0.5" Dia Pipe
7
1" Dia Pipe 1.5" Dia Pipe
6 5 4 3
2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.114: Plugging Length vs Penetration Depth for Stainless Steel Pipe Piles 131
14
1.80 1.60
0.5" Dia Pipe
1.40
1" Dia Pipe
1.20
1.5" Dia Pipe
PLR
1.00 0.80 0.60 0.40 0.20
0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.115: PLR vs Penetration Depth Curve for Stainless Steel Pipe Piles 0
20
40
60
IFR % 80
100
120
140
160
180
PENETRATION DEPTH (inch)
0 2 4 6 8 10
0.5" Dia Pipe 1" Dia Pipe 1.5" Dia Pipe
12 14
Fig. B.116: Penetration Depth vs IFR Curve for Stainless Steel Pipe Piles B.30 Test No. C-12 Grain size (D50=22.44x10-3 inch), WT at GL, Dr=24.2%, SS
PLUGGING LENGTH (inch)
6 5 4 3 0.5" Dia Pipe 1" Dia Pipe
2
1.5" Dia Pipe 1 0 0
50
100
150
200
250
LOAD (lb)
Fig. B.117: Plugging Length vs Load Curve for Stainless Steel Pipe Piles 132
300
PLUGGING LENGTH (Inch)
6 5 4 3
0.5" Dia Pipe 1" Dia Pipe
2
1.5" Dia Pipe 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.118: Plugging Length vs Penetration Depth Curve for Stainless Steel Pipe Piles 1.00 0.90
0.5" Dia Pipe
0.80
1" Dia Pipe
0.70
1.5" Dia Pipe
PLR
0.60 0.50 0.40 0.30
0.20 0.10 0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.119: PLR vs Penetration Depth Curve for Stainless Steel Pipe Piles 0
20
40
IFR % 60
80
100
120
PENETRATION DEPTH (inch)
0 2 4 6 8 10
0.5" Dia Pipe 1" Dia Pipe 1.5" Dia Pipe
12 14
Fig. B.120: Penetration Depth vs IFR Curve for Stainless Steel Pipe Piles
133
140
B.31: Test No. C-13 Grain size (D50=22.44x10-3 inch), No WT, Dr=30.4%, Aluminum 4.5 Series1
PLUGGING LENGTH (inch)
4
Series2
3.5
Series3
3 2.5 2 1.5 1 0.5 0 0
50
100
150
200 LOAD (lb)
250
300
350
400
450
Fig. B.121: Plugging Length vs Load Curve for Aluminum Pipe Piles 4.5 4
Series1
PLUGGING LENGTH
3.5
Series2
3
Series3
2.5 2 1.5 1 0.5 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.122: Plugging Length vs Penetration Depth Curve for Aluminum Pipe Piles 0.50 0.45 0.40 0.35
PLR
0.30 0.25 0.20 0.15
Series1
0.10
Series2
0.05
Series3
0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.123: PLR vs Penetration Depth Curve for Aluminum Pipe Piles 134
14
0
10
IFR % 30
20
40
50
60
70
PENETRATION DEPTH (inch)
0 2
4 6 8 10
1" Dia Pipe 1.5" Dia Pipe 2" Dia Pipe
12
14
Fig. B.124: Penetration Depth vs IFR Curve for Aluminum Pipe Piles B.32: Test No. C-14 Grain size (D50=22.44x10-3 inch), WT at mid height, Dr=30.4%, Aluminum 10 1" Dia Pipe 1.5" Dia Pipe 2" Dia Pipe
PLUGGING LENGTH (inch)
9 8 7 6 5
4 3 2 1 0 0
100
200
300
400
500
600
LOAD (lb)
Fig. B.125: Plugging Length vs Load Curve for Aluminum Pipe Piles
PLUGGING LENGTH
10 9
1" Dia Pipe
8
1.5" Dia Pipe
7
2" Dia Pipe
6 5 4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.126: Plugging Length vs Penetration Depth Curve for Aluminum Pipe Piles 135
14
1.20 1.00
PLR
0.80 0.60 0.40
1" Dia Pipe 1.5" Dia Pipe
0.20
2" Dia Pipe
0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.127: PLR vs Penetration Depth Curve for Aluminum Pipe Piles 0
20
40
IFR %
60
80
100
120
PENETRATION DEPTH (inch)
0 2 4 6 8 10
1" Dia Pipe 1.5" Dia Pipe 2" Dia Pipe
12 14
Fig. B.128: Penetration Depth vs IFR Curve for Aluminum Pipe Piles B.33 Test No. C-15 Grain size (D50=22.44x10-3 inch), WT at GL, Dr=30.4%, Aluminum 8
1" Dia Pipe
PLUGGING LENGTH (inch)
7
1.5" Dia Pipe
6
2" Dia Pipe
5 4 3 2 1 0 0
100
200
300
400
500
LOAD (lb)
Fig. B.129: Plugging Length vs Load Curve for Aluminum Pipe Piles 136
600
PLUGGING LENGTH (Inch)
8 7
1" Dia Pipe
6
1.5" Dia Pipe 2" Dia Pipe
5 4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.130: Plugging Length vs Penetration Depth Curve for Aluminum Pipe Piles 1.00 0.90 0.80 0.70
PLR
0.60 0.50 0.40 0.30
1" Dia Pipe
0.20
1.5" Dia Pipe
0.10
2" Dia Pipe
0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.131: PLR vs Penetration Depth Curve for Aluminum Pipe Piles 0
20
40
IFR %
60
80
100
0
PENETRATION DEPTH (inch)
2
4 6 8 10
1" Dia Pipe 1.5" Dia Pipe 2" Dia Pipe
12 14
Fig. B.132: Penetration Depth vs IFR Curve for Aluminum Pipe Piles
137
120
B.34: Test No. C-16 Grain size (D50=22.44x10-3 inch), No WT, Dr=30.4%, SS
PLUGGING LENGTH (inch)
6 0.5" Dia Pipe
5
1" Dia Pipe 4
1.5" Dia Pipe
3 2 1 0 0
50
100
150
200
250
300
LOAD (lb)
Fig. B.133: Plugging Length vs Load Curve for Stainless Steel Pipe Piles 6 0.5" Dia Pipe
PLUGGING LENGTH
5
1" Dia Pipe 1.5" Dia Pipe
4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.134: Plugging Length vs Penetration Depth for Stainless Steel Pipe Piles 1.00 0.90
0.5" Dia Pipe
0.80
1" Dia Pipe
0.70
1.5" Dia Pipe
PLR
0.60
0.50 0.40 0.30 0.20 0.10 0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.135: PLR vs Penetration Depth Curve for Stainless Steel Pipe Piles 138
14
0
10
20
30
40
IFR %
50
60
70
80
90
100
PENETRATION DEPTH (inch)
0 2 4 6 8 10
0.5" Dia Pipe 1" Dia Pipe 1.5" Dia Pipe
12
14
Fig. B.136: Penetration Depth vs IFR Curve for Stainless Steel Pipe Piles B.35: Test No. C-17 Grain size (D50=22.44x10-3 inch), WT at mid height, Dr=30.4%, SS 9 0.5" Dia Pipe
PLUGGING LENGTH (inch)
8
1" Dia Pipe
7
1.5" Dia Pipe
6 5 4 3 2 1 0 0
50
100
150
200
250
300
LOAD (lb)
Fig. B.137: Plugging Length vs Load Curve for Stainless Steel Pipe Piles 9 0.5" Dia Pipe
8
1" Dia Pipe
PLUGGING LENGTH
7
1.5" Dia Pipe
6 5 4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
Fig. B.138: Plugging Length vs Penetration Depth for Stainless Steel Pipe Piles 139
14
1.60 0.5" Dia Pipe
1.40
1" Dia Pipe
1.20
1.5" Dia Pipe
PLR
1.00
0.80 0.60 0.40 0.20
0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.139: PLR vs Penetration Depth Curve for Stainless Steel Pipe Piles. 0
20
40
IFR % 60
80
100
120
140
160
PENETRATION DEPTH (inch)
0 2 4 6 8 0.5" Dia Pipe
10
1" Dia Pipe 12
1.5" Dia Pipe
14
Fig. B.140: Penetration Depth vs IFR Curve for Stainless Steel Pipe Piles B.36: Test No. C-18 Grain size (D50=22.44x10-3 inch), WT at GL, Dr=30.4%, SS 8
PLUGGING LENGTH (inch)
7
0.5" Dia Pipe
6
1" Dia Pipe
5
1.5" Dia Pipe
4 3 2 1 0 0
50
100
150 200 LOAD (lb)
250
300
350
Fig. B.141: Plugging Length vs Load Curve for Stainless Steel Pipe Piles 140
400
8 0.5" Dia Pipe
7
PLUGGING LENGTH (Inch)
1" Dia Pipe 6
1.5" Dia Pipe
5 4 3 2 1 0 0
2
4
6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.142: Plugging Length vs Penetration Depth for Stainless Steel Pipe Piles 1.40 0.5" Dia Pipe
1.20
1" Dia Pipe 1.00
1.5" Dia Pipe
PLR
0.80 0.60 0.40 0.20 0.00 0
2
4 6 8 PENETRATION DEPTH (inch)
10
12
14
Fig. B.143: PLR vs Penetration Depth Curve for Stainless Steel Pipe Piles 0
20
40
IFR % 60
80
100
120
0
PENETRATION DEPTH (inch)
2 4 6 8 10
0.5" Dia Pipe 1" Dia Pipe
12
1.5" Dia Pipe 14
Fig. B.144: Penetration Depth vs IFR Curve for Stainless Steel Pipe Piles
141
140