the minimal (resp. maximal) element of its equivalence class, is order preserving. poset quotient = X ⤠Y in P/â¡ â
BRICK POLYTOPES, LATTICE QUOTIENTS & HOPF ALGEBRAS 1 2 3 4
4321 4312
3421
4132
2431 4213
1432
2413
1342
1423
++ −++
1 2 3 4 1 2 3 4
2341
1 2 3 4 1 2 3 4
1 2 3 4
3214 3124 2314
1243
1324 2134 1234
+− ++−
++ −+−
++ +−+
1 2 3 4
1 2 3 4
1 2 3 4
+− +−+
−+ −−+
1 2 3 4
1 2 3 4 1 2 3 4 1 2 3 4
+− +−−
−− −+−
−− +−+
−− −−+
+− −+−
−+ −+−
1 2 3 4
1 2 3 4
1 2 3 4
−+ −++ −+ +−+
1 2 3 4
2143
++ ++−
1 2 3 4
1 2 3 4
3142
4123
++ +++
1 2 3 4
3241
´ cole Polytechnique CNRS & E
1 2 3 4
1 2 3 4
3412
4231
Vincent PILAUD
−− +−− −− −−−
MOTIVATION Combinatorics
permutations
binary trees
binary sequences +++
4321 3421 3241 3214
4231
2431
2341 2314
4312
3412 3142
3124
4213 2413
2143
2134
4132 4123
1342
1324
−++
+−+
++−
−−+
−+−
+−−
1432
1423
1243
−−−
Algebra
1234
Malvenuto-Reutenauer algebra Loday-Ronco algebra FQSym = vect h Fτ | τ ∈ S i PBT = vect h PT | T ∈ BT i P P 0 0 Fτ · Fτ = Fσ PT · P T = PT 00
σ∈τ ¯ τ 0
P
4 Fσ =
σ∈τ ?τ 0 4321
4312
Fτ ⊗ F
τ0
4 Fγ =
P
Xη · Xη0 = Xη+η0 + Xη−η0
B(T, γ) ⊗ A(T, γ) 4Xη =
γ cut
+++
3421
2431 4213
3142
4123 1432
2413
1342
1423 2143
1243
B(η, γ) ⊗ A(η, γ)
γ cut ++−
3241 4132
P
3412
4231
Geometry
T 0 ≤ T 00 ≤ T - 0 % T T
Solomon algebra Rec = vect h Xη | η ∈ ±∗ i
−++
2341
−+−
3214 3124 2314
1324 2134 1234
+−+
+−− −−+ −−−
COMBINATORICS
k -TWISTS
(k, n)-twist = pipe dream in the trapezoidal shape of height n and width k
k -TWISTS 1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
(k, n)-twist = pipe dream in the trapezoidal shape of height n and width k
k -TWISTS 1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
(k, n)-twist = pipe dream in the trapezoidal shape of height n and width k contact graph of a twist T = vertices are pipes of T and arcs are elbows of T
1-TWISTS AND TRIANGULATIONS Correspondence elbow in row i and column j ←→ diagonal [i, j] of the (n + 2)-gon (1, n)-twist T ←→ triangulation T? of the (n + 2)-gon pth relevant pipe of T ←→ pth triangle of T? contact graph of T ←→ dual binary tree of T? elbow flips in T ←→ diagonal flips in T? 1 2 3 4 5
0
4 2 1
5 3
6 1
5 2
3
4
Woo. Catalan numbers and Schubert Polynomials for w = 1(n + 1) . . . 2. Unpub 2004 P. – Pocchiola. Multitriangulations, pseudotriangulations and primitive sorting networks. 2012
1-TWISTS AND TRIANGULATIONS Correspondence elbow in row i and column j ←→ diagonal [i, j] of the (n + 2)-gon (1, n)-twist T ←→ triangulation T? of the (n + 2)-gon pth relevant pipe of T ←→ pth triangle of T? contact graph of T ←→ dual binary tree of T? elbow flips in T ←→ diagonal flips in T? 1 2 3 4 5
0
2 4
1 3
6 1
5
5 2
3
4
Woo. Catalan numbers and Schubert Polynomials for w = 1(n + 1) . . . 2. Unpub 2004 P. – Pocchiola. Multitriangulations, pseudotriangulations and primitive sorting networks. 2012
k -TWISTS AND k -TRIANGULATIONS Correspondence elbow in row i and column j ←→ diagonal [i, j] of the (n + 2k)-gon (k, n)-twist T ←→ k -triangulation T? of the (n + 2k)-gon pth relevant pipe of T ←→ pth k -star of T? contact graph of T ←→ dual graph of T? elbow flips in T ←→ diagonal flips in T?
1 2 3 4 5
1
5 2
3
4
P. – Pocchiola. Multitriangulations, pseudotriangulations and primitive sorting networks. 2012
NUMEROLOGY THM.
The (k, n)-twists are counted by det(Cn+2k−i−j )i,j∈[k], where Cm =
2m 1 m+1 m
.
Jonsson. Generalized triangulations and diagonal-free subsets of stack polyominoes. 2005 P. – Pocchiola. Multitriangulations, pseudotriangulations and primitive sorting networks. 2012 Stump. A new perspective on k -triangulations. 2011
QU.
What is the number of acyclic (k, n)-twists? k\ n 0 1 2 3 4 5 6 7 8 9
1 2 3
4
5
6
7
8
9
10
1 1 1 1 1 1 1 1 1 1 . 2 5 14 42 132 429 1430 4862 16796 . . 6 22 92 420 2042 10404 54954 298648 . . . 24 114 612 3600 22680 150732 1045440 . . . . 120 696 4512 31920 242160 1942800 . . . . . 720 4920 37200 305280 2680800 . . . . . . 5040 39600 341280 3175200 . . . . . . . 40320 357840 3457440 . . . . . . . . 362880 3588480 . . . . . . . . . 3628800
k -TWIST INSERTION Input: a permutation τ = τ1 · · · τn Algo: Insert pipes one by one (from right to left) as northwest as possible Output: an acyclic (k, n)-twist insk (τ ) Exm: Insertion of τ = 31542
5 4 3 2 1
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5 5 4 3 2 1
1 2 3 4 5
5 4 3 2 1
5 4 3 2 1
k -TWIST INSERTION Input: a permutation τ = τ1 · · · τn Algo: Insert pipes one by one (from right to left) as northwest as possible Output: an acyclic (k, n)-twist insk (τ ) Exm: Insertion of τ = 31542
5 4 3 2 1
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5 5 4 3 2 1
1 2 3 4 5
5 4 3 2 1
5 4 3 2 1
k -TWIST INSERTION Input: a permutation τ = τ1 · · · τn Algo: Insert pipes one by one (from right to left) as northwest as possible Output: an acyclic (k, n)-twist insk (τ ) Exm: Insertion of τ = 31542
5 4 3 2 1
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5 5 4 3 2 1
1 2 3 4 5
5 4 3 2 1
5 4 3 2 1
k -TWIST INSERTION Input: a permutation τ = τ1 · · · τn Algo: Insert pipes one by one (from right to left) as northwest as possible Output: an acyclic (k, n)-twist insk (τ ) Exm: Insertion of τ = 31542
5 4 3 2 1
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5 5 4 3 2 1
1 2 3 4 5
5 4 3 2 1
5 4 3 2 1
k -TWIST INSERTION Input: a permutation τ = τ1 · · · τn Algo: Insert pipes one by one (from right to left) as northwest as possible Output: an acyclic (k, n)-twist insk (τ ) Exm: Insertion of τ = 31542
5 4 3 2 1
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5 5 4 3 2 1
1 2 3 4 5
5 4 3 2 1
5 4 3 2 1
k -TWIST INSERTION Input: a permutation τ = τ1 · · · τn Algo: Insert pipes one by one (from right to left) as northwest as possible Output: an acyclic (k, n)-twist insk (τ ) Exm: Insertion of τ = 31542
5 4 3 2 1
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5 5 4 3 2 1
1 2 3 4 5
5 4 3 2 1
5 4 3 2 1
k -TWIST INSERTION Input: a permutation τ = τ1 · · · τn Algo: Insert pipes one by one (from right to left) as northwest as possible Output: an acyclic (k, n)-twist insk (τ ) Exm: Insertion of τ = 31542
5 4 3 2 1
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5 5 4 3 2 1
THM. insk
1 2 3 4 5
5 4 3 2 1
5 4 3 2 1
is a surjection from permutations of [n] to acyclic (k, n)-twists. fiber of a (k, n)-twist T = linear extensions of its contact graph T#.
Exm: insertion in binary search trees
k -TWIST CONGRUENCE congruence = equivalence relation ≡k on Sn defined as the transitive closure of the rewriting rule
DEF. k -twist
U acV1b1V2b2 · · · Vk bk W ≡k U caV1b1V2b2 · · · Vk bk W
if a < bi < c for all i ∈ [k].
4321 3421 3241 3214
2314
4231
2431
2341
2134
4213 2413
2143 1324 1234
PROP.
4312
3412 3142
3124
4321 3421 4132 4123 1342 1243
1423
3241 1432
3214
2431
2341 2314
4231 3412 3142
3124 2134
4312 4213 2413
2143 1324 1234
For any τ, τ 0 ∈ Sn, we have τ ≡k τ 0 ⇐⇒ insk (τ ) = insk (τ 0).
4132 4123
1342 1243
1423
1432
LATTICE CONGRUENCES DEF.
Order congruence = equivalence relation ≡ on a poset P such that:
(i) Every equivalence class under ≡ is an interval of P . (ii) The projection π↓ : P → P (resp. π ↑ : P → P ), which maps an element of P to the minimal (resp. maximal) element of its equivalence class, is order preserving. poset quotient = X ≤ Y in P/ ≡ ⇐⇒ ∃ x ∈ X, y ∈ Y such that x ≤ y in P . If moreover P is a lattice, ≡ is automatically a lattice congruence, compatible with meets and joins: x ≡ x0 and y ≡ y 0 ⇒ x ∧ y ≡ x0 ∧ y 0 and x ∨ y ≡ x0 ∨ y 0. lattice quotient = X ∧ Y and X ∨ Y are the congruence classes of x ∧ y and x ∨ y for arbitrary representatives x ∈ X and y ∈ Y . THM.
The k -twist congruence is a lattice quotient of the weak order.
INCREASING FLIP LATTICE flip in a k -twist = exchange an elbow with the unique crossing between its two pipes increasing flip = the elbow is southwest of the crossing increasing flip order = transitive closure of the increasing flip graph 1 2 3 4 5
5 4 3 2 1
−→
1 2 3 4 5
5 4 3 2 1
−→
1 2 3 4 5
5 4 3 2 1
INCREASING FLIP LATTICE 1 2 3 4
1 2 3 4
1 2 3 4 1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4 1 2 3 4
1 2 3 4
1 2 3 4 1 2 3 4
1 2 3 4
1 2 3 4
INCREASING FLIP LATTICE flip in a k -twist = exchange an elbow with the unique crossing between its two pipes increasing flip = the elbow is southwest of the crossing increasing flip order = transitive closure of the increasing flip graph 1 2 3 4 5
5 4 3 2 1 PROP.
−→
1 2 3 4 5
5 4 3 2 1
−→
1 2 3 4 5
5 4 3 2 1
The increasing flip order on acyclic k -twists is isomorphic to:
• the quotient lattice of the weak order by the k -twist congruence ≡k , • the sublattice of the weak order induced by the permutations of Sn avoiding the pattern 1(k + 2) – (σ1 + 1) – · · · – (σk + 1) for all σ ∈ Sk .
k -RECOILS G (n) = graph with vertex set [n] and edge set {i, j} ∈ [n] i < j ≤ i + k
k
( k
number of acyclic orientations of G (n) =
2
n!
if n ≤ k
k! (k + 1)n−k
if n ≥ k
k -recoils scheme of τ ∈ Sn = acyclic orientation reck (τ ) of Gk (n) with edge i → j for all i, j ∈ [n] such that |i − j| ≤ k and τ −1(i) < τ −1(j)
k -RECOILS k -recoil congruence = equivalence relation ≈k on Sn defined as the transitive closure of the rewriting rule U ijV ≈k U jiV if i + k < j . 4321 3421 3241 3214
2314
4231
2431
2341
2134
4213 2413
2143 1324 1234
PROP.
4312
3412 3142
3124
4321 3421 4132 4123 1342 1243
1423
3241 1432
3214
2431
2341 2314
4231 3412 3142
3124 2134
4312 4132
4213 2413
2143 1324
4123 1342
1432
1423
1243
1234
For any τ, τ 0 ∈ Sn, we have τ ≈k τ 0 ⇐⇒ reck (τ ) = reck (τ 0). Novelli, Reutenauer, Thibon. Generalized descent patterns in permutations and associated Hopf Algebras. 2011
THM.
The k -recoil congruence is a lattice quotient of the weak order.
k -CANOPY The maps insk , cank , and reck define a commutative diagram of lattice homomorphisms: reck
Sn insk
AOk (n) cank
AT k (n)
4321 3421
3214
2341 2314
4231
2431
3241
2134
4312
3412 3142
3124
4321
4213 2413
2143 1324 1234
3421 4132
4123 1342 1243
1423
3241 1432
3214
2431
3124 2134
4312
3412 3142
2341 2314
4231
4213 2413
2143 1324 1234
4132 4123
1342 1243
1423
1432
ALGEBRA
SHUFFLE AND CONVOLUTION For n, n0 ∈ N, consider the set of perms of Sn+n0 with at most one descent, at position n: (n,n0 ) :
S
= {τ ∈ Sn+n0 | τ (1) < · · · < τ (n) and τ (n + 1) < · · · < τ (n + n0)}
For τ ∈ Sn and τ 0 ∈ Sn0 , define shifted concatenation τ τ¯0 = [τ (1), . . . , τ (n), τ 0 (1) + n, . . . , τ 0(n0) + n] ∈ Sn+n0 0 0) 0 −1 (n,n shifted shuffle product τ ¯ τ = (τ τ¯ ) ◦ π π∈S ⊂ Sn+n0 0 convolution product τ ? τ 0 = π ◦ (τ τ¯0) π ∈ S(n,n ) ⊂ Sn+n0
Exm: 12 ¯ 231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312} 12 ? 231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}
5 4 3 2 1
5 4 3 2 1 1 2 3 4 5 concatenation
5 4 3 2 1 1 2 3 4 5 shuffle
1 2 3 4 5 convolution
MALVENUTO & REUTENAUER’S HOPF ALGEBRA ON PERMUTATIONS Combinatorial Hopf Algebra = combinatorial vector space B endowed with product · : B ⊗ B → B coproduct 4 : B → B ⊗ B which are “compatible”, ie.
DEF.
·
B⊗B
B
4
B⊗B
4⊗4
·⊗·
B⊗B⊗B⊗B
I ⊗ swap ⊗ I
B⊗B⊗B⊗B
Malvenuto-Reutenauer algebra = Hopf algebra FQSym with basis (Fτ )τ ∈S and where X X Fσ and 4 Fσ = Fτ ⊗ Fτ 0 Fτ · Fτ 0 =
σ∈τ ¯ τ 0
σ∈τ ?τ 0
Malvenuto-Reutenauer. Duality between quasi-symmetric functions and the Solomon descent algebra. 1995
HOPF SUBALGEBRA k -Twist algebra = vector subspace Twistk of FQSym generated by
PT :=
X
Fτ =
τ ∈S insk (τ )=T
X
Fτ ,
τ ∈L(T# )
for all acyclic k -twists T. Exm: P
1 2 3 4 5
=
X τ ∈S5
THEO. Twistk
Fτ
P
1 2 3 4 5
= F13542 + F15342 + F31542 + F51342 + F35142 + F53142 + F35412 + F53412
P
1 2 3 4 5
= F31542 + F35142
P
1 2 3 4 5
= F31542.
is a subalgebra of FQSym Loday-Ronco. Hopf algebra of the planar binary trees. 1998 Hivert-Novelli-Thibon. The algebra of binary search trees. 2005
GAME: Explain the product and coproduct directly on the k -twists...
PRODUCT P
1 2 3 4
·P
1 2
= (F1423 + F4123 ) · F21 F F142635 142653 F F F 146523 164523 165423 + F146235 F164253 F164235 + F146253 F142365 ++ F614235 ++ F412653 ++ F614253 ++ F416523 ++ F614523 ++ F615423 = + + F 412635 + F461523 + F641523 + F651423 + F412365 + F416235 + F641235 + F416253 + F641253 + F654123 + F465123 + F645123 + F461253 + F461235 = P 1 2 3 4 5 6+ P 1 2 3 4 5 6 + P 1 2 3 4 5 6 + P 1 2 3 4 5 6 + P 1 2 3 4 5 6 + P 1 2 3 4 5 6 + P 1 2 3 4 5 6 + P 1 2 3 4 5 6
k
0
k
0
P
For T ∈ AT (n) and T ∈ AT (n ) acyclic k -twists, PT · PT0 = S PS, where S runs over the interval between T\T0 and T/T0 in the (k, n + n0)-twist lattice.
PROP.
1 2 3 4
1 2
1 2 3 4 5 6
1 2 3 4 5 6
GEOMETRY
PERMUTAHEDRON Permutahedron Permk (n) = conv {(τ (1), . . . , τ (n)) | τ ∈ Sn} \ X |J| + 1 n = H ∩ x ∈ R x ≥ j 4321 2 3421 j∈J ∅6=J ([n] X 4312
3412
4231
= 11 +
3241 4132
2431 4213
3142
4123 1432
2413
1342
1423 2143
1243
2341
3214 3124 2314
1324 2134 1234
[ei, ej ]
1≤i