BTES design-build submit

29 downloads 0 Views 332KB Size Report
Oct 21, 2009 - Antoni Gaudi, Josep Puig I Cadafalch, Lluis Muncunil,. Lluis Domenech y Montaner, Cesar Mar+nell and many others. Guastavino emigrated to ...
INNOVATIVE STRUCTURES AND THE DESIGN-BUILD MODEL OF TEACHING 1

Innovative Structures and the Design-Build Model of Teaching   Ted  Cavanagh    Ph.D. Dalhousie  University   ABSTRACT   Design-­‐Build   projects   placed   in   the   context   of   a   funded   research   agenda   inherently   develop   an   important   and   dis?nct  pedagogical  purpose.  They   extend   the  insufficient   Design-­‐Build   mantra  of  “learning  by  doing”   to  one   that   emphasizes  innova?on.  Students  can  understand   what   research  means  in   architecture,  how   innova?on   is  ini?ated   and  develop  an   ability  to  create  the  condi?ons  for   its  cul?va?on.  Thus  the  augmented  intent   of  Design-­‐Build  could   be   “learning  by   experimen?ng;”   students   become   innovators   and/or  adapters.  Coincidently,  it   moves  the   Design-­‐ Build  studio  into  a  subject  for  diffusion  research,  the  topic  of  this  conference. This   paper   compares   two   sequen?al   Design-­‐Build   studios   that   adapt   innova?ons   from   the   history   of   building   construc?on.   These   adapta?ons   include   reduced   material,   more   difficult   climate,   and/or   the   introduc?on   of   contemporary   techniques   such   as   computer   aids   and   recent   material   innova?ons.   They   are   real   community   projects,  full-­‐scale  applica?ons  that   try   to   facilitate   local   early  adopters  in  the  public.   The   comparison   draws  out   some  significant  similari?es  and  differences  that  might  otherwise  have  passed  unno?ced.

KEYWORDS Design-­‐Build  studio,  innova?ve  structures,  lamella  vault,  ?mbrel  vault

INTRODUCTION   This   paper   is  a   chance   to  reflect   on  two   Design-­‐Build   projects  that   were  built   by  students   in  2010   and  2011   as  part  of  their  architectural  studies.   Each   shelter,   one   built   in   wood   and   the   other   in   masonry,  is   based   on   a   different   historical   structural   technique   not   currently   widely   used.     Each   is   a   vaul?ng   technique,   wood   lamella   and   masonry   ?mbrel,  and  each   appears  to   be  viable  today.  Perhaps   reconsidering   them   using   current   technology   could   lead   to  their  reintroduc?on.  This  turns  out  to  be  a  real   possibility   as   several   other   projects   using   the   techniques  are   discovered  during  the  course   of  design   and  construc?on.

BTES AT ACSA 2012 – DIFFUSION RESEARCH

The   projects   are   large   buildings   with   real   clients   in   order  to  effec?vely  test  their  viability  and   to  push  our   Design-­‐Build   projects   from   the   idealized   research  

2 INNOVATIVE STRUCTURES AND THE DESIGN-BUILD MODEL OF TEACHING

prototype   into   the   realm   of   full-­‐scale   applica?on.   Each   technique   is   adapted   it   to   a   northern   coastal   climate  and  each  is  tested  by  using  minimal  materials   Figure  1:  End  view  of  lamella  structure,  20w  x  70l  x  17h.

and  by  monitoring  its  behaviour  over  ?me.  There  is   a   significant   teaching   by-­‐product.  Any  project   placed   in   the   context   of   research   agenda   develops   an   important   pedagogical   intent   that   enhances   the   standard   Design-­‐Build   mantra   of   “learning  by   doing”   to   an   augmented   Design-­‐Build   intent   of   “learning  by   experimen?ng.”   Coincidently,   it   moves   the   Design-­‐ Build   studio   into   a  subject  for   diffusion   research,  the   topic  of  this  conference.  

1930s.  It  was  designed  by  Gustel  KeiwiW.  St.  Louis  was   also  the  loca?on  of  a  1929   arena  designed  by  KeiwiW   where   the   lamella   sprang   from   20   steel   trusses   so   that   eventually  15,000  seats  had  an  unrestricted  view   of   the  ice  surface.  4  The   arena   lasted   seventy   years   and   KeiwiW   went   on   to   build   many   more   lamella   structures   including   the   Astrodome.   Alvaro   Siza’s   2005   pavilion   at   the   Serpen?ne   uses   a   similar   geometry  but   the   individual   components   vary.5   And   finally,  given   our   situa?on   as  a   student-­‐built   project,   we   spent  some   ?me   studying  the  two   buildings   built   by  Auburn’s  Rural  Studio  in  western  Alabama.        

    Figure  2:  Installing  the  polycarbonate  in  a  shingle  paWern.

HISTORY   OF  LAMELLA   VAULTING   AS   A   STRUCTURAL   SYSTEM   “Lamella   structures   owe   much   to   Friedrich   Zollinger   (1880-­‐1945),   Town   Building   advisor   (1918-­‐1921)   for   Merseburg   /   Saale,   Germany   who   patented   his   “Zollbau”   ?mber   lamella   housing   roofs   in   1921.     He   later   developed   the   system   for   larger   span   roofs   (typically   around   30m   span   in   a   ?ed   arch   format)   which   were  adopted  widely  in   the   1920’s   and  30’s  in   Europe   and   America.”1     Hugo   Häring   used   a   wood   lamella  structure  on  a  one  story  concrete  frame  at  the   Gut   Garkau   farm   of   1923-­‐1926.2   Between   1936   and   1939   Pier   Luigi   Nervi   built   a   number   of   aircrai   hangars   using   precast   concrete   lamellas.3   The   building  historian,  Jesse  Francis,  showed   me  a  barn  in   Faust   Park  in   St.  Louis  in  1994:   he  said   that   this  was   one  of  the   few  remaining  examples  of  a  building   type   that   spread   across   the   mid   west   in   the   1920s   and  

Figure  3:  The  lamellas  in  place  with  temporary  horirontals.          

HISTORY   OF   TIMBREL   VAULTING   AS   A   STRUCTURAL   SYSTEM The  ?mbrel  vault  was  “developed   in  the  14th  century   around   the   Mediterranean,   although   its   precise   origins   are   unknown.  The  ?mbrel   vault   is  also   known   as   a   "masonry   vault",   "Catalan   vault",   "?led   vault",   "laminated   vault",   "flat   vault"   and   "layered   vault"…     The  ?mbrel   vault   does   not   rely   on   gravity   but   on   the   adhesion   of   several   layers   of   overlapping   ?les   which   are   woven   together   with   fast-­‐seong   mortar.   If   just   one  layer   of   thin   ?les  was  used,  the   structure   would   collapse,   but   adding   two   or   three   layers   makes   the   resul?ng   laminated   shell   almost   as   strong   as   reinforced  concrete.”6 Again  this  European   technique  was  imported  to  North   America.   “In   the   1860s   Rafael   Guastavino,   an   architect   trained  in  Barcelona,  turned   a   folk  tradi?on   into   an   industrial   building   technique.   He   revived   a  

INNOVATIVE STRUCTURES AND THE DESIGN-BUILD MODEL OF TEACHING 3

tradi?onal   Mediterranean  thin-­‐?le  structural  masonry   technique   and   used   it   to   build   spans   for   factories  in   Catalonia   during   its   industrializa?on.   …   [influencing]   Antoni   Gaudi,  Josep   Puig   I  Cadafalch,   Lluis  Muncunil,   Lluis   Domenech   y   Montaner,   Cesar   Mar?nell   and   many   others.   Guastavino   emigrated   to   the   United   States  …  bringing  with   him   his  innova?ons   in   ?mbrel   vaul?ng.  …   [and]  built   many  great   public   and   private   spaces   in   the   US   between   the   1880s   and   1962,  the   year   the   company   closed   its   doors.   As   specialist   designers   and   contractors   to   many   prominent   architects,   such   as   McKim   Mead   &   White,   Heins   &   Lafarge,  Cass   Gilbert  and  others,  the  company  used  its   patented   thin-­‐?le   vaul?ng   system   to   create   soaring   structural   masonry   spans   in   over   1000   buildings,   located  primarily  in  the   United   States,  but   also  in   ten   countries  around   the   world.”7  Prominent   among  the   examples  of  this  technique  are  the  Cuban   Art  Schools   and   the  Mapungubwe  Interpreta?on  Center   in  South   Africa   by  Peter   Rich   and   Philipe   Block.8   And   finally,   Michael   Ramage,   doing   his   Masters   at   M.I.T.   when   ?mbrel   vaul?ng,   Guastavino,  and   the   work  of   Eladio   Dieste   was   being   studied,   has   been   involved   in   the   construc?on  of  a  couple   of   domes  built   in   the   south   of  England  at  Pines  Calyx,

COMPARATIVE  HISTORY  AND  STRUCTURE Both   systems   emphasize   span   with   an   economy   of   materials,   lightweight   in   comparison   to   trebeated   construc?on   due   to   their   three-­‐dimensional   distribu?on   of   forces.   Historically,   each   system   an?cipated   and   was   substan?ally   replaced   by   advances   in   construc?on   such   as   space   frame   or   precast  concrete.     The   lamella   is   lighter   and   quicker   to   build   than   the   ?mbrel  vault  and  this  is  evident  in  the  fact  that  it  took   half   the  number   of  hours  of   labour.   Shop  work   could   be   done   before   assembly   of   the   lamella   (assembly   leaves  a  cleaner  site  than  construc?on).  Furthermore,   following  David  Pye,  this  dis?nc?on   can  be  described   in  terms   of   predetermina?on  that   locates  much  more   of   the   work   of   dexterity   and   judgment   in   the   manufacture   of   the   lamellas   and   in   some   of   the   imported   manufactured   material   such   as   the   sheet   materials   used   for   cladding.   Nevertheless,   each   BTES AT ACSA 2012 – DIFFUSION RESEARCH

individual   lamella  was  a  combina?on  of   low-­‐tech   and   high-­‐tech  cuong  technology:  the   outer  perimeter  was   cut   by  hand   using  a   circular   saw   and   jig;   the   angled   ends   were   more   precise   using   a   compound   mitre   radial   arm   saw;   and   the   bolt   holes   and   slots   were   drilled  using  computer-­‐aided  precision  tools. The   form   chosen   for   the   ?mbrel   construc?on   was   similar   to  the  lamella.    Each   was   fundamentally  axial   with  the  structure  bearing  con?nuously  at  or   near   the   ground.     Neither   system   demands   this;   the   lamella   could   have   been   supported   on   columns   instead   of   founda?on  piers  and,   likewise,  shallow   ?mbrel   vaults   are   oien   constructed   that   touch   down   along  beams   or   even   on   columns.     Both   systems   can   be,   and   usually  are,  super  structure   above  a  ground  floor  that   allows   transverse   as   well   as   axial   circula?on.   The   precedents   above,   Nervi,   Haring,  and   Guastavino   all   spring  from  walls  and  columns. A   barrel   vault   is   naturally   generated   by   the   lamella   and   its   geometry   is   much   more   restrained   than   the   large   range   of   possible   ?mbrel   vaults.   The   lamella   structure   had   a   geometrical   rela?onship   between   angle   of   bolt,   degree   of   angle   at   the   end   of   each   individual  lamella,  length  of  the  lamella,  and  the  total   span   of   the   structure  –   thus  the  piece   repeated   and   determined   the   whole.   In   the  ?mbrel   vault,   a   set   of   formal   restraints   was   applied   that   was   not   necessary   to   the   system   of   construc?on.   Thus,   the   whole   was   determined   by   the   added   constraint   of   crea?ng   a   catenary   arch   that   was   supported   at   the   ground,   arches  that  smoothly  progressed  in  sec?on   from  large   to   small.   Effec?vely,  the  catenary  form   aWempted   to   resolve   all   forces   into   compression   and   retain   all  

Figure  4:  Lamella  interior.  

4 INNOVATIVE STRUCTURES AND THE DESIGN-BUILD MODEL OF TEACHING

forces   within   the   cross   sec?on   or   10   cm.   thickness.   Similarly,   in   the  wood  structure:  “All  of   these   lamella   roofs  adopted  very  simple  bolted  connec?ons  and  the   roof   plane   was   primarily   carrying   in-­‐plane   compression.”9   Essen?ally,   both   are   structures   in   compression.   SITUATION  -­‐  LAMELLA  PROGRAM  AND  CLIENT The  2010  project  is  a  shelter  for  eighty  children  where   they  eat   meals  during   their   stay  at   a   theatre   and  art   camp.     The   main   building   of   the   arts   centre   has   several   theatre/gallery/studios   spaces,   one   of   which   had  been   given  over   to  dining   for  the  campers  during   the  summer.  Our  structure  frees  up  this  space  so  that   it   could   return   to   its   original   use.   The   centre   hosts   resident   ar?sts   and   arts   companies.   Ac?vi?es   range   from   holding   workshops   tes?ng   a   new   piece   to   a   complete  outdoor  theatre  season  during  the  summer. Ini?ally,  the  structure  had   been  designed   for   another   loca?on   to   shelter   some   bunkhouses   that   we   had   designed   in   2006.   Building   approval   to   place   the   structure   in   a   school   courtyard   had   been   rescinded   while  the  lamellas  were  being  produced  in  the   school   workshop.   Since   the   courtyard   protected   the   structure  from  the  150  mph  winds,  we  felt  the  type  of   construc?on   was   no   longer   viable   for   the   loca?on   and,   as   a   result,  we   offered   the   building  to   another   community  theatre   group.   It   has   since   weathered   a   force   one   hurricane   in   its   current   loca?on,   half   the   wind   speed   of   the   other,   with   no   damage   what   so   ever.

Figures  5  and  6:  incoming  and  high  ?de,  one  hour  interval.

SITUATION  -­‐  BRICK  SHELL  PROGRAM  AND  CLIENT The   project  is   to   be  used  as  a  camera  obscura  viewing   the   amazing   ?dal   landscape.   In   this   situa?on,   the   ver?cal   rise  of  water   is  dynamically  translated  into  an   extensive  horizontality.  Nowhere  is  ?me  so  evident  as   on   the  Fundy   shore   with   a   ?dal   varia?on   of  over   50   feet.  Just  under  twice  a  day,  and   for  an  amazing   hour   or   so,   water   occupies   the   landscape.   A   small   river,   barely   no?ced,   becomes   a   salt-­‐water   lake.   Great   horizontal   distances   are   covered   as   the   water   moves   ver?cally   over   the   shallow   incline   of   the   landscape.   The  transla?on  of  the  ver?cal  rise  of  50  feet  covers  a   distance  of  over  a  mile.   This  twice  a   day  cycle  of  fiiy  feet  in  height  from   high   to   low   ?de   is   recorded   through   the   device   of   the   camera   obscura.   Observa?on   is   enhanced   by   the   introduc?on   of   various  markers,  real   ?me  measuring   devices   and   objects   recording   points   in   recent   ?dal   and   solar   cycles   or   recent   random   weather   events.  A   seven  year  longitudinal  study  of  the  conversion  of  the   fresh  (brackish)  marsh  to  salt  is  nearing  comple?on.10   It   is   for   a   non-­‐for-­‐profit   community-­‐based   society   advoca?ng  the   restora?on   and   interpreta?on   of   the   ?dal  salt  marsh  at  the  mouth   of  a   river.  The   loca?on   is   a   historic   stopping   place   for   tourists   and   shore   residents   alike.  Its   view   of   Cape   Split   is   sensa?onal,   the  long  beach  for  recrea?onal  use   is  alluring,  and  the   trails   along   the   River   appeals   to   birdwatchers   and   hikers.  

INNOVATIVE STRUCTURES AND THE DESIGN-BUILD MODEL OF TEACHING 5

There  are  many  camera  obscura  pavilions   in  the  world   ac?ng  as  tourist   des?na?ons.  In   our   case,  the  image   of   the   marsh   is   displayed   on   a   viewing   table   in   the   centre   of   the  pavilion  and  a   guide  can  point   and  draw   on   the   table   as   a   way   of   explaining   ac?vity   on   the   marsh   in   real   ?me.   In   addi?on,   the   pavilion   will   be   able   to   project   images   on   to   the   table   captured   at   high   ?de  or   in   other   seasons.  The  use   of  a  recording   device   to   register   the   site   is  par?cularly  appropriate   where  there  is  a  fiiy-­‐foot   ?de   only  evident   for   a  few   hours  a  day.     The  structure   extends  into  the  landscape   and   will   create   a   small   outdoor   theatre   for   nature   talks,  a  point   of  orienta?on   for  the  trails  built   on  the   seven-­‐hectare  site.  

took   two   skilled   carpenters   three   months   and   eight   others  two  months   to  build  the  lamella  dining  pavilion   for   a  total   of  14   man-­‐months.  On  the  other   hand,  the   brick   shell   occupied   seven   unskilled   workers   two   months   and   required   a   second,   later   crew   of   four   unskilled   workers   for   3.5   months   to   complete   the   project  adding  up  to  a  total  of  28  man-­‐months.   The   nature   of   the   wood   structure   allowed   for   pre-­‐ manufacturing   or   shop   work  of  making  the   thousand   or   so   lamellas   to   take  place   in   the   winter   before   the   2010   building   season.   The   construc?on   system   dis?nguished   between   structure   and   cladding   in   a   way  that   the  brick  vault  was   unable  to   do.  During  the  

Figures  8:  Entry  under  construc?on  as  of  October  2011.  

Figures  7:  Laying  ini?al  layer.

COMPARING  PROJECTS  AND  STUDIOS A   comparison   between   the   two   projects   shows   substan?ve   differences.   Fiiy   percent   more   students   were   involved   in   the  wood   lamella.   Engineering  was   equal,   but   the   drawings   of   the   concrete   slab   suppor?ng  the  masonry  vault   were   more  complex.  It   BTES AT ACSA 2012 – DIFFUSION RESEARCH

course   of   construc?on,   conversa?ons   and   group   mee?ngs   were   clearly   about   detailed   design   development.   Very   few   of   the   decisions   about   cladding   had   been   resolved  before  the  structure  was   built,   but   there  was  sufficient   ?me   to   resolve  details   during  the  course  of  construc?on.  This  encouraged   us   to   build   mock-­‐ups   and   try   different   op?ons.   The   lamella   structure   showed   a   clear   affinity   with   contemporary   North   American   design   and   construc?on,   thus   the   language   of   layering   was   understood  and  available.  The  students  were  asked  to   report   on   different   aspects   of   the   building  recording   the   various   debates   and   alterna?ve   solu?ons   during   design   development,   such   things   as   primary   structure,   secondary   structure,   cladding,   and   construc?on  sequence.

6 INNOVATIVE STRUCTURES AND THE DESIGN-BUILD MODEL OF TEACHING 27'-7 1/4"

8-1/4"

5'-10 1/2" 4'-8 3/4"

8'-2"

8'-1 1/4" 7'-2 1/4"

2'-6 3/4"

2'0"

7'-3 1/2"

5'-10 1/2" 4'-8 3/4"

8'-1 1/4" 7'-2 1/4"

8'-2"

3'-7 3/4"

R4'9"

6'9" 6-3/4"

2' 2-1/4"

2'-9 1/4" 2'-9 1/4"

In   contrast   to   the  wood   lamella   structure,   twenty   to   twenty-­‐five  percent  of   the   effort  in  the  brick  vault  was   in   the   floor   and   founda?on   work   that   included   a   solar-­‐heated  slab.  Since   we   formed   materials  on  site,   the  site  showed  much  more   evidence  of  construc?on.   A   large  part  of  the  design  conversa?on  involved  ways   of   accomplishing   the   desired   pre-­‐determined   form.   The   materials   (and   our   inadequate   experience)   resisted  easy  solu?ons  to  ?ght   compound  curves  that   we  had  to  build  for  the  floor  slab’s  wooden  formwork.   The   lack   of   carpentry   experience   made   even   the   scaffolding   a   building   challenge   for   the   students.   It   had  to  allow  access  to  work  inside  and   outside  on  the   constantly   changing   vault.   The   crai   of   bricklaying,   while  not  conven?onal  in  our  applica?on,  came  to  the   forefront.     We   worked   with   the   imprecision   of   brick   (our   thin   bricks   curved   in   two   direc?ons),   the   influence   of   sun   and   humidity,   and   design   of   the   mortar   mix.  In   the   lamella   structure,   Figures  7  and  8:   Sec?on   and  plan  of  camera   obscura.   design  development   created   logically   similar   or   hierarchically   arranged   resolu?ons.  In  the  brick   shell,  it   became   design   crai   that   worked   with   nuance  and  grain  to  develop   design   occasions   based   on   the   encounters   of   phenomena.   The  hand  of  the  individual  was  evident  especially  due   to   our   varying   skill,   experience,   and   choices.   The   students  were  asked   to  record  their   daily  ac?vity  in  a   log   book   partly   because   the   structure   did   not   promote   the   intellectual   abstrac?on   of   debates   and   alterna?ve  solu?ons  to  the  design  development.

7'-9 1/2"

9'-7 1/4"

2'0"

5'-4"

14'11"

11" 11 1/4" 10 1/4"

22'-3 1/4"

Figures  9:  Plan,  entry  from  lei,  smaller  room  is  camera  

References 1

  Buro   Happold,   “Hounslow   East   Timber   Lamella   Roof   Structure,”   case   study,   Trada   Technology,   hWp:// research.Wlchiltern.co.uk/pif294/tdk/case%20studies/ h o u n s l o w % 2 0 e a s t % 2 0 ? m b e r % 2 0 l a m e l l a % 2 0 ro o f %20structure/01%20small.htm   2   Blundell-­‐Jones,   Peter.   Modern   Architecture   through  Case  

Studies  (Boston  :  Oxford  Architectural  Press,  2002). 3

  Robert   Marks,   General   Structures   2   &   Lateral   Forces   (Kaplan   AEC   Architecture,   2004).   See   also   Richard   Bradshaw;  David  Campbell;  Mousa   Gargari;   Amir   Mirmiran;   and  Patrick   Tripeny,    “Special  Structures:   Past,   Present,   and   Future,  “  The   Journal   of  Structural  Engineering,  128/6,   June   2002   and   Wolfgang   Schueller,   Horizontal-­‐span   Building   Structures,  (New  York:  Wiley,  1983). 4   C.D.   Stelzer,   “Bringing   the   Roof   Down”   Riverfront   Times,  

Feb  10,  1999         hWp://www.riverfronomes.com/ content/printVersion/107286/

NOTES   Figure  References Figure  1:  Photo  by  MaW  Kennedy.   Figure  2:  Photo  by  author.   Figure  3:  Photo  by  author. Figure  4:  Photo  by  author. Figure  5:  Photo  by  author. Figure  6:  Photo  by  author. Figure  7:  Photo  by  author. Figure  8:  Photo  by  author. Figure  9:  Drawing  by  Deborah  Montgomery..

5

 Mar?jn   Veltkamp,   Free   form   structural   design:   schemes,   systems   &   prototypes   of   structures   for   irregular   shaped   buildings,  Research  in  Architectural   Engineering   Series,   Vol.   6,  (Amsterdam:  IOS  Press,  2007),  p.54. 6   Kris   De   Decker,   “Tiles  as  a  subs?tute   for  steel:   the  

art   of   the  ?mbrel  vault”  Low  Tech  Magazine,  November  2008. 7

  Michael   H.   Ramage,   “Guastavino’s   Vault   Construc?on   Revisited,”   unpublished,   2007.   See   also,   Lara   Davis,   2010,   “ B u i l d i n g   t h e   S u d u , ”   hWp:// sudu1construc?on.wordpress.com/2010/11/12/applied-­‐ structures-­‐i-­‐sudu-­‐design/  

INNOVATIVE STRUCTURES AND THE DESIGN-BUILD MODEL OF TEACHING 7

8  

 J.   A.   Loomis.   RevoluHon   of  Forms:   Cuba’s  ForgoJen  Art   Schools.   (New   York:   Princeton   Architectural   Press,   1999),   a n d   f o r   t h e   w o r k   o f   P e t e r   R i c h   s e e   h W p : / / www.frameandform.com/en/2009/11/23/centro-­‐de-­‐ interpretacion-­‐mapungubwe-­‐en-­‐sudafrica/   9  Buro  Happold,  “Hounslow  East.”   10   Tony  Bowron,   Nancy   NeaW,  Danika   Van   Proosdij,  Jeremy  

Lundholm,   Jennie   Graham   “Macro-­‐Tidal   Salt   Marsh   Ecosystem   Response   to   Culvert   Expansion”   RestoraHon   Ecology,  Wiley,  first  published  online:  21  Oct  2009

BTES AT ACSA 2012 – DIFFUSION RESEARCH