Jun 4, 2012 - 12 x y(x)+(. â. âx y(x))2 dx. Hint: elementary. Solution. We denote auxiliary function f f(x, y(x),. â
Calculus of Variations solved problems Pavel Pyrih June 4, 2012 ( public domain ) Acknowledgement. The following problems were solved using my own procedure in a program Maple V, release 5. All possible errors are my faults.
1
Solving the Euler equation
Theorem.(Euler) Suppose f (x, y, y 0 ) has continuous partial derivatives of the Rb second order on the interval [a, b]. If a functional F (y) = a f (x, y, y 0 )dx attains a weak relative extrema at y0 , then y0 is a solution of the following equation d ∂f ∂f − = 0. ∂y dx ∂y 0 It is called the Euler equation.
1
1.1
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ 12 x y(x) + ( y(x))2 dx ∂x a Hint: elementary Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = 12 x y(x) + ( y(x))2 ∂x ∂x
in the form f(x, y, z) = 12 x y + z 2 Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ f(x, y(x), y(x)) = 12 x ∂y ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = 2 ( y) ∂z ∂x ∂x and ∂2 ∂ ∂2 f(x, y(x), y(x)) = 2 ( 2 y(x)) ∂x ∂z ∂x ∂x and finally obtain the Euler equation for our functional ∂2 y(x)) = 0 ∂x2 We solve it using various tools and obtain the solution 12 x − 2 (
y(x) = x3 + C1 x + C2 Info. cubic polynomial Comment. no comment
2
1.2
Problem.
Using the Euler equation find the extremals for the following functional r Z b ∂ 3x + y(x) dx ∂x a Hint: elementary Solution. We denote auxiliary function f ∂ y(x)) = 3 x + f(x, y(x), ∂x
r
∂ y(x) ∂x
in the form √ f(x, y, z) = 3 x + z Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ f(x, y(x), y(x)) = 0 ∂y ∂x and ∂ ∂ 1 1 f(x, y(x), y(x)) = q ∂z ∂x 2 ∂ ∂x y and 2
∂ ∂2 ∂ 1 ∂x2 y(x) f(x, y(x), y(x)) = − ∂ ∂x ∂z ∂x 4 ( ∂x y(x))(3/2) and finally obtain the Euler equation for our functional 2
∂ 1 ∂x2 y(x) =0 ∂ 4 ( ∂x y(x))(3/2) We solve it using various tools and obtain the solution
y(x) = C1 x + C2 Info. linear function Comment. no comment
3
1.3
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ x + y(x)2 + 3 ( y(x)) dx ∂x a Hint: elementary Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = x + y(x)2 + 3 ( y(x)) ∂x ∂x
in the form f(x, y, z) = x + y 2 + 3 z Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ f(x, y(x), y(x)) = 2 y ∂y ∂x and ∂ ∂ f(x, y(x), y(x)) = 3 ∂z ∂x and ∂2 ∂ f(x, y(x), y(x)) = 0 ∂x ∂z ∂x and finally obtain the Euler equation for our functional 2 y(x) = 0 We solve it using various tools and obtain the solution y(x) = 0 Info. constant solution Comment. no comment
4
1.4
Problem.
Using the Euler equation find the extremals for the following functional Z b y(x)2 dx a
Hint: elementary Solution. We denote auxiliary function f f(x, y(x),
∂ y(x)) = y(x)2 ∂x
in the form f(x, y, z) = y 2 Substituting we x, y(x) and y (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives 0
∂ ∂ f(x, y(x), y(x)) = 2 y ∂y ∂x and ∂ ∂ f(x, y(x), y(x)) = 0 ∂z ∂x and ∂2 ∂ f(x, y(x), y(x)) = 0 ∂x ∂z ∂x and finally obtain the Euler equation for our functional 2 y(x) = 0 We solve it using various tools and obtain the solution y(x) = 0 Info. zero Comment. no comment
5
1.5
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ y(x)2 + x2 ( y(x)) dx ∂x a Hint: elementary Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = y(x)2 + x2 ( y(x)) ∂x ∂x
in the form f(x, y, z) = y 2 + x2 z Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ f(x, y(x), y(x)) = 2 y ∂y ∂x and ∂ ∂ f(x, y(x), y(x)) = x2 ∂z ∂x and ∂2 ∂ f(x, y(x), y(x)) = 2 x ∂x ∂z ∂x and finally obtain the Euler equation for our functional 2 y(x) − 2 x = 0 We solve it using various tools and obtain the solution y(x) = x Info. linear Comment. no comment
6
1.6
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ y(x) + x ( y(x)) dx ∂x a Hint: elementary Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = y(x) + x ( y(x)) ∂x ∂x
in the form f(x, y, z) = y + x z Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ f(x, y(x), y(x)) = 1 ∂y ∂x and ∂ ∂ f(x, y(x), y(x)) = x ∂z ∂x and ∂2 ∂ f(x, y(x), y(x)) = 1 ∂x ∂z ∂x and finally obtain the Euler equation for our functional 0=0 We solve it using various tools and obtain the solution y(x) = Y(x) Info. all functions Comment. no comment
7
1.7
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ y(x) dx ∂x a Hint: elementary Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = y(x) ∂x ∂x
in the form f(x, y, z) = z Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ f(x, y(x), y(x)) = 0 ∂y ∂x and ∂ ∂ f(x, y(x), y(x)) = 1 ∂z ∂x and ∂2 ∂ f(x, y(x), y(x)) = 0 ∂x ∂z ∂x and finally obtain the Euler equation for our functional 0=0 We solve it using various tools and obtain the solution y(x) = Y(x) Info. all functions Comment. no comment
8
1.8
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ y(x)2 − ( y(x))2 dx ∂x a Hint: missing x Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = y(x)2 − ( y(x))2 ∂x ∂x
in the form f(x, y, z) = y 2 − z 2 Substituting we x, y(x) and y (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives 0
∂ ∂ f(x, y(x), y(x)) = 2 y ∂y ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = −2 ( y) ∂z ∂x ∂x and ∂2 ∂ ∂2 f(x, y(x), y(x)) = −2 ( 2 y(x)) ∂x ∂z ∂x ∂x and finally obtain the Euler equation for our functional ∂2 y(x)) = 0 ∂x2 We solve it using various tools and obtain the solution 2 y(x) + 2 (
y(x) = C1 cos(x) + C2 sin(x) Info. trig functions Comment. no comment
9
1.9
Problem.
Using the Euler equation find the extremals for the following functional Z br ∂ 1+( y(x))2 dx ∂x a Hint: missing x y Solution. We denote auxiliary function f ∂ y(x)) = f(x, y(x), ∂x
r 1+(
∂ y(x))2 ∂x
in the form p f(x, y, z) = 1 + z 2 Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ f(x, y(x), y(x)) = 0 ∂y ∂x and ∂ y ∂ ∂ f(x, y(x), y(x)) = q ∂x ∂z ∂x ∂ 1 + ( ∂x y)2
and 2
2
∂ ∂ ( ∂ y(x))2 ( ∂x ∂ ∂2 2 y(x)) 2 y(x) q ∂x + f(x, y(x), y(x)) = − ∂x ∂ 2 (3/2) ∂x ∂z ∂x ∂ (1 + ( ∂x y(x)) ) 1 + ( ∂x y(x))2 and finally obtain the Euler equation for our functional 2
∂ ∂ ( ∂x y(x))2 ( ∂x 2 y(x))
(1 +
∂ ( ∂x
y(x))2 )(3/2)
−q
∂2 ∂x2
y(x)
∂ 1 + ( ∂x y(x))2 We solve it using various tools and obtain the solution
y(x) = C1 x + C2 Info. linear function Comment. no comment
10
=0
1.10
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ ∂ x( y(x)) + ( y(x))2 dx ∂x ∂x a Hint: missing y Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ ∂ y(x)) = x ( y(x)) + ( y(x))2 ∂x ∂x ∂x
in the form f(x, y, z) = x z + z 2 Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ f(x, y(x), y(x)) = 0 ∂y ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = x + 2 ( y) ∂z ∂x ∂x and ∂2 ∂ ∂2 f(x, y(x), y(x)) = 1 + 2 ( 2 y(x)) ∂x ∂z ∂x ∂x and finally obtain the Euler equation for our functional ∂2 y(x)) = 0 ∂x2 We solve it using various tools and obtain the solution −1 − 2 (
1 y(x) = − x2 + C1 x + C2 4 Info. quadratic function Comment. no comment
11
1.11
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ (1 + x) ( y(x))2 dx ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = (1 + x) ( y(x))2 ∂x ∂x
in the form f(x, y, z) = (1 + x) z 2 Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ f(x, y(x), y(x)) = 0 ∂y ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = 2 (1 + x) ( y) ∂z ∂x ∂x and ∂2 ∂ ∂ ∂2 f(x, y(x), y(x)) = 2 ( y(x)) + 2 (1 + x) ( 2 y(x)) ∂x ∂z ∂x ∂x ∂x and finally obtain the Euler equation for our functional ∂2 ∂ y(x)) − 2 (1 + x) ( 2 y(x)) = 0 ∂x ∂x We solve it using various tools and obtain the solution −2 (
y(x) = C1 + C2 ln(1 + x) Info. not supplied Comment. no comment
12
1.12
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ 2 y(x) ex + y(x)2 + ( y(x))2 dx ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = 2 y(x) ex + y(x)2 + ( y(x))2 ∂x ∂x
in the form f(x, y, z) = 2 y ex + y 2 + z 2 Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ f(x, y(x), y(x)) = 2 ex + 2 y ∂y ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = 2 ( y) ∂z ∂x ∂x and ∂2 ∂ ∂2 f(x, y(x), y(x)) = 2 ( 2 y(x)) ∂x ∂z ∂x ∂x and finally obtain the Euler equation for our functional ∂2 y(x)) = 0 ∂x2 We solve it using various tools and obtain the solution 2 ex + 2 y(x) − 2 (
1 1 1 y(x) = ( cosh(x)2 + cosh(x) sinh(x) + x) sinh(x) 2 2 2 1 1 1 + (− cosh(x) sinh(x) + x − cosh(x)2 ) cosh(x) + C1 sinh(x) + C2 cosh(x) 2 2 2 Info. not supplied Comment. no comment
13
1.13
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ 2 y(x) + ( y(x))2 dx ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = 2 y(x) + ( y(x))2 ∂x ∂x
in the form f(x, y, z) = 2 y + z 2 Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ f(x, y(x), y(x)) = 2 ∂y ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = 2 ( y) ∂z ∂x ∂x and ∂2 ∂ ∂2 f(x, y(x), y(x)) = 2 ( 2 y(x)) ∂x ∂z ∂x ∂x and finally obtain the Euler equation for our functional ∂2 y(x)) = 0 ∂x2 We solve it using various tools and obtain the solution 2 − 2(
y(x) =
1 2 x + C1 x + C2 2
Info. not supplied Comment. no comment
14
1.14
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ 2( y(x))3 dx ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = 2 ( y(x))3 ∂x ∂x
in the form f(x, y, z) = 2 z 3 Substituting we x, y(x) and y (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives 0
∂ ∂ f(x, y(x), y(x)) = 0 ∂y ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = 6 ( y)2 ∂z ∂x ∂x and ∂2 ∂ ∂ ∂2 f(x, y(x), y(x)) = 12 ( y(x)) ( 2 y(x)) ∂x ∂z ∂x ∂x ∂x and finally obtain the Euler equation for our functional ∂2 ∂ y(x)) ( 2 y(x)) = 0 ∂x ∂x We solve it using various tools and obtain the solution −12 (
y(x) = C1 Info. not supplied Comment. no comment
15
1.15
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ ∂ 4x( y(x)) + ( y(x))2 dx ∂x ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ ∂ y(x)) = 4 x ( y(x)) + ( y(x))2 ∂x ∂x ∂x
in the form f(x, y, z) = 4 x z + z 2 Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ f(x, y(x), y(x)) = 0 ∂y ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = 4 x + 2 ( y) ∂z ∂x ∂x and ∂2 ∂ ∂2 f(x, y(x), y(x)) = 4 + 2 ( 2 y(x)) ∂x ∂z ∂x ∂x and finally obtain the Euler equation for our functional ∂2 y(x)) = 0 ∂x2 We solve it using various tools and obtain the solution −4 − 2 (
y(x) = −x2 + C1 x + C2 Info. not supplied Comment. no comment
16
1.16
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ 7( y(x))3 dx ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = 7 ( y(x))3 ∂x ∂x
in the form f(x, y, z) = 7 z 3 Substituting we x, y(x) and y (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives 0
∂ ∂ f(x, y(x), y(x)) = 0 ∂y ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = 21 ( y)2 ∂z ∂x ∂x and ∂2 ∂ ∂ ∂2 f(x, y(x), y(x)) = 42 ( y(x)) ( 2 y(x)) ∂x ∂z ∂x ∂x ∂x and finally obtain the Euler equation for our functional ∂2 ∂ y(x)) ( 2 y(x)) = 0 ∂x ∂x We solve it using various tools and obtain the solution −42 (
y(x) = C1 Info. not supplied Comment. no comment
17
1.17
Problem.
Using the Euler equation find the extremals for the following functional Z br ∂ y(x) (1 + ( y(x))2 ) dx ∂x a Hint: no hint Solution. We denote auxiliary function f ∂ y(x)) = f(x, y(x), ∂x
r y(x) (1 + (
∂ y(x))2 ) ∂x
in the form p f(x, y, z) = y (1 + z 2 ) Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ y)2 1 + ( ∂x ∂ ∂ 1 f(x, y(x), y(x)) = q ∂y ∂x 2 y (1 + ( ∂ y)2 ) ∂x
and ∂ y ( ∂x y) ∂ ∂ f(x, y(x), y(x)) = q ∂z ∂x ∂ y (1 + ( ∂x y)2 )
and ∂2 ∂ f(x, y(x), y(x)) = ∂x ∂z ∂x ∂ ∂ ∂ ∂2 ∂ y(x)) (( ∂x y(x)) (1 + ( ∂x y(x))2 ) + 2 y(x) ( ∂x y(x)) ( ∂x 1 y(x) ( ∂x 2 y(x))) − ∂ 2 (3/2) 2 (y(x) (1 + ( ∂x y(x)) )) 2
∂ ∂ ( ∂x y(x))2 y(x) ( ∂x 2 y(x)) +q +q ∂ ∂ y(x) (1 + ( ∂x y(x))2 ) y(x) (1 + ( ∂x y(x))2 ) and finally obtain the Euler equation for our functional 2
∂ ∂ ∂ ∂ ∂ y(x)) (( ∂x y(x)) (1 + ( ∂x y(x))2 ) + 2 y(x) ( ∂x y(x)) ( ∂x 1 1 1 y(x) ( ∂x 2 y(x))) p + ∂ 2 (3/2) 2 y(x) 2 (y(x) (1 + ( ∂x y(x)) )) 2
∂ ∂ ( ∂x y(x))2 y(x) ( ∂x 2 y(x)) −q −q =0 ∂ ∂ y(x) (1 + ( ∂x y(x) (1 + ( ∂x y(x))2 ) y(x))2 )
18
We solve it using various tools and obtain the solution y(x) =
1 4 + C1 2 x2 + 2 C1 2 x C2 + C2 2 C1 2 4 C1
Info. quadratic function Comment. no comment
19
1.18
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ x y(x) ( y(x)) dx ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = x y(x) ( y(x)) ∂x ∂x
in the form f(x, y, z) = x y z Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ ∂ f(x, y(x), y(x)) = x ( y) ∂y ∂x ∂x and ∂ ∂ f(x, y(x), y(x)) = x y ∂z ∂x and ∂2 ∂ ∂ f(x, y(x), y(x)) = y(x) + x ( y(x)) ∂x ∂z ∂x ∂x and finally obtain the Euler equation for our functional ∂ y(x)) = 0 ∂x We solve it using various tools and obtain the solution −y(x) − x (
y(x) = 0 Info. not supplied Comment. no comment
20
1.19
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ x y(x) + 2 ( y(x))2 dx ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = x y(x) + 2 ( y(x))2 ∂x ∂x
in the form f(x, y, z) = x y + 2 z 2 Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ f(x, y(x), y(x)) = x ∂y ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = 4 ( y) ∂z ∂x ∂x and ∂2 ∂ ∂2 f(x, y(x), y(x)) = 4 ( 2 y(x)) ∂x ∂z ∂x ∂x and finally obtain the Euler equation for our functional ∂2 y(x)) = 0 ∂x2 We solve it using various tools and obtain the solution x − 4(
y(x) =
1 3 x + C1 x + C2 24
Info. not supplied Comment. no comment
21
1.20
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ x y(x) + y(x)2 − 2 y(x)2 ( y(x)) dx ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = x y(x) + y(x)2 − 2 y(x)2 ( y(x)) ∂x ∂x
in the form f(x, y, z) = x y + y 2 − 2 y 2 z Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ ∂ f(x, y(x), y(x)) = x + 2 y − 4 y ( y) ∂y ∂x ∂x and ∂ ∂ f(x, y(x), y(x)) = −2 y 2 ∂z ∂x and ∂2 ∂ ∂ f(x, y(x), y(x)) = −4 y(x) ( y(x)) ∂x ∂z ∂x ∂x and finally obtain the Euler equation for our functional ∂ y(x)) = 0 ∂x We solve it using various tools and obtain the solution x + 2 y(x) + 4 y(x) (
1 y(x) = − x 2 Info. no extremal Comment. no comment
22
1.21
Problem.
Using the Euler equation find the extremals for the following functional r Z b ∂ y(x) 1 + ( y(x))2 dx ∂x a Hint: no hint Solution. We denote auxiliary function f ∂ y(x)) = y(x) f(x, y(x), ∂x
r 1+(
∂ y(x))2 ∂x
in the form p f(x, y, z) = y 1 + z 2 Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives r ∂ ∂ ∂ f(x, y(x), y(x)) = 1 + ( y)2 ∂y ∂x ∂x and y ( ∂ y) ∂ ∂ f(x, y(x), y(x)) = q ∂x ∂z ∂x ∂ 1 + ( ∂x y)2 and ∂ ∂2 f(x, y(x), y(x)) = ∂x ∂z ∂x ∂ ∂2 ∂2 y(x) ( ∂x y(x))2 ( ∂x y(x) ( ∂x ( ∂ y(x))2 2 y(x)) 2 y(x)) q ∂x q − + ∂ 2 )(3/2) ∂ ∂ y(x)) (1 + ( ∂x 1 + ( ∂x y(x))2 1 + ( ∂x y(x))2 and finally obtain the Euler equation for our functional ∂ ( ∂x y(x))2
2
∂ ∂ y(x) ( ∂x y(x))2 ( ∂x 2 y(x))
2
∂ y(x) ( ∂x 2 y(x)) q 1− q + − =0 ∂ 2 (3/2) ∂ ∂ (1 + ( ∂x y(x)) ) 1 + ( ∂x y(x))2 1 + ( ∂x y(x))2 We solve it using various tools and obtain the solution √
1 1 + (e( C1 (x+ C2 )) )2 √ √ y(x) = 2 e( C1 (x+ C2 )) C1 Info. not supplied Comment. no comment 23
1.22
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ y(x) ( y(x)) dx ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = y(x) ( y(x)) ∂x ∂x
in the form f(x, y, z) = y z Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ ∂ f(x, y(x), y(x)) = y ∂y ∂x ∂x and ∂ ∂ f(x, y(x), y(x)) = y ∂z ∂x and ∂2 ∂ ∂ f(x, y(x), y(x)) = y(x) ∂x ∂z ∂x ∂x and finally obtain the Euler equation for our functional ∂ y(x)) = 0 ∂x We solve it using various tools and obtain the solution −(
y(x) = Y(x) Info. not supplied Comment. no comment
24
1.23
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ y(x) ( y(x))2 dx ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = y(x) ( y(x))2 ∂x ∂x
in the form f(x, y, z) = y z 2 Substituting we x, y(x) and y (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives 0
∂ ∂ ∂ f(x, y(x), y(x)) = ( y)2 ∂y ∂x ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = 2 y ( y) ∂z ∂x ∂x and ∂2 ∂ ∂ ∂2 f(x, y(x), y(x)) = 2 ( y(x))2 + 2 y(x) ( 2 y(x)) ∂x ∂z ∂x ∂x ∂x and finally obtain the Euler equation for our functional ∂2 ∂ y(x))2 − 2 y(x) ( 2 y(x)) = 0 ∂x ∂x We solve it using various tools and obtain the solution −2 (
y(x) = 0 Info. not supplied Comment. no comment
25
1.24
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ y(x)2 + 2 x y(x) ( y(x)) dx ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = y(x)2 + 2 x y(x) ( y(x)) ∂x ∂x
in the form f(x, y, z) = y 2 + 2 x y z Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ ∂ f(x, y(x), y(x)) = 2 y + 2 x ( y) ∂y ∂x ∂x and ∂ ∂ f(x, y(x), y(x)) = 2 x y ∂z ∂x and ∂2 ∂ ∂ f(x, y(x), y(x)) = 2 y(x) + 2 x ( y(x)) ∂x ∂z ∂x ∂x and finally obtain the Euler equation for our functional ∂ y(x)) = 0 ∂x We solve it using various tools and obtain the solution −2 x (
y(x) = Y(x) Info. all functions Comment. no comment
26
1.25
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ ∂ y(x)2 + 4 y(x) ( y(x)) + 4 ( y(x))2 dx ∂x ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ ∂ y(x)) = y(x)2 + 4 y(x) ( y(x)) + 4 ( y(x))2 ∂x ∂x ∂x
in the form f(x, y, z) = y 2 + 4 y z + 4 z 2 Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ ∂ f(x, y(x), y(x)) = 2 y + 4 ( y) ∂y ∂x ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = 4 y + 8 ( y) ∂z ∂x ∂x and ∂2 ∂ ∂ ∂2 f(x, y(x), y(x)) = 4 ( y(x)) + 8 ( 2 y(x)) ∂x ∂z ∂x ∂x ∂x and finally obtain the Euler equation for our functional ∂2 ∂ y(x)) − 8 ( 2 y(x)) = 0 ∂x ∂x We solve it using various tools and obtain the solution 2 y(x) − 4 (
1 1 y(x) = C1 cosh( x) + C2 sinh( x) 2 2 Info. two exponentials Comment. no comment
27
1.26
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ ∂ y(x)2 + y(x) ( y(x)) + ( y(x))2 dx ∂x ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ ∂ y(x)) = y(x)2 + y(x) ( y(x)) + ( y(x))2 ∂x ∂x ∂x
in the form f(x, y, z) = y 2 + y z + z 2 Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ ∂ f(x, y(x), y(x)) = 2 y + ( y) ∂y ∂x ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = y + 2 ( y) ∂z ∂x ∂x and ∂2 ∂ ∂ ∂2 f(x, y(x), y(x)) = ( y(x)) + 2 ( 2 y(x)) ∂x ∂z ∂x ∂x ∂x and finally obtain the Euler equation for our functional ∂2 ∂ y(x)) − 2 ( 2 y(x)) = 0 ∂x ∂x We solve it using various tools and obtain the solution 2 y(x) − (
y(x) = C1 sinh(x) + C2 cosh(x) Info. not supplied Comment. no comment
28
1.27
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ 2 y(x) ex + y(x)2 + ( y(x))2 dx ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = 2 y(x) ex + y(x)2 + ( y(x))2 ∂x ∂x
in the form f(x, y, z) = 2 y ex + y 2 + z 2 Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ f(x, y(x), y(x)) = 2 ex + 2 y ∂y ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = 2 ( y) ∂z ∂x ∂x and ∂2 ∂ ∂2 f(x, y(x), y(x)) = 2 ( 2 y(x)) ∂x ∂z ∂x ∂x and finally obtain the Euler equation for our functional ∂2 y(x)) = 0 ∂x2 We solve it using various tools and obtain the solution 2 ex + 2 y(x) − 2 (
1 1 1 y(x) = ( cosh(x)2 + cosh(x) sinh(x) + x) sinh(x) 2 2 2 1 1 1 + (− cosh(x) sinh(x) + x − cosh(x)2 ) cosh(x) + C1 sinh(x) + C2 cosh(x) 2 2 2 Info. not supplied Comment. no comment
29
1.28
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ y(x)2 + ( y(x))2 − 2 y(x) sin(x) dx ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = y(x)2 + ( y(x))2 − 2 y(x) sin(x) ∂x ∂x
in the form f(x, y, z) = y 2 + z 2 − 2 y sin(x) Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ f(x, y(x), y(x)) = 2 y − 2 sin(x) ∂y ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = 2 ( y) ∂z ∂x ∂x and ∂2 ∂ ∂2 f(x, y(x), y(x)) = 2 ( 2 y(x)) ∂x ∂z ∂x ∂x and finally obtain the Euler equation for our functional ∂2 y(x)) = 0 ∂x2 We solve it using various tools and obtain the solution 2 y(x) − 2 sin(x) − 2 (
1 1 1 1 y(x) = ( ex cos(x) − sin(x) ex + e(−x) cos(x) + e(−x) sin(x)) sinh(x) 4 4 4 4 1 x 1 1 (−x) 1 x + (− e cos(x) + sin(x) e + e cos(x) + e(−x) sin(x)) cosh(x) 4 4 4 4 + C1 sinh(x) + C2 cosh(x) Info. exponentials and sin Comment. no comment
30
1.29
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ ∂ y(x)2 − 4 y(x) ( y(x)) + 4 ( y(x))2 dx ∂x ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ ∂ y(x)) = y(x)2 − 4 y(x) ( y(x)) + 4 ( y(x))2 ∂x ∂x ∂x
in the form f(x, y, z) = y 2 − 4 y z + 4 z 2 Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ ∂ f(x, y(x), y(x)) = 2 y − 4 ( y) ∂y ∂x ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = −4 y + 8 ( y) ∂z ∂x ∂x and ∂2 ∂ ∂ ∂2 f(x, y(x), y(x)) = −4 ( y(x)) + 8 ( 2 y(x)) ∂x ∂z ∂x ∂x ∂x and finally obtain the Euler equation for our functional ∂2 ∂ y(x)) − 8 ( 2 y(x)) = 0 ∂x ∂x We solve it using various tools and obtain the solution 2 y(x) + 4 (
1 1 y(x) = C1 cosh( x) + C2 sinh( x) 2 2 Info. not supplied Comment. no comment
31
1.30
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ ∂ 1 ∂ y(x) + y(x) ( y(x)) + ( y(x)) + ( y(x))2 dx ∂x ∂x 2 ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ 1 ∂ ∂ y(x)) = y(x) + y(x) ( y(x)) + ( y(x)) + ( y(x))2 ∂x ∂x ∂x 2 ∂x
in the form 1 2 z 2 0 Substituting we x, y(x) and y (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives f(x, y, z) = y + y z + z +
∂ ∂ ∂ f(x, y(x), y(x)) = 1 + ( y) ∂y ∂x ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = y + 1 + ( y) ∂z ∂x ∂x and ∂2 ∂ ∂ ∂2 f(x, y(x), y(x)) = ( y(x)) + ( 2 y(x)) ∂x ∂z ∂x ∂x ∂x and finally obtain the Euler equation for our functional ∂2 ∂ y(x)) − ( 2 y(x)) = 0 ∂x ∂x We solve it using various tools and obtain the solution 1−(
y(x) =
1 2 x + C1 x + C2 2
Info. quadratic function Comment. no comment
32
1.31
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ ∂ y(x) − y(x) ( y(x)) + x ( y(x))2 dx ∂x ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ ∂ y(x)) = y(x) − y(x) ( y(x)) + x ( y(x))2 ∂x ∂x ∂x
in the form f(x, y, z) = y − y z + x z 2 Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ ∂ f(x, y(x), y(x)) = 1 − ( y) ∂y ∂x ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = −y + 2 x ( y) ∂z ∂x ∂x and ∂2 ∂ ∂ ∂2 f(x, y(x), y(x)) = ( y(x)) + 2 x ( 2 y(x)) ∂x ∂z ∂x ∂x ∂x and finally obtain the Euler equation for our functional ∂2 ∂ y(x)) − 2 x ( 2 y(x)) = 0 ∂x ∂x We solve it using various tools and obtain the solution 1−(
y(x) =
1 x + C1 + C2 ln(x) 2
Info. not supplied Comment. no comment
33
1.32
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ ∂ ( y(x)) (1 + x2 ( y(x))) dx ∂x ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ ∂ y(x)) = ( y(x)) (1 + x2 ( y(x))) ∂x ∂x ∂x
in the form f(x, y, z) = z (1 + x2 z) Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ f(x, y(x), y(x)) = 0 ∂y ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = 1 + 2 x2 ( y) ∂z ∂x ∂x and ∂2 ∂ ∂ ∂2 f(x, y(x), y(x)) = 4 x ( y(x)) + 2 x2 ( 2 y(x)) ∂x ∂z ∂x ∂x ∂x and finally obtain the Euler equation for our functional ∂2 ∂ y(x)) − 2 x2 ( 2 y(x)) = 0 ∂x ∂x We solve it using various tools and obtain the solution −4 x (
y(x) = C1 +
C2 x
Info. hyperbolic function Comment. no comment
34
1.33
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ ( ∂x y(x))2 dx x3 a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
( ∂ y(x))2 ∂ y(x)) = ∂x 3 ∂x x
in the form z2 x3 Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives f(x, y, z) =
∂ ∂ f(x, y(x), y(x)) = 0 ∂y ∂x and ∂ y ∂ ∂ f(x, y(x), y(x)) = 2 ∂x3 ∂z ∂x x
and 2
∂ ∂ ∂2 2 y(x) f(x, y(x), y(x)) = 2 ∂x 3 −6 ∂x ∂z ∂x x and finally obtain the Euler equation for our functional ∂2 ∂x2
∂ y(x) ∂x y(x) + 6 =0 x3 x4 We solve it using various tools and obtain the solution
−2
y(x) = C1 + C2 x4 Info. not supplied Comment. no comment
35
∂ ∂x
y(x) x4
1.34
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ ∂ ( y(x))2 + 2 y(x) ( y(x)) − 16 y(x)2 dx ∂x ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ ∂ y(x)) = ( y(x))2 + 2 y(x) ( y(x)) − 16 y(x)2 ∂x ∂x ∂x
in the form f(x, y, z) = z 2 + 2 y z − 16 y 2 Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ ∂ f(x, y(x), y(x)) = 2 ( y) − 32 y ∂y ∂x ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = 2 ( y) + 2 y ∂z ∂x ∂x and ∂2 ∂ ∂2 ∂ f(x, y(x), y(x)) = 2 ( 2 y(x)) + 2 ( y(x)) ∂x ∂z ∂x ∂x ∂x and finally obtain the Euler equation for our functional ∂ ∂2 y(x)) − 2 ( y(x)) = 0 ∂x2 ∂x We solve it using various tools and obtain the solution −32 y(x) − 2 (
y(x) = C1 cos(4 x) + C2 sin(4 x) Info. trig functions Comment. no comment
36
1.35
Problem.
Using the Euler equation find the extremals for the following functional Z b ∂ ( y(x))2 + cos(y(x)) dx ∂x a Hint: no hint Solution. We denote auxiliary function f f(x, y(x),
∂ ∂ y(x)) = ( y(x))2 + cos(y(x)) ∂x ∂x
in the form f(x, y, z) = z 2 + cos(y) Substituting we x, y(x) and y 0 (x) for x, y and z we obtain the integrand in the given functional. We compute partial derivatives ∂ ∂ f(x, y(x), y(x)) = −sin(y) ∂y ∂x and ∂ ∂ ∂ f(x, y(x), y(x)) = 2 ( y) ∂z ∂x ∂x and ∂2 ∂ ∂2 f(x, y(x), y(x)) = 2 ( 2 y(x)) ∂x ∂z ∂x ∂x and finally obtain the Euler equation for our functional ∂2 y(x)) = 0 ∂x2 We solve it using various tools and obtain the solution −sin(y(x)) − 2 (
y(x) = 0 Info. not supplied Comment. no comment
37