Diameter RD. 8.1 m. 14, 16, 18, 20, 22 m. Receiver height RH. Nominal electric power. Thermal storage hours. 10.6 m. 19.9 MWe. 15 h. 1.2*DR m. 150 MWe. 7.5.
Campo code: a practical framework to design Solar Tower Systems Francisco J. Collado, Jesús Guallar
CSP Sevilla 2017, 21-22 Noviembre
1
Generation of radially staggered heliostat fields n
“Radial staggered” should be the preferred option as compared with “cartesian” and “Fibonacci” (bio-mimetical) ones (Luis Crespo, SolarPACES 2017)
n
DELSOL3 (1986): Radial and azimuthal spacing for 11x11 zones §
(ηopt calculated only for the heliostat in the centre of the zone) LH
n
CAMPO (2012): Nhel1 & two non-dim. radial spacing §
ΔRmin
ΔRmin=DM*⎷3/2
(ηopt calculated for each and every mirror in the field)
CSP Sevilla 2017, 21-22 Noviembre
LW Δaz1
2
Campo: radially staggered (Nrowsi max. density)
ZONE 1
Δaz1=2π/Nhel1; R1=DM*Nhel1/2π
400
0.7
ZONE 2
350
ΔR1=Δr1(-)DM=ΔRmin=DM⎷3/2
0.65
ZONE 1
300
∆R2(m)=∆r2(−)*DM(m)
Δr1=0.866
DM
200
0.55
ZONE 2
∆R1(m)=∆r1(−)*DM(m)
150
Δaz2= Δaz1 /2 (Nhel2=2*Nhel1) ΔR2=Δr2*DM Nrows2=round(2*R1/ΔRmin) ZONE 3
[m]
Nrows1=round(R1/ΔRmin)
0.6
250
50
0 0
ΔR3=Δr3*DM
CSP Sevilla 2017, 21-22 Noviembre
0.5
∆az1 (rad)
100
R1(m) 0.45
50
100
150
200
250
300
350
400
[m]
3
Instantantaneous heliostat optical efficiency ηi Z
HR
intercept, fint (Spot shape, D, cosω, σs )
RR γ
attenuation, fatt(D, dust in the air) D
THT
ρ, reflectivity (mirror availability) n
Y, North blocked area
t
shadowed area
ped. height
X, East
CSP Sevilla 2017, 21-22 Noviembre
cosω, incidence cosine ω s ID
fsb (free s&b area)
Sun
4
Shadowing and blocking in campo (TMY) 150
shadowing heliostat
North problem heliostat
1
100
"shoulder" blocking heliostats
50
αt=315º sector 1
[m]
sector 7
0.9 sector 2
αt=275º
0
sector 3
sector 6
sector 4 sector 5
−50
600
αt=40º
αt=90º
400 0.8
αt=110º
αt=180º
200
"nose" blocking heliostat
α =225º t
0.7
[m]
−100
−150 −150
−100
−50
0
50
100
0 0.6
150
[m]
−200 5
0.5
4s 0
2s
2b 5s
1b
1s
−400
−5
0.4
3s −10
[m]
3b
−15
1
3t
2
−20
Day=345; Solar hour=9 ; R [m]=313.5443; α =−90º; 90º−ε =16.5312º; THT=120 t s fsb=0.501; zona=3; fila=2; num=91
4 5 −25
−30 −30
−600
s
−20
−10
0
10
20
30
−600
−400
−200
0
200
400
600
0.3
[m]
40
[m]
CSP Sevilla 2017, 21-22 Noviembre
5
TMY-Almería, ηfield month (7) solar time ID (W/m2) 9 10 21(January) 11 12 . . 7 8 9 172 (June) 10 11 12 9 10 355 (December) 11 12
month(12)
562 708 775 775
January
693 835 905 939 955 960 489 653 730 753
. .
. .
June July December
sunshine hours (nhj) 152.8
. .
314.3 395.7
. .
160.6
ηannual,i {annual wheighted ave.} =f(ηi,ndj,nhj,ID,i)
CSP Sevilla 2017, 21-22 Noviembre
ηfield=(Σfieldηannual,i)/Nhel (Almería-PSA)
6
Design of the collector field for Noor-III-like (150 MWe) Dimension
Almería
Noor III
DNI [kwh/m /year] Annual sunshine hours Solar field area Number of heliostats Heliostat mirror area Heliost. Diagonal DH Tower optical height THT Receiver power Rec. Diameter RD Receiver height RH Nominal electric power Thermal storage hours
2268 2879,8 185 Ha 2650 2 115.72 m (HE35) 15.7 m 140 m 120 MWth 8.1 m 10.6 m 19.9 MWe 15 h
2500 3100 550 Ha 7400 2 178.5 m (HE54) 19.67 m 200, 225, 250, 275 m 6 660 MWth 14, 16, 18, 20, 22 m 1.2*DR m 150 MWe 7.5
2
Comments
GAST, Marrakesch
Assumed
Assumed
Sener (SolarPACES 2016)
Define:
60
0.866
• The layout (Nhel1, Δr1, Δr2, Δr3) of the collector field (1st optimization) • [THT, RR] (HR=1.2*DR) • Minimum LCOE=(FCR*Invest. Costs+Annual O&M costs)/(Annual Electr.*Ava) CSP Sevilla 2017, 21-22 Noviembre
7
Optimum layouts for Nhel=7400, Sener HE54, Almería (1) 2000
0.75
ηfield=57.58
η
=69.69 η
zone1
=62.41 η
zone2
0.75
ηfield=57.96
zone3
Nhel1=660 Nhel2=2640 Nhel3=4100
1500
2000
=52.52
η
=69.68 η
zone1
=61.10 η
zone2
=54.05
zone3
Nhel1=660 1500 Nhel2=2640 Nhel3=4101
0.7
0.7
ηmin=42.6100
ηmin=46.4140
1000
1000
0.65
0.65 500
[m]
0.6
0
[m]
500
0.6 0
0.55 −500
0.55
−500 0.5
−1000
−1000
−1500 −2000
σ =1.53 ρ=0.9*0.99 s ∆r2=1.0 ∆r3=2.0 Nh1=60 THT=250 m; RR=9.0 m; HR=22.0 m −1500
−1000
−500
0 [m]
500
1000
1500
CSP Sevilla 2017, 21-22 Noviembre
0.45 2000
0.5
σ =1.53 ρ=0.9*0.99 s ∆r2=0.866 ∆r3=1.6 Nh1=60 −1500 THT=250 m; RR=9.0 m; HR=22.0 m −1500
−1000
−500
0 [m]
500
1000
1500
8
Optimum layouts for Nhel=7400, Sener HE54, Almería (2) 2000
2000
0.75
ηfield=58.05
η
=69.68 η
zone1
=61.10 η
zone2
=56.39
field
zone3
Nhel1=660 1500 Nhel2=2640 Nhel3=4100
0.75
η
=54.21
ηzone1=69.64 ηzone2=60.85 ηzone3=51.39
1500 Nhel1=660 Nhel2=2640 Nhel3=4099
0.7 ηmin=45.6050
0.7 ηmin=42.9380
1000
1000
0.65
0.65
500 0.6
0.6
[m]
[m]
500
0
0
0.55 0.55
−500
−500
0.5 0.5
−1000
σ =1.53 ρ=0.9*0.99 s ∆r2=0.866 ∆r3=1.8 Nh1=60 −1500 THT=250 m; RR=9.0 m; HR=22.0 m −1500
−1000
−500
0 [m]
500
1000
1500
CSP Sevilla 2017, 21-22 Noviembre
−1000
σ =1.53 ρ=0.9*0.99 s ∆r2=0.866 ∆r3=1.6 Nh1=60 −1500 THT=250 m; RR=8.0 m; HR=19.0 m −1500
−1000
−500
0 [m]
500
1000
0.45
1500
9
Annual (average) energy balance of the receiver
Annual energy on the receiver ER
(Noor-III)
Annual energy absorbed Eabs
DNI= 2500 (kWh/m2/yr) ER (kWht)=DNI (kWh/m2/yr) x Am (m2) x Nhel x ηfield
Sunshine hours= 3100
Eabs=αsER-Lossesthermal; ηrec=Eabs/ER= αs-Lossesthermal /ER 𝐿𝑜𝑠𝑠𝑒𝑠↓𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =(𝑄↓𝑟𝑎𝑑 +𝑄↓𝑐𝑜𝑛𝑣 ) 𝑁↓ℎ𝑜𝑢𝑟𝑠 =[𝜀 𝜎 (𝑇↓𝑤𝑎𝑙𝑙↑4 −𝑇↓𝑎𝑚𝑏↑4 )+ℎ↓𝑚𝑖𝑥 ( 𝑇↓𝑤𝑎𝑙𝑙 −𝑇↓𝑎𝑚𝑏 ) ] 𝑁↓ℎ𝑜𝑢𝑟𝑠 𝐴↓𝑅 Twall,o=900 K=627 ºC < 650º C, “(αs) Absortance do not decrease with time” (Ho, 2014) Tsalt,o=838 K
ΔTo=900-838=62 ºC; Tsalt,i=563 K
Twall,i=Tsalt,i+ΔTo =625 K
(q’’ constant)
Twall,mean=(Twall,o+Twall,i)/2=(900 K+625 K)/2=763 K CSP Sevilla 2017, 21-22 Noviembre
10
Field and net efficiency 7400 heliostats 62 Nhel=7400, Twall,max =900 K, σs=1.53 mrad,ρ=0.9 x 0.99
60
ηfield
Annual efficiency (%)
58
56
ηabs=ηrec x ηfield
54
52 (89,15%)
(88,21%)
(ηrec=87,17%)
ηabs
(90,17%)
50 (90.89%)
THT 200 m THT 225 m THT 250 m THT 275 m
48
46 7,0
CSP Sevilla 2017, 21-22 Noviembre
8,0
9,0 10,0 11,0 Receiver radius [m]
12,0
11
Net annual electric energy ENET 650
Net annual electric production (GWh-e)
ENET=ηabs*DNI*Am*Nhel*εpower 630
εpower=εpiping*εstorage*εcycle*εauxiliary 610
εcycle=0.412 (SAM, 2017) 590
εauxiliary=0.9 (SAM, 2017) THT 200 m 570
THT 225 m THT 250 m THT 275 m
550 7,0
8,0
9,0 10,0 Receiver radius [m]
CSP Sevilla 2017, 21-22 Noviembre
11,0
12,0
12
LCOE (SAM-NREL costs models, 2017) 13,0
CDirect =[CHEL+ CREC (AR)+ CTOW(TH)+CPOW+CTES]*1.07
12,9
THT=200 m THT 275 m
12,8
THT 250 m
LCOE [c/kWhe]
THT=225 m
12,7 12,6
𝐿𝐶𝑂𝐸=𝐹𝐶𝑅 𝑥 𝐶𝑎𝑝. 𝐶𝑜𝑠𝑡𝑠+ 𝑂&𝑀 𝑐𝑜𝑠𝑡𝑠/𝐸↓𝑁𝐸𝑇 𝑥𝑃𝑙𝑎𝑛𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐹𝐶𝑅(𝐹𝑖𝑥𝑒𝑑 𝐶ℎ𝑎𝑟𝑔𝑒 𝑅𝑎𝑡𝑒)=0.075 (𝑆𝑎𝑛𝑑𝑖𝑎, 2011) 𝐶𝑎𝑝. 𝐶𝑜𝑠𝑡𝑠=𝐶𝐷𝑖𝑟𝑒𝑐𝑡+𝐶𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝐶𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡=𝐶𝐿𝑎𝑛𝑑+ 𝐶𝐸𝑃𝐶 𝑜𝑤𝑛𝑒𝑟+𝐶𝑆𝑎𝑙𝑒𝑠 𝑇𝑎𝑥 𝐶𝐻𝐸𝐿=$130/ (SolarPACES 2017) 𝑚2 𝑃𝑙𝑎𝑛𝑡 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦=0.9 (𝑆𝑎𝑛𝑑𝑖𝑎, 2011) 𝑂&𝑀 𝐶𝑜𝑠𝑡𝑠=$66/(𝑘𝑊−𝑦𝑟)+($3/MWhe)* 𝐸𝑛𝑒𝑡
12,5 12,4 12,3 12,2 6,0
7,0
8,0 9,0 Receiver radius [m]
10,0
CSP Sevilla 2017, 21-22 Noviembre
11,0
13
Conclusions •
Campo is a Matlab© code suited for the optimized design of heliostat fields
•
Whole layout defined with only three parameters: Nhel1, Δr2(-), Δr3(-)
•
Optical efficiency of each and every mirror in the field
•
Annual incident energy (TMY-Almería) for 7400 heliostats in about 180 s
•
Combined with annual thermal losses and εpower, gives net electricity (LCOE)
CSP Sevilla 2017, 21-22 Noviembre
14
Acknowledgments The authors want to thank the Spanish Minister of Economy and Competitiveness, and the European Fund for Regional Development for the funding of this research through the research project ENE2015-67518-R (MINECO/FEDER)
CSP Sevilla 2017, 21-22 Noviembre
15