Apr 13, 2016 - Mohsen Ghafari and John D. Atkinson*. Department of Civil, Structural, and Environmental Engineering, State University of New York at Buffalo, ...
Article pubs.acs.org/est
Catalytic NO Oxidation in the Presence of Moisture Using Porous Polymers and Activated Carbon Mohsen Ghafari and John D. Atkinson* Department of Civil, Structural, and Environmental Engineering, State University of New York at Buffalo, Buffalo, New York 14260, United States ABSTRACT: NO oxidation catalyzed by porous materials is difficult to implement under industrial conditions because moisture in combustion exhaust streams blocks oxidation sites, decreasing NO conversion. In this work, hydrophobic crosslinked polymers are tested as NO oxidation catalysts to overcome these negative impacts associated with moisture. Although activated carbons (ACs) outperform hyper-cross-linked polymers by >88% and low-cross-linked polymers by >463% under dry conditions, their NO conversion drops to 0% when 50% relative humidity is added. Performance of hyper-cross-linked and lowcross-linked polymers, however, decreases by only 19−35% and 40 yr ago,12,13 NOx absorption has gained research traction over the past 5 yr due to continued need for improved stationary source NOx control.14−19 NO, which comprises >90% of NOx in combustion flue gas, has low solubility in water ( XAD4 (0.21 mmol/g) > XAD16N (0.17 mmol/g). The small amount of adsorbed NO for the low-cross-linked polymers justifies their small hydrophilicity increase after NO oxidation (Table 2). However, total NO2 reduction by low-cross-linked polymers remains much lower than hyper-cross-linked polymers (>71% lower) and ACs (>92% lower). Differences in performance of the three classes of catalysts are attributed to differences in their chemical properties, causing different interactions with water (Table 2) and different reactivity with NO2 (Figure 4). AC contains reactive sites at the edges of graphene sheets64 that chemisorb NOx and become oxidized (NO2 reduction with oxygen deposition).62 This is attributed to AC’s structure, which contains unpaired electrons due to the breaking of bonds at the edges of the aromatic sheets that can interact with heteroatoms such as oxygen and nitrogen.47 Polymers do not have similar reactive edge sites. This is an important result, with wide-reaching implications, because industrial AC performance can be hindered by its notable reactivity with other gas components. For example, AC chemisorbs O2 (increasing hydrophilicity), reduces NO2 to NO (generating surface oxygen groups and increasing hydrophilicity), and reacts with SO2 (potentially resulting in the formation and deposition of sulfur complexes on the carbon surface).47,61,65 This is the first study to compare surface reactivity of polymeric materials and AC in an air pollution control application. Identifying the opportunity to wield a
■
AUTHOR INFORMATION
Corresponding Author
*Phone: 716-645-4001; fax: 716-645-3667; e-mail: AtkJDW@ buffalo.edu (J.D.A.). Notes
The authors declare no competing financial interest.
■
ACKNOWLEDGMENTS The authors gratefully acknowledge the State University of New York at Buffalo’s Furnas Hall Materials Characterization Laboratory for providing access to the nitrogen adsorption analyzer and technical assistance with operation and analysis.
■
REFERENCES
(1) Mochida, I.; Korai, Y.; Shirahama, M.; Kawano, S.; Hada, T.; Seo, Y.; Yoshikawa, M.; Yasutake, A. Removal of SOx and NOx over activated carbon fibers. Carbon 2000, 38 (2), 227−239. (2) Guidotti, T. L. The higher oxides of nitrogen: inhalation toxicology. Environ. Res. 1978, 15 (3), 443−472. (3) National Emissions Inventory (NEI) Air Pollutant Emissions Trends Data; United States Environmental Protection Agency: Washington, DC, 2015; http://www.epa.gov/ttn/chief/trends/trends06/national_ tier1_caps.xlsx. (4) Javed, M. T.; Irfan, N.; Gibbs, B. Control of combustiongenerated nitrogen oxides by selective non-catalytic reduction. J. Environ. Manage. 2007, 83 (3), 251−289. 5194
DOI: 10.1021/acs.est.5b05443 Environ. Sci. Technol. 2016, 50, 5189−5196
Article
Environmental Science & Technology (5) Roy, S.; Hegde, M.; Madras, G. Catalysis for NOx abatement. Appl. Energy 2009, 86 (11), 2283−2297. (6) Xu, W.; He, H.; Yu, Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3. J. Phys. Chem. C 2009, 113 (11), 4426−4432. (7) Ohtsuka, H.; Tabata, T. Effect of water vapor on the deactivation of Pd-zeolite catalysts for selective catalytic reduction of nitrogen monoxide by methane. Appl. Catal., B 1999, 21 (2), 133−139. (8) Hwang, I.-H.; Minoya, H.; Matsuto, T.; Matsuo, T.; Matsumoto, A.; Sameshima, R. Removal of ammonium chloride generated by ammonia slip from the SNCR process in municipal solid waste incinerators. Chemosphere 2009, 74 (10), 1379−1384. (9) Chen, H.-Y.; Wei, Z.; Kollar, M.; Gao, F.; Wang, Y.; Szanyi, J.; Peden, C. H. A comparative study of N2O formation during the selective catalytic reduction of NOx with NH3 on zeolite supported Cu catalysts. J. Catal. 2015, 329, 490−498. (10) Bonenfant, D.; Mimeault, M.; Hausler, R. Estimation of the CO2 absorption capacities in aqueous 2-(2-aminoethylamino) ethanol and its blends with MDEA and TEA in the presence of SO2. Ind. Eng. Chem. Res. 2007, 46 (26), 8968−8971. (11) Kasper, J. M.; C, C. A., III; Cooper, C. D. Control of nitrogen oxide emissions by hydrogen peroxide-enhanced gas-phase oxidation of nitric oxide. J. Air Waste Manage. Assoc. 1996, 46 (2), 127−133. (12) Sada, E.; Kumazawa, H.; Kudo, I.; Kondo, T. Absorption of lean NOx in aqueous solutions of NaClO2 and NaOH. Ind. Eng. Chem. Process Des. Dev. 1979, 18 (2), 275−278. (13) Hall, H. J.; Bartok, W. NOx control from stationary sources. Environ. Sci. Technol. 1971, 5 (4), 320−326. (14) Liémans, I.; Alban, B.; Tranier, J.-P.; Thomas, D. SOx and NOx absorption based removal into acidic conditions for the flue gas treatment in oxy-fuel combustion. Energy Procedia 2011, 4, 2847− 2854. (15) Zheng, C. H.; Xu, C. R.; Gao, X.; Zhang, Y. X.; Zhang, J.; Luo, Z. Y.; Cen, K. F. Simultaneous absorption of NOx and SO2 in oxidantenhanced limestone slurry. Environ. Prog. Sustainable Energy 2014, 33 (4), 1171−1179. (16) Kankani, V. G.; Chatterjee, I. B.; Joshi, J. B.; Suchak, N. J. Process intensification in manufacture of nitric acid: NOx absorption using enriched and pure oxygen. Chem. Eng. J. 2015, 278, 430−446. (17) Yasuda, M.; Tsugita, N.; Ito, K.; Yamauchi, S.; Glomm, W. R.; Tsuji, I.; Asano, H. High-efficiency NOx absorption in water using equipment packed with a glass fiber filter. Environ. Sci. Technol. 2011, 45 (5), 1840−1846. (18) Weiss, B. M.; Iglesia, E. Mechanism and site requirements for NO oxidation on Pd catalysts. J. Catal. 2010, 272 (1), 74−81. (19) Sousa, J. P.; Pereira, M. F.; Figueiredo, J. L. Modified activated carbon as catalyst for NO oxidation. Fuel Process. Technol. 2013, 106, 727−733. (20) Zacharia, I. G.; Deen, W. M. Diffusivity and solubility of nitric oxide in water and saline. Ann. Biomed. Eng. 2005, 33 (2), 214−222. (21) Atkinson, J. D.; Zhang, Z.; Yan, Z.; Rood, M. J. Evolution and impact of acidic oxygen functional groups on activated carbon fiber cloth during NO oxidation. Carbon 2013, 54, 444−453. (22) Chien, T.-W.; Chu, H. Removal of SO2 and NO from flue gas by wet scrubbing using an aqueous NaClO2 solution. J. Hazard. Mater. 2000, 80 (1), 43−57. (23) Adewuyi, Y. G.; He, X.; Shaw, H.; Lolertpihop, W. Simultaneous absorption and oxidation of NO and SO2 by aqueous solutions of sodium chlorite. Chem. Eng. Commun. 1999, 174 (1), 21−51. (24) Wang, Z.; Zhou, J.; Zhu, Y.; Wen, Z.; Liu, J.; Cen, K. Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results. Fuel Process. Technol. 2007, 88 (8), 817−823. (25) Chae, J.-O. Non-thermal plasma for diesel exhaust treatment. J. Electrost. 2003, 57 (3), 251−262. (26) Haywood, J. M.; Cooper, C. D. The economic feasibility of using hydrogen peroxide for the enhanced oxidation and removal of nitrogen oxides from coal-fired power plant flue gases. J. Air Waste Manage. Assoc. 1998, 48 (3), 238−246.
(27) Skalska, K.; Miller, J. S.; Ledakowicz, S. Trends in NOx abatement: A review. Sci. Total Environ. 2010, 408 (19), 3976−3989. (28) Zhang, Z.; Atkinson, J. D.; Jiang, B.; Rood, M. J.; Yan, Z. NO oxidation by microporous zeolites: Isolating the impact of pore structure to predict NO conversion. Appl. Catal., B 2015, 163, 573− 583. (29) Loiland, J. A.; Lobo, R. F. Low temperature catalytic NO oxidation over microporous materials. J. Catal. 2014, 311, 412−423. (30) Zhang, Z.; Atkinson, J. D.; Jiang, B.; Rood, M. J.; Yan, Z. Nitric oxide oxidation catalyzed by microporous activated carbon fiber cloth: An updated reaction mechanism. Appl. Catal., B 2014, 148, 573−581. (31) Adapa, S.; Gaur, V.; Verma, N. Catalytic oxidation of NO by activated carbon fiber (ACF). Chem. Eng. J. 2006, 116 (1), 25−37. (32) Zhang, W.; Rabiei, S.; Bagreev, A.; Zhuang, M.; Rasouli, F. Study of NO adsorption on activated carbons. Appl. Catal., B 2008, 83 (1), 63−71. (33) Loiland, J. A.; Lobo, R. F. Oxidation of zeolite acid sites in NO/ O2 mixtures and the catalytic properties of the new site in NO oxidation. J. Catal. 2015, 325, 68−78. (34) Rathore, R. S.; Srivastava, D. K.; Agarwal, A. K.; Verma, N. Development of surface functionalized activated carbon fiber for control of NO and particulate matter. J. Hazard. Mater. 2010, 173 (1), 211−222. (35) Sousa, J. P.; Pereira, M. F.; Figueiredo, J. L. NO oxidation over nitrogen doped carbon xerogels. Appl. Catal., B 2012, 125, 398−408. (36) Wang, M.; Liu, H.; Huang, Z.-H.; Kang, F. Activated carbon fibers loaded with MnO2 for removing NO at room temperature. Chem. Eng. J. 2014, 256, 101−106. (37) Guo, Z.; Xie, Y.; Hong, I.; Kim, J. Catalytic oxidation of NO to NO2 on activated carbon. Energy Convers. Manage. 2001, 42 (15), 2005−2018. (38) Mochida, I.; Kisamori, S.; Hironaka, M.; Kawano, S.; Matsumura, Y.; Yoshikawa, M. Oxidation of NO into NO2 over active carbon fibers. Energy Fuels 1994, 8 (6), 1341−1344. (39) Wu, D.; Xu, F.; Sun, B.; Fu, R.; He, H.; Matyjaszewski, K. Design and preparation of porous polymers. Chem. Rev. 2012, 112 (7), 3959−4015. (40) Kim, S.; Lee, Y. M. Rigid and microporous polymers for gas separation membranes. Prog. Polym. Sci. 2015, 43, 1−32. (41) Wang, W.-Q.; Wang, J.; Chen, J.-G.; Fan, X.-S.; Liu, Z.-T.; Liu, Z.-W.; Jiang, J.; Hao, Z. Synthesis of novel hyper-cross-linked polymers as adsorbent for removing organic pollutants from humid streams. Chem. Eng. J. 2015, 281, 34−41. (42) Davankov, V.; Tsyurupa, M. P. Hypercrosslinked Polymeric Networks and Adsorbing Materials: Synthesis, Properties, Structure, And Applications; Elsevier: Oxford, UK, 2010; Vol. 56. (43) Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60 (2), 309−319. (44) Ó rfão, J.; Silva, A.; Pereira, J.; Barata, S.; Fonseca, I.; Faria, P.; Pereira, M. Adsorption of a reactive dye on chemically modified activated carbonsinfluence of pH. J. Colloid Interface Sci. 2006, 296 (2), 480−489. (45) Meng, Q. B.; Yang, G.-S.; Lee, Y.-S. Sulfonation of a hypercrosslinked polymer adsorbent for microwave-assisted desorption of adsorbed benzene. J. Ind. Eng. Chem. 2014, 20 (4), 2484−2489. (46) Meng, G.; Li, A.; Yang, W.; Liu, F.; Yang, X.; Zhang, Q. Mechanism of oxidative reaction in the post crosslinking of hypercrosslinked polymers. Eur. Polym. J. 2007, 43 (6), 2732−2737. (47) Bansal, R. C.; Goyal, M. Activated Carbon Adsorption; CRC Press: Boca Raton, FL, 2005. (48) Liu, Q.-Q.; Wang, L.; Xiao, A.-G.; Yu, H.-J.; Tan, Q.-H. A hypercross-linked polystyrene with nano-pore structure. Eur. Polym. J. 2008, 44 (8), 2516−2522. (49) Klose, W.; Rincón, S. Adsorption and reaction of NO on activated carbon in the presence of oxygen and water vapour. Fuel 2007, 86 (1), 203−209. (50) Ahn, J.-H.; Jang, J.-E.; Oh, C.-G.; Ihm, S.-K.; Cortez, J.; Sherrington, D. C. Rapid generation and control of microporosity, 5195
DOI: 10.1021/acs.est.5b05443 Environ. Sci. Technol. 2016, 50, 5189−5196
Article
Environmental Science & Technology bimodal pore size distribution, and surface area in Davankov-type hyper-cross-linked resins. Macromolecules 2006, 39 (2), 627−632. (51) Mochida, I.; Shirahama, N.; Kawano, S.; Korai, Y.; Yasutake, A.; Tanoura, M.; Fujii, S.; Yoshikawa, M. NO oxidation over activated carbon fiber (ACF). Part 1. Extended kinetics over a pitch based ACF of very large surface area. Fuel 2000, 79 (14), 1713−1723. (52) Mochida, I.; Kawabuchi, Y.; Kawano, S.; Matsumura, Y.; Yoshikawa, M. High catalytic activity of pitch-based activated carbon fibres of moderate surface area for oxidation of NO to NO2 at room temperature. Fuel 1997, 76 (6), 543−548. (53) Davydov, E.; Gaponova, I.; Pariiskii, G.; Pokholok, T.; Zaikov, G. Reactivity of polymers on exposure to nitrogen dioxide. Chemistry Chemical Technol. 2010, 4 (4), 281−290. (54) Pariiskii, G. B.; Gaponova, I. S.; Davydov, E. Y. Reactions of nitrogen oxides with polymers. Russ. Chem. Rev. 2000, 69 (11), 985− 999. (55) Ruggeri, M. P.; Nova, I.; Tronconi, E. Experimental study of the NO oxidation to NO2 over metal promoted zeolites aimed at the identification of the standard SCR rate determining step. Top. Catal. 2013, 56 (1−8), 109−113. (56) Stanmore, B.; Tschamber, V.; Brilhac, J.-F. Oxidation of carbon by NOx, with particular reference to NO2 and N2O. Fuel 2008, 87 (2), 131−146. (57) Zhang, W.-J.; Bagreev, A.; Rasouli, F. Reaction of NO2 with activated carbon at ambient temperature. Ind. Eng. Chem. Res. 2008, 47 (13), 4358−4362. (58) Foley, N.; Thomas, K.; Forshaw, P.; Stanton, D.; Norman, P. Kinetics of water vapor adsorption on activated carbon. Langmuir 1997, 13 (7), 2083−2089. (59) Horikawa, T.; Sakao, N.; Do, D. Effects of temperature on water adsorption on controlled microporous and mesoporous carbonaceous solids. Carbon 2013, 56, 183−192. (60) Gao, X.; Liu, S.; Zhang, Y.; Luo, Z.; Ni, M.; Cen, K. Adsorption and reduction of NO2 over activated carbon at low temperature. Fuel Process. Technol. 2011, 92 (1), 139−146. (61) Shirahama, N.; Moon, S.; Choi, K.-H.; Enjoji, T.; Kawano, S.; Korai, Y.; Tanoura, M.; Mochida, I. Mechanistic study on adsorption and reduction of NO2 over activated carbon fibers. Carbon 2002, 40 (14), 2605−2611. (62) Muckenhuber, H.; Grothe, H. The heterogeneous reaction between soot and NO2 at elevated temperature. Carbon 2006, 44 (3), 546−559. (63) Jeguirim, M.; Tschamber, V.; Brilhac, J.; Ehrburger, P. Interaction mechanism of NO2 with carbon black: effect of surface oxygen complexes. J. Anal. Appl. Pyrolysis 2004, 72 (1), 171−181. (64) Radovic, L. R. Active sites in graphene and the mechanism of CO2 formation in carbon oxidation. J. Am. Chem. Soc. 2009, 131 (47), 17166−17175. (65) Lopez, D.; Buitrago, R.; Sepulveda-Escribano, A.; RodriguezReinoso, F.; Mondragon, F. Low temperature catalytic adsorption of SO2 on activated carbon. J. Phys. Chem. C 2008, 112 (39), 15335− 15340. (66) Rademann, J.; Smerdka, J.; Jung, G.; Grosche, P.; Schmid, D. Alkylating polymers: resin-released carbenium ions as versatile reactive intermediates in polymer-assisted solution-phase synthesis. Angew. Chem., Int. Ed. 2001, 40 (2), 381−385. (67) Imamura, S. Chloromethylated polystyrene as a dry etchingresistant negative resist for submicron technology. J. Electrochem. Soc. 1979, 126 (9), 1628−1630. (68) Long, C.; Liu, P.; Li, Y.; Li, A.; Zhang, Q. Characterization of hydrophobic hypercrosslinked polymer as an adsorbent for removal of chlorinated volatile organic compounds. Environ. Sci. Technol. 2011, 45 (10), 4506−4512.
5196
DOI: 10.1021/acs.est.5b05443 Environ. Sci. Technol. 2016, 50, 5189−5196