hood of Comodoro Rivadavia, in Patagonia (Astra, Saavedra and Rada Tilly), and their essential oils were analyzed by. GC-FID/MS. Results obtained by the ...
Mazzuca et al.
Chemical Composition and Bioactivity of Acantholippia seriphioides Essential Oils from Patagonia Marcia Mazzuca*1, Javier Berezosky1, Roberto C. Cerdá1, María Elena Arce2, Catalina van Baren3, Paola Di Leo Lira3 and Arnaldo Bandoni3 Departamento de Química. 2Departamento de Biología, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco. 9000 Comodoro Rivadavia, Argentina.
1
3
Cátedra de Farmacognosia. Facultad de Farmacia y Bioquímica. Universidad de Buenos Aires. Junín 956, 2º piso (C 1113 AAD) C.A. de Buenos Aires, Argentina. Abstract The aerial parts of Acantholippia seriphioides (A. Gray) Mold. were collected from three sites in the neighborhood of Comodoro Rivadavia, in Patagonia (Astra, Saavedra and Rada Tilly), and their essential oils were analyzed by GC-FID/MS. Results obtained by the analysis indicated chemovariability in the oils from these sites when matched with other sites. Monoterpene hydrocarbons (92.6–95.1%) were the main group of constituents in all populations, mainly thymol (33.7–38.5%) p-cymene (26.5–35.3%) and g-terpinene (8.3–12.7%). Essential oils were submitted to biological assays in order to assess their general toxic activity on Artemia salina, and the inhibition effects in the germination and seedling growth of Lactuca sativa. Saavedra sample, associated with greater limonene, carvone, carvacrol and p-cymene contents, was the most active to the A. salina test (LD50 = 23,08 μg/mL-1). Astra sample, associated to a greater relative proportion of g-terpinene, thymol methyl ether and neral, was the most active to the germination and seedling growth test (IC50=1.86 μg/mL-1). Saavedra sample also showed high activity (IC50= 37.53 μg/mL-1). The bioactivities were not proportional to the content of present active monoterpenes. Key Word Index Acantholippia seriphioides, Verbenaceae, essential oils, GC-FID/MS, brine shrimp, allelopathic interaction.
Introduction Acantholippia seriphiodes (A. Gray) Moldenke is a ligneous, small and fragrant plant distributed in the arid regions of Argentina, in the provinces of La Pampa, San Juan, Mendoza, San Luis, Neuquén, Chubut and Santa Cruz. It is endemic in the region (1) and lives in rocky and stony soils (2). The genus is original to South America and includes six species (3). Acantholippia seriphioides is commonly known as “tomillo andino” (Andes thyme) or “tomillo de la sierra” (mountain thyme) and has been given several healing properties (4, 5). In traditional medicine, its infusions are used to treat stomach aches and indigestion (6, 7). It is used locally in combination with other species of the region for the treatment of influenza (8); the Mapuches (patagonia natives) who live in the Patagonian steppe use its leaves and flowers as seasoning and flavoring, and it is also used to aromatize the traditional infusion “mate” (9). Although this plant has interesting organoleptic properties due to its similarity with the European
thyme (Thymus vulgaris), the consumption of A. seriphioides is avoided by the guanacos in Patagonia throughout the year (10). Acantholippia seriphioides is one of the species with special interest to national institutions like INTA (National Institute of Agrotechnology), mainly because it belongs to the group of threatened species derived from its extensive use in herbal applications, drink formulations, the preparation of composite “mate” herbs (traditional infusions) and popular medicine. Therefore, its harvesting and commerce make it a source of income for the local populations (11). Biological activities of the essential oil of A. seriphioides have been evaluated in several regions of the central, northwest and south regions of the country (12-14), as has the chemical composition, with carvacrol, thymol, and g-terpinene being the main components reported. Other components reported in smaller amounts were p-cymene and limonene. The reported compositions were quantively different according to the origin, also noticeable by their aromatic profiles, suggesting
*Address for correspondence
1041-2905/11/0001-03$14.00/0—© 2011 Allured Business Media 26/Journal of Essential Oil Research
Vol. 23, May/June 2011
A. seriphioides
the existence of four possible chemotypes (12-14). In the San Luis region the so called “carvacrol-p-cymene-g-terpinene,” “thymol-p-cymene” and “dihydrocarvone-limonene” was found (13). In Mendoza province, as well as in the northeast of Chubut province, the predominant chemotype detected was “carvacrol-p-cymene,” and in Rio Negro Province the chemotype detected was “geraniol” (14). This last one resulted in greater oil efficiency and more interesting quality (14). Nevertheless, these reports on the chemical composition were preliminary (12-14). The essential oils of A. seriphioides from other regions of the country have been biologically evaluated, verifying the antioxidant activity in peanut oil (15), antibacterial properties
against the Paenibacillus larvae microorganism, responsible for the breeding of domestic bees disease (16, 17) and also insect and acarus repellent activity (18). It is known that essential oils rich in phenolic components, such as thymol and carvacrol, present inhibiting activity on the germination of seeds and growth of seedlings (19); furthermore, the inhibitory activity of these pure compounds on the germination of seeds of several food species and other herbs was also reported (20, 21), as well as from several nonoxygenated monoterpene components such as a-terpinene, p-cymene and g-terpinene (22). The toxicity test on Artemia salina allows detecting and evaluating possible toxic components. Due to its sensitivity,
Table I. Qualitative and quantitative oil composition of A. seriphioides of different collection sites, listed in order of elution in the DB-5 column. Peak
RIa
RIb
(DB-5)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
932 935 946 960 988 992 1002 1011 1017 1020 1024 1025 1032 1054 1088 1089 1095 1112 1160 1170 1180 1186 1232 1235 1240 1244 1255 1289 1298 1345 1347 1362 1373 1420 1439 1490 1506 1510 2000 2200
RIa
RIb
(DB-5)
(DB-Wax)
(DB-Wax)
924 932c,e 946c 952c,e 988c,e 988c 1002c 1008c 1014c,e 1020c,e 1024c,e 1025c,e 1033c 1053c 1086c 1089c 1094c 1103c 1167c 1174c,e 1179c 1185c,e 1232c,e 1241c 1235c,e 1239c,e 1264c,e 1289c,e 1298c,e 1350c 1349c 1359c 1379c,e 1417c 1439c 1496c 1505c,e 1506c 2000c,e 2200c,e
1034 1032 1076 1541 1174 1282 1176 -- 1188 1280 1203 1218 1246 1255 1290 -- 1553 -- -- 1611 -- 1706 1621 -- 1694 1758 1740 2198 2239 1668 1745 1733 1765 1620 1628 1696 1741 1737 2000 2200
1038 1036d,e 1078d 1538d,e 1168d,e 1283e 1177d -- 1189d,e 1275d,e 1206d,e 1213d 1238d 1251d 1289d -- 1555d,e -- -- 1615e -- 1709d,e 1618e -- 1691e 1754e 1737e 2194e 2240e 1662d 1744e 1735d 1763e 1617d 1630d 1696d 1745d,e 1740d 2000e 2200e
c
Compound
d
a-Thujene a-Pinene Camphene Benzaldehyde Myrcene 2-Octanone a-Phellandrene D-3-Carene* a-Terpinene p-Cymene Limonene b-Phellandrene cis-b-Ocimene g-Terpinene Terpinolene p-Cymenene* Linalool 2,2-Dimethyl-3.4-octadienal* Umbellulone* Terpinen-4-ol p-Cymen-8-ol* a-Terpineol Thymol methyl ether Hexyl isovalerate* Neral Carvone Geranial Thymol Carvacrol Citronellyl acetate Thymol acetate Neryl acetate Geranyl acetate trans-Caryophyllene Aromadendrene Viridiflorene b-Bisabolene cis-a-Bisabolene Eicosane Docosane
Total
Area (%)
Astra
Rada Tilly
Saavedra
0.1 0.7 0.1 0.1 2.2 0.1 0.2 0.1 3.2 26.5 0.7 0.2 0.1 12.7 0.3 0.1 0.4 0.1 0.5 1.4 0.1 0.2 2.2 0.1 3.0 0.9 3.2 33.7 1.4 0.2 0.1 0.1 0.9 1.0 0.4 0.5 0.1 0.1 0.5 0.7
0.1 0.2 0.1 0.1 1.2 0.1 0.1 0.1 2.7 35.3 0.9 0.1 0.1 8.3 0.2 0.1 0.2 0.1 0.3 1.5 0.1 0.1 0.8 0.1 0.8 0.8 1.1 38.5 1.5 0.2 t t 0.2 0.7 0.4 0.6 0.1 0.1 0.3 0.4
0.2 0.2 0.1 0.1 1.7 0.1 0.2 0.1 3.1 29.4 2.4 0.1 0.1 10.4 0.2 0.3 0.3 0.1 0.3 1.3 0.1 0.1 0.8 0.1 0.5 3.2 0.7 34.8 2.7 0.2 t t 0.1 0.9 0.5 0.4 0.1 0.1 0.5 0.7
99.2
98.6
97.2
*Tentative identification; t: traces (0.05). It shows that the essential oil exhibited inhibition effects in the seedling growth of plant species relative to the control. Astra and Saavedra samples showed the greatest growth inhibiting activities. In the growth inhibition test of hypocotyl, the Saavedra sample had the greatest inhibition effect on the smaller tested dose. Rada Tilly sample was the least active for both seed germination and root elongation tests. This sample contained higher relative proportion of thymol and p-cymene than the remaining two. The biological tests applied to these essential oils were positive in all the cases and proportional to the applied doses. Nevertheless, the intensity of the obtained results was variable according to the sample. The bioactivity was not proportional to the content of present monoterpenes. The differences could be due more to some possible synergy of several molecules than to the concentration of some of the active major components separately. It is possible that the activity of the main components is modulated by other present molecules in smaller amounts (25). Acknowledgements
The authors thank the University of Patagonia San Juan Bosco (project UNSJB PI734), and the University of Buenos Aires (projects B014 and 20020090200401) for financial support; and María Flores from Cátedra Estadística for statistical analysis support.
References 1.
2.
3.
4.
5.
6.
F.O. Zuloaga and O. Morrone, Catálogo de las Plantas Vasculares de la República Argentina Volumen II, Missouri Botanical Garden Press., St. Louis (1999). M.E. Pascual, K. Slowing, E. Carretero, D Sánchez Mata, A. Villar, Lippia: traditional uses, chemistry and pharmacology: a review. J Ethnopharmacology 76, 201-214 (2001). M.N. Correa, Flora Patagónica Parte VI Dicotyledones Gamopétalas (Ericaceae a Calyceracerae). Colección científica del INTA, Bs. As. (1999). S. Molares, A. Ladio, Ethnobotanical review of the Mapuche medicinal flora: Use patterns on a regional scale. J Ethnopharmacology, 122, 251–260 (2009). A. Ladio, M. Lozada, Human ecology, ethnobotany and traditional practices in rural populations inhabiting the Monte region: Resilience and ecological knowledge. J Arid Environments, 73, 222–227 (2009). M. Toursarkissian, Plantas Medicinales de la Argentina. Hemisferio Vol. 23, May/June 2011
A. seriphioides
7. 8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Sur, Buenos Aires (1980). E.L. Ratera, M.O. Ratera, Plantas de la Flora Argentina Empleadas en Medicina Popular. Hemisferio Sur, Buenos Aires (1980). S. Gonzalez, S. Molares, Plantas Medicinales Utilizadas en Comunidades Rurales del Chubut, Patagonia Argentina. BLACPMA 3, 58-62 (2004). A. Ladio, El Uso Actual de Plantas Nativas Silvestres y Comestibles en Poblaciones Mapuches del NO de la Patagonia BLACPMA 3, 30-33 (2004). S. Puig, F. Videla, S. Monge, V. Roig, Seasonal Variations in Guanaco Diet (Lama guanicoe Müller 1776) and Food Availability in Northern Patagonia, Argentina. J Arid Environments, 34, 215–224 (1996). M.A. Elechosa, M.A. Juárez, A.M. Molina, C. van Baren, P. Di Leo Lira, C.I. Viturro, A.C. Molina, II Congreso Mundial de Jardines Botánicos. Barcelona, (2004). B. Strasser, E. Fernández, A.L. Bandoni, M.A. Juárez, M.A. Elechosa, Estudios para la Conservación de una Población de Acantholippia seriphioides (A. Gray) Mold. en San Luis y de las Variaciones en la composición de su aceite esencial. Iº Congreso Latinoamericano de Fitoquímica, Buenos Aires 30 (2002). P. Di Leo Lira, M.A. Elechosa, C.M. van Baren, M.A. Juárez, A.M. Molina, A.L. Bandoni, E.A. Fernández, E. Martínez, Composición del aceite esencial de A. seriphioides (A. Gray) Mold. en poblaciones de San Luis y Mendoza. Boletín de la Soc. Argentina de Botánica, 42, 87 (2007). A.L. Bandoni, M.A. Juárez, A.M. Molina, M.A. Elechosa, M.A. López, Evaluación de calidad de esencia de tomillo andino Acantholippia seriphiodes (A. Gray) Mold. de poblaciones de la Patagonia Argentina. XII Congreso Nacional de Recursos Naturales Aromáticos y Medicinales, Córdoba 37 (1998). D.M. Maestri, J.A. Zygadlo, A.L. Lamarque, D.O. Labuckas, C.A. Guzmán, Effect of some essential oils on oxidative stability of peanut oil. Grasas y Aceites, 47, 397-400 (1996). S.R. Fuselli, S.B.G. De La Rosa, L.B. Gende, M.J. Eguaras, R. Fritz, Antimicrobial activity of some Argentinian wild plant essential oils against Paenibacillus larvae larvae, causal agent of American foulbrood (AFB). J Apicultural Research, 45, 2-7 (2006). S.R.Fuselli, S.B. García De La Rosa, M.J. Eguaras, R. Fritz, M Ndagijimana, L. Vannini, M.E. Guerzoni, Efficacy of indigenous plant essential oil andean thyme (Acantholippia seriphioides A. Gray) to control American foulbrood (AFB) in honey bee (Apis mellifera L.) hives. J Essen Oil Res, 19, 514-519 (2007). S. Ruffinengo, M. Eguaras, I. Floris, C Faverin, P. Bailac, M. Ponzi, LD50 and repellent effects of essential oils from argentinian wild plant species on Varroa destructor. J Eco Entomology, 98, 651655 (2005). I. Uremis, M. Arslan, M.K. Sangun, Herbicidal activity of essential oils on the germination of some problem weeds. Asian J Chemistry, 21, 3199-3210 (2009). I.M. Chung, T.D. Khanh, O.K. Lee, A. Ahmad, Chemical constitutents from ajwain seeds (Trachyspermum ammi) and inhibitory activity of thymol, lupeol and fatty acids on barnyardgrass and radish seeds. Asian J Chemistry, 19, 1524-1534 (2007).
Vol. 23, May/June 2011
21. S. Azirak, S. Karaman, Allelopathic effect of some essential oils and components on germination of weed species. Acta Agriculturae Scandinavica. Section B: Soil and Plant Science 58, 88-92 (2008). 22. E.M.V.Z.J. Jiménez-Osornio,; J. Kumamoto, C. Wasser, Allelopathic activity of Chenopodium ambrosioides L. Biochemical Systematic and Ecology, 24, 195-205 (1996). 23. D.R. George, O.A.E. Sparagano, G. Port, E. Okello R.S. Shiell, J.H. Gu, Toxicity of plant essential oils to different life stages of the poultry red mite, Dermanyssus gallinae, and non-target invertebrates. Medical and Veterinary Entomology. 24, 9-15 (2010). 24. A.R. Gohari, A. Hadjiakhoondi, S.E. Sadat-Ebrahimi, S. Saeidnia, A. Shafiee, Cytotoxic terpenoids from Satureja macrantha C. A. Mey. Daru 13, 177-181 (2005). 25. F. Bakkali, S. Averbeck, D. Averbeck M. Idaomar, Biological effects of essential oils - A review. Food and Chemical Toxicology. 46, 446 - 475 (2008). 26. R.P. Adams, Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed. Allured Publ. Corp., Carol Stream, IL (2007). 27. Wiley/NIST. The Wiley/NBS registry of mass spectral data. 8th Ed. J. Wiley & Sons, Inc., New York/NIST/EPA/NIH (2005) Mass Spectral Library, vers. 2.0. (2008). 28. N.W. Davies, Gas Chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20M phases. J. Chromatogr., 503, 1-24 (1990). 29. B.N. Meyer, N.R. Ferrigni, J.E. Putman, L.B. Jacobsen, D.E. Nicholls, J.L. Mc Laughlin, Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica, 45, 31-34 (1982). 30. T.W. Sam, Toxicity testing using the Brine shrimp Artemia salina. Colegate S.M., Molineux R.J. eds. Bioactive Natural Products, CRC Press, Boca Raton, 441-456 (1993). 31. M.C. Sobrero, A. Ronco, Ensayos Toxicológicos y Metodológicos de la Evaluación de Calidad de Agua. Chapter 4, Gabriela Castillo Morales, Ottawa (2004). 32. P. Dewick, Medicinal Natural Products. A Biosynthetic Approach. John Wiley and Sons, Chichester (1997). 33. M. Hudaib, E. Speroni, A.M. Di Pietra, V. Cavrini GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. J Pharm Biomed Anal., 29, 691-700 (2002). 34. S. Tewtrakul, S. Yuenyongsawad, S. Kummee, L. Atsawajaruwan, Chemical components and biological activities of volatile oil of Kaempferia galanga Linn. Thaiscience, 503-507 (2004). 35. A.P. Murray, A. P., M.A. Frontera, M.A. Tomas, M. C. Mulet, Gas chromatography-mass spectrometry study of the essential oils of Schinus longifolia (Lindl.) Speg., Schinus fasciculata (Griseb.) I. M. Johnst., and Schinus areira L. Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 60, 25-29 (2005). 36. P.N. De Lira, J.K. Da Silva, E.H. Andrade, P.J. Sousa, N.N. Silva, J.G. Maia, Essential oil composition of three Peperomia species from the Amazon, Brazil. Natural product communications, 4, 427-430 (2009). 37. M.M. Rebelo, J.K.R. Da Silva, E.H.A. Andrade, J.G.S. Maia, Antioxidant capacity and biological activity of essential oil and methanol extract of Hyptis crenata Pohl ex Benth. Brazilian. J Pharmacognosy, 19, 230-235 (2009).
Journal of Essential Oil Research/31