Chromium(III) Complexes with Some Optically Active

2 downloads 0 Views 4MB Size Report
Nov 24, 2015 - Chromium(III) Complexes with Some Optically Active cr-Hydroxy Acids ... assigned to d - d transitions in pseudo octahedral sym m etry. The structure o f the com ... of transition metal ions [12, 13]. ... solved in methanol and the absorption spectra ..... [23] D. Sutton, Electronic Spectra o f T ransition M etal.
Chromium(III) Complexes with Some Optically Active cr-Hydroxy Acids M. S. El-Shahawi* and A. A. El-Bmdary C h e m istry D e p a rtm e n t, F a c u lty o f Science a t D a m ia tta , M a n so u ra U n iv e rsity , D a m ia tta , E g y p t Z. N a tu rfo rs c h . 4 8 b , 2 8 2 - 2 8 6 (1993); received S e p te m b e r 9 /N o v e m b e r 23, 1992 C h ro m iu m C o m p le x e s, a - H y d r o x y A cid s, IR S p e c tra , C D S pectra C o m p le x e s o b ta in e d fro m C rC l3P y 3 w ith som e o p tic a lly active a -h y d ro x y acids h a v e been c h a ra c te riz e d by e le m en tal a n aly sis, m ag n e tic su sc e p tib ility , v ib ra tio n a l (IR ), e le ctro n ic a n d c irc u la r d ic h ro ism (C D ) sp e c tra . T h e m a g n e tic su sce p tib ility d a ta a re close to th e sp in -o n ly v alue fo r a d 3 c h ro m iu m (III) ion in o c ta h e d ra l o r d isto rte d o c ta h e d ra l sy m m etry . T h re e ( C r - C l ) v ib ra tio n a l m o d e s in th e re g io n 4 1 0 - 2 9 0 c m “ 1 a re observed fo r som e o f th e c o m p le x ­ es in d ic a tin g C 2l. local sy m m e try o f lig a n d a to m s a r o u n d the c h ro m iu m (III). In th e e le c tro n ic sp e c tra tw o p e a k s a re o b se rv e d in th e ra n g e 1 6 9 4 9 - 18018 a n d 2 2 9 8 6 - 2 4 5 7 0 c m '1. T h e y a re assig n ed to d - d tra n s itio n s in p se u d o o c ta h e d ra l sy m m e try . T he stru c tu re o f th e c o m p le x es is likely to be facial since s tro n g a n d well d efin ed C o tto n effects are o b se rv ed . T h e p a ra m e te rs (D B. /?3S) fo r th e c o m p le x es p ro v id e re a ss u ra n c e t h a t p y rid in e n itro g e n is p reserv ed .

Introduction

The chemistry of chromium is of considerable interest [1], Chrom ium (III) is considered to be es­ sential to mammals for the maintenance of glu­ cose, lipid and protein metabolism, but chromium(VI) is reported to be toxic [2]. The carcinogen­ icity of chromium(VI) is considered in terms of the uptake/reduction model [3]. Little work has been carried out on the nonaqueous preparations of chrom ium (III) com­ pounds with naturally occurring ligands [4, 5], However, for aqueous media a large num ber of chromium (III) complexes with a-hydroxy acids have been reported [6-11]. The coordinating properties of the title ligands and their coordina­ tion com pounds seem to be implied in the thera­ peutic activity displayed by drugs o f transition metal ions [12, 13]. The present investigation deals with the characterization of the complexes of chromium(III) with some optically active a-hydroxy acids in methanol.

used without further purification. The complex C rC l 3Py 3 was prepared by the method of Taft et al. [14] and was stored in a vacuum desiccator over CaCl2. Preparation o f the complexes

To a solution of CrCl 3Py 3 (lm m ol) in dry methanol, the appropriate weights of the a-hydroxy acid are added to obtain 1:1 and 1:3 chromium(III) ligand molar ratios. The mixture was then refluxed with constant stirring. A num ­ ber of complexes appeared to be formed in less than one hour, however, all solutions were re­ fluxed for 4 h. The solutions were then reduced in volume cooled to room tem perature, and 50 cm 3 ether were added. Crystalline solids separated out. They were washed with ether and finally dried in a desiccator. The solid complexes were then redis­ solved in methanol and the absorption spectra were measured at room tem perature. Chrom ium was determined as oxide by the method reported [15]. Physical measurements

Experimental Reagents and materials

D-tartaric (Tar), L-malic (Mai), L-mandelic (M an) and L-lactic (Lac) acids were o f reagent grade. BDH pyridine (Py) and m ethanol were * R e p rin t re q u e sts to D r. M . E l-S h ah a w i.

Present address: C h e m istry D e p a rtm e n t, F a c u lty o f Sci­ ence. U A E U n iv e rsity . A I - A I N 17551 U n ite d A ra b E m ira te s. V erlag d e r Z e itsc h rift fü r N a tu rfo rs c h u n g , D -W -7 4 0 0 T ü b in g e n 0 9 3 2 - 0 7 7 6 /9 3 /0 3 0 0 -0 2 8 2 /$ 01.0 0 /0

The IR, UV-visible and circular dichroism spec­ tra were measured from KBr disks with a Perkin Elmer 457 spectrometer, a Varian 634 S spectrom ­ eter and an instrum ent described elsewhere [16], respectively. Magnetic measurements were made on a Johnson M atthey magnetic balance. Silica gel TLC plates (Merck 60 F 254) 10x20 cm were em­ ployed. Results and Discussion

The prepared complexes are listed in Table I to ­ gether with their elemental analyses as well as with

Unauthenticated Download Date | 11/24/15 7:31 AM

M . S. E l- S h a h a w i- A . A. E l-B in d a ry • C h ro m iu m (III) C o m p le x e s w ith S o m e O p tic a lly A ctiv e a -H y d ro x y A cids

283

T a b le I. A n a ly tic al d a ta ; ro o m te m p e ra tu re m a g n e tic m o m e n ts //(B . M .) a n d p h y sical p ro p e rtie s o f th e com plexes. Com pound

P e rc en tag e c a lc u la te d (fo u n d ) Cr C H

N

C o lo u r

Veff ^ß,n

M .p . [ C]

Cl

C r (T a r )3P y 3

7.0 (6.8)

43.7 (43.9)

4.0 (3.7)

5.7 (5.4)

-

p u rp le

3.9

189

C r(M a l)3P y 3

7.6 (7.3)

47.0 (47.4)

4.4 (4.2)

6.1 (5.9)

-

violet

4.05

142

C r (M a n )3P y 3

7.0 (6.8)

63.0 (62.7)

4.9 (5.1)

5.7 (5.5)

-

g reen

4.0

170

C r(L a c )3P y 3

9.4 (9.6)

49.6 (50.0)

5.4 (5.7)

7.6 (7.8)

-

g reen violet

3.87

140

C r 2(T a r)2P y 4

14.6 (14.4)

47.2 (46.8)

3.4 (3-2)

7.9 (8.1)

-

p u rp le

3.4

187

C r2(M a n )2P y 4C l2

13.1 (12.8)

54.6 (54.1)

4.0 (3.9)

7.0 (7.2)

9.0 (8.7)

g reen

3.42

197

C r2(L a c )2P y 4C l2

15.6 (15.9)

46.8 (47.0)

4.1 (4.3)

8.4 (8.1)

15.6 (15.7)

g reen

3.45

160

C r2(M a l)2P y 4C l2

13.7 (13.9)

44.4 (44.6)

3.7 (3.5)

7.3 (7.6)

9.3 (9.6)

p u rp le

3.4

176

other physical and chemical properties. The ele­ mental analyses indicate that the complexes ob­ tained from the 1:3 ratio of reagents have the formula [C r(L -H ) 3Py3], where L = Tar, Mai, M an or Lac. The complexes formed from the 1:1 ratio have the formula [Cr2( L - 2 H ) 2Py 4Cl2] except for D -tartaric acid which forms the complex C r(T a r-3 H ) 2Py4. The complexes are purple or green violet in colour and have fairly low melting points (< 200 °C). The magnetic susceptibility data (3.4-4.05 B.M .) are close to the spin-only value for a d 3 chromium(III) ion in octahedral or slightly distorted octahedral ligand field with a 4A 2 ground state. The higher values of the magnetic susceptibilities observed for the complexes C r(L -H ) 3Py 3 suggest a mixing of 4A 2 with the terms derived from the excited state 4T2. The mix­ ing is possibly due to the difference in the field strength of the environment [17]. The lower values of the magnetic moment for the complexes pre­ pared in 1:1 ratio suggest the form ation of dimeric structures [ 10], The significant IR frequencies o f the complexes with relevant bands of the free ligands and their probable assignments are given in Table II. The strong broad bands in the ranges 3290-3460 and 3020-3100 cm -1 observed in the hydroxy acids are tentatively assigned to OH stretching vibrations, because there are no bands in these ranges in

DL-amino-rc-butyric acid which has no hydroxyl group [18, 19]. The largest bathochromic shift (3 5 -9 0 c m '1) for the OH group upon coordina­ tion is expected for the complexes prepared in 1:1 ratio [18, 19]. In these complexes, the oxygen atom of the hydroxyl group may participate in the for­ m ation of a C r - O bond, and the hydrogen bond which is present in the free ligand may break or be­ come weaker for these compounds. However, for the complexes prepared in 1:3 ratio, the position of the absorption bands corresponding to the OH stretching vibration mode agree with the absorp­ tion bands of the free ligand, showing that the oxygen atom of the OH group does not participate in the form ation o f C r-O . Displacements o f the C O O - symmetric stretches by 2 0 -2 5 cm -1 to lower wavenumbers and of the antisymmetric stretches by 2 0 -6 0 cm " 1 to higher wavenumbers are observed, showing that the car­ boxylate groups of the hydroxy acids are probably involved in the coordination [19], Three (C r-C l) vibrational modes in the region 410-290 cm -1 for the complexes [Cr2(L - 2 H ) 2Py 4Cl2], L = Mai, M an or Lac are observed, indicating C2v local symmetry of ligand atoms around the chromium rather than C3v which would allow two bands [20]. C r - N stretching vibrations were also observed in the range 365-310 cm ' 1 for most of the prepared complexes.

Unauthenticated Download Date | 11/24/15 7:31 AM

284

M . S. E l- S h a h a w i- A . A. E l-B in d a ry • C h r o m iu m (II I) C o m p le x e s w ith S om e O p tic a lly A ctive g -H y d ro x y A cids

T a b le 11. S ig n ifican t IR freq u en cies (cm ') o f the co m p le x es, w ith re le v a n t b a n d s o f free lig a n d in b ra c k e ts, a n d b a n d assig n m en ts. Com pound

VasCOO-

vOH

vsC O O "

Av

v (C r-N )

v ( C r - C l)

C r ( T a r ) 3P y 3

3450 (3450)

1620 (1590)

13 5 0 ,1 3 6 0 (1380)

270

370, 320, 300

-

C r (M a l)3P y 3

3455 (3460)

1625 (1595)

1360 (1400)

265

3 6 0 ,3 1 6 , 290



C r ( M a n ) 3P y 3

3460 (3460)

1650 (1610)

1350 (1390)

300

3 7 0 .3 1 6 , 290

C r(L a c )3P y 3

3295 (3290)

1640 (1620)

1360 (1380)

240

3 7 5 ,3 1 0 , 295



C r 2( T a r)2P y 4

3470

1650

1360

295

360, 340, 300



C r ,(M a l) 2P y4C l2

3480

1625

1350

275

3 8 0 ,3 3 5 , 295

370, 330, 285

C r ,( M a n ) 2Py4C l2

3485

1630

1355

275

365, 340, 316

2 9 0 ,3 1 0 , 290

C r 2(L a c )2P y 4C l2

3340

1645

1355

290

360, 340, 310

370, 320, 295

gesting symmetry reduction of these com pounds m. The spectra of the complexes formed in 1:1 ratio are different from those prepared in 1:3 ratio con­ firming the form ation of different types of struc­ tures involving more extensive replacement of the initial ligands by hydroxy acid ligands. Bonding of the tartrate ligand to chromium (III) could be ei­ ther through two carboxyl groups; or one hydroxy and one carboxyl group [22 ], or dimers could be formed by tartrate bridges [ 10]. The param eters D q, B, and ß 35 have been calcu­ lated by Tanabe-Sugano procedures [21, 23] and are summarized in Table III. The Dq values of the complexes are close to that of the chloride ion (D q

The electronic spectra of the complexes are sum ­ marized in Table III, and representative spectra are given in Fig. 1. Two peaks are observed in the ranges 16949-18018 and 22986-24570 cm “ 1 and are assigned to 4A2g —» 4T2g and 4A2g —> 4T lg(f} d - d transitions, respectively, in the octahedral and pseudooctahedral symmetry [21]. A nother strong peak is observed in the range 29 411 — 32258 cm - 1 for some of the complexes and is assigned to 4A2g —> 4T lg(p) d - d transitions. The spectra of the complexes C r 2(M al) 2Py4Cl2; Cr 2(Lac)2Py 4Cl2 and Cr(Lac) 3Py 3 reveal that the spin forbidden transition at 22988-24390 cm “ 1 gives higher absorption coefficients than the spin allowed band at 16948-17 794 cm -1 (Fig. 1) sug­

T a b le III. E le ctro n ic sp e c tra (cm ') a n d c irc u la r d ic h o rism (n m ) d a ta o f th e c o m p le x es w ith lig a n d field p a ra m e te rs in m e th a n o l. Complex C r(Tar),Pyi Cr(M al),Py, Cr(Lac),Py, Cr(M an),Py, Cr,(Tar),Py4 Cr,(M al),Py,Cl, Cr,(Lac),Py,Cl, C r2(M an)2Py2Cl,

__» -»T A lg(0

4A2g- 4T 2g vi

4A

17921 18018 17094 17 544 17794 17921 16949 17391

23 809 24570 23 255 23 809 24390 24096 22986 23255

v2

2g

4A2g _»4tA lg(p)

B

Ä5

CD (nm)

559 638 597 606 645 592 584 560

0.61 0.70 0.65 0.66 0.70 0.65 0.64 0.61

44 5 (-), 490( + ), 570( + ), 590(+), 620(+, sh) 384(+), 440( + ), 486( + ), 550(-), 594( + ), 640(-), 654(-) 4 0 0 (-),4 7 0 (-),5 3 0 (-), 580( + ), 630(-) 290( + ), 4 0 0 (-), 5 26(-). 590( + ), 655(-), 670(-) 410( —), 520( + ), 550( + ), 590( + ), 650(-), 640(-), 654(-) 386( + ), 440( +), 480( - ) , 550( +), 590( - ) , 640( - ) , 650(-) 405( —), 475( —), 5 34(-), 580(+), 630(-) 300( + ) , 410( + ) , 545( + ) , 595( - . w), 650( - )

V3 -

34482 29411 30303 31250

1792 1802 1709 1754 1779 1792 1695 1739

* (B fo r th e C r(III) io n is 918 cm ')•

Unauthenticated Download Date | 11/24/15 7:31 AM

M . S. E l- S h a h a w i- A . A . E l-B in d a ry • C h ro m iu m (III) C o m p le x e s w ith S om e O p tic a lly A ctiv e a -H y d ro x y A cid s

Wavelength ( n m )

Fig. la . E le c tro n ic s p e c tra of th e C r2(L a c )2P y 4C l2, -----------; C r 2(L a c )3P y 3, C r2(M a l)2P y 4C l2, --------in m e th a n o l.

co m p lex es, ------- a n d

Wavelength ( n m )

F ig. 1 b. C irc u la r d ic h ro is m sp e c tra o f th e co m p lex es, C r2(T a r) 2P y 4, ----------- a n d C r(T a r)3P y 3, -------in m e th a ­ nol.

for CrClg- is 1318 cm -1) and provide reassurance that pyridine nitrogen rather than chlorine binding is preserved [24, 25], The ligand field strengths of the complexes can be arranges in the order: C r(M al) 3Py 3 > C r 2(M al) 2Py4Cl2 = C r(Tar) 3Py 3 > Cr 2(Tar)2Py4 > C r(M an) 3Py 3 > Cr 2(M an) 2Py4Cl2 > Cr(Lac) 3Py 3 > C r 2(Lac) 2Py4Cl2. The same infor­ m ation regarding the coordinating capacity of the «-hydroxy acids arranges in the above order is also confirmed from the values of ß 35 for these com­ plexes. The ß 35 values are slightly higher compared to the range observed for C rN 3X 3 chromophores (ß i5: 0.58-0.65) [26] or CrS 6 systems (/?35: 0 .4 4 -

285

0.45). Hence the chelates appear to involve C rN 30 3 and/or C rN 20 2Cl2 chromophores. The ß values for most of the 1:3 complexes are higher than those of the 1:1 complexes. This is probably due to the fact that not all chlorine ligands in CrCl 3Py 3 have been replaced by the a-hydroxyacid ligand in the 1:1 ratio, or it could be due to config­ urational dissymmetry and vicinal effects of the coordinated a-hydroxy acid [ 10]. The results of the CD spectra are summarized in Table III, and representative spectra are given in Fig. lb. The observed C otton effects confirm that the a-hydroxy acids are complexed with Chromium(III) ion to produce optically active octa­ hedral chromium (III) complexes. The complexes are likely to be fac in terms of «-hydroxy acid carboxylate and/or hydroxy groups since strong and well defined C otton effects are observed [19, 21], The CD spectra of D -tartaric or L-malic acid com ­ plexes have greater strengths than those prepared from L-lactic or L-mandelic acid. This is possibly due the ability of tartaric or malic acid to coordi­ nate as tridentate species through the oxygens of carboxyl and prim ary hydroxyl groups, while L-lactic or L-mandelic acid can only function as bidentate complexing agents. The different signs o f the C otton effects of Cr(Tar) 3Py3, [445(-), 490( + ), 570( + ), 590( + ), 620( +) nm] and Cr(M al) 3Py 3 [384( + ), 440(+), 486( + ), 550(-), 594( + ), 640(-), 6 5 4 (-) nm] in methanol suggest similar complexes but with li­ gands of opposite configuration. On the other hand, the signs o f the C otton effects of Cr(Lac) 3Py 3 [400(-), 4 7 0 (-), 530(-), 580(+) and 630(-) nm] C r(M an) 3Py 3 [290(+), 4 0 0 (-), 526(-), 590(+), 655(-), 6 7 0 (-) nm] are analogous, sug­ gesting form ation o f similar complex species. It is not clear from the CD curves whether the C otton effects arise from one species or a mixture of different complex species in methanol. There­ fore, TLC using ethanol-water 8 :3 (v/v) was used, and it confirmed only one complex species is pre­ sent in solution. Hence, the observed C otton ef­ fects [360-380( + ), 4 3 9 -4 6 0 (-) nm] in the spin forbidden transition are assigned to 2E(2E), 2A 2(2T Ig) and 2E(2T lg) in octahedral symmetry. The C otton effects observed in the range 510650 (nm) arise from the splitting of the spin al­ lowed 4A2g —> 4T2g to 4A(T2g) and 4E(4T 2g) transi­ tions. The band observed at 285-290( + ) nm could

Unauthenticated Download Date | 11/24/15 7:31 AM

286

M . S. E l- S h a h a w i- A . A. E l-B in d a ry • C h ro m iu m (III) C o m p le x e s w ith S om e O p tic a lly A c tiv e g -H y d ro x y A cids

arise from the charge transfer peak observed at 260-270 nm in the UV-spectra of most chromium (III) complexes [16, 17].

[1] K . G . S to lle n w e rk a n d D . B. G ro v e , J. E n v iro n . A n a l. 14, 3 9 6 (1 9 8 5 ). [2] S. L a n g a rd a n d T. N o rs e th , in L. F rib e rg (ed.): H a n d b o o k o n th e T o x ic o lo g y o f M e ta ls, p. 338, E l­ s e v ie r/N o rth H o lla n d B io m ed ical P ress, A m ste r­ d a m (1979). [3] K . E. W e tte rh a h n a n d P. H . C o n n e tt, S tru c t. B o n d ­ ing (B erlin) 54, 93 (1983). [4] D . H . B ro w n , W . E. S m ith , M . S. E l-S h a h a w i, a n d M . F. K . W a z ir, In o rg . C h im . A c ta. 124, 125 (1986). [5] M . S. E l-S h a h a w i, Ph. D. T hesis, S tra th c ly d e U n i­ versity , U . K . (1986). [6] A. J. M c C a ffe ry a n d S. F . M a so n , T ra n s . F a ra d , Soc. 59, 1 (1963). [7] T . B ruer, H elv. C h im . A c ta 46, 2389 (1963). [8] H . B enar, E. V io n a , a n d T . L u p u , R ev; F iz C him . Ser. 5 ,371 (1969). [9] R. E. T a p s c o tt a n d R . L. B elfo rd , In o rg . C h e m . 6, 735 (1967). [10] S. K iz ak i, J. H id a k a , a n d Y. S h im u ra , Bull. C hem . Soc. J p n .4 0 , 2 2 0 7 (1 9 6 7 ). [11] P. Vieles, A . B o n m io l, a n d B. L isso rg u g e s, C. R. A c ad . Sei. P a ris, Ser. C 266, 1482 (1968). [12] A. G e rce ly a n d I. S o v a g o , M e tal Io n s in B iological S ystem s, V ol. 9, p. 77 (1978). [13] D. H . B row n, G . C . M c K in la y , a n d W . E. S m ith , J. C h e m . Soc. D a lto n 1978, 199.

We thank Professors D. H. Brown and W. E. Smith for helpful discussions and the facilities provided for number the CD spectra.

[14] J. C. T a ft a n d M . M . Jo n e s, In o rg . S y n th . 7, 132 (1963). [15] R. C. M a ry a , In d ia n J. C h em . 22 A , 529 (1983). [16] D . H . B row n, G . C. M c K in la y , a n d W . E. S m ith , J. C h em . Soc. D a lto n 1977, 1874. [17] M . F re n i, A. G e rv a s in i, a n d P. R o m iti, S p e c tro chim . A c ta 39 A , 85 (1983). [18] Y. I n o m a ta , T . T a k e u c h i, a n d T . M o riw a k i, Spectro c h im e A c ta 40, 179(1984). [19] Y. In o m a ta , T . T a k e u c h i, a n d T . M o riw a k i, In o rg . C h im . A c ta 68, 186 (1983). [20] R. J. H . C la rk a n d C. S. W illia m s, In o rg . C h e m . 4, 3 5 0 (1 9 6 5 ). [21] A. B. P. L ever, I n o rg a n ic E le c tro n ic S p e c tro s c o p y , E lsevier, N ew Y o rk (1968). [22] S. K a iz a k i, J. H id a k a , a n d Y. S h im u ra , Bull. C h e m . Soc. Jp n . 42, 988 (1969). [23] D. S u tto n , E le c tro n ic S p e c tra o f T ra n s itio n M e ta l C o m p le x e s, M c G ra w -H ill, L o n d o n (1968). [24] J. A . C o p p e r. B. F. A n d e rso n , P. D . P u c k ley , a n d L. F . B lackw ell, In o rg . C h im . A c ta 91, 1 (1984). [25] L. E. G e rd o n a n d H. M . G o ff, In o rg . C h e m . 21, 3847 (1 9 8 2 ). [26] C. P reti a n d G . T o si, C a n . J. C h e m . 53, 2545 (1974).

Unauthenticated Download Date | 11/24/15 7:31 AM

Suggest Documents