Classes of functions defined by certain differential–integral ... - Core

0 downloads 0 Views 90KB Size Report
Abstract. In this paper we investigate a class of p-valent analytic functions with fixed argument of coe cient, which is defined in terms of certain ...
Journal of Computational and Applied Mathematics 105 (1999) 245–255

Classes of functions deÿned by certain di erential–integral operators J. Dziok ∗ Institute of Mathematics, Pedagogical University of RzeszÃow, ul. Rejtana 16A, PL-35-310 RzeszÃow, Poland Received 1 October 1997; received in revised form 25 February 1998 Dedicated to Haakon Waadeland on the occasion of his 70th birthday

Abstract In this paper we investigate a class of p-valent analytic functions with ÿxed argument of coecient, which is deÿned in terms of certain di erential–integral operators. Coecient estimates, distortion theorems, extreme points, the radii of c 1999 Elsevier Science Ltd. All rights reserved. convexity and starlikeness in this class are given. MSC: 30C45; 26A33

1. Introduction Let A(p; k), where p; k ∈ N = {1; 2; : : :}; p ¡ k, denote the class of functions f of the form p

f(z) = z +

∞ X

an z n ;

(1.1)

n=k

which are analytic in U = U(1), where U(r) = {z : |z| ¡ r}. Let A = A(1; 2). We say that a function f ∈ A(p; p + 1) is convex in U(r); r ∈ (0; 1]; if 

Re 1 +



zf00 (z) ¿ 0; z ∈ U(r) f0 (z)

(1.2)

and we say that a function f ∈ A(p; p + 1) is starlike in U(r); r ∈ (0; 1]; if 



zf0 (z) Re ¿ 0; f(z) ∗

z ∈ U(r):

E-mail: [email protected].

c 1999 Elsevier Science B.V. All rights reserved. 0377-0427/99/$ - see front matter PII: S 0 3 7 7 - 0 4 2 7 ( 9 9 ) 0 0 0 1 4 - X

(1.3)

246

J. Dziok / Journal of Computational and Applied Mathematics 105 (1999) 245–255

By Cp we denote the class of all functions convex in U and by Sp∗ we denote the class of all starlike functions in U. We say that a function f ∈ A is subordinate to a function F ∈ A, and write f ≺ F, if and only if there exists a function ! ∈ A; !(0) = 0; |!(z)| ¡ 1; z ∈ U, such that f(z) = F(!(z)); z ∈ U: Let p; k ∈ N; A; B; ; ;  ∈ R; − ¡ p ¡ k; + ¿ − p; 06B61; −B6A ¡ B; (B 6= 1 or cos  ¡ 0) and let denote the gamma function. In [3, 4] Kim and Srivastava et al. studied the following integral operator: Deÿnition 1.1. Let f ∈ A(p; k) and let log(z − ) be real when z −  ¿ 0; z;  ∈ U: The integral operator Q f(z) is deÿned for ¿ 0 and the function f by Q f(z) =

1 ( )

Z z 0

1−

 z

 −1

 −1 f() d:

Now, we deÿne the di erential–integral operator  f(z) for 60: Then there exists a nonnegative integer m and a real number ; −1 ¡ 60; such that = − m: Deÿnition 1.2. Let f ∈ A(p; k) and let log(z − ) be real when z −  ¿ 0; z;  ∈ U: The integral operator  f(z) is deÿned for 60 ( = − m; m ∈ N ∪ {0}; −1 ¡ 60) and for the function f by  f(z)

=

d m+1 1 (1 + ) d z m+1

Z

0

z

(z − )  −1 f() d:

The multiplicities of (z − ) −1 ; (z − ) in Deÿnitions 1.1 and 1.2 are removed by requiring log(z − ) ∈ R when z −  ¿ 0: By using these deÿnitions we deÿne the linear operator

: A(p; k) → A(p; k) by

f(z) =

(p + + ) − z Q f(z) (p + )

f(z) =

(p + + ) 1− − z  f(z) (p + )

for ¿ 0

and for 60:

Putting = 1 in Deÿnitions 1.1 and 1.2 we obtain the integral operator deÿned by Owa [5] and investigated by Srivastava and Owa [7], Dziok [1, 2] and others. Deÿnition 1.3. Let T ( ; ) denote the class of functions f ∈ A(p; k) satisfying the following condition:

f(z) 1 + Az : (1.4) ≺ p z 1 + Bz

J. Dziok / Journal of Computational and Applied Mathematics 105 (1999) 245–255

247

Deÿnition 1.4. Let T ( ; ) denote the subclass of the class T ( ; ) of functions f of the form (1.1), such that arg an =  for an 6= 0; n = k; k + 1; k + 2; : : : . We can write every function f from the class T ( ; ) in the form p

f(z) = z + e

i

∞ X

|an |z n ; z ∈ U:

(1.5)

n=k

In the present paper we obtain coecient estimates, distortion theorems, extreme points, the radii of convexity and starlikeness for the class T ( ; ) and coecient estimates for the class T ( ; ). 2. Coecient estimates By Deÿnition 1.4 we obtain: ˜ Lemma 2.1. If A6A˜ and B6B; then the class T ( ; ) for parameters A; B is included in the class ˜ ˜ T ( ; ) for parameters A; B: Lemma 2.2 (Ratti [6]). Let f be a function of the form (1.1). If f ≺ g and g is convex function, then |an |61; n = k; k + 1; k + 2; : : : . After some calculations we obtain: Lemma 2.3. If a function f of the form (1.1) belongs to the class A(p; k); then

f(z) = z p +

∞ (n + ) (p + + ) X an z n ; z ∈ U: (p + ) n=k (n + + )

Theorem 2.1. If a function f of the form (1.5) belongs to the class T ( ; ); then ∞ X n=k

−1 n |an |6(; A; B);

(2.1)

where B−A (; A; B) = p 2 1 − B sin2  − B cos 

(2.2)

(n + + ) (p + ) : (n + ) (p + + )

(2.3)

and n

=

Proof. Let f ∈ T ( ; ). By Deÿnition 1.4 we obtain

f(z) 1 + A!(z) = ; zp 1 + B!(z)

248

J. Dziok / Journal of Computational and Applied Mathematics 105 (1999) 245–255

where !(z) is an analytic function in U, such that !(0) = 0 and |!(z)| ¡ 1 for z ∈ U. Thus, we have f(z) − z p = |!(z)| ¡ 1: B f(z) − Az p Using Lemma 2.3 we obtain ∞ X n=k

where

n









−1 n−p ¡ B n |an |z

− A + Be

i

∞ X n=k



−1 n−p ; n |an |z



is deÿned by (2.3). Thus, putting z = r; 0 ¡ r ¡ 1; we have

|w| ¡ |B − A + Bwei |;

(2.4)

where w=

∞ X n=k

−1 n−p : n |an |r

Since w ∈ R, by (2.4) we have (1 − B2 )w2 − (2B(B − A)cos )w − (B − A)2 ¡ 0: Solving this inequality with respect to w we obtain ∞ X n=k

−1 n−p n |an |r

where (; A; B);

n

¡ (; A; B);

are deÿned by (2.2) and (2.3). Thus letting r → 1− we obtain (2.1).

Theorem 2.2. If a function f of the form (1.1) belongs to the class T ( ; ); then |an |6(B − A) where

n

n;

n = k; k + 1; k + 2; : : : ;

(2.5)

is deÿned by (2.3). The result is sharp.

Proof. Let a function f of the form (1.1) belong to the class T ( ; ) and let us put z : g(z) = (z −p f(z) − 1)(A − B)−1 ; h(z) = 1 + Bz By (1.4) we have g ≺ h. Since the function g is the function of the form g(z) =

∞ X

[(A − B)

n]

−1

an z n−p

n=k

and the function h is convex in U; by Lemma 1.2 we obtain [(A − B)

n]

−1

|an |61;

n = k; k + 1; k + 2; : : : :

Thus we have (2.5). Equality in (2.6) holds for the functions gn of the form gn (z) = h(z n−p ) = z n−p +

∞ X i=n−p+1

(−B) i−n+p z i ; n = k; k + 1; k + 2; : : : :

(2.6)

J. Dziok / Journal of Computational and Applied Mathematics 105 (1999) 245–255

249

Thus equality in (2.5) holds for the functions fn of the form p

fn (z) = z + (A − B)

nz

n

+

∞ X

(A − B)

i

(−B) i−n z i ; n = k; k + 1; : : : :

i=n+1

By Theorem 2.1 we obtain: Corollary 2.1. If a function f of the form (1.5) belongs to the class T ( ; ); then |an |6(; A; B) where (; A; B);

n;

n = k; k + 1; k + 2; : : : ;

are deÿned by (2.2) and (2.3).

n

Putting  =  in Corollary 2.1 we obtain: Corollary 2.2. If a function f of the form (1.5) belongs to the class T ( ; ); then |an |6 where form

n

B−A 1+B

n;

n = k; k + 1; k + 2; : : : ;

is deÿned by (2.3). The result is sharp. The extremal functions are functions fn of the

fn (z) = z p −

B−A 1+B

nz

n

; n = k; k + 1; k + 2; : : : :

(2.7)

3. Distortion theorems and extreme points Theorem 3.1. If f ∈ T ( ; ); |z| = r ¡ 1; then for 60 r p − (; A; B)

k

r k 6|f(z)|6r p + (; A; B)

k

rk

(3.1)

and for 6 − 1 pr p−1 − k(; A; B) where (; A; B);

n

kr

k−1

6|f0 (z)|6pr p−1 + k(; A; B)

k−1

;

(3.2)

are deÿned by (2.2) and (2.3).

Proof. Let f ∈ T ( ; ); |z| = r ¡ 1: Since the sequences { decreasing and positive, by Theorem 2.1 we obtain ∞ X

kr

|an |6(; A; B)

for 60;

k

n}

for 60 and {

n =n}

for 6 − 1 are (3.3)

n=k ∞ X n=k

n|an |6k(; A; B)

k

for 6 − 1:

(3.4)

250

Since

J. Dziok / Journal of Computational and Applied Mathematics 105 (1999) 245–255

∞ ∞ X X p i n |f(z)| = z + e |an |z 6r p + |an |r n n=k

= rp + rk

∞ X

n=k

|an |r n−k 6r p + r k

n=k

and

∞ X

|an |

n=k

∞ ∞ X X p i n p |f(z)| = z + e |an |z ¿r − |an |r n n=k

p

=r −r

k

∞ X

n=k

|an |r

n−k

p

¿r − r

k

n=k

∞ X

|an |;

n=k

by (3.3) we obtain (3.1). Using (3.4) the estimations (3.2) we prove analogously. Putting  =  in Theorem 3.1 we obtain: Corollary 3.1. If f ∈ T ( ; ); |z| = r ¡ 1; then for 60 B−A B−A k p k rp − k r 6|f(z)|6r + kr 1+B 1+B and for 6 − 1 B−A B−A k−1 k−1 pr p−1 − k 6|f0 (z)|6pr p−1 + k ; kr kr 1+B 1+B where n is deÿned by (2.3). The result is sharp. The extremal function is function fk of the form (2.7). Theorem 3.2. Let fk−1 (z) = z p and let fn ; n = k; k + 1; k + 2; : : : ; be deÿned by (2.7). A function f belongs to the class T ( ; ) if and only if it is of the form f(z) =

∞ X

n fn (z);

z ∈ U;

(3.5)

n=k−1

where

∞ X

n = 1 and n ¿0; n = k − 1; k; k + 1; : : : :

n=k−1

Proof. (⇒) Let a function f of the form f(z) = z p −

∞ X

|an |z n

n=k

belong to the class T ( ; ): Let us put 1 + B −1

n = |an |; n = k; k + 1; k + 2; : : : B−A n

(3.6)

J. Dziok / Journal of Computational and Applied Mathematics 105 (1999) 245–255

251

and ∞ X

k−1 = 1 −

n :

n=k

We have n ¿0; n = k; k + 1; k + 2; : : : and by (1:7) we have k−1 ¿0: Thus, ∞ X

n fn (z) = k−1 fk−1 (z) +

n=k−1

∞ X

n fn (z)

n=k

= 1−

∞ X

! p

n z +

∞ X 1+B

n=k

=z p −

∞ X 1+B

B−A

n=k



n=k

∞ X

−1 n |an |

B−A

−1 p n |an |z

+



∞ X 1+B n=k

B−A

B−A z − 1+B p

nz

n



−1 p n |an |z

|an |z n = f(z)

n=k

and the condition (3.5) follows. (⇐=) Let a function f satisfy (3.5). Thus, ∞ X

f(z) =

n fn (z) = k−1 fk−1 +

n=k−1

n fn (z)

n=k

= 1−

!

∞ X

n z p +

n=k

= zp −

∞ X

n=k

∞ X B−A n=k

∞  X

1+B

n n z

zp −

B−A 1+B



n

n nz

n

and we can write the function f in the form (3.6), where |an | = n

B−A 1+B

n:

Since ∞ X n=k

−1 n |an |

=

∞ X n=k

n

B−A B−A B−A = (1 − 1−k )6 ; 1+B 1+B 1+B

we have f ∈ T ( ; ), which ends the proof. By Theorem 3.1 we have: Corollary 3.2. The class T ( ; ) is convex. The extremal points are functions fn of the form (2.7) and the function fk−1 (z) = z p .

252

J. Dziok / Journal of Computational and Applied Mathematics 105 (1999) 245–255

4. The radii of convexity and starlikeness Theorem 4.1. If f ∈ T ( ; ); then a function f is convex in the disc U(rc ); where rc = inf

n¿k

n2 (; A; B) 2 p

and (; A; B);

n

!1=(p−n)

(4.1)

n

are deÿned by (2.2) and (2.3).

Proof. Let a function f of the form (1.5) belong to the class T ( ; ). By (1.2) the function f is convex in U(r); 0 ¡ r61; if 00 1 + zf (z) − p ¡ p; z ∈ U(r): (4.2) 0 f (z) Since i P∞ 2 00 n−1 e (z) (n − np)|a |z zf n n=k 1 + P − p = p−1 n−1 pz f0 (z) + ei ∞ n|a |z n n=k P ∞ (n2 − np)|a k z|n−p n n=k P 6 ; n−p p− ∞ n=k n|an k z|

putting |z| = r, condition (4.2) is true if ∞ X n2 n=k

p2

|an |r n−p 61:

(4.3)

From Theorem 2.1 we have ∞ X

[(; A; B)

−1 n ] |an |61;

(4.4)

n=k

where (; A; B);

n

are deÿned by (2.2) and (2.3). Thus it is sucient to show that

2

n n−p r 6[(; A; B) p2

n]

−1

for n = k; k + 1; k + 2; : : : ;

that is r6(bn )1=(p−n)

for n = k; k + 1; k + 2; : : : ;

(4.5)

where

n2 n: p2 Condition (4.5) is true for r = rc , where rc is deÿned by (4.1). Since bn = (; A; B)

(4.6)

bn ¿ 0; n = k; k + 1; k + 2; : : : and lim (bn )1=(p−n) = 1;

n→∞

we have 0 ¡ rc 61; which ends the proof.

(4.7)

J. Dziok / Journal of Computational and Applied Mathematics 105 (1999) 245–255

253

By Theorem 4.1 we have: Corollary 4.1. Let 6 − 2 and let (; A; B); 2

k p2

n

be deÿned by (2.2) and (2.3). If

k (; A; B)61;

(4.8)

then T ( ; ) ⊂ Cp :

(4.9)

In the other case a function f ∈ T ( ; ) is convex in U(rc ); where k2 rc = (; A; B) 2 p

!1=(p−k)

:

k

(4.10)

Proof. Let f ∈ T ( ; ). By Theorem 4.1 the function f is convex in U(rc ), where rc is deÿned by (4.1). For 6 − 2 the sequence {bn }, deÿned by (4.6), is decreasing. Hence, if bk 61; that is condition (4.8) is true, then (bn )1=(p−n) ¿1 for = k; k + 1; k + 2; : : : : This, by (4.7) we have rc = 1; that is condition (4.9) is true. In the other case we have (bk )1=(p−k) 6(bn )1=(p−n) for n = k; k + 1; k + 2; : : : ; which gives (4.10). Since for 6 − 2 k2 (; A; B) 2 k ¡ 1; p by Corollary 4.1 we have: Corollary 4.2. If 6 − 2; then T ( ; ) ⊂ Cp : We now determine the radius of starlikeness for the class T ( ; ). Theorem 4.2. If f ∈ T ( ; ); then the function f is starlike in U(r ∗ ); where 

n¿k

and (; A; B);

n



1=(p−n) n : n p are deÿned by (2.2) and (2.3).

r ∗ = inf (; A; B)

(4.11)

Proof. Let a function f of the form (1.5) belong to the class T ( ; ). By (1.3) the function f is starlike in U(r); 0 ¡ r61; if 0 zf (z) ¡ p; z ∈ U(r): (4.12) − p f(z)

254

Since

J. Dziok / Journal of Computational and Applied Mathematics 105 (1999) 245–255

0 i P∞ n zf (z) e (n − p)|a |z n n=k f(z) − p = z p + ei P∞ |a |z n−1 n n=k P∞ n=k (n − p)|an ||z|n−p ; P 6 1 − ∞ |a ||z|n−p n

n=k

putting |z| = r, the condition (4.12) is true if ∞ X n n=k

p

|an |r n−p 61:

(4.13)

By (4.4) it is sucient to prove n n−p r 6[(; A; B) n ]−1 for n = k; k + 1; k + 2; : : : ; p that is r6(hn )1=(p−n) ; where

n n: p The last inequality is true for r = r ∗ , where r ∗ is deÿned by (4.11). Since hn = (; A; B)

hn ¿ 0 for n = k; k + 1; k + 2; : : : and lim (hn )1=(p−n) = 1;

n→∞

we have 0 ¡ r ∗ 61; which completes the proof. From Theorem 4.2 we obtain the following corollaries analogously as Corollaries 4.1, 4.2 from Theorem 4.1. Corollary 4.3. Let 6 − 1. If k (; A; B) k 61; p where (; A; B); n are deÿned by (2.2) and (2.3), then T ( ; ) ⊂ Sp∗ : In the other case a function f ∈ T ( ; ) is starlike in U(r ∗ ); where 

k r = (; A; B) p ∗

1=(k−p)

k

Corollary 4.4. If 6 − 1; then T ( ; ) ⊂ Sp∗ :

:

J. Dziok / Journal of Computational and Applied Mathematics 105 (1999) 245–255

255

References [1] J. Dziok, Classes of p-valent analytic functions with ÿxed argument of coecients, I, to appear. [2] J. Dziok, Classes of p-valent analytic functions with ÿxed argument of coecients, II, Proceedings of the Fifth Finish-Polish–Ukrainian Sommer School in Complex Analysis, Poland, Lublin, 1996, to appear. [3] I.B. Jung, Y.C. Kim, H.M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993) 138–147. [4] Y.C. Kim, K.S. Lee, H.M. Srivastava, Certain classes of integral operators associated with the Hardy space of analytic functions, Complex Variables Theory Appl. 20 (1992) 1–12. [5] S. Owa, On the distortion theorems, Kyungpook Math. J. 18 (1978) 53–59. [6] J.S. Ratti, The radius of univalence of certain analytic functions, Math. Z. 107 (1968) 241–248. [7] H.M. Srivastava, S. Owa, An application of the fractional derivative, Math. Japon. 29 (1984) 383–389.

Suggest Documents