CLASTOUR: a computer program for classification of ...

8 downloads 843 Views 453KB Size Report
''Clastour.Exe'' program by clicking the [Exit] option. For each sample, the ternary principal constituents that are normalized to 100% are listed under the caption.
Computers & Geosciences 28 (2002) 1017–1036

CLASTOUR: a computer program for classification of the minerals of the tourmaline group$ a b F. Yavuza,*, A.H. Gultekin . , M.C - . Karakaya a

’ . ’ Istanbul Teknik Universitesi, Maden Fakultesi, Maden Yatakları-Jeokimya Anabilim Dalı, 80670, Maslak, Istanbul, Turkey . b . & Bol Selc-uk Universitesi, Muhendislik ve Mimarlık Fakultesi, Jeoloji Muhendisli gi . . . . um . u, . TR-42031, Konya, Turkey Received 1 August 2000; received in revised form 23 February 2002; accepted 26 February 2002

Abstract Tourmaline is the most important borosilicate mineral and a dominant carrier of boron, occurring in different geologic environments. Recently, many investigators have focused on the enhanced understanding of crystal chemistry of this complex mineral group. CLASTOUR is a program package for IBM-compatible personal computers that can be used for classification of the tourmaline group. The program classifies most of the currently valid tourmaline endmembers together with other hypothetical end-members. Because it is difficult to establish OH and O2 contents at the V - and W -sites without carrying out bond valance sum (BVS) calculations, CLASTOUR gives alternative names for some tourmalines including dominant O2 anion at their V - and W -sites. The program is developed to edit, to store and to calculate the tourmaline analyses obtained both from electron-microprobe and wet-chemical studies. It is designed to calculate entered tourmaline analyses into cation and molecular percentages, to share cation site-allocations at the different structural positions and to give mole percent of the end-members of alkali-, calcic-, and X -site vacant-group tourmalines. Thus, CLASTOUR makes it possible to plot various types of binary and ternary diagrams under the Grapher software. This program is a user-friendly software with pull-down menus, base-function keys, help menus, extensive error codes and mouse options. The compiled program together with the test data files and graphic files is approximately 1160 kB. r 2002 Elsevier Science Ltd. All rights reserved. Keywords: Tourmaline; Classification; End-member; Electron-microprobe; X -site vacant; Alkali; Calcic; Binary diagram; Ternary diagram

1. Introduction Tourmaline and tourmaline-rich rocks are known in a great diversity of geologic settings, but the most notable occurrences are found in granite–related metasomatic and vein-type ore deposits (Plimer, 1980; Layne and Spooner, 1991; Yavuz et al., 1999b), in stratabound base metal deposits (Taylor and Slack, 1984; Plimer and Lees, 1988; Slack et al., 1993; Jiang et al., 1995, 1998), in volcanic rocks associated with U–Mo–Zn–Ag–Au veins $

Code available from server at http://www.iamg.org/ CGEditor/index.htm ’ . Istanbul, *Corresponding author. P.K. 90, 81302, Kadıkoy, Turkey. Tel.: +90-212-285-6205; fax: +90-212-285-6080. E-mail address: [email protected] (F. Yavuz).

and disseminations (Fuchs and Maury, 1995; Yavuz et al., 1999a), in metamorphic rocks associated with Au– Ag–Cu–Pb–Zn veins (McArdle et al., 1989; Garba, 1996; B!eziat et al., 1999). Since minerals of the tourmaline group are the most widespread borosilicate phases in magmatic, metamorphic and sedimentary environments, in recent years, they have been studied extensively for their complex composition, structure and importance of petrological indicators such as P-T-f(O2) conditions (Henry and Guidotti, 1985; Fuchs et al., 1995; Henry and Dutrow, 1996; Hawthorne, 1996; Dyar et al., 1998; Fuchs et al., 1998; Pieczka, 1999; Henry et al., 1999; London, 1999; Pieczka, 2000). The general formula of tourmaline may be written as XY3Z6 [T6O18] [BO3] V3W where X =Ca, Na, K, & [vacancy]; Y=Li, Mg, Fe2+, Mn2+, Al, Cr3+, V3+, Fe3+, (Ti4+); Z=Mg,

0098-3004/02/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved. PII: S 0 0 9 8 - 3 0 0 4 ( 0 2 ) 0 0 0 1 2 - 2

1018

F. Yavuz et al. / Computers & Geosciences 28 (2002) 1017–1036

Al, Fe3+, V3+, Cr3+; T=Si, Al, (B); B=B, (&); V=OH, O[O(3)]; and W=OH, F, O[O(1)]. The species in parentheses are accepted, as yet, not proven to occur at these sites (Hawthorne and Henry, 1999). The crystal chemistry of tourmaline is difficult to characterize fully, as some significant components such as Li, Fe3+ and H2O cannot be directly determined by electron-microprobe analysis. However, it is possible to calculate the complete tourmaline chemical analysis using several types of normalization schemes and assuming stoichiometric amounts of B2O3 (B=3 apfu), H2O as (OH) (i.e., OH+F=4 apfu), and Li2O (as Li) at the Y-site (MacDonald et al., 1993; Grice and Ercit, 1993). The International Mineralogical Association (IMA) currently has not established a comprehensive classification scheme for the minerals of the tourmaline group comparable to the amphibole nomenclature scheme (Leake et al., 1997; Yavuz, 1996, 1999). For that reason, few programs have been attempted to classify and to evaluate tourmaline group (Yavuz, 1997). Hawthorne and Henry (1999) proposed a classification at the tourmaline group minerals based on the chemical composition and ordering at the different sites of the tourmaline structure. This paper summarizes the CLASTOUR program that has been developed for the evaluation of tourmaline analyses obtained both from electron-microprobe and wet-chemical studies. The program allows the user to edit and to store samples, to calculate entered oxide analyses into cation and molecular percentages, to classify tourmaline samples on the basis of groups and names according to the procedures outlined by Hawthorne and Henry (1999), and to display the calculated results on various binary and ternary diagrams under the Grapher program developed by Golden software. CLASTOUR software package is developed for IBM-compatible personal computers with minimum hardware requirements. It is written in MS-Quickbasic and consists of three executable segments running under DOS and Windows operating systems. During the program processes, operations are carried out by pop- and base-function keys with the option of mouse buttons. In this regard, CLASTOUR is easy to use and understand software for a quick check of tourmaline analyses by the earth scientists.

2. Classification scheme for the tourmalines The classification procedure of the tourmaline group minerals by Hawthorne and Henry (1999) is based on the graphical representation of chemical variations for a ternary solid solution that is proposed by Nickel (1992). Hawthorne and Henry (1999) suggested the following procedures for classification of tourmalines using the

appropriate data set including complete chemical characterization and crystal-structure refinements on a wide compositional range of tourmalines: 1. The X -site vacancy, Ca, and Na(+K) compositional variations on a ternary diagram can be used to classify the tourmalines into three principal groups. These are alkali-group tourmalines (i.e., Na+(K) dominant at X -site), calcic-group tourmalines (i.e., Ca dominant at X -site) and X -site vacant-group tourmalines (i.e., & dominant at X -site). Table 1 shows the hypothetical and currently valid tourmaline group minerals. 2. The major compositional groups of the minerals can be classified on a ternary F–O2–OH principal constituent diagram. For this step, the dominant OH, F and O2 anions must be established at the W-site, with some of the assumptions. These are: (i) F occurs exclusively at the W-site; (ii) O2 is generally ordered at the W-site relative to OH in most tourmalines, except those dominated by trivalent cations at the Y-site. 3. The dominant OH or O2 anions can be estimated at the V-site. According to the current knowledge, the most tourmalines are dominated by OH anion at the V-site, with the exceptions of buergerite, olenite and their hypothetical hydroxy- and fluorequivalents. 4. Following the determination of the dominant Ycation configuration (i.e., Mg, Fe2+ or Li), the 27 possible tourmaline end-members for the alkali-, calcic-, and X -site vacant-group tourmalines can be classified on the different ternary compositional range diagrams. 5. Several other hypothetical Cr3+- and Fe3+-endmembers especially in the alkali-group tourmaline (see Table 1) can be classified based on the compositional range of Z-site cations (Al, Cr3+ or Fe3+). One of the major problem in using these suggested procedures for the classification scheme of tourmaline group minerals is the location of cations and anions that are not accurately known at sites unless is an accompanying crystal-structure refinement. For the electronmicroprobe tourmaline data a number of important cations such as Li, H and B are not always measured and the oxidation states of Fe and Mn are not always determined. Only if the valence of Fe and OH content is analytically determined, can O2 content be calculated by charge balance. For that reason, the classification of tourmaline minerals, which is based on the principal constituent at the W-site is difficult without the knowledge of cations and anions in the tourmaline structure. Experimental and crystallographic studies show that F is found in significant amounts at the W-site. On the

F. Yavuz et al. / Computers & Geosciences 28 (2002) 1017–1036

1019

Table 1 Current valid and hypothetical tourmaline end-member species and their classification scheme by CLASTOUR program (modified from Hawthorne and Henry, 1999) Species

(X)

(Y3)

(Z6)

T6O18

(BO3)3

V3

W

Program

Alkali tourmaline Elbaite Dravite Chromdravite Schorl Olenite ‘‘Hydoxy-buergerite’’ ‘‘Fluor-elbaite’’ ‘‘Fluor-dravite’’ ‘‘Fluor-chromdravite’’ ‘‘Fluor-schorl’’ ‘‘Fluor-olenite’’ Buergerite ‘‘Oxy-elbaite’’ ‘‘Oxy-dravite’’ Povondraite ‘‘Oxy-schorl’’ ‘‘Oxy-chromdravite’’ ‘‘Mn-dravite’’ ‘‘Oxy-Mn-dravite’’ ‘‘V-dravite’’ ‘‘Oxy-V-dravite’’

Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na Na

Li1.5Al1.5 Mg3 Mg3 Fe2+ 3 Al3 Fe3+ 3 Li1.5Al1.5 Mg3 Mg3 Fe2+ 3 Al3 Fe3+ 3 LiAl2 MgAl2 Fe3+ 3 Fe2+Al2 MgCr2 Mn2+ 3 Mn2+ 2 Al 3+ V3 V3+Al2

Al6 Al6 Cr6 Al6 Al6 Al6 Al6 Al6 Cr6 Al6 Al6 Al6 Al6 MgAl5 Mg2Fe3+ 4 Fe2+Al5 MgCr5 Al6 Al6 Al6 Al6

Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18

(BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3

(OH)3 (OH)3 (OH)3 (OH)3 O3 O3 (OH)3 (OH)3 (OH)3 (OH)3 O3 O3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3

(OH) (OH) (OH) (OH) (OH) (OH) F F F F F F O O O O O (OH) O (OH) O

C C C C C C C C A C C C A A C A C C A C A

Calcic tourmaline ‘‘Hydroxy-liddicoatite’’ ‘‘Hydroxy-uvite’’ ‘‘Hydroxy-feruvite’’ Liddicoatite Uvite Feruvite ‘‘Oxy-liddicoatite’’ ‘‘Oxy-uvite’’ ‘‘Ferri-feruvite’’ ‘‘Oxy-feruvite’’ ‘‘Ferri-feruvite’’

Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca

Li2Al Mg3 Fe2+ 3 Li2Al Mg3 Fe2+ 3 Li1.5Al1.5 MgAl2 MgFe3+ 2 Fe2+Al2 Fe2+Fe3+ 2

Al6 MgAl5 MgAl5 Al6 MgAl5 MgAl5 Al6 Mg2Al4 Mg2Fe3+ 4 Mg2Al4 Mg2Fe3+ 4

Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18

(BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3

(OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3

(OH) (OH) (OH) F F F O O O O O

C N N C C C A A C A A

X-site vacant tourmaline Rossmanite ‘‘Mg-foitite’’ Foitite ‘‘Fluor-rossmanite’’ ‘‘Fluor-Mg-foitite’’ ‘‘Fluor-foitite’’ ‘‘Oxy-rossmanite’’ ‘‘Oxy-Mg-foitite’’ ‘‘Oxy-Mg-ferri-foitite’’ ‘‘Oxy-foitite’’ ‘‘Oxy-ferri-foitite’’ ‘‘Mn-foitite’’ ‘‘Oxy-Mn-foitite’’

& & & & & & & & & & & & &

LiAl2 Mg2Al Fe2+ 2 Al LiAl2 Mg2Al Fe2+ 2 Al Li0.5Al2.5 MgAl2 MgFe3+ 2 Fe2+Al2 Fe2+Fe3+ 2 Mn2+ 2 Al Mn2+Al2

Al6 Al6 Al6 Al6 Al6 Al6 Al6 Al6 Fe3+ 6 Al6 Fe3+ 6 Al6 Al6

Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18 Si6O18

(BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3 (BO3)3

(OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3 (OH)3

(OH) (OH) (OH) F F F O O O O O (OH) O

C C C C C C A A A A A C A

(C): program classifies tourmaline species; (A): program gives alternative names for tourmaline species; (N): program cannot classify tourmaline species.

1020

F. Yavuz et al. / Computers & Geosciences 28 (2002) 1017–1036

other hand, the amount of OH at the V- and W-sites can be evaluated from bond valance sum (BVS) calculations. Based on the nearly complete chemical and crystal-structure refinement studies on 11 of the 12

tourmalines, Grice and Ercit (1993) gave about 1.1 BVS for the V-site, indicating roughly full occupancy of this site by OH, whereas 1.6 BVS for buergerite showing the dominant O2 at V-site.

Fig. 1. Calculation screen form of program for selected tourmaline analyses. (A) Typical screen output by executing ‘‘Clastour.Exe’’ program (Data from Grice and Ercit, 1993). (B) Screen output of ‘‘More.Exe’’ program (Data from Henry and Dutrow, 2001). *Li2O P calculated by stoichiometry; Li=3 Y; OH+F=4 R1=Na+Ca; R2=Fe+Mg+Mn; R3=Al+1.33Ti. Amount of ferric iron at Y-site was calculated as total amount of Fe at Y-site in excess of number of Ca atoms at X-site (from Lynch and Ortega, 1997).

F. Yavuz et al. / Computers & Geosciences 28 (2002) 1017–1036

1021

Table 2 Plot files and diagram types of CLASTOUR program processing under the Grapher software Graphic file

Type

Diagram

References

Naca.Grf Xsalna.Grf Feymgz.Grf Alnacak.Grf Namgalca.Grf Nafeal.Grf Nacaald.Grf Fmmaaa.Grf Fmmnkc.Grf Lfe.Grf Feyal.Grf Xvacfe.Grf Fxvac.Grf Xvacfel.Grf Mgfelial.Grf Ohfal.Grf Caxsal.Grf Almgfeoh.Grf Almgfef.Grf Almgfeo.Grf Crafez.Grf Calmgfoh.Grf Calmgfef.Grf Calmgfeo.Grf Valmgfoh.Grf Valmgfef.Grf Valmgfeo.Grf Lxstecom.Grf Lmgfe.Grf Lmgfeal.Grf Lalmn.Grf Cafemg.Grf Alfemg.Grf Caxvac.Grf Nakcamg.Grf Xvaccamg.Grf Xvacca.Grf Caoh.Grf Xvacoh.Grf Cana.Grf Namgxs.Grf Mgsal.Grf Almgt.Grf Naalcamg.Grf Mgfey.Grf Alfez.Grf Felal.Grf Namoxvac.Grf Xvacaoc.Grf Mgaloal.Grf Naalt.Grf Fmg.Grf Xvacxmg.Grf Caxmg.Grf Lmg.Grf Fecal.Grf Fecaxv.Grf

B B B B B B B B B B B B B B B B T T T T T T T T T T T T T T T T T B B B B B B B B B B B B B B B B B B B B B B T T

Ca vs. Na Na+K+Mg+Fetot+Mn–Ti vs. X -site vacancy+Al+2Ti Z Mg vs. YFe2+ Na2O/(Na2O+CaO+K2O) vs. Al2O3 Ca+2Fe vs. Na+Mg+Al Al vs. Na+Fe Al vs. Na+Ca Y Al+TAl vs. Fe+Mg+Mn+TAl FeO/(FeO+MgO+MnO) vs. Na2O/(Na2O+K2O+CaO) Fe vs. Li Y Al vs. Fe Fe vs. X -site vacancy X -site vacancy vs. F Fe/(Fe+Li) vs. X -site vacancy/(Na+X -site vacancy) Li+Al vs. Mg+Fe2+ Al vs. OH+F+Na Ca–X -site vacancy—Na+K Li1.5Al1.5–Mg3–Fe2+ 3 LiAl2–MgAl2–Fe2+Al2 2+ LiAl2–MgAl2–Fe Al2 Cr3+–Al–Fe3+ Li2Al–Mg3–Fe2+ 3 Li2Al–Mg3–Fe2+ 3 Li1.5Al1.5–MgAl2–Fe2+Al2 LiAl2–Mg2Al–Fe2+Al2 LiAl2–Mg2Al–Fe2+Al2 Li0.5Al2.5–MgAl2–Fe2+Al2 Ca–X -site vacancy–Na Li3–Mg3–Fe2+ 3 Li3– (Mg, Fe)3–Al3 Li3–Al3–Mn3 Ca–Fetot–Mg Al–Fetot–Mg Ca vs. X -site vacancy Ca+Mg* vs. Na+Al* Ca+Mg* vs. X -site vacancy+Al*+OH* X -site vacancy vs. Ca OH vs. Ca OH vs. X -site vacancy Ca vs. Na X -site vacancy+Y Al vs. Na+Y Mg Y Al+AlT vs. MgY +Si MgY +Ti vs. 2YAl Ca+Y Mg vs. Na+Y Al Y Fe2+ vs. Y Mg Y Fe3+ vs. z Al Li+Y Al vs. 2Y Fe2+ X -site vacancy+2Y Al+W O vs. Na+2Y Mg+W OH Ca+Y Mg+W O vs. X -site vacancy+Y Al+W OH 2Y Al+Z Mg+W O vs. 2Y Mg+Y Al+W OH Total Al vs. Na Mg vs. F XMg vs. X -site vacancy XMg vs. Ca Mg vs. Li Fe2+–Ca–Li Fe2+–Ca–X -site vacancy

B!eziat et al., 1999 B!eziat et al., 1999 Bloodaxe et al. (1999) Brown and Ayuso (1985) Brown and Ayuso (1985) Brown and Ayuso (1985) Brown and Ayuso (1985) Cavarretta and Puxeddu (1990) Cleland et al. (1996) Dutrow and Henry (2000) Dutrow and Henry (2000) Dutrow and Henry (2000) Dutrow and Henry (2000) Dutrow and Henry (2000) Dyar et al. (1999) Federico et al. (1998) Hawthorne and Henry (1999) Hawthorne and Henry (1999) Hawthorne and Henry (1999) Hawthorne and Henry (1999) Hawthorne and Henry (1999) Hawthorne and Henry (1999) Hawthorne and Henry (1999) Hawthorne and Henry (1999) Hawthorne and Henry (1999) Hawthorne and Henry (1999) Hawthorne and Henry (1999) Hawthorne and Henry (1999) Hawthorne and Henry (1999) Hawthorne and Henry (1999) Hawthorne and Henry (1999) Henry and Guidotti (1985) Henry and Guidotti (1985) Henry and Dutrow (1990) Henry and Dutrow (1990) Henry and Dutrow (1990) Henry and Dutrow (1990) Henry and Dutrow (1990) Henry and Dutrow (1990) Henry and Dutrow (1990) Henry and Dutrow (1996) Henry and Dutrow (1996) Henry and Dutrow (1996) Henry and Dutrow (1996) Henry and Dutrow (1996) Henry and Dutrow (1996) Henry and Dutrow (1996) Henry and Dutrow (1996) Henry and Dutrow (1996) Henry and Dutrow (1996) Henry and Dutrow (1996) Henry and Dutrow (1996) Henry and Dutrow (1996) Henry and Dutrow (1996) Henry and Dutrow (1996) Henry and Dutrow (1996) Henry and Dutrow (1996)

F. Yavuz et al. / Computers & Geosciences 28 (2002) 1017–1036

1022 Table 2 (continued) Graphic file

Type

Diagram

References

Caxvoh.Grf Xvacnamg.Grf Altfemg.Grf Ohmg.Grf Toalfemg.Grf Canafemg.Grf Quadr.Grf Nakca.Grf Xstnaca.Grf Naxstal.Grf Xvacfebm.Grf Alfmmt.Grf Tfemg.Grf Mgalfe.Grf R1r2r3.Grf Femg.Grf Ral.Grf Fealr.Grf Falr.Grf Fe3Fe2.Grf Nncmmf.Grf Nckaamfm.Grf Nacaal.Grf Rlrxs.Grf Femgmnal.Grf Femgaly.Grf Femmaly.Grf Salt.Grf Feomgo.Grf Namgfe.Grf Namgal.Grf Nanavac.Grf Femgyti.Grf Naalalmg.Grf Altotmg.Grf Altotmg.Grf Camgald.Grf Caalalmg.Grf Ncaamfm.Grf Alyfmt.Grf Cafemga.Grf Mgfe.Grf Feal.Grf

T B B B B B B B T B B B B T B B B B B B B B B B B B B B B T T B B B B B B B B B T B B

Ca–X -site vacancy–OH Mg/(Mg+Fe) vs. X-vacancy/(Na+X-vacancy) Mg vs. Total Al+Fe Mg vs. OH Mg vs. Total (Al+Fe) Fe/(Fe+Mg) vs. Na/(Na+Ca) Fe/(Fe+Mg) at Y -site vs. Ca/(Ca+Na) at X -site Ca vs. Na+K X -site vacancy–Na–Ca X -site vacancy+Y Al vs. X Na+X K+Y Mg+Y Fe+Y Mn Fe/(Fe+Mg) vs. X -site vacancy Fe+Mg+Mn+Ti vs. Al Fe/(Fe+Mg) vs. Ti (Mg+Ti)–(Al+Li)–(Fe+Mn+Zn) R3 vs. R1+R2 Mg vs. Fe Al in R2 vs. R2 Al in R2 vs. Fe/(Fe+Mg) Al in R2 vs. F Fe2+ vs. Fe3+ Mg/(Mg+Fe) vs. Na/(Na+Ca) Al/(Al+Mg+Fe+Mn) vs. Na+Ca+K R3+ vs. R+ R3++2X -site vacancy vs. 2R++Li Al+Li vs. Fe+Mg+Mn Y Al vs. Fe/(Fe+Mg) Z Al+YAl vs. Fe+Mg+Mn Total Al vs. Si MgO vs. FeO/(FeO+MgO) Na2O–MgO–FeOtot Na2O–MgO–Al2O3 Al/(Al+Fe) at Y -site vs. Na/(Na+Vacancy) at X -site Ti vs. Fe/(Fe+Mg) at Y -site Al/(Al+Mg) vs. Na Si vs. Al(tot) Mg vs. Al(tot) Al vs. Ca+Mg Al/(Al+Mg) vs. Ca Al/(Al+Mg+Fe+Mn) vs. Na+Ca Fe+Mg+Mn+Ti vs. YAl CaO–FeOtot–MgO Fetot–Mg Total Al–Fetot

Henry and Dutrow (1996) Henry and Dutrow (2001) Henry et al. (1999) Henry et al. (1999) Henry et al. (1999) Jiang et al. (1995) Jiang et al. (1996) Jiang et al. (1996) Jiang et al. (1997) Jiang et al. (1997) Jiang et al. (1997) Jiang et al. (1998) Jiang et al. (1998) Jolliff et al. (1986) London and Manning (1995) London and Manning (1995) London and Manning (1995) London and Manning (1995) London and Manning (1995) Lynch and Ortega (1997) Kasemann et al. (2000) Kasemann et al. (2000) Keller et al. (1999) Keller et al. (1999) Keller et al. (1999) Pesquera et al. (1999) Pesquera et al. (1999) Pesquera et al. (1999) Pirajno and Smithies (1992) Plimer (1986) Rosenberg et al. (1986) Selway et al. (1999) Selway et al. (1998b) von Goerne et al. (1999) von Goerne et al. (1999) von Goerne et al. (1999) von Goerne and Franz (2000) von Goerne and Franz (2000) von Goerne and Franz (2000)

(T): Ternary; (B): binary.

2.1. Site occupancies of the cations and normalization procedures Currently, there is no comprehensive IMA report on the classification of the minerals of tourmaline group. The structure of tourmaline allows many possible substitutions during its occurrence. For that reason, several different types of normalization scheme have been proposed to calculate the unit cell contents of tourmaline analyses. These are 31 oxygens (Rosenberg

et al., 1986), 24.5 oxygens (Manning, 1982), 19 total cations, 15 cations, excluding those on the X-site and boron (Hawthorne et al., 1993), and 6 silica (Gallagher, 1988). The discussion of calculation of the tourmaline structural formulae has been given in detail by Grice and Ercit (1993) and Henry and Dutrow (1996). The comparative calculation schemes have been summarized by von Goerne et al. (1999) for representative electron-microprobe and synthetic tourmaline samples.

Table 3 Representative tourmaline analyses selected from literature and their calculation and classification by CLASTOUR program 3

4

5

6

7

8

9

10

30.740 0.000 1.400 0.000 0.040 43.890 2.690 0.000 0.000 6.450 0.000 2.120 1.040 0.325+ 0.000 0.000 88.695

32.730 2.870 16.260 0.000 0.160 14.780 11.240 0.100 0.000 4.660 0.040 2.710 0.190 0.005 0.000 0.000 85.745

33.580 1.630 30.620 0.000 0.000 0.860 12.650 0.060 0.000 2.690 0.000 2.840 0.060 0.032 0.340 0.143 85.219

32.920 0.540 30.700 0.000 0.000 12.370 5.980 0.110 0.000 0.160 0.200 2.490 0.070 0.835+ 1.320 0.556 87.139

34.040 0.390 27.330 0.000 0.000 7.630 4.910 0.000 0.000 7.340 0.990 2.350 0.000 0.005 0.000 0.000 84.985

36.420 0.950 31.980 0.000 0.000 0.260 0.240 0.000 0.000 11.310 0.500 2.620 0.000 0.003 0.340 0.143 84.480

36.500 0.000 40.070 0.000 0.000 0.000 0.220 3.070 0.000 0.000 0.200 2.150 0.000 1.607n 1.240 0.522 84.535

37.400 0.000 38.900 0.000 0.000 0.000 1.840 1.920 0.230 0.000 0.000 2.320 0.000 1.710n 1.280 0.539 85.061

38.370 0.000 44.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.380 0.000 1.860n 0.230 0.097 85.753

38.100 0.000 44.600 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.430 0.000 1.130 0.200 0.084 85.376

Cell contents normalized to 24.5 anions T site Si 5.878 5.957 Ti 0.122 0.043 Total 6.000 6.000

5.785 0.215 6.000

5.645 0.355 6.000

5.792 0.208 6.000

5.900 0.100 6.000

5.878 0.122 6.000

6.005 0.000 6.005

5.890 0.110 6.000

5.882 0.118 6.000

Z site Al Mg Fe3+ V Cr Total

0.194 1.838 3.968 0.000 0.000 6.000

3.444 1.264 1.292 0.000 0.000 6.000

6.000 0.000 0.000 0.000 0.000 6.000

5.848 0.041 0.111 0.000 0.000 6.000

5.273 0.727 0.000 0.000 0.000 6.000

6.000 0.000 0.000 0.000 0.000 6.000

6.000 0.000 0.000 0.000 0.000 6.000

6.000 0.000 0.000 0.000 0.000 6.000

6.000 0.000 0.000 0.000 0.000 6.000

6.000 0.000 0.000 0.000 0.000 6.000

Y site Mg Fe2+ Mn Al Ti Fe3+ Cr V Zn Li Total

0.000 0.430 0.000 0.000 0.000 2.347 0.000 0.000 0.000 0.223+ 3.000

0.000 1.710 0.015 0.000 0.393 0.732 0.000 0.013 0.000 0.004 2.877

0.691 1.822 0.009 0.003 0.211 0.111 0.000 0.000 0.000 0.022 2.869

0.000 0.857 0.016 0.000 0.070 1.485 0.000 0.000 0.000 0.572 3.000

1.134 0.699 0.000 0.000 0.050 0.977 0.000 0.000 0.000 0.003 2.863

2.731 0.033 0.000 0.006 0.116 0.032 0.000 0.000 0.000 0.002 2.918

0.000 0.030 0.419 1.482 0.000 0.000 0.000 0.000 0.000 1.041n 2.971

0.000 0.247 0.261 1.361 0.000 0.000 0.000 0.000 0.027 1.104n 3.000

0.000 0.000 0.000 1.851 0.000 0.000 0.000 0.000 0.000 1.148n 2.999

0.000 0.000 0.000 1.996 0.000 0.000 0.000 0.000 0.000 0.702 2.698

X site Ca Na K Total OH

0.00 0.786 0.254 1.040 4.000

0.008 0.956 0.044 1.008 4.000

0.000 0.949 0.013 0.962 3.815

0.037 0.828 0.015 0.880 3.284

0.180 0.775 0.000 0.956 4.000

0.087 0.823 0.000 0.910 3.826

0.035 0.671 0.000 0.706 3.369

0.000 0.722 0.000 0.722 3.350

0.000 0.411 0.000 0.411 3.888

0.000 0.428 0.000 0.428 3.902

SiO2 TiO2 Al2O3 Cr2O3 V2O3 Fe2O3 FeO MnO ZnO MgO CaO Na2O K2O Li2O F -O=F Total

1023

2

F. Yavuz et al. / Computers & Geosciences 28 (2002) 1017–1036

1

1024

Table 3 (Continued). 1 F Total Tourmaline name by authors

SiO2 TiO2 Al2O3 Cr2O3 V2O3 Fe2O3 FeO MnO ZnO MgO CaO Na2O K2O Li2O F –O=F Total

3

4

0.000 4.000

0.185 4.000

Povondraite

Schorl

Schorl

Grice and Ercit, 1993

Grice and Ercit, 1993

Alkali group

5 0.716 4.000

6

7

8

9

10

0.000 4.000

0.174 4.000

0.631 4.000

0.650 4.000

0.112 4.000

0.098 4.000

Buergerite

Dravite

Dravite

Elbaite

Elbaite

Rossmanite

Rossmanite

Grice and Ercit, 1993

Grice and Ercit, 1993

Grice and Ercit, 1993

Grice and Ercit, 1993

Grice and Ercit, 1993

Selway et al. (1999)

Selway et al. (1999)

Selway et al. (1998a)

Alkali group

Alkali group

Alkali group

Alkali group

Alkali group

Alkali group

Alkali group

Vacancy group

Vacancy group

Povondraite

Schorl Check for Oxy-schorl

Schorl Check for Oxy-schorl

Buergerite

Dravite Check for Oxy-dravite

Dravite Check for Oxy-dravite

F-Elbaite

F-Elbaite

Rossmanite Check for Oxyrossmanite

Rossmanite Check for Oxyrossmanite

11

12

13

14

15

16

17

18

19

20

37.200 0.000 40.700 0.000 0.000 0.000 0.300 1.500 0.000 0.000 2.500 1.200 0.000 2.030 0.900 0.379 85.951

36.860 0.030 46.430 0.000 0.000 0.140 0.000 0.490 0.030 0.000 0.260 1.600 0.030 1.077+ 0.060 0.025 86.982

35.300 0.350 26.200 0.000 0.000 0.000 13.600 0.090 0.000 5.840 3.010 1.180 0.000 0.260n 0.900 0.379 86.351

35.700 0.270 27.600 0.000 0.000 0.000 12.300 0.070 0.000 5.890 2.800 1.290 0.000 0.310n 1.020 0.429 86.821

36.000 0.000 36.630 0.000 0.000 0.000 14.340 0.000 0.000 0.000 0.000 0.000 0.000 0.002+ 0.000 0.000 85.972

35.410 0.350 35.120 0.000 0.000 0.000 12.290 0.090 0.000 1.290 0.010 1.000 0.000 0.010 0.200 0.084 85.686

38.270 0.000 40.170 0.000 0.000 0.000 0.970 0.000 0.000 6.150 0.000 0.700 0.000 0.288+ 0.000 0.000 86.548

36.200 0.340 25.250 0.000 0.000 5.320 4.660 0.010 0.000 10.010 5.330 0.360 0.180 0.460+ 0.230 0.097 88.253

38.550 0.120 33.280 0.000 0.000 0.000 0.920 0.000 0.000 10.530 4.200 0.400 0.000 0.461+ 0.000 0.000 88.461

35.500 0.610 30.590 2.380 4.060 0.000 1.410 0.070 0.000 8.120 1.290 2.070 0.050 0.388+ 0.000 0.000 86.538

Cell contents normalized to 24.5 anions T site Si Ti Total

5.850 0.150 6.000

5.705 0.295 6.000

6.070 0.000 6.070

6.049 0.000 6.049

6.001 0.000 6.001

5.914 0.086 6.000

5.927 0.073 6.000

5.970 0.030 6.000

5.969 0.031 6.000

5.781 0.219 6.000

Z site Al Mg Fe3+ V Cr Total

6.000 0.000 0.000 0.000 0.000 6.000

6.000 0.000 0.000 0.000 0.000 6.000

5.309 0.691 0.000 0.000 0.000 6.000

5.511 0.489 0.000 0.000 0.000 6.000

6.000 0.000 0.000 0.000 0.000 6.000

6.000 0.000 0.000 0.000 0.000 6.000

6.000 0.000 0.000 0.000 0.000 6.000

4.878 1.122 0.000 0.000 0.000 6.000

6.000 0.000 0.000 0.000 0.000 6.000

5.651 0.349 0.000 0.000 0.000 6.000

F. Yavuz et al. / Computers & Geosciences 28 (2002) 1017–1036

Tourmaline group and name by CLASTOUR

0.000 4.000

2

0.000 0.039 0.200 1.393 0.000 0.000 0.000 0.000 0.000 1.284 2.916

0.000 0.000 0.064 2.175 0.003 0.016 0.000 0.000 0.003 0.738 3.000

0.806 1.955 0.013 0.000 0.045 0.000 0.000 0.000 0.000 0.180n 2.999

0.999 1.743 0.010 0.000 0.034 0.000 0.000 0.000 0.000 0.211n 2.997

0.000 1.999 0.000 0.999 0.000 0.000 0.000 0.000 0.000 0.002+ 3.000

0.321 1.716 0.013 0.826 0.044 0.000 0.000 0.000 0.000 0.007 2.926

1.419 0.126 0.000 1.258 0.000 0.000 0.000 0.000 0.000 0.197+ 3.000

1.339 0.643 0.001 0.000 0.042 0.660 0.000 0.000 0.000 0.315+ 3.000

2.430 0.119 0.000 0.420 0.014 0.079 0.000 0.000 0.000 0.316+ 3.000

1.622 0.192 0.010 0.000 0.075 0.000 0.306 0.530 0.000 0.266+ 3.000

X site Ca Na K Total OH F Total

0.421 0.366 0.000 0.787 3.552 0.448 4.000

0.043 0.480 0.006 0.529 3.971 0.029 4.000

0.554 0.393 0.000 0.948 3.511 0.489 4.000

0.508 0.424 0.000 0.932 3.453 0.547 4.000

0.000 0.000 0.000 0.000 4.000 0.000 4.000

0.002 0.324 0.000 0.326 3.894 0.106 4.000

0.000 0.210 0.000 0.210 4.000 0.000 4.000

0.942 0.115 0.038 1.095 3.880 0.120 4.000

0.697 0.120 0.000 0.817 4.000 0.000 4.000

0.225 0.653 0.010 0.889 4.000 0.000 4.000

Liddicoatite

Olenite

Feruvite

Feruvite

Foitite

Foitite

Mg-foitite

Uvite

Uvite

V-Dravite

Teertstra et al. (1999)

Sokolov et al. (1986)

Selway et al. (1998b)

Selway et al. (1998b)

Francis et al. (1999)

Francis et al. (1999)

Hawthorne et al. (1999)

Dunn et al. (1977)

Dunn et al. (1977)

Valentine et al. (1993)

Calcic group

Alkali group

Calcic group

Calcic group

Vacancy group

Vacancy group

Vacancy group

Calcic group

Calcic group

Alkali group

OHLiddicoatite Check for Oxyliddicoatite

Olenite

Feruvite

F-feruvite

Foitite

Foitite

Mg-foitite

Ferri-uvite

Uvite

V-Dravite

Check for Oxy-foitite

Check for Oxy-foitite

Check for Oxy-Mg-foitite

Tourmaline name by authors

Tourmaline group and name by CLASTOUR

n

Check for Oxy-feruvite

Calculated by authors based on stoichiometry. +Calculated by program based on stoichiometry.

Check for Oxy-uvite

F. Yavuz et al. / Computers & Geosciences 28 (2002) 1017–1036

Y site Mg Fe2+ Mn Al Ti Fe3+ Cr V Zn Li Total

1025

1026

F. Yavuz et al. / Computers & Geosciences 28 (2002) 1017–1036

TOURCLAS allows the user to select the cationbased normalization procedures before the calculation of structural formulae of tourmaline analyses. In this respect, the user is able to select the normalization scheme based on the 24.5, T þ Z þ Y ¼ 15 anions, and Si=6, respectively. The program assumes stoichiometric amounts of B2O3 (B=3 apfu),PH2O as (OH) and Li2O at the Y-site (i.e., Li=3 Y-site). The complex structure of tourmaline group minerals makes it difficult to fully describe their crystal structure. However, . Mossbauer spectroscopy is able to define the location and abundance of Fe2+ and Fe3+ contents at the Y- and Z-sites (Mattson and Rossman, 1984; Fuchs et al., 1995). Estimation of ferric iron content of tourmaline requires measuring OH, assuming an OH value or calculating OH by other means (Henry and Dutrow, 1996). For example, if it is assumed that V- and W-sites are fully occupied by OH (F+Cl), a minimum estimate of Fe3+ can be estimated (Henry et al., 1994). On the other hand, the estimation of the proportion of Fe3+ content in the electron-microprobe study of tourmaline requires empirical ferric iron calculation. Carrying out the calculation based on the 24.5 oxygens, the ferric iron content of electron-microprobe tourmaline analysis can be calculated following the full T- and Z-site occupancy (i.e., Si+AlIV=6.00; AlVI+Fe3+=6.00) (e.g. Cavarretta and Puxeddu, 1990; Yavuz, 1997). The amount of Fe3+ in the Y-site may be approximated by the total amount of Fe in Y-site in excess of the number of Ca atoms in X-site. (Lynch and Ortega, 1997). TOURCLAS uses this criteria in calculating the ferric iron content of tourmaline analysis (i.e., Fe3+=Fe–(3Mg)–Ca).

returns the earlier menu whereas pressing [Y] key deletes the all-chemical analyses from the typed file name and opens the selected file for new data entries. The user is able to execute the calculation and classification program by clicking the mouse button on the [Clastour] option. However, the same procedure can be carried out by clicking the left mouse button on the bold point symbol at the left of selected file name. On the other hand, clicking the same symbol by using the right mouse button, the program warns the user as [Erasing selected file. Are you sure ? (Y) (N)]. Pressing [Y] function key at this part of program it erases the selected file from the disk. The help menu, and knowledge about the program can be displayed on screen by using the [Help], and [About] options, respectively. The following 19 variables are recognized input for the process of program: sample number, SiO2, TiO2, Al2O3, V2O3, Cr2O3, Fe2O3, FeO, MnO, NiO, CoO, ZnO, MgO, CaO, BaO, Na2O, K2O, Li2O, and F. Clicking the left mouse button while the arrow key on the selected file name, the program allows the user to enter new tourmaline data. The selected data file can be corrected by clicking the left mouse button on the selected any file name. The program thus loads the tourmaline analyses into the memory and displays them on screen by using the left and right arrow keys. By clicking the left mouse button on variables, the program allows the user to change wrong typed data. Thus, an update window appears at the bottom of screen and pauses for correct data entry. By pressing the [F2] function key, at this stage of program, CLASTOUR

3. The main program

Ca 0

0 10

3.1. Data edit of tourmaline analyses

25

75

Alkali group

0

10 0

Vacancy group

25

75

50

Calcic group

50

To begin executing the program, one types Edittour and presses Enter key. This program is used for the data entry of electron-microprobe or wet-chemical tourmaline analyses. A start-up screen appears with program name, its aim, author name, university, mailing, and email addresses. By clicking mouse button anywhere on this screen or pressing any key on keyboard, the pulldown start-up menu is displayed. By selecting the [File List] option from the pop-up menu by using the mouse button, the program brings alphabetically the tourmaline data files on screen. Clicking the mouse button on the [New File] option, one can create his or her own tourmaline data file. The program pauses for a file name of up to eight digits and then continues for data input processing. Following this process, the user can store the tourmaline data by pressing the [Esc] key. CLASTOUR warns the user as ‘‘File already exists. Overwrite ? [Y/ N]’’ in case of the same typed file name. Pressing [N] key

0

25

X-site vacancy

50

75

100

Na+(K)

Fig. 2. Classification of major tourmaline groups based on principal constituent at X-site.

F. Yavuz et al. / Computers & Geosciences 28 (2002) 1017–1036

Li1.5Al1.5

LiAl2

10

0

1027

0

10

0

0

Alkali group

Dominant W=OH

Dominant W=O

Alkali group

(with dominant Z=Al, V=OH)

(with dominant Z=Al, V=OH) 25

50

50

"Oxy-Schorl"

0

75

50

25

Mg3

10

0

0

10

0

0

75

"Oxy-Dravite"

25

25

Schorl

50

"Oxy-Elbaite"

50

Dravite

75

75

25

75

Elbaite

100

0

Fe 32+

MgAl2

(A)

75

50

25

100

2+

Fe Al2

(B)

Cr 3+ 0

10

Li1.5Al1.5

0

0

10 0

Alkali group

Dominant W=F

Alkali group

(with dominant V=OH, W=O)

50 75

Oxy-dravite

25

0

25

Mg3 (C)

50

75

10

100

Fe2+ 3

0

0

10

0

0

Povondraite

25

25

75

50

50

"F-Schorl"

50

Oxy-chromdravite

"F-Elbaite"

"F-Dravite"

75

75

25

(with dominant Z=Al, V=OH)

0

Al

25

50

75

100

3+

Fe

(D)

Fig. 3. Compositional ranges of selected tourmaline samples in alkali-group tourmaline minerals. (A) Alkali tourmalines on Li1.5Al1.5– Mg3–Fe2+ ternary diagram (i.e., dominant OH at W-site). (B) Alkali tourmalines on LiAl2–MgAl2–Fe2+Al2 ternary diagram (i.e., 3 dominant O at W-site). (C) Alkali tourmalines on Li1.5Al1.5–Mg3–Fe2+ ternary diagram (i.e., dominant F at the W-site). (D) Z-site 3 cations of alkali tourmalines on Cr3+–Al–Fe3+ ternary diagram.

saves the corrected analyses into the same file name. Using the [F3] function key, the user can execute the (Clastour.Exe) program. 3.2. Executing the main program Once data entry is completed, the user can calculate the tourmaline analyses by executing the main ‘‘Clastour.Exe’’ program. The [Clastour] option in the startup menu, the [F2] function key in the data edit menu, the

[F3] function key in the update menu, and clicking left mouse button while the arrow on () symbol can be used for this process. Upon execution of the main program with any selected data file, the CLASTOUR allows the user to select the normalization parameter for the calculation of structural formula on the basis of 24.5, T þ Z þ Y ¼ 15 oxygens, and 6 silicons. Selecting any of normalization parameter by clicking mouse button, a graphic screen view, which is similar to Fig. 1A appears on screen. However, the program asks a question as

F. Yavuz et al. / Computers & Geosciences 28 (2002) 1017–1036

1028

Li2Al

Li1.5Al1.5 0

0

Dominant W=OH

Calcic group

25 50 75

25 50

0

0 10

"Oxy-Feruvite"

10

100

0

75

Mg3

"Oxy-Uvite"

25

0

50

"Oxy-Liddicoatite"

50

Feruvite

25

75

75

Uvite

50

"OH-Liddicoatite"

25

Dominant W=O

(with dominant Z=Al, V=OH) 75

0

00

0

10

Calcic group (with dominant Z=Al, V=OH)

0

Fe2+ 3

25

50

MgAl2

(A)

75

100

Fe2+Al2

(B)

00

0

Li2Al Calcic group

Dominant W=F

(with dominant Z=Al, V=OH) 25

75

50 75

0

10

0

"F-Feruvite"

25

"F-Uvite"

50

Liddicoatite

0

25

Mg3

50

75

100

Fe2+ 3

(C) Fig. 4. Compositional ranges of selected tourmaline samples in calcic-tourmaline group minerals. (A) Classification of calcic tourmalines on Li2Al–Mg3–Fe2+ ternary diagram (i.e., dominant OH at the W-site). (B) Classification of calcic tourmalines on 3 Li1.5Al1.5–MgAl2–Fe2+Al2 ternary diagram (i.e., dominant O at W-site). (C) Classification of calcic tourmalines on Li2Al–Mg3–Fe2+ 3 ternary diagram (i.e., dominant F at W-site).

‘‘DoPyou want to calculate the amount of Li2O from [3-( Y-anions)] [Y/N]?’’ if entered tourmaline data does not include Li2O content. By clicking [Y] option, the program takes into account the amount of Li that is assigned to fill the Y site. At this stage of program running, the main program creates 17 data files with the extension of ‘‘Dat’’. By clicking the left or right mouse buttons anywhere on the screen, the program presents the next calculated sample on screen. For each analysis, the program calculates the numbers of cations per formula unit and shares out the calculated anions into

the T- Z-, Y-, and X-sites together with the tourmaline group and tourmaline name. One can also use the right– left or down–up arrow key pairs for this purpose. The function keys at the base of the screen can be used for executing the ‘‘Edittour.Exe’’ program by clicking the [Menu] option, processing another tourmaline data by clicking the [List Files] option, saving the calculated results under the ‘‘Output1.Dat’’ file name by clicking the [Save] option, returning the temporarily DOS environment by clicking the [Shell] option, executing the commercial Grapher program by clicking the

F. Yavuz et al. / Computers & Geosciences 28 (2002) 1017–1036

LiAl2

Li0.5Al2.5 0

0 10

0 10

0

1029

X-site vacant grou p

X-site vacant grou p

Dominant W=OH

Dominant W=O

(with dominant Z=Al, V=OH)

25

75

75

25

(with dominant Z=Al, V=OH)

50

"Oxy-Rossmanite"

75

75

25

25

"Oxy-Mg-foitite" Mg-foitite

10 0

0 10

50

75

0

100

Mg2Al

25

50

MgAl2

Fe2+2Al

(A)

0

25

"Oxy-Foitite"

Foitite

0

0

50

50

50

Rossmanite

75

100

2+

Fe Al2

(B)

LiAl2 0

0 10

X-site vacant grou p

Dominant W=F

(with dominant Z=Al, V=OH) 25

75

50 75

0

10 0

"F-Foitite"

25

"F-Mg-foitite"

50

"F-Rossmanite"

0

25

Mg2Al

50

75

100

Fe2+2Al

(C) Fig. 5. Compositional ranges of selected tourmaline samples in X-site vacant tourmaline group minerals. (A) Classification of X -site vacant tourmalines on LiAl2–Mg2Al–Fe2+Al ternary diagram (i.e., dominant OH at W-site). (B) Classification of X -site vacant tourmalines on Li0.5Al2.5–MgAl2–Fe2+Al2 ternary diagram (i.e., dominant O at W-site). (C) Classification of X -site vacant tourmalines on LiAl2–Mg2Al–Fe2+ 2 Al ternary diagram (i.e., dominant F at W-site).

[Grapher] option, executing the ‘‘More.Exe’’ program by clicking the [More] option, displaying the knowledge about program by clicking the [About] option, opening the ‘‘Ouput1.Dat’’ file under the ‘‘Editv.Exe’’ program by clicking the [Results] option, and leaving the ‘‘Clastour.Exe’’ program by clicking the [Exit] option. For each sample, the ternary principal constituents that are normalized to 100% are listed under the caption of ‘‘Major compositional ranges of tourmaline’’ for the classification of major and sub compositional groups of the tourmaline minerals (Fig. 1A). By executing the ‘‘More.Exe’’ program using the mouse button on [More]

option or by pressing the [O] key, the screen view that is similar to Fig. 1B appears on screen. The base function keys in this program can be used for several data evaluation processes as in the running of ‘‘Clastour.Exe’’ program. For example, by clicking the [File] option or by pressing the [F] key, the program saves the all calculated results under the ‘‘Output2.Dat’’ file. The classification and evaluation of tourmaline analyses and their graphical output on different binary and ternary diagrams are plotted under the commercial program of Grapher by Golden software. Table 2 lists these graphic files, diagram types and corresponding references. The

F. Yavuz et al. / Computers & Geosciences 28 (2002) 1017–1036

1030

Na2O

Ca 0

0

0

0 25

75

75

25

10

10

1 .7

5

50

50

50

50

Liddicoatite

75

0

Schorl 5

0

25

50

75

10

100

0

Na

X-site vacancy (A)

0

0

10

0

0

1 .2

25

1 .5

25

75

Dravite Elbaite

Rossmanite

25

50

75

FeOtot

(B)

1.00

1.00

Feruvite

Uvite Schorl

0.80

Elbaite

0.80

Ca / (Ca + Na) at X-site

Na / (Na + X-site vacancy) at X-site

100

MgO

0.60

0.40

Rossmanite

Foitite

0.20

0.60

0.40

0.20

Schorl

Dravite 0.00

0.00 0.00

(C)

0.20

0.40

0.60

0.80

1.00

A l / (A l + Fe) at Y-site

0.00

(D)

0.20

0.40

0.60

0.80

1.00

Fe / (Fe + Mg) at Y-site

Fig. 6. (A) Position of Li tourmalines in terms of their X-site composition. Diagram is contoured for Li content. (B) Na2O–MgO– FeOtot ternary diagram for selected tourmaline analyses. (C) Chemical composition of tourmalines in Na/(Na+vacancy) at X-site vs. Al/(Al+Fe) diagram. (D) Plot of selected tourmaline analyses on tourmaline quadrilateral diagram.

‘‘Output1.Dat’’ and ‘‘Output2.Dat’’ files that are created during the execution of ‘‘Clastour.Exe’’ and ‘‘More.Exe’’ programs can be read under the Grapher program or using the any text editor. 3.3. Test of program with selected examples In this study, the validity of program has been tested by the selected numerous tourmaline analyses from the literature. The most of these analyses are taken from

Grice and Ercit (1993) in which they carried out structure refinement studies on a set of specimens. The rest of analyses are compiled from the papers by several authors (Dunn et al., 1977; Sokolov et al., 1986; Selway et al., 1998a, b, 1999; Teertstra et al., 1999; Francis et al., 1999; Hawthorne et al., 1999). The list of these selected tourmalines and its comparative outputs by CLASTOUR program is given in Table 3. Because of some difficulties in determining anions in V- and W-sites on microprobe data, the present program gives two names

F. Yavuz et al. / Computers & Geosciences 28 (2002) 1017–1036

Al

1031

Ca Liddicoatite

1

Alkali-free Dravite

Foitite

2

Schorl Buergerite

4 5

7 Dravite 1

3

6

8

Uvite

Uvite

3

5

2 4

Schorl

Fetot 1= 2= 3= 4= 5= 6= 7= 8=

Mg

Buergerite

Dravite

Mg

Fetot

Li-rich granitoid pegmatites and aplites Li-poor granitoids and their associated pegmatites and aplites Ferric iron-rich qua rtz-tourmaline rocks (hydrotherm ally altered gran ites) Metapelites and metapsammi tes coexisting with an Al-saturating phase Metapelites and metapsammi tes not coexisting with an Al-saturating phase Ferric iron-rich qua rtz-tourmaline rocks, calc-silicate rocks, and metapelites Low-Ca metaultramafics and Cr, V-rich!metasediments Metacarbonates and meta-pyroxenites

(A)

6

1 2 3 4 5 6

= = = = = =

Li-rich granitoid pegmatites and aplites Li-poor granitoids and associated pegmatites and aplites Ca-rich metapelites, metapsammites, and calc-silicate rocks Ca-poor metapelites, metapsammites, and quartz-tourmaline rocks Metacarbonates Metaultramafics

(B)

Fig. 7. (A) Al–Fetot–Mg ternary diagram for tourmalines in Table 3 (in molar proportions). (B) Chemical composition of selected tourmaline analyses on Ca–Fetot–Mg ternary diagram (in molar proportions).

for some type of tourmalines. For example, a tourmaline in elbaite composition is also named as Oxy-elbaite and F-elbaite if O and F dominate the W-site. Hence, TOURCLAS classifies this sample as elbaite and warns the user as ‘‘Check for Oxy-elbaite’’. By executing the ‘‘Clastour.Exe’’ program, the establishment of tourmaline groups and names are carried out on the basis of both numerical and graphical solutions. The classification of samples in Table 3 on the major compositional groups of the tourmaline minerals is given in Fig. 2, which is based on the principal constituent at the X -site (‘‘Caxsal.Grf’’, Table 2). For the selected 20 tourmaline samples 10 plot in the alkali group, 5 plot in the calcic group and the rest 5 plot in the X -site vacant group. The names of tourmalines that are classified based on the criteries of Hawthorne and Henry (1999) are harmonious with the tourmaline names given by authors’s studies (see Table 3). The compositional ranges of these 10 samples in the alkalitourmaline group diagrams are given in Fig. 3A (‘‘Almgfeoh.Grf’’, Table 2), Fig. 3B (‘‘Almgfeo.Grf’’, Table 2), Fig. 3C (‘‘Almgfef.Grf’’, Table 2) and Fig. 3D (‘‘Crafez.Grf’’, Table 2). The dominance of F at the Wsite has been resulted in the classification of elbaite to fluor-elbaite (Fig. 3C). It is not too suprising, as F levels above 0.5 apfu are relatively common in some natural dravites, uvites and elbaites (MacDonald and

Hawthorne, 1995; Henry and Dutrow, 1996). The diagrams of Fig. 4A–C shows the positions of five tourmaline samples on the different calcic-tourmaline group diagrams (Fig. 4A ‘‘Calmgfoh.Grf’’; Fig. 4B ‘‘Calmgfeo.Grf’’; Fig. 4C ‘‘Calmgfef.Grf’’, Table 2). The compositional ranges of the other five X -site vacant tourmaline samples is given in Fig. 5A–C (Fig. 5A ‘‘Valmgfoh.Grf’’; Fig. 5B ‘‘Valmgfeo.Grf’’; Fig. 5C ‘‘Valmgfef.Grf’’, Table 2). Hawthorne and Henry (1999) proposed the position of Li tourmalines in terms of their X-site composition. The selected Li tourmalines on Ca—X -site vacant—Na ternary diagram is shown in Fig. 6A (‘‘Lsxtecom.Grf’’, Table 2). Tourmaline varieties belong to the Fe–Mg solid solution series can be displayed on the Na2O– MgO–Fetot ternary diagram. Position of selected tourmaline analyses for dravite-schorl series are shown in Fig. 6B (‘‘Namgfe.Grf’’). Fig. 6C shows some of the alkali- and X -site vacant-group tourmalines on the Na/ (Na+vacancy) at the X-site versus Al/(Al+Fe) at the Ysite diagram (‘‘Nanavac.Grf’’, Table 2). The tourmaline nomenclature used in this diagram is taken from Selway and Nova! k (1997) and Selway et al. (1999). The plot of some alkali- and calcic-group tourmaline species on tourmaline quadrilateral diagram is given in Fig. 6D for selected tourmaline analyses (‘‘Quadr.Grf’’, Table 2). Considering the most important substituting elements in

F. Yavuz et al. / Computers & Geosciences 28 (2002) 1017–1036

1032

10.00

1.00 AlOMg−1(OH)

−1 Ca

Na−1

0.5 0.5

0.80

8.00

CaMgNa−1 Al−1 CaONa (OH) −1

X-site vacancy

CaMg OHNa−1Al−2 O−1 2

0.60

CaMg

Al

−2

(OH)−1 −1Al−1 CaMg OH 3 −1 Al−3 O−1

CaMgO

0.40

Fe + Mg + Mn

−1

LiAlFe−2

6.00

4.00

2.00

0.20

0.00

0.00 0.00

0.20

0.40

0.60

0.80

0.00

1.00

2.00

4.00

(B)

Ca

(A)

AlOMg

−1(OH)−1

Mg −1 −1

AlNa Mg −1 −1 Ca Ca

Na−1

CaMgO

−1

CaMg2

−1

0.5 0.5

CaMg2 OH

6.00

Al−1(OH)−1 Al−2 −1

Al O−1 −3

CaMgNa Al−1 −1 CaONa(OH)−1 CaMg OHNa Al O 2

−1

−2 −1

4.00

2.00

X-site vacancy + Al* + OH*

AlNa

8.00

Na + Al*

8.00

10.00

16.00

10.00

Na−1

0.5 0.5

12.00 CaMgNa−1Al−1 CaONa−1(OH)−1 CaMg2OHNa−1Al−2O−1 Al−2 CaMg

8.00

2 −1

CaMgO −1Al−1(OH)−1 CaMg3OH −1Al−3O−1

4.00

0.00

0.00 0.00

2.00

4.00

6.00

8.00

24.00

10.00

Ca + Mg*

(C)

28.00

32.00

36.00

40.00

Ca + Mg* + O

(D) 1.20

2.50

2.00

6.00

Al + Li

AlO3(OH)−3 (Y)−1 (X) Al O Na Li (OH) (Y) −12 −4 2 5 12 −2 −1 (X)2AlNa−2Li−1

(X)(OH)Li−1O−1 AlO Li

2 −1

(OH)

−2

+

R

2 R1 + Li

0.80

1.50

AlO (OH)

(Y) −3 −1 3 AlO2 Li−1 (OH)−2

1.00 0.40

(X)AlONa Li (OH) −1 −1 −1

0.50

(X)(OH)Na−1O−1

0.00

0.00

0.00

(E)

(X)2Al5O13Na−1Li−1 (OH)−13 (Y)−4 (X)Al4.5O12Na−1Li−0.5 (OH)−12 (Y)−4

4.00

8.00

R3 + 2 X-site vacancy

0.00

12.00

(F)

2.00

4.00

6.00

8.00

10.00

R3+

Fig. 8. (A) Correlation of X -site vacancy with Ca content in selected tourmaline samples. (B) Plot of (Fe+Mg+Mn) vs. (Al+Li) in tourmalines. (C) Plot of (Na+Al*) vs. (Ca+Mg*) diagram. (*) denotes multicomponent compositions: Al*=Al+Fe3++2Ti–Li, Mg*=Mg+Fe2++Mn+2Li–Ti. (D) Plot of (X -site vacancy+Al*+OH*) vs. (Ca+Mg*+O) diagram. OH*=OH+F. (E) (R++2X site vacancy) versus (2R++Li) in Li-bearing tourmalines. (F) Plot of R+ vs. R3+ in tourmalines.

F. Yavuz et al. / Computers & Geosciences 28 (2002) 1017–1036

tourmaline (i.e., Al, Ca, Fe and Mg), Henry and Guidotti (1985) developed ternary Al–Fetot–Mg and Ca–Fetot–Mg diagrams to introduce the relation between tourmaline composition and host-rock type. These two diagrams are given in Fig. 7A–B for selected tourmaline data in Table 2. The crystal chemistry of tourmaline has several solid solution series. The Na–Mg end-member dravite to Na–Fe2+ end-member schorl (NaMg3Al62NaFe3Al6), and the Na–Li end-member elbaite to schorl (NaLi1.5Al1.5Al62NaFe3Al6) are traditionally accepted two main continuous solid solution series in tourmaline structure. The list of most common substitutions is given by Henry and Dutrow (1996). The present program plots important site substitutions for tourmaline under the Grapher software. The plot files with the extension of ‘‘Grf’’ are listed in Table 2 for classification and evaluation of tourmaline data. Fig. 8A–F (‘‘Caxvac.Grf’’, ‘‘Femgmnal.Grf’’, ‘‘Nakcamg.Grf’’, ‘‘Xvaccamg.Grf’’, ‘‘Rlrxs.Grf’’ and ‘‘Nacaal.Grf’’, respectively) shows some of the variation diagrams for tourmaline data in Table 2.

4. Summary and conclusion In general, the composition of any mineral, especially having a complex solid solution behavior like micas and tourmaline, gives an important knowledge about the intensive parameters such as pressure, temperature, and oxygen fugacity. Tourmaline is a common accessory mineral in a variety of rocks and mineral deposits. Since tourmaline is a mechanically stable mineral, it can be used to provide valuable information about the P-T-f (O2) conditions in which it is formed. The minerals of the tourmaline group are characterized by extensive substitutions. Although the incorporation of elements into the crystal structure makes the interpretation of petrologic results difficult, this chemical complexity gives important knowledge abut the compositional evolution of igneous and metamorphic rocks and mineralization processes. Consequently, in recent years, numerous studies have focused on the better understanding of crystal chemistry of tourmaline. In this paper, the CLASTOUR program developed for personal computers was described. The program processes under DOS and Windows systems with minimum hardware requirements. Three executable program segments helps the user to edit and to store electron-microprobe or wet-chemical tourmaline data, to calculate tourmaline analyses into cation and molecular percentages, to classify major tourmaline groups and tourmaline names according to the procedures given by Hawthorne and Henry (1999), to share recalculated cations at the T-, Z-, Y-, and Z-sites, and to estimate mole percent of the end-members of alkali-, calcic-, and X -site vacant group tourmalines. The users

1033

can calculate their own tourmaline data with three different structural formula on the basis of 29 oxygens, 15 cations (sum of T þ Z þ Y ¼ 15), and 6 silicons. The CLASTOUR software automatically creates 31 data files with the extension of ‘‘Dat’’ for plot of over 100 binary and ternary diagrams under the Grapher software. Execution of ‘‘Clastour.Exe’’ program creates 14 different data files with the extension of ‘‘Dat’’. One of these data files called ‘‘Ctourmal.Dat’’ is used primarily by ‘‘More.Exe’’ program to process for further calculations. On the other hand, the ‘‘Binary1.Dat’’ data file created under the ‘‘More.Exe’’ program constitutes the essential graphic data file that used by Grapher software. The performance of program was checked by calculating representative tourmaline analyses selected from literatures. This software is easy to use, with pulldown menus, base-function keys and mouse options. Different symbol shapes for different data set can be used under the Grapher program. All the calculated results can be stored as comma delimited ASCII file format in ‘‘Output1.Dat’’ and ‘‘Output2.Dat’’ files by using the [Save] option during the process of ‘‘Clastour.Exe’’ and ‘‘More.Exe’’ programs, respectively. These two files can be visualized by [Results] option using the ‘‘Editv.Exe’’ program developed by J.R. Ferguson. Using these two files under the spreadsheet programs (e.g., Excel); the users can create their own plots, except for graphic files in Table 2. Figures for the tourmaline samples can be easily send from Grapher software to Microsoft Word editor using the copy and paste options to get quality printouts. The source code was developed in Microsoft QuickBasic 7.1. The compiled program together with data and graphic files (i.e., with the extension of ‘‘Grf ‘‘) is approximately 1200 kB. Hence, the execution of program can be carried out even in a single floppy diskette. The program together with its graphic and data files can be obtained by anonymous FTP from the server IAMG.ORG.

Acknowledgements We are grateful to D.J. Henry for his incisive and helpful critique of an early draft of the manuscript and J.B. Selway for her suggestions during the preparation of manuscript.

References B!eziat, D., Bourges, F., Debat, P., Fuchs, Y., Lompo, M., Martin, F., Niki!ema, S., Tollon, F., 1999. The Guibar.e and F!et!e and Kol!e gold-bearing tourmaline-quartz veins in the Birimian Greenstone Belts of Burkina Faso. Canadian Mineralogist 37 (3), 575–591.

1034

F. Yavuz et al. / Computers & Geosciences 28 (2002) 1017–1036

Bloodaxe, E.S., Hughes, J.M., Dyar, M.D., Grew, E.S., Guidotti, C.V., 1999. Linking structure and chemistry in the Schorl-Dravite series. American Mineralogist 84 (5–6), 922–928. Brown, C.E., Ayuso, R.A., 1985. Significance of tourmalinerich rocks in the Grenville Complex of St. Lawrence County, New York. USGS Bulletin 1626, C1–C33. Cavarretta, G., Puxeddu, M., 1990. Schorl-dravite-ferridravite tourmalines deposited by hydrothermal magmatic fluids during early evolution of the Larderollo Geothermal Field, Italy. Economic Geology 85, 1236–1251. Cleland, J.M., Morey, G.B., McSwiggen, P.L., 1996. Significance of tourmaline-rich rocks in the North Range Group of the Cuyuna Iron Range, east-central Minnesota. Economic Geology 9 (7), 1282–1291. Dyar, M.D., Guidotti, C.V., Core, D.P., Wearn, K.M., Wise, M.A., Francis, C.A., Johnson, K., Brady, J.B., Robertson, J.D., Cross, L.R., 1999. Stable isotope and crystal chemistry of tourmaline across pegmatite-country rock boundaries at Black Mountain and Mount Mica, southwestern Maine, USA European. Journal of Mineralogy 11, 181–294. Dyar, M.D., Taylor, M.E., Lutz, T.M., Francis, C.A., Guidotti, C.V., Wise, M., 1998. Inclusive chemical characterization of . tourmaline: Mossbauer study of Fe valence and site occupancy. American Mineralogist 83 (7–8), 848–864. Dunn, P.J., Appleman, D., Nelen, J.A., Norberg, J., 1977. Uvite, a new (old) common member of the tourmaline group and its implications for collectors. The Mineralogical Record, 100–108. Dutrow, B.L., Henry, D.J., 2000. Complexly zoned fibrous tourmaline, Cruzeiro Mine, Minas Gerais, Brazil: a record of evolving magmatic and hydrothermal fluids. Canadian Mineralogist 38 (1), 131–143. Federico, M., Andreozzi, G.B., Lucchesi, S., Graziani, G., 1998. Compositional variation of tourmaline in the granitic pegmatite dykes of the Cruzeiro Mine, Minas Gerais, Brazil. Canadian Mineralogist 36 (2), 415–431. Francis, C.A., Dyar, M.D., Williams, M.L., Hughes, J.M., 1999. The occurrence and crystal structure of foitite from a tungsten-bearing vein at Copper Mountain, Taos Country, New Mexico. Canadian Mineralogist 37 (6), 1431–1438. Fuchs, Y., Lagache, M., Linares, J., Maury, R., Varret, F., . 1995. Mossbauer and optical spectrometry of selected schorl-dravite tourmalines. Hyperfine Interactions 96 (3–4), 245–258. Fuchs, Y., Lagache, M., Linares, J., 1998. Fe-tourmaline synthesis under different T and fO2 conditions. American Mineralogist 83 (5–6), 525–534. Fuchs, Y., Maury, R., 1995. Borosilicate alteration associated with U–Mo–Zn and Ag–Au–Zn deposits in volcanic rocks. Mineralium Deposita 30 (6), 449–459. Gallagher, V., 1988. Coupled substitutions in the schorl-dravite tourmaline: new evidence from SE Ireland. Mineralogical Magazine 52, 637–650. Garba, I., 1996. Tourmalinization related to Late Proterozoic– Early Paleozoic lode gold mineralization in the Bin Yauri area, Nigeria. Mineralium Deposita 31 (3), 201–209. Grice, J.D., Ercit, T.S., 1993. Ordering of Fe and Mg in the tourmaline crystal structure: the correct formula. Neues Jahrbuch fur Mineralogie-Abhandlungen. 163 (3), 245–266.

Hawthorne, F.C., 1996. Structural mechanisms for lightelement variations in tourmaline. Canadian Mineralogist 34 (1), 123–132. Hawthorne, F.C., Henry, D.J., 1999. Classification of the minerals of the tourmaline group. European Journal of Mineralogy 11 (2), 201–215. Hawthorne, F.C., MacDonald, D.J., Burns, P.C., 1993. Reassignment of cation site occupancies in tourmaline: Al–Mg disorder in the crystal structure of dravite. American Mineralogist 78 (3–4), 265–270. Hawthorne, F.C., Selway, J.B., Kato, A., Matsubara, S., Shimizu, M., Grice, J.D., Vajdak, J., 1999. Magnesiofoitite, &(Mg2Al)Al6(Si6O18)(BO3)3(OH)4, a new alkali-deficient tourmaline. Canadian Mineralogist 37 (6), 1439–1443. Henry, D.J., Dutrow, B.L., 1990. Ca substitution in Li-poor aluminous tourmaline. Canadian Mineralogist 28, 111–124. Henry, D.J., Dutrow, B.L., 1996. Metamorphic tourmaline and its petrologic applications. In: Grew, E.S., Anovitz, L.M. (Eds.), Boron: Mineralogy, Petrology, and Geochemistry, Reviews in Mineralogy Vol. 33, pp. 503–557. Henry, D.J., Dutrow, B.L., 2001. Compositional zoning and element partitioning in nickeloan tourmaline from a metamorphosed karstbauxite from Samos, Greece. American Mineralogist 86, 1130–1142. Henry, D.J., Guidotti, C.V., 1985. Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. American Mineralogist 70 (1–2), 1–15. Henry, D.J., Kirkland, B.L., Kirkland, D.W., 1999. Sectorzoned tourmaline from the cap rock of a salt dome. European Journal of Mineralogy 11 (2), 263–280. Henry, D.J., Lu, G., McCabe, C., 1994. Epigenetic tourmaline in sedimentary red-beds: an example from the Silurian rose hill formation, Virginia. Canadian Mineralogist 32 (3), 599–605. Jiang, S.Y., Palmer, M.R., Li, Y.H., Xue, C.J., 1995. Chemical compositions of tourmaline in the Yindongzi–Tongmugou Pb–Zn deposits, Qinling, China: implications for hydrothermal ore-forming processes. Mineralium Deposita 30 (3–4), 225–234. Jiang, S.Y., Palmer, M.R., McDonald, A.M., Slack, J.F., Leitch, C.H.B., 1996. Feruvite from the Sullivan Pb–Zn–Ag deposit, British Columbia. Canadian Mineralogist 34 (4), 733–740. Jiang, S.Y., Palmer, M.R., Slack, J.F., 1997. Alkali-deficient tourmaline from the Sullivan Pb–Zn–Ag deposit, British Columbia. Mineralogical Magazine 61 (6), 853–860. Jiang, S.Y., Palmer, M.R., Slack, J.F., Shaw, D.R., 1998. Paragenesis and chemistry of multistage tourmaline formation in the Sullivan Pb–Zn–Ag deposit, British Columbia. Economic Geology 93 (1), 47–67. Jolliff, B.L., Papike, J.J., Shearer, C.K., 1986. Tourmaline as a recorder of pegmatite evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. American Mineralogist 71, 472–500. Kasemann, S., Erzinger, J., Franz, G., 2000. Boron recycling in the continental crust of the central Andes from the Palaeozoic to Mesozoic, NW Argentina. Contributions to Mineralogy and Petrology 140, 328–343. Keller, P., Robles, E.R., P!erez, A.P., Fontan, F., 1999. Chemistry, paragenesis and significance of tourmaline in

F. Yavuz et al. / Computers & Geosciences 28 (2002) 1017–1036 pegmatites of the Southern Tin Belt, central Namibia. Chemical Geology 158 (3–4), 203–225. Layne, G.D., Spooner, E.T.C., 1991. The Jc tin skarn deposit, southern Yukon Territory: 1. Geology, paragenesis, and fluid inclusion microthermometry. Economic Geology 86 (1), 29–47. Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandaring, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., Youzhi, G., 1997. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names. Canadian Mineralogist 35 (1), 219–246. London, D., 1999. Stability of tourmaline in peraluminous granite systems: the boron cycle from anatexis to hydrothermal aureoles. European Journal of Mineralogy 11 (2), 253–262. London, D., Manning, D.A.C., 1995. Chemical variation and significance of tourmaline from southwest England. Economic Geology 90 (3), 495–519. Lynch, G., Ortega, J., 1997. Hydrothermal alteration and tourmaline-albite equilibria at the Coxheat porphyry Cu–Mo–Au deposit, Nova Scotia. Canadian Mineralogist 35 (1), 79–94. MacDonald, D.J., Hawthorne, F.C., 1995. The crystal chemistry of Si2Al substitution in tourmaline. Canadian Mineralogist 33 (4), 849–858. MacDonald, D.J., Hawthorne, F.C., Grice, J.D., 1993. Foitite, &[Fe2+ (Al,Fe)] Al6Si6O18 (BO3) (OH)4, a new alkali2 deficient tourmaline: description and crystal structure. American Mineralogist 78 (11–12), 1299–1303. Manning, D., 1982. Chemical and morphological variation in tourmalines from the Hub Kapong batholith of Peninsular Thailand. Mineralogical Magazine 45, 139–147. Mattson, S.M., Rossman, G.R., 1984. Ferric iron in tourmaline. Physics and Chemistry of Minerals 11, 225–234. McArdle, P., Fitzell, M., Oosterom, M.G., O’Conner, P.J., Kennan, P.S., 1989. Tourmaline as a potential host rock for gold in the Caledonides of southeast Ireland. Mineralium Deposita 24, 154–159. Nickel, E.H., 1992. Solid solutions in mineral nomenclature. Canadian Mineralogist 30 (1), 231–234. Pesquera, A., Tores-Ruiz, J., Gil-Crespo, P.P., Velilla, N., 1999. Chemistry and genetic implications of tourmaline and Li– F–Cs micas from the Valdeflores area (C!aceres, Spain). American Mineralogist 84 (1–2), 55–69. Pieczka, A., 1999. Statistical interpretation of structural parameters of tourmalines: the ordering of ions in the octahedral sites. European Journal of Mineralogy 11 (2), 243–251. Pieczka, A., 2000. Modeling of some structural parameters of tourmalines on the basis of their chemical composition. 1. Ordered structural model. European Journal of Mineralogy 12 (3), 559–589. Pirajno, F., Smithies, R.H., 1992. The FeO/(FeO+MgO) ratio of tourmaline: a useful indicator of spatial variations in granite-related hydrothermal mineral deposits. Journal of Geochemical Exploration 42, 371–381.

1035

Plimer, I.R., 1980. Exhalative Sn and W deposits associated with mafic volcanism as precursor to Sn and W deposits associated with granites. Mineralium Deposita 15, 275–289. Plimer, I.R., 1986. Tourmalinites from the Golden Dyke dome, northern Australia. Mineralium Deposita 21, 263–270. Plimer, I.R., Lees, T.C., 1988. Tourmaline-rich rocks associated with the submarine hydrothermal Rosebery Zn–Pb–Cu– Ag–Au deposit and granites in western Tasmania, Australia. Mineralogy and Petrology 38, 81–103. Rosenberg, P., Foit, F., Ekambaran, V., 1986. Synthesis and characterization of tourmaline in the system Na2O–MgO– Al2O3–SiO2–B2O3–H2O. American Mineralogist 71, 971–976. Selway, J.B., Nov!ak, M., 1997. Experimental conditions, normalization procedures and used nomenclature for tourmaline. In: Nov!ak, M., Selway, J.B. (Eds.), Tourmaline 1997 Field Trip Guidebook. Nov!e M$esto na Morav$e, Czech Republic, pp. 19–21. " Selway, J.B., Nov!ak, M., Hawthorne, F.C., Eern" y, P., Ottolini, L., Kyser, T.K., 1998a. Rossmanite, &(LiAl2)Al6(Si6O18)(BO3)3(OH)4, a new alkali-deficient tourmaline: description and crystal structure. American Mineralogist 83 (7–8), 896–900. " Selway, J.B., Eern" y, P., Hawthorne, F.C., 1998b. Feruvite from lepidolite pegmatites at Red Cross Lake, Manitoba. Canadian Mineralogist 36 (2), 433–439. " Selway, J.B., Nov!ak, M., Eern" y, P., Hawthorne, F.C., 1999. Compositional of tourmaline in lepidolite-subtype pegmatites. European Journal of Mineralogy 11 (2), 569–584. Slack, J.F., Palmer, M.R., Steven, B.P.J., Barnes, R.G., 1993. Origin and significance of tourmaline-rich rocks in the Broken Hill District, Australia. Economic Geology 88 (3), 505–541. Sokolov, P.B., Groskaya, M.G., Gordienko, V.V., Petrova, M.G., Kretser, Yu.L., Frank-Kamenitskii, V.A., 1986. Olenite, Na1xAl3Al6B3Si6O27(O,OH)4, a new high-alumina mineral from the tourmaline group. Zap. Vses. Mineral. Obshch. 115, 119–123 (in Russian). Taylor, B.E., Slack, J.F., 1984. Tourmalines from Appalachian–Caledonian massive sulfide deposits: textural, chemical and isotopic relationships. Economic Geology 79, 1703–1726. " Teertstra, D.K., Eern" y, P., Ottolini, L., 1999. Stranger in paradise: liddicoatite from the High Grade Dike pegmatite, southeastern Manitoba, Canada. Europen Journal of Mineralogy 11 (2), 227–235. Valentine, T.K., Lidia, A.B., Valery, I.S., Igor, V.K., Nicholas, N.B., Gennady, N., 1993. Vanadian–chromian tourmaline and vanadian muscovite in contact-metamorphosed carbonaceous rocks, Primorye, Russia. Canadian Mineralogist 31 (2), 347–356. von Goerne, G., Franz, G., 2000. Synthesis of Ca-tourmaline in the system CaO–MgO–Al2O3–SiO2–B2O3–H2O–HCl. Mineralogy and Petrology 69, 161–182. von Goerne, G., Franz, G., Writh, R., 1999. Hydrothermal synthesis of large dravite crystals by the chamber method. European Journal of Mineralogy 11 (6), 1061–1077. Yavuz, F., 1996. Amphcal: a QuickBasic program for determining the amphibole name from electron microprobe

1036

F. Yavuz et al. / Computers & Geosciences 28 (2002) 1017–1036

analysis using the IMA rules. Computers & Geosciences 22 (1), 101–107. Yavuz, F., 1997. TOURMAL: softaware package for tourmaline, tourmaline-rich rocks and related ore deposits. Computers & Geosciences 23 (9), 947–959. Yavuz, F., 1999. A revised program for microprobe-derived amphibole analyses using the IMA rules. Computers & Geosciences 25 (8), 909–927.

Yavuz, F., C - elik, M., Karakaya, N., 1999a. Fibrous foitite from S, ebinkarahisar, Giresun Pb–Zn–Cu–(U) mineralized area, northern Turkey. Canadian Mineralogist 37 (1), 155–161. ’ Yavuz, F., Iskendero& glu, A., Jiang, S.Y., 1999b. Tourmaline compositions from the Salikvan porphyry Cu–Mo deposit and vicinity, northeastern Turkey. Canadian Mineralogist 37 (4), 1007–1023.

Suggest Documents