Comparing the performance of FA, DFA and DMA using ... - Nature

6 downloads 0 Views 2MB Size Report
104. 100. S. (F. ) (a). FA. DMA,θ=0. DMA,θ=0.5. DFA. 100. 101. 102. 103. 104. 100. 101. S. (F. ) (b). 100. 101. 102. 103. 104. 10−1. 100. 101. S. (F. ) (c). 100. 101.
Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series Ying-Hui Shao,1, 2 Gao-Feng Gu,1, 2 Zhi-Qiang Jiang,1, 2 Wei-Xing Zhou,1, 2, 3, ∗ and Didier Sornette4, 5, † 1

2



School of Business, East China University of Science and Technology, Shanghai 200237, China Research Center for Econophysics, East China University of Science and Technology, Shanghai 200237, China 3 School of Science, East China University of Science and Technology, Shanghai 200237, China 4 Department of Management, Technology and Economics, ETH Zurich, Zurich, Switzerland 5 Swiss Finance Institute, c/o University of Geneva, Geneva, Switzerland

[email protected]



[email protected]

2 0

10

(b-1)

(a-1)

1

(c-1)

(d-1)

10

(e-1)

1

10

0

10

hF i

hF i

10

hF i

hF i

hF i

0 0

10

−1

10

−1

10 0

1

10

10

2

0

10

S

10

(a-2)

0

10

1

10

10

S

2

0

10

10

1

2

0

10

S

0

10

10

10

1

2

0

10

S

10 2

(b-2)

(c-2)

1

10

10

(d-2) 1

0

10

1

2

10

S

(e-2)

1

10

hF i

0

hF i

10

hF i

hF i

hF i

10

10

0

10

0

10

−1

10

1

2

3

10

S

0

10

10

(a)

0

10

1

10

10

2

S

10

10

3

10

0

10

10

−1

−1

0

10

1

10

10

2

3

10

S

0

10

1

10

2

10

3

10

S

0

10

1

(c)

2

10

10

(d)

10

1

10

2

10

S

3

10

(e)

2

0

10

1

10

hF i

0

hF i

hF i

hF i

hF i 0

10

3

10

S

10

1

10

2

10

3

(b) 10

FA DMA,θ=0 DMA,θ=0.5 DFA

1

10

1

10

0

0

10

10

−1

0

1

10

2

10

10

10

S

3

10

4

0

10

10

−1

−1

4

10

1

10

2

10

3

10

S

10

4

10

0

10

10

1

2

10

3

10

4

10

S

0

10

10

1

2

10

3

10

4

10

S

10

0

10

(f-1)

(h-1)

(g-1)

−1

(j-1)

10

(i-1)

−1

10

0

10

10

hF i

−1

10

hF i

hF i

hF i

hF i

−1

−2

10

−2

10

−3

10

−2

10 0

1

10

10

2

0

10

S

1

10 10

(f-2)

0

10

10

S

2

0

10

10

1

2

0

10

S

10

(h-2)

(g-2)

10

1

2

0

10

S

10

(i-2)

0

hF i

hF i

hF i

hF i

hF i

10

−1

10

2

10

S

(j-2)

−1

10 −1

1

10

−1

10

10

−2

10

−2

10

−3

10

−2

10 0

10

10

1

2

3

10

S

0

10

1

10 10

(f)

10

2

3

10

S

0

10

1

10

10

2

3

10

S

0

10

1

10

10

2

3

10

S

0

10

0

(h)

(g)

−1

10

0

10

−1

(i)

−1

10

hF i

hF i

−1

10

2

3

10

S

10

(j)

−2

hF i

hF i

hF i

10 10

1

10

−2

10

−2

10

−3

10

10

−3

10

−4

10

−1

10

0

10

10

1

10

2

10

S

3

4

0

10

10

1

2

10

10

10

S

3

4

0

10

10

1

2

10

3

10

4

10

S

0

10

10

1

2

10

3

10

4

10

S

0

10

10

1

2

10

3

10

4

10

S

10

1

(o-1)

10

0

10

hF i

10

hF i

10

1

(n-1)

0

0

hF i

0

10

10

(m-1)

(l-1) hF i

hF i

(k-1)

0

10

−1

10

−1

10

−1

10 0

1

10

10

2

0

10

S

1

10

10

10

S

2

0

1

10

10

2

0

10

S

1

10

10

2

0

10

S

10

1

(k-2)

10

(l-2)

1

10

10

2

10

S

2

(m-2)

(n-2)

1

10

(o-2)

1

0

0

10

hF i

10

hF i

0

10

hF i

hF i

hF i

10 0

10

−1

10

−1

10

−1

0

10

10 0

10

10

1

2

3

10

S

0

10

1

10 10

(k)

10

2

3

10

S

0

10

1

10

10

2

3

10

S

0

10

1

10

10

2

3

10

S

0

10

1

(l)

1

10

10

(m)

(n)

2

10

0

10

0

10

0

10

1

10

S

2

10

3

4

10

3

10

0

10

1

10

2

10

S

10

3

4

10

(o)

0

10

1

10

2

10

S

3

10

4

10

10

0

10

−1

10

−1

10

−1

10 10

2

10

S

1

hF i

0

hF i

10

hF i

hF i

hF i

0

10

1

10 10

1

10

2

0

10

1

10

2

10

S

3

10

4

10

0

10

1

10

2

10

S

3

10

4

10

FIG. 1. Comparing plots of ⟨F ⟩ against s. The plots labeled (a)-(o) are the same as in the paper where the length of time series is 20000, the plots labeled with (a-1) to (o-1) are the results where the length of time series is 500, and the plots labeled with (a-2) to (o-2) are the results where the length of time series is 2000.

3 1.6

1.4 1

1.2

(a-1)

−0.2 0 10

10

1

10

S

0.6 0.2

0.6

(b-1)

(c-1) 1

10

−0.2 0 10

2

10

S

1.2

0.8 0.4

0.2

−0.2 0 10

2

hHout i

0.2

hHout i

hHout i

hHout i

1 0.6

hHout i

1

1

10

2

S

0.4

0 0 10

10

(d-1) 1

10

0 0 10

2

10

S

1

10

2

10

S

0.6 0.2

1.2

hHout i

0.2

hHout i

hHout i

0.6

1.2

1 0.6

−0.2 0 10

1

10

10

S

2

0.2

10

1

2

S

0

3

10

10

10

10

1

2

S

10

(e-2)

0

0 0 10

3

10

0.8 0.4

(d-2)

(c-2)

−0.2 0 10

3

10

0.8 0.4

(b-2)

(a-2)

hHout i

1

1

10

2

10

S

10

3

0

1

10

10

2

3

10

S

10

1.6

hHout i

1

0.2

0.6 0.2

1.2

0.6

(b) 1

2

10

3

10

4

10

S

−0.2 0 10

10

0.8 0.4

0.2

(a) −0.2 0 10

1.2

1

hHout i

DFA DMA,θ=0 DMA,θ=0.5 FA

0.6

hHout i

1

hHout i

hHout i

(e-1)

1.6

1

hHout i

0.8

0.4

1

2

10

10

10

S

3

4

10

(e)

(d)

(c) −0.2 0 10

0.8

1

2

10

3

10

4

10

S

0 0 10

10

1

2

10

3

10

10

S

10

0 0 10

4

1

2

10

3

10

4

10

S

10

1.4

1.2

0.2

−0.2 10

0

10

1

10

S

(h-1)

(g-1) 1

10

S

1.2

hHout i

hHout i

hHout i

0.8 0.4 0

(f-2) 1

10

10

S

2

3

(g-2)

10

10

0

2

S

0.8 0.4

1

10

10

S

2

3

0

10

10

10

1

2

3

10

S

10

S

1.4

1

1

0.6

(i-2) 0

10

0 0 10

2

10

1.4

0.2

(h-2)

0

0

1

10

10

1.2

0.2 −0.2 0 10

1

10

0.8 0.4

(i-1)

0

−0.2 0 10

2

10

1 0.6

0.4

0.2

−0.2 0 10

2

0.6

1.2

0.8

hHout i

(f-1)

hHout i

0.6

hHout i

0.2

hHout i

0.6

1

hHout i

1

hHout i

hHout i

1

10

2

10

S

10

3

1

10

2

10

S

0.6

(j-2)

0.2 1

10

(j-1)

0

1

10

1.2

1.2

1.4

1.4

0.8

0.8

1

1

10

2

3

10

S

10

0.2

0

−0.2 0 10

0

(g)

(f) 1

2

10

3

10

S

−0.4 0 10

4

10

10

0.4

1

2

10

10

S

3

−0.4 0 10

4

10

0.6 0.2

0.2

1

2

10

3

10

S

−0.2 0 10

4

10

10

(j) 1

2

10

3

10

S

−0.2 0 10

4

10

10

1.4

0.6 0.2

(k-1)

−0.2 10

0

10

1

10

S

2

0.6 0.2

−0.2 (l-1) 0 10

1

10

−0.2 0 10

2

10

S

(m-1) 1

10

0.4

3

4

10

S

10

S

1.2 0.8 0.4

(n-1) 0

2

1

10

10

1.2

10

0 0 10

2

10

S

(o-1) 1

10

2

10

S

1.4 1.4

0.4 0

(k-2)

−0.2 0 10

1

10

10

S

2

3

10

10

0.6 0.2

(l-2)

0.6

1

10

10

S

2

−0.2 0 10

3

10

1

10

2

S

0

3

10

1

10

10

10

2

10

S

10

3

1

10

2

10

S

3

10

4

10

10

(l) 0

1

2

10

S

3

10

4

10

0.6 0.2

3

10

−0.2 0 10

1

10

2

10

S

3

10

4

10

1 0.6 0.2

(o)

(n)

(m)

10

hHout i

hHout i

0.6 0.2

−0.2 0 10

2

10

S

1.4 1

0.4 0

(k)

1

10

1.4

0.8

hHout i

hHout i

0.2

(o-2) 0

10

1 0.6

0.6 0.2

(n-2)

(m-2)

0

1

0.2

1.2

1

1

hHout i

0.2

hHout i

hHout i

0.6

hHout i

1

0.8

hHout i

0.8

0

1

hHout i

2

10

1.6

hHout i

0.2

hHout i

0.6

1

10

1.2

1

hHout i

1

hHout i

hHout i

1

0.6

(i)

(h)

10

hHout i

0.4

hHout i

0.6

hHout i

hHout i

hHout i

1

−0.2 0 10

1

10

2

10

S

3

10

4

10

−0.2 0 10

1

10

2

10

S

3

10

4

10

FIG. 2. Comparing local slopes of the fluctuation functions. The plots labeled (a)-(o) are the same as in the paper where the length of time series is 20000, the plots labeled with (a-1) to (o-1) are the results where the length of time series is 500, and the plots labeled with (a-2) to (o-2) are the results where the length of time series is 2000.

4

−0.6 0

0.2

0.4

0.6

Hin

0.8

1

0

Hout − Hin

0.4

0.6

Hin

0.8

1

0

−0.4

(a-2)

0

0.2

0.4

0.6

Hin

0.8

1

0.4

0.6

Hin

0.8

1

0

−0.4

(b-2)

0

0.2

0.4

0.6

Hin

0.8

−0.6 0

1

Hout − Hin

0

0.2

0.4

0.6

Hin

0.8

0.2

0.4

0.6

Hin

0.8

−0.4

(d-2)

0

0.2

0.4

0.6

Hin

0.8

−0.6 0

1

0.2

−0.2

−0.2

Hin

0.8

1

0.2

0.4

0.6

Hin

Hout − Hin

0.2 0

−0.2

0.2

0.4

0.6

Hin

0.8

1

Hin

0.6 0.4

0.2

Hout − Hin

0

−0.2

0.2

0.4

0.6

Hin

0.8

1

0.2

0.6

Hin

0.8

1

0.4

0

0.2

0.4

0.6

Hin

0.8

1

0.6

Hin

0.2 0

−0.6 (h-1) 0 0.2

0.4

0.6

Hin

0.8

1

0.4

0.2

0.2

0

−0.6 0

0.2

0.4

0.6

Hin

0.8

1

−0.6 (i-2) 0 0.2

0.2

0.2

0.2

0.2

Hout − Hin

0.4

−0.2

0

0.4

0.6

Hin

0.8

1

−0.4 0

(h) 0.2

0.4

0.6

Hin

0.8

1

−0.4 0

DFA

DMA,θ=0

DMA,θ=0.5

FA

−0.4 0

1

0.2

0.4

0.6

Hin

0.8

1

0.4

0.6

0.8

1

0.4

0.6

0.8

1

0.4

0.6

0.8

1

Hin

Hin

0

−0.2

−0.2

(g)

1

−0.4

(h-2)

0.4

−0.4 (f) 0 0.2

0.8

0

0.4

−0.2

0.6

Hin

−0.2

0.4

0

0.8

0.4 0.2 0 −0.2 −0.4 −0.6 (i-1) −0.8 0 0.2

0.4

−0.4

(g-2)

0.2

(e) 0.2

−0.2

−0.4 0.4

1

−0.4

(g-1)

−0.2

−0.4

0.8

−0.2

0.4

0.2

−0.6 (f-2) 0 0.2

0.6

0.4

−0.6 0

0.4

Hout − Hin

0.4

0.6

−0.4

−0.6 (f-1)

Hout − Hin

0.2

−0.2

−0.4 0

1

Hout − Hin

Hout − Hin

0.4

0.8

0.4

(e-2)

−0.2

Hout − Hin

0.6

−0.4 0

1

0

(d)

Hout − Hin

0.4

−0.2

Hout − Hin

0.2

0

(c) −0.4 0

0.8

Hout − Hin

(b) −0.4 0

Hout − Hin

(a) −0.4 0

Hout − Hin

0.4

0.2

Hout − Hin

0.4

0.2

Hout − Hin

0.4

0.2

−0.2

0.6

Hin

0

0.4

0

0.4

−0.2

0.2

0

0.2

0.2

0.4

0

(e-1)

0.4

0

1

0

−0.6 0

1

0.2

−0.4

0.2

−0.4

−0.2

(c-2)

0.4

−0.2

0.4

0.2

−0.2

−0.2

0

−0.4 (d-1)

0.4

0.2

Hout − Hin

Hout − Hin

0

−0.2

Hout − Hin

0.2

0.2

−0.2

−0.6 (c-1) 0 0.2

0.4

0.2

0

−0.4

−0.4 (b-1)

(a-1)

0.2

−0.2

−0.2

0.4

−0.4

0

Hout − Hin

−0.4

0.2

0.6 0.4

Hout − Hin

−0.2

0.4

Hout − Hin

0

0.6

0.4

Hout − Hin

0.2

0.6

Hout − Hin

0.4

Hout − Hin

Hout − Hin

0.6

0.2

0.4

0.6

Hin

0.8

1

−0.4 (i) 0 0.2

Hin

FIG. 3. Comparing impacts of the scaling range on the Hurst index estimates. The plots labeled (a)-(o) are the same as in the paper where the length of time series is 20000, the plots labeled with (a-1) to (o-1) are the results where the length of time series is 500, and the plots labeled with (a-2) to (o-2) are the results where the length of time series is 2000.

Suggest Documents