Comparison of citric acid production through milk whey and glucose fermentation by Aspergillus Niger Chacón Yessica1, Serna Sebastian1, Cardona Carlos A1** 1
Instituto de Biotecnología y Agroindustria, Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos, Universidad Nacional de Colombia sede Manizales, km 9 vía al Magdalena, 170003l, Manizales, Colombia. ** Corresponding author:
[email protected]
UNIVERSIDAD
NACIONAL DE COLOMBIA SEDE MANIZALES
1
Outline • • • • •
Introduction Objective Methodology Results and Discussion Conclusions
Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
2
Introduction
Actually this product is obtained by submerged fermentation with the use of fungi Aspergillus niger due to:
Food
• Easy to handling. Others
Confectionery
Citric acid Beverages
• Use as carbon source a wide variety of cheap raw materials. • High yields.
Pharmaceuticals
In Colombia sucrose from sugar cane is used as substrate.
Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
3
Introduction
Milk whey is a subproduct generated during the cheese production of dairy industry. Retains 55% of milk nutrients
Lipids (0,4-0,5%)
Soluble Proteins (0,6-0,8%)
Lactose (4,5-5%)
Cheese whey protein concentrates 10%
Only 50% is treated
Lactose 15%
Liquid 45%
Powdered cheese whey 30%
Source: Gonzáles Siso, 1996 Source: Panesar, 2007
Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
4
Introduction
Production of cheese 4,091 tons Production of milk whey 36,819 tons Environmental situation 50% is not treated and discharge into water bodies with: BOD5: 30,000-50,000 ppm
Source: MADR, 2012 Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
5
Introduction
Objective
To evaluate the citric acid production from milk whey and compare it with glucose as a base case in the technical, economic and environmental aspects.
Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
6
Introduction
Objective
Methodology
Experimental
• Whole • Deproteinized
Evaluate pretreatment of milk whey
Batch Fermentation
• Liflus GX Autoclavable fermenttor (BIOTRON, INCHANIL)
• Sugars • Citric Acid
Analytical methods
Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
7
Introduction
Objective
Methodology
Evaluate pretreatment of milk whey Whole milk whey Slow pasteurization: It is heated for 30 min at 62 °C and then cooled to 4 °C.
Source: Katia Cury, 2014
Deproteinized milk whey The operational conditions were 115 °C during 15 min, then the liquid part is decanted and adjusted to pH 7 with NaOH 12 M and centrifuged to 6000 rpm by 10 min. Source: Catalina Alvarez, 2015
Both mediums were incubated to the conditions: Temperature: 30 °C Agitation: 160 rpm pH: 3,5 Time: 4 days Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
8
Introduction
Objective
Methodology
Batch Fermentation
Conditions
Pre-inoculum
Use 60 ml of milk whey incubated during five days.
Temperature: 30 °C. Agitation: 160 rpm. Aireation: 1,7 vvm. Working volumen: 600 ml of milk whey
Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
9
Introduction
Objective
Methodology
Analytical methods
Sugars
Phenol Sulphuric Acid Method At 490 nm
Citric Acid
Column: RP-C18 (5,0 µm particle diameter, 15,0 cm x 4.6 mm I.D., kept at 35 °C) Detector: UV-Visible diode array detector (DAD). Mobile phase: 50 mM phosphate buffer solution (pH 2.8 adjusted, using an isocratic elution procedure) Flow rate: 0.5 ml/min Detection: 210 nm Source: Weikle,2012
Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
10
Introduction
Objective
Methodology
Simulation
Mass and energy balances • Aspen Plus V8.2
Economic assessment • Aspen Process Economic Analyzer
Environmental assessment • Waste Algorithm Reduction (WAR)
Case 1: Production of citric acid from Glucose. Case 2: Production of citric acid from Milk whey. Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
11
Introduction
Objective
Methodology
Mass and Energy Balances
Figure 1. Processes of production of citric acid. a. Case 1, b. Case 2.
Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
12
Introduction
Objective
Methodology
Economic assessment Table 1. Economic parameters for economic assessment (Javier Dávila, 2014) Item
Price
Unit
Operator
2.14
USD/h
Supervisor
4.29
USD/h
Electricity
0.10
USD/Kwh
Potable Water
1.25
USD/m3
Fuel
7.21
USD/MMBTU
Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
13
Introduction
Objective
Methodology
Environmental assessment Potential Environmental Impact Categories: -
Human Toxicity Potential by Ingestion (HTPI) Human Toxicity Potential by Exposure (HTPE) Terrestrial Toxicity Potential (TTP) Aquatic Toxicity Potential (ATP) Global Warming Potential (GWP) Ozone Depletion Potential (ODP) Smog Formation Potential (PCOP) Acidification Potential (AP) Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
14
Introduction
Objective
Methodology
Results and discussion
Experimental Evaluate pretreatment of milk whey
Whole Milk Whey Concentration of citric acid: 1,188 g/l
Deproteinized Milk Whey Concentration of citric acid: 2,319 g/l
Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
15
Introduction
Objective
Methodology
Results and discussion
Batch Fermentation
Figure 2. Profiles of Deproteinized whey in Batch fermentation. Table 2. Comparison of citric acid production Medium
Citric acid (g/l)
Glucose
55,212
Deproteinized whey
55,75
Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
16
Introduction
Objective
Methodology
Results and discussion
Simulation Economic assesment 1.5 ton/day
a. Case 1: 2,57 USD/kg Citric acid.
b. Case 2: 35,81 USD/kg Citric acid.
Figure 3. Economic analysis a. Case 1, b. Case 2. Market Price: 5,9 USD/kg Citrc acid. Source: Alibaba Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
17
Introduction
Objective
Methodology
Results and discussion
Environmental assessment
Figure 4. Environmental assessment. Human Toxicity Potential by Ingestion (HTPI), Human Toxicity Potential by Exposure (HTPE), Terrestrial Toxicity Potential (TTP), Aquatic Toxicity Potential (ATP), Global Warming Potential (GWP), Ozone Depletion Potential (ODP), Smog Formation Potential (PCOP), Acidification Potential (AP) Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
18
Introduction
Objective
Methodology
Results and discussion
Conclusions
•
Scaling of the citric acid fermentation from whey is favored, thus showing yields close to an industrial process of submerged fermentation in glucose but in turn pH control becomes indispensable for a representative production.
•
The implement of production of citric acid in the dairy companies can be of great interest given the development of new products and the opportunity to expand markets.
•
The production of citric acid via fermentation is a very attractive option given their high production yields but still has large holes in the area of separation mainly due to the use of different chemicals that make the most extensive and complex process. Therefore the use of advanced separation technologies might offer high economic and environmental benefits level in this process. Therefore the use of advanced separation technologies could eventually help the process economically and environmentally.
Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
19
References M. I. González Siso, “The biotechnological utilization of cheese whey: A review,” Bioresour. Technol., vol. 57, no. 1, pp. 1–11, 1996. P. S. Panesar, J. F. Kennedy, D. N. Gandhi, and K. Bunko, “Bioutilisation of whey for lactic acid production,” Food Chem., vol. 105, no. 1, pp. 1–14, 2007. Ministerio de Agricultura y Desarrollo Rural, “3o Boletín : Unidad de seguumiento de precios de la leche USP,” Unidad Seguim. precios la leche, 2012. K. Cury Regino, M. Arteaga Márquez, and G. Martínez Flórez, “Evaluation of acid whey fermentation (whole and deproteinized) using Lactobacillus casei,” Revista, vol. XVI, no. 1, pp. 137–145, 2014. C. Álvarez Campuzano, “Análisis de la producción de polihidroxibutirato usando lactosuero como materia prima,” Universidad Nacional de Colombia sede Manizales, 2015. K. Weikle, “Determination of citric acid in fruit juices using HPLC,” Concordia Coll. J. Anal. Chem., vol. 3, pp. 57–62, 2012. J. A. Dávila, V. Hernández, E. Castro, and C. A. Cardona, “Economic and environmental assessment of syrup production. Colombian case,” Bioresour. Technol., vol. 161, pp. 84–90, 2014. J.-W. Kim, “Optimization of Citric Acid Production by Aspergillus niger NRRL 567 in various fermentation systems,” no. October, p. 278, 2004. D. Leal, Y. Pico, J. Castro, J. Guerra, and G. Castro, “Produccion de ácido cítrico a partir de suero lácteo entero e hidrolizado con Aspergillus niger, por vía fermentativa,” Aliment. hoy Rev. la Asoc. Colomb. Cienc. y Teconología Aliment., vol. 19, no. 19, pp. 1–7, 2011. H. S. Grewal and K. L. Kalra, “Fungal Production of Citric Acid,” Biotechnol. Adv., vol. 13, no. 2, pp. 209–234, 1995. E. Basaran Kurbanoglu, “Enhancement of citric acid production with ram horn hydrolysate by Aspergillus niger,” Bioresour. Technol., vol. 92, no. 1, pp. 97–101, 2004. G. Sassi, B. Ruggeri, V. Specchia, and a. Gianetto, “Citric acid production by A. niger with banana extract,” Bioresour. Technol., vol. 37, no. 3, pp. 259–269, 1991.
Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
20
References J. A. Velásquez, D. Beltrán, L. Padilla, and G. Giraldo, “Obtaining of citric acid trough fermentation with aspergillus niger using substratum of ripe dominico hartón plantain (musa aab simmonds),” RevistaTumbaga, vol. 5, pp. 135–147, 2010. M. A. El-holi and K. S. Al-delaimy, “Citric acid production from whey with sugars and additives by Aspergillus niger,” African J. Biotechnol., vol. 2, no. 10, pp. 356–359, 2003. Y. a. El-Samragy, M. a. Khorshid, M. I. Foda, and A. E. Shehata, “Effect of fermentation conditions on the production of citric acid from cheese whey by Aspergillus niger,” Int. J. Food Microbiol., vol. 29, no. 2–3, pp. 411–416, 1996. C. A. López Ríos, A. Zuluaga Meneses, S. N. Herrera Penagos, A. A. Ruiz Colorado, and V. I. Medina de Pérez, “Producción de ácido cítrico con Aspergillus niger NRRL 2270 a partir de suero de leche,” Red Rev. Científicas Am. Lat. el Caribe, España y Port., vol. 73, no. 150, pp. 39–57, 2006. Y. A. El-Samragy, A. E. Shehata, M. I. Foda, and M. A. Khorshid, “Suitability of strains and mutants of Aspergillus niger for the production of citric acid from cheese whey.” pp. 498–501, 1993. A. R. Angumeenal and D. Venkappayya, “An overview of citric acid production,” LWT - Food Sci. Technol., vol. 50, no. 2, pp. 367–370, 2013. K. Kirimura, Y. Honda, and T. Hattori, “Citric Acid,” in Comprehensive Biotechnology, Second Edi., Elsevier B.V., 2011, pp. 135–142. M. Berovic and M. Legisa, “Citric acid production,” Biotechnol. Annu. Rev., vol. 13, no. 07, pp. 303–343, 2007. J. A. Quintero, J. Moncada, and C. A. Cardona, “Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: A process simulation approach,” Bioresour. Technol., vol. 139, pp. 300–307, 2013. Ó. J. Sánchez and C. a. Cardona, “Conceptual design of cost-effective and environmentally-friendly configurations for fuel ethanol production from sugarcane by knowledge-based process synthesis,” Bioresour. Technol., vol. 104, pp. 305–314, 2012.
Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
21
UNIVERSIDAD
NACIONAL DE COLOMBIA SEDE MANIZALES
Corresponding author: Carlos Ariel Cardona Alzate km 9 vía al Magdalena, 170003l, Manizales, Colombia. Tel. +57 (6) 8879400 ext 55354 e-mail:
[email protected] Universidad Nacional de Colombia. Sede Manizales.
Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos
22