Comparison of Citric Acid Production through Milk

1 downloads 0 Views 1MB Size Report
Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos. To evaluate the citric acid production from milk whey and compare it with glucose ...
Comparison of citric acid production through milk whey and glucose fermentation by Aspergillus Niger Chacón Yessica1, Serna Sebastian1, Cardona Carlos A1** 1

Instituto de Biotecnología y Agroindustria, Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos, Universidad Nacional de Colombia sede Manizales, km 9 vía al Magdalena, 170003l, Manizales, Colombia. ** Corresponding author: [email protected]

UNIVERSIDAD

NACIONAL DE COLOMBIA SEDE MANIZALES

1

Outline • • • • •

Introduction Objective Methodology Results and Discussion Conclusions

Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

2

Introduction

Actually this product is obtained by submerged fermentation with the use of fungi Aspergillus niger due to:

Food

• Easy to handling. Others

Confectionery

Citric acid Beverages

• Use as carbon source a wide variety of cheap raw materials. • High yields.

Pharmaceuticals

In Colombia sucrose from sugar cane is used as substrate.

Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

3

Introduction

Milk whey is a subproduct generated during the cheese production of dairy industry. Retains 55% of milk nutrients

Lipids (0,4-0,5%)

Soluble Proteins (0,6-0,8%)

Lactose (4,5-5%)

Cheese whey protein concentrates 10%

Only 50% is treated

Lactose 15%

Liquid 45%

Powdered cheese whey 30%

Source: Gonzáles Siso, 1996 Source: Panesar, 2007

Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

4

Introduction

Production of cheese 4,091 tons Production of milk whey 36,819 tons Environmental situation 50% is not treated and discharge into water bodies with: BOD5: 30,000-50,000 ppm

Source: MADR, 2012 Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

5

Introduction

Objective

To evaluate the citric acid production from milk whey and compare it with glucose as a base case in the technical, economic and environmental aspects.

Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

6

Introduction

Objective

Methodology

Experimental

• Whole • Deproteinized

Evaluate pretreatment of milk whey

Batch Fermentation

• Liflus GX Autoclavable fermenttor (BIOTRON, INCHANIL)

• Sugars • Citric Acid

Analytical methods

Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

7

Introduction

Objective

Methodology

Evaluate pretreatment of milk whey Whole milk whey Slow pasteurization: It is heated for 30 min at 62 °C and then cooled to 4 °C.

Source: Katia Cury, 2014

Deproteinized milk whey The operational conditions were 115 °C during 15 min, then the liquid part is decanted and adjusted to pH 7 with NaOH 12 M and centrifuged to 6000 rpm by 10 min. Source: Catalina Alvarez, 2015

Both mediums were incubated to the conditions: Temperature: 30 °C Agitation: 160 rpm pH: 3,5 Time: 4 days Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

8

Introduction

Objective

Methodology

Batch Fermentation

Conditions

Pre-inoculum

Use 60 ml of milk whey incubated during five days.

Temperature: 30 °C. Agitation: 160 rpm. Aireation: 1,7 vvm. Working volumen: 600 ml of milk whey

Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

9

Introduction

Objective

Methodology

Analytical methods

Sugars

Phenol Sulphuric Acid Method At 490 nm

Citric Acid

Column: RP-C18 (5,0 µm particle diameter, 15,0 cm x 4.6 mm I.D., kept at 35 °C) Detector: UV-Visible diode array detector (DAD). Mobile phase: 50 mM phosphate buffer solution (pH 2.8 adjusted, using an isocratic elution procedure) Flow rate: 0.5 ml/min Detection: 210 nm Source: Weikle,2012

Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

10

Introduction

Objective

Methodology

Simulation

Mass and energy balances • Aspen Plus V8.2

Economic assessment • Aspen Process Economic Analyzer

Environmental assessment • Waste Algorithm Reduction (WAR)

Case 1: Production of citric acid from Glucose. Case 2: Production of citric acid from Milk whey. Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

11

Introduction

Objective

Methodology

Mass and Energy Balances

Figure 1. Processes of production of citric acid. a. Case 1, b. Case 2.

Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

12

Introduction

Objective

Methodology

Economic assessment Table 1. Economic parameters for economic assessment (Javier Dávila, 2014) Item

Price

Unit

Operator

2.14

USD/h

Supervisor

4.29

USD/h

Electricity

0.10

USD/Kwh

Potable Water

1.25

USD/m3

Fuel

7.21

USD/MMBTU

Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

13

Introduction

Objective

Methodology

Environmental assessment Potential Environmental Impact Categories: -

Human Toxicity Potential by Ingestion (HTPI) Human Toxicity Potential by Exposure (HTPE) Terrestrial Toxicity Potential (TTP) Aquatic Toxicity Potential (ATP) Global Warming Potential (GWP) Ozone Depletion Potential (ODP) Smog Formation Potential (PCOP) Acidification Potential (AP) Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

14

Introduction

Objective

Methodology

Results and discussion

Experimental Evaluate pretreatment of milk whey

Whole Milk Whey Concentration of citric acid: 1,188 g/l

Deproteinized Milk Whey Concentration of citric acid: 2,319 g/l

Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

15

Introduction

Objective

Methodology

Results and discussion

Batch Fermentation

Figure 2. Profiles of Deproteinized whey in Batch fermentation. Table 2. Comparison of citric acid production Medium

Citric acid (g/l)

Glucose

55,212

Deproteinized whey

55,75

Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

16

Introduction

Objective

Methodology

Results and discussion

Simulation Economic assesment 1.5 ton/day

a. Case 1: 2,57 USD/kg Citric acid.

b. Case 2: 35,81 USD/kg Citric acid.

Figure 3. Economic analysis a. Case 1, b. Case 2. Market Price: 5,9 USD/kg Citrc acid. Source: Alibaba Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

17

Introduction

Objective

Methodology

Results and discussion

Environmental assessment

Figure 4. Environmental assessment. Human Toxicity Potential by Ingestion (HTPI), Human Toxicity Potential by Exposure (HTPE), Terrestrial Toxicity Potential (TTP), Aquatic Toxicity Potential (ATP), Global Warming Potential (GWP), Ozone Depletion Potential (ODP), Smog Formation Potential (PCOP), Acidification Potential (AP) Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

18

Introduction

Objective

Methodology

Results and discussion

Conclusions



Scaling of the citric acid fermentation from whey is favored, thus showing yields close to an industrial process of submerged fermentation in glucose but in turn pH control becomes indispensable for a representative production.



The implement of production of citric acid in the dairy companies can be of great interest given the development of new products and the opportunity to expand markets.



The production of citric acid via fermentation is a very attractive option given their high production yields but still has large holes in the area of separation mainly due to the use of different chemicals that make the most extensive and complex process. Therefore the use of advanced separation technologies might offer high economic and environmental benefits level in this process. Therefore the use of advanced separation technologies could eventually help the process economically and environmentally.

Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

19

References M. I. González Siso, “The biotechnological utilization of cheese whey: A review,” Bioresour. Technol., vol. 57, no. 1, pp. 1–11, 1996. P. S. Panesar, J. F. Kennedy, D. N. Gandhi, and K. Bunko, “Bioutilisation of whey for lactic acid production,” Food Chem., vol. 105, no. 1, pp. 1–14, 2007. Ministerio de Agricultura y Desarrollo Rural, “3o Boletín : Unidad de seguumiento de precios de la leche USP,” Unidad Seguim. precios la leche, 2012. K. Cury Regino, M. Arteaga Márquez, and G. Martínez Flórez, “Evaluation of acid whey fermentation (whole and deproteinized) using Lactobacillus casei,” Revista, vol. XVI, no. 1, pp. 137–145, 2014. C. Álvarez Campuzano, “Análisis de la producción de polihidroxibutirato usando lactosuero como materia prima,” Universidad Nacional de Colombia sede Manizales, 2015. K. Weikle, “Determination of citric acid in fruit juices using HPLC,” Concordia Coll. J. Anal. Chem., vol. 3, pp. 57–62, 2012. J. A. Dávila, V. Hernández, E. Castro, and C. A. Cardona, “Economic and environmental assessment of syrup production. Colombian case,” Bioresour. Technol., vol. 161, pp. 84–90, 2014. J.-W. Kim, “Optimization of Citric Acid Production by Aspergillus niger NRRL 567 in various fermentation systems,” no. October, p. 278, 2004. D. Leal, Y. Pico, J. Castro, J. Guerra, and G. Castro, “Produccion de ácido cítrico a partir de suero lácteo entero e hidrolizado con Aspergillus niger, por vía fermentativa,” Aliment. hoy Rev. la Asoc. Colomb. Cienc. y Teconología Aliment., vol. 19, no. 19, pp. 1–7, 2011. H. S. Grewal and K. L. Kalra, “Fungal Production of Citric Acid,” Biotechnol. Adv., vol. 13, no. 2, pp. 209–234, 1995. E. Basaran Kurbanoglu, “Enhancement of citric acid production with ram horn hydrolysate by Aspergillus niger,” Bioresour. Technol., vol. 92, no. 1, pp. 97–101, 2004. G. Sassi, B. Ruggeri, V. Specchia, and a. Gianetto, “Citric acid production by A. niger with banana extract,” Bioresour. Technol., vol. 37, no. 3, pp. 259–269, 1991.

Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

20

References J. A. Velásquez, D. Beltrán, L. Padilla, and G. Giraldo, “Obtaining of citric acid trough fermentation with aspergillus niger using substratum of ripe dominico hartón plantain (musa aab simmonds),” RevistaTumbaga, vol. 5, pp. 135–147, 2010. M. A. El-holi and K. S. Al-delaimy, “Citric acid production from whey with sugars and additives by Aspergillus niger,” African J. Biotechnol., vol. 2, no. 10, pp. 356–359, 2003. Y. a. El-Samragy, M. a. Khorshid, M. I. Foda, and A. E. Shehata, “Effect of fermentation conditions on the production of citric acid from cheese whey by Aspergillus niger,” Int. J. Food Microbiol., vol. 29, no. 2–3, pp. 411–416, 1996. C. A. López Ríos, A. Zuluaga Meneses, S. N. Herrera Penagos, A. A. Ruiz Colorado, and V. I. Medina de Pérez, “Producción de ácido cítrico con Aspergillus niger NRRL 2270 a partir de suero de leche,” Red Rev. Científicas Am. Lat. el Caribe, España y Port., vol. 73, no. 150, pp. 39–57, 2006. Y. A. El-Samragy, A. E. Shehata, M. I. Foda, and M. A. Khorshid, “Suitability of strains and mutants of Aspergillus niger for the production of citric acid from cheese whey.” pp. 498–501, 1993. A. R. Angumeenal and D. Venkappayya, “An overview of citric acid production,” LWT - Food Sci. Technol., vol. 50, no. 2, pp. 367–370, 2013. K. Kirimura, Y. Honda, and T. Hattori, “Citric Acid,” in Comprehensive Biotechnology, Second Edi., Elsevier B.V., 2011, pp. 135–142. M. Berovic and M. Legisa, “Citric acid production,” Biotechnol. Annu. Rev., vol. 13, no. 07, pp. 303–343, 2007. J. A. Quintero, J. Moncada, and C. A. Cardona, “Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: A process simulation approach,” Bioresour. Technol., vol. 139, pp. 300–307, 2013. Ó. J. Sánchez and C. a. Cardona, “Conceptual design of cost-effective and environmentally-friendly configurations for fuel ethanol production from sugarcane by knowledge-based process synthesis,” Bioresour. Technol., vol. 104, pp. 305–314, 2012.

Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

21

UNIVERSIDAD

NACIONAL DE COLOMBIA SEDE MANIZALES

Corresponding author: Carlos Ariel Cardona Alzate km 9 vía al Magdalena, 170003l, Manizales, Colombia. Tel. +57 (6) 8879400 ext 55354 e-mail: [email protected] Universidad Nacional de Colombia. Sede Manizales.

Grupo de investigación en Procesos Químicos, Catalíticos y Biotecnológicos

22