Mar 16, 2017 - A total of 36 (Karabük) and 30 (Düzce) ostracod taxa were found from 148 out of 162 .... species diversity of ostracod species between Düzce.
E
Fundam. Appl. Limnol. 190/1 (2017), 63–86Article published online 16 March 2017, published in print April 2017
Comparison of Ostracoda (Crustacea) species diversity, distribution and ecological characteristics among habitat types Okan Külköylüoğlu *, Sinem Yılmaz and Mehmet Yavuzatmaca 1 With 4 figures, 5 tables and 4 appendices Abstract: To understand the relationship between habitat differences and ostracod species diversity, distribution and ecological characteristics, eleven different habitat types (spring, creek, stream, lake, waterfall, cave, puddle, pond, reservoir, trough, irrigation canal) across 162 aquatic bodies were sampled from July to September of 2012 in the Karabük and Düzce regions of Turkey. A total of 36 (Karabük) and 30 (Düzce) ostracod taxa were found from 148 out of 162 sites. All taxa are newly reported for Karabük whereas 16 species are new for Düzce. In Düzce, total numbers of species and sites were higher at altitudes 0 – 400 m and lower at altitudes 401–1200 m a.s.l. than in the Karabük region. However, they were equal at altitudes 1201–1400 m. Most species were found in troughs followed by streams, springs and ponds. Canonical Correspondence Analysis explains about 74 % of the relationships between species and environmental variables in both regions where water temperature was a significant (p 7). Therefore, CCA along with Monte Carlo Permutation test (499 permutations used to determine the levels of significance) and forward selection was used on data that were log-transformed; rare species were down-weighted to reduce the multicollinearity and arc effects on the relationship between ecological variables and species (ter Braak 1987). Finally the most influential variables on species were manually selected based on significance values. This also corresponds to the length of the arrows on the CCA diagrams. Analyses of CCA and DCA were conducted with the software package CANOCO 4.5 while UPGMA was performed with Multi Variate Statistical Package (MVSP) version 3.1 (Kovach 1998). Additionally, the C2 program (Juggins 2003) was used to measure tolerance and optimum values of species that occurred more than three times and where ecological variables were available. The program includes a transfer function of weighted averaging (WA) regression method where the mean optimum values for individual species that occurred in all sites were weighted by the abundance of species. According to ter Braak & Barendregt (1986) species could be the most abundant in sites where environmental variables are closer to their opti-
mum estimations. It is considered that species have unimodal responses to environmental variables. The Species Diversity and Richness (SDR) program version 4.2 (Seaby & Henderson 2006) was used to compare species richness and diversity, computed using a variety of diversity indices, between the Karabük and Düzce regions. Index values were compared with t-test in Microsoft Excel 2010.
Results A total of 36 (22 living (with 3972 individuals) and 14 sub-recent) ostracod taxa were found from 75 out of 81 sites from the Karabük region. 30 (19 living (with 2745 individuals) and 11 sub-recent) ostracods were found from 73 out of 81 sites from the Düzce region (Appendix S2). All taxa are new reports for Karabük (Appendix S3) and 16 species are new for Düzce (Appendix S4). Fifty taxa belonging to 41 genera were reported in both regions. No ostracods were found from cave waters. Troughs contained higher species diversity (24 spp.) than the other habitat types such as streams (18 spp.), springs (13 spp.) and ponds (9 spp.) in the regions. In contrast, the average numbers of species per trough were lower than the number per spring. The only variable showing a significant positive correlation (p 0.05) effects on species distribution.
Discussion All 36 taxa (22 species) representing the alpha diversity are newly reported for Karabük. In contrast, seven species (Cypridopsis vidua, Candona neglecta, Heterocypris salina, Prionocypris zenkeri, Darwinula stevensoni, Herpetocypris chevreuxi, Physocypris kraepelini) were previously known from Düzce (Gülen 1985). Alpha diversity of Düzce is now increased to 23 living species. There is no significant difference (p = 0. 34, t-test = 2.22) in the total numbers of species between the two regions despite the fact that there were differences in species numbers at different altitudes. Supporting results were obtained from finding low β-diversity values between Karabük (7.84) and Düzce (8.26). It is probable that these differences in the numbers of species between the regions may be related to several factors such as numbers of sampling sites, geographic variation and habitat type. Additionally, seasonality, which we did not examine in this study, can influence the species captured, (Külköylüoğlu 1998; Nagorskaya & de Jonge 2002). On the other hand, increasing the number of sampling sites did not significantly increase the ratio of the numbers of species per site, as in the case of troughs and other habitats (Fig. 2, Table 5). For example, we sampled more troughs in Karabük (50) than Düzce (17), but the ratio (species/site) was lower (0.75 > 0.40). However, the ratio was higher in stream, spring and ponds in Karabük than Düzce. This supports our view that increasing the numbers of sampling sites may not increase the number of species caught per site. This corresponds to earlier studies (Külköylüoğlu 2004; Akdemir & Külköylüoğlu 2011; Külköylüoğlu et al. 2012a; Külköylüoğlu et al. 2012b; Külköylüoğlu et al. 2012c; Külköylüoğlu et al. 2015; Yavuzatmaca et al. 2015). Interpretation of these studies suggests that sampling in suitable habitats with optimum conditions may be better for finding more ostracod species than increasing numbers of sampling sites to increase the chance of encountering more species. However, this view requires defining “suitable habitat” for ostracods eschweizerbart_xxx
Ostracod species diversity, distribution and ecology
71
Table 4. Comparison of species distribution at 10 and 8 different habitat types in (A) Düzce and (B) Karabük, respectively. Ab-
breviations: Numbers of stations (NuSt.), numbers of species (NuSpp), ratio of species per site (Spp/Site), Cd: Candona sp., Cc: C. candida, Ci: C. improvisa, Cn: C. neglecta, Cr: Cypridopsis sp., Cv: C. vidua, Co: Cypria ophtalmica, Cs: C. sywulae, Cy: Cypris sp., Cp: C. pubera, Cl: Cyclocypris laevis, Ds: Dolerocypris sinensis, Ec: Eucypris sp., Ep: E. pigra, Fc: Fabaeformiscandona sp., Ic: Ilyocypris sp., Ib: I. bradyi, Id: I. decipiens, Ii: I. inermis, Im: I. monstrifica, Lc: Limnocythere sp., Li: L. inopinata, He: Herpetocypris sp., Hc: H. chevreuxi, Hb: H. brevicaudata, Hrc: Heterocypris sp., Hr: H. reptans, Hi: H. incongruens, Hs: H. salina, Pm: Potamocypris sp., Pa: P. arcuata, Pfa: P. fallax, Pp: P. pallida, Ps: P. smaragdina, Psi: P. similis, Pv: P. variegata, Pvi: P. villosa, Py: Psychrodromus sp., Pf: P. fontinalis, Po: P. olivaceus, Pc: Pseudocandona sp., Pal: P. albicans, Pz: Prionocypris zenkeri, Sc: Schellencandona sp. Tl: Tonnacypris lutaria. Note the lack of species in cave, creek and water canals. Species underlined above in the caption are considered as “cosmoecious species”. A) Habitat type Trough Stream Puddle Waterfall Lake Pond Cave Spring Creek Water canal
NuSt. 17 26 7 7 4 5 2 7 1 4
NuSpp 12 12 8 5 4 3 – 10 – 1
Species codes Po, Cn, Hi, Hs, Cv, Pv, Psi, Pc, Py, Cy, Pa, Pm Po, Hs, Psi, Ib, Hi, Ii, Cn, Ic, Cd, Py, Pm, Cr Po, Pl, Hs, Id, Im, Ic, Hc, Py Psi, Ic, Cd, Hrc, Pm Cv, Cc, Cp, Cs Hi, Tl, Cl – Po, Psi, Ds, Ib, Hi, Cc, Cn, Pc, Hc, Py – Cr
Spp/Site 0.70 0.46 1.14 0.71 1.00 0.60 – 1.42 – 0.25
NuSt. 50
NuSpp 20
Spp/Site 0.40
14 1 3 7 3 1 2
12 – 5 7 8 – 2
Species Hi, Hs, Ib, Ic, Ci, Pf, Ii, Po, Psi, Hc, Pc, Ec, Pp, Sc, Pv, Pz, Hr, Pfa, Cn, Ep Pal, Hi, Hs, Ib, Pm, Po, Ps, Pz, Pse, Pfa, Psi, Li – Ib, Pf, Hc, Fc, Hb Hi, Hs, Ib, Ic, Pm, Po, Psi Hi, Ic, Cd, Pm, Cy, Cv, Lc, Id – Hs, Ic
B) Habitat type Trough Stream Cave Spring Pond Reservoir Lake Creek
0.85 – 1.66 1.00 2.66 – 1.00
Table 5. Comparison of the numbers of species and mean values among 11 cities (regions) in Turkey. Abbreviations: numbers
of species (Num.Spp), numbers of sites (Num.Site), numbers of species per site (Spp/site) and numbers of species per km2 (Spp/ km2), a Yavuzatmaca et al. 2015., b Külköylüoğlu et al. (in review), c Külköylüoğlu et al. 2015, dAkdemir & Külköylüoğlu 2011, e Külköylüoğlu et al. 2012c, f Külköylüoğlu et al. 2012a, g Uçak et al. 2014, *this study. Adıyamana Bartınb Çankırıc Diyarbakır d Vanf Zonguldak b Karabük* Düzce* Ankarag Maraşe
Area 7164 2079 7388 15272 10115 3306 4145 2573 25437 7173
Num.Spp 27 13 25 23 29 18 22 19 29 30
Num.Site 111 27 114 48 57 42 75 73 152 68
eschweizerbart_xxx
Spp/site 0.2432 0.4815 0.2193 0.4792 0.5088 0.4286 0.2933 0.2603 0.1908 0.4412
Spp/km2 0.0038 0.0063 0.0034 0.0015 0.0029 0.0054 0.0053 0.0074 0.0011 0.0042
72
O. Külköylüoğlu, S. Yılmaz, and M. Yavuzatmaca
and this is currently difficult because of a lack of data about optimum conditions for each species. Geographic factors (e.g., altitudinal differences, area-size relationship, east-west and/or north-south latitudinal direction) may also affect the diversity. For example, Düzce, nearby the Black Sea has ostracod habitats across a lower range of altitudes than Karabük (Appendix S1). Similarly, Karabük has ostracod habitats at higher ranges (1201–1400 m a.s.l.) where the numbers of species and number of sites were equal (3 species from 2 sites) in each region. However, a comparison between the regions cannot be done at the highest altitudes (> 1400 m a.s.l.) due to lack of sampling sites in Düzce. The role of altitude on species distribution has been widely discussed. Some studies (Mezquita et al. 1999; Pieri et al. 2009; Külköylüoğlu et al. 2015) showed that altitude had a strong effect on ostracod distribution but Külköylüoğlu et al. (2012c) did not find significant differences in the numbers of species at the ranges of 400 – 600 m a.s.l. and 800 –1000 m a.s.l. in Kahramanmaraş (south eastern Turkey). Additionally, some other studies (Külköylüoğlu et al. 2012a; Uçak et al. 2014) in other parts of Turkey revealed the indirect effect of altitude on the physicochemical characteristics of the aquatic habitats that ostracods inhabit. The size of the area studied may also explain the differences between the two investigated regions (Fig. 4b). For example, when we compared the number of ostracod species among 11 regions with different size (surface area) (Table 5), the area sampled seems to have a weak or not significant effect on the numbers of species per sampling site. This is actually supported if one compares species numbers in the smallest (Bartın) and largest (Ankara) regions (see Table 5). Although there is a big variation between the size and numbers of sites sampled, Bartın illustrates the high possibility of finding more species per site (0.48 spp/ site) per square kilometer (spp/km2 = 0.0063) than Ankara (0.19 spp/site; 0.001 spp/km2). The comparison of various regions showed that the size of the area per se is not enough to explain the numbers of ostracod species found in that particular region. Nevertheless, increasing the sample size will reduce the error terms around the estimates (Zar 1999). Another possible explanation for variations in the numbers of species may be habitat type. There were more habitat types in Düzce (10 habitats) than Karabük (8 habitats). Of these, there were about 3 times more troughs in Karabük (50 sites with 20 species) than Düzce (17 sites with 12 species). However, the ratio (species per trough) was higher in Düzce (0.70
spp/site) than Karabük (0.40 spp/site). In contrast, the mean numbers of species was higher in the springs, streams and ponds of Karabük than Düzce. Interestingly, Külköylüoğlu et al. (2012c) reported similar results in the Kahramanmaraş region of Turkey where alpha diversity and evenness were significantly higher in limnocrene springs, streams and ponds than other habitat types. Similar results (0.46 spp/site) were reported by Zhai et al. (2014) who found 34 species from 74 samples collected from the Western Carpathian spring fens of Czech Republic. Most recently, Yavuzatmaca et al. (2015) reported high species diversity and numbers of individuals in the springs, creeks and ponds of Adıyaman Turkey which was higher than the diversity values of flowing waters in Eastern Iberian Peninsula (Mezquita et al. 1999) and a shallow lake in Poland (Szlauer-Łukaszewska 2012). In the freshwater habitats of subarctic and temperate Europe (Lapland and Poland), Iglikowska & Namiotko (2012) found significant differences in average species richness among different habitats in riparian shallow lakes, temporary water bodies, and peatbogs. These studies support the fact that the presence of morphological and ecological differences among the habitats in the region probably enhances the regional species richness, regardless of the size of sampling area. Although differences in the species composition may occur between temporary and permanent water bodies, we were not able to distinguish between these types of water bodies because we only visited each location once. However, species quantity and quality (e.g., endemic, rare etc.) can vary depending on the presence of suitable physicochemical conditions in aquatic bodies and tolerance (and optimum) levels of individual species. The five clustering groups recognized by the UPGMA dendrogram (Fig. 3) seem to be based on ecological characteristics and habitat preference of species in both regions. The first group contains six species (H. salina, C. vidua, P. variegata, I. decipiens, P. similis, P. pallida) found across a wide range of altitudes where water temperature was usually equal or higher than 20 °C. Supportive data are shown in the CCA diagram (Fig. 4a) where the species are located closer to the water temperature (except P. similis). Most of these species can be found in similar aquatic habitats where their optimum and tolerance ranges are relatively higher than the mean of the other species (Table 3). Nevertheless, similarity of their occurrences in different habitats may imply their common needs in habitat (see Appendices 1, 2). Thus, occurrence of these species in the same group is not considered to be by chance only. eschweizerbart_xxx
Ostracod species diversity, distribution and ecology
In the meantime, the second group includes two species (Prionocypris zenkeri and Psychrodromus fontinalis) encountered from Karabük. The species, P. zenkeri, is known to have a cosmopolitan distribution (Külköylüoğlu 2013), whereas Ps. fontinalis appears to have a narrow geographic distribution (Meisch 2000; Karakaş-Sarı 2006; Sarı 2007; Uçak et al. 2014). Although studies revealed that P. zenkeri was usually found with I. inermis and/or I. bradyi from springs and waters related to springs (Rossetti et al. 2005; Külköylüoğlu & Sarı 2012), we found it from troughs and littoral parts of slowly flowing waters. In contrast, Ps. fontinalis was found from springs where it displayed low tolerance values for the variables measured except dissolved oxygen (Table 3). The third group of UPGMA covers two other cosmoecious species (C. candida and I. bradyi) which were commonly found in troughs and springs. Both species are known to have wide tolerance levels to different environmental variables and occur across a wide geographic distribution (Table 3). During the present study, however, C. candida was encountered only two times and occurrence of I. bradyi varied across the habitat. Co-occurrence patterns of both species (e.g., see Külköylüoğlu & Sarı 2012) may be related to their common characteristics of habitat preferences. For example, both of them are bottom dependent species due to a lack of swimming seta on their second antenna and exhibited similar occurrences in a spring. Similarly, the fourth group of UPGMA consists of three species (P. olivaceus, I. inermis and P. fallax) found in medium to well oxygenated (4 –10.29 mg l–1) alkaline (mean pH = 8) waters of troughs, stagnant and littoral zones of streams, and springs where water temperature varied from 13 to 21 °C. All three species are located on the same site of the CCA diagram. Of which, P. olivaceus, with a broad geographical distribution was placed closer to the arrow of dissolved oxygen than the others (Fig. 4a). Besides, similar tolerance and optimum ranges in similar habitats, these species have short (or not well developed) swimming setae on their second antenna, which indicate their low swimming ability. This characteristic may explain their occurrences in the same habitats of bottom-dependent species. The fifth UPGMA clustering group includes two well-known cosmoecious species (C. neglecta and H. incongruens). During this study, they were found from troughs, streams and springs. There is a clear dominance of these two species over the others. While C. neglecta was the most common species in Karabük, eschweizerbart_xxx
73
dominacy of H. incongruens was definitely clear in Düzce. Overall, five species (C. neglecta, H. incongruens, H. salina, I. bradyi and P. olivaceus) constituted more than 67 % of the total abundance of all living species in both regions. Of these, H. incongruens showed the highest ecological optimum and tolerance values to electrical conductivity and dissolved oxygen while I. bradyi was the only species with relatively high tolerance values to all the variables measured (Table 3).
Conclusion Our results suggest that cosmopolitan (if not cosmoecious) species found in a variety of habitats with high abundance and occurrence can influence species diversity. Also, diversity can be affected by habitat differences among sampling sites. However, we should also keep in mind that under some suitable conditions, dominant species can mask environmental signals (Slack et al. 2000) and make it difficult to understand changes in biodiversity. For example, since our sampling was done in shallow parts of each site, numbers of species found may not represent the true species diversity. However, considering our extensive sampling size, results are statistically and ecologically valuable and can be useful for future studies. Although the relationship between habitat heterogeneity/diversity and species diversity is still controversial (Tews et al. 2004), we believe that habitat heterogeneity with high values of ecological tolerance and/or the optimum estimates of the species may increase their chance of survival in a variety of habitats through wide geographical ranges. Acknowledgements We would like to thank Dr. Liubov Nagorskaya (Belarus) and Dr. Lianne C. Ball (U.S.A.) for their comments and corrections on the earlier draft of the paper. We also acknowledge Ozan Yılmaz, Elif Başak (Abant İzzet Baysal University) and Hamdi Mengi for their help both in laboratory and field work. This is part of MSc thesis of SY who also thanks to Prof. Dr. Rachel Toyosi Idowu (Nigeria) for her help and suggestions on the first draft of the thesis.
References Akdemir, D. & Külköylüoğlu, O., 2011: Freshwater Ostracoda (Crustacea) of Diyarbakır Province, including a new report for Turkey. – Turk. J. Zool. 35: 671– 675. Birks, H. J. B., Line, J. M., Juggins, S., Stevenson, A. C. & ter Braak, C. J. F., 1990: Diatoms and pH reconstruction. – Phil. Trans. R. Soc. 327: 263 – 278.
74
O. Külköylüoğlu, S. Yılmaz, and M. Yavuzatmaca
Bronshtein, Z. S., 1947: Fauna SSSR. Crustacea. vol 2 no: 1 Ostracodes des Eaux Douches. – Institut Zoologique de l’Académie des Sciences de URSS, Nouvelle Serie 31: 1– 339. Gülen, D., 1985: The species and distribution of the group Podocopa (Ostracoda-Crustacea) in the fresh waters of western Anatolia. – İstanbul Üniversitesi Fen Fakültesi Mecmuası Seri B. 50: 65 – 80. Higuti, J., Lansac-Tôha, F. A., Velho, L. F. M. & Martens, K., 2009: Biodiversity of non-marine ostracods (Crustacea, Ostracoda) in the alluvial valley of the upper Paraná River. – Braz. J. Biol. 69: 661– 668. Iglikowska, A. & Namiotko, T., 2012: The impact of environmental factors on diversity of Ostracoda in freshwater habitats of subarctic and temperate Europe. – Annls. Zool. Fennici 49: 193 – 218. Juggins, S., 2003: C2 user guide. Software for ecological and palaeoecological data analysis and visualization. – University of Newcastle, Newcastle upon Tyne, UK. Karakaş-Sarı, P., 2006: Comparative ecology of Ostracoda (Crustacea) in two rheocrene springs (Bolu,Turkey). – M. Sc. Thesis, Abant İzzet Baysal University, Bolu. Kolasa, J., Hewitt, C. L. & Drake, J. A., 1998: Rapoport’s rule: an explanation or a byproduct of the latitudinal gradient in species richness. – Biodivers. Conserv. 7: 1447–1455. Kovach, W., 1998: Multivariate statistical package, ver. 3.0. – Kovach Computer Services, Pentraeth, UK. Külköylüoğlu, O., 1998: Freshwater Ostracoda (Crustacea) and their quarterly occurrence in Şamlar Lake (İstanbul, Turkey). – Limnologica 28: 229 – 235. Külköylüoğlu, O., 2004: On the use of ostracods (Crustacea) as bioindicator species in different aquatic habitats in the Bolu region, Turkey. – Ecol. Indic. 4: 139 –147. Külköylüoğlu, O., 2009: Ecological succession of freshwater Ostracoda (Crustacea) in a newly developed rheocrene spring (Bolu, Turkey). – Turk. J. Zool. 33: 115 –123. Külköylüoğlu, O., 2013: Diversity, distribution and ecology of nonmarine Ostracoda (Crustacea) in Turkey: Application of pseudorichness and cosmoecious species concepts. Recent Research Developments in Ecology. – Transworld Research Network 37/661 (2), Kerala, India. Külköylüoğlu, O. & Vinyard, G. L., 2000: Distribution and ecology of freshwater Ostracoda (Crustacea) collected from spring of Nevada, Utah, and Oregon: A preliminary study. – W. N. Am. Nat. 60: 291– 301. Külköylüoğlu, O. & Sarı, N., 2012: Ecological characteristic of the freshwater Ostracoda in Bolu Region (Turkey). – Hydrobiologia 688: 37– 46. Külköylüoğlu, O., Sarı, N. & Akdemir, D., 2012a: Distribution and ecological requirements of Ostracods (Crustacea) at high elevational ranges in Northeastern Van (Turkey). – Ann. Limnol. Int. J. Limnol. 48: 39 – 51. Külköylüoğlu, O., Sarı, N., Akdemir, D., Yavuzatmaca, M. & Altınbağ, C., 2012b: On the relationship between altitudinal changes and ostracod species reproductive mode in Ordu (Turkey). – High Alt. Med. Biol. 13: 126 –137. Külköylüoğlu, O., Yavuzatmaca, M., Akdemir, D. & Sarı, N., 2012c: Distribution and Local Species Diversity of Freshwater Ostracoda in Relation to Habitat in the Kahramanmaraş Province of Turkey. – Int. Rev. Hydrobiol. 97: 247– 261. Külköylüoğlu, O., Yavuzatmaca, M., Sarı, N. & Akdemir, D., 2015: Elevational distribution and species diversity of freshwater Ostracoda (Crustacea) in Çankırı re-
gion (Turkey). – J. Freshw. Ecol. 31: 219 – 230. doi: 10.1080/02705060.2015.1050467 Meisch, C., 2000: Freshwater Ostracoda of Western and Central Europe. Süßwasserfauna von Mitteleuropa 8/3. – Spektrum Akademischer Verlag, Heidelberg, Berlin. Mezquita, F., Hernandez, R. & Rueda, J., 1999: Ecology and distribution of Ostracods in a polluted Mediterranean river. – Palaeogeogr. Palaeoclimatol. Palaeoecol. 148: 87–103. Nagorskaya, L. & de Jonge, J., 2002: Ostracoda (Crustacea) from the Lowland Floodplain of the River Pripyat. – In: Escobar-Briones, E. & Alvarez, F. (eds): Modern Approaches to the Study of Crustacea. – Kluwer Academic, Plenum Publishers, pp. 263 – 273. Nagorskaya, L. & Keyser, D., 2005: Habitat diversity and ostracod distribution patterns in Belarus. – Hydrobiologia 538: 167–178. Pieri, V., Martens, K., Stoch, F. & Rosetti, G., 2009: Distribution and ecology of non-marine ostracods (Crustacea, Ostracoda) from Friuli Venezia Giulia (NE Italy). – J. Limnol. 68: 1–15. Rader, R. B., Keleher, M. J., Billman, E. & Larsen, R., 2012: History, rather than contemporary processes, determines variation in macroinvertebrate diversity in artesian springs: the expansion hypothesis. – Freshw. Biol. 57: 2475 – 2486. Rossetti, G., Pieri, V. & Martens, K., 2005: Recent ostracods (Crustacea, Ostracoda)found in lowland springs of the provinces of Piancenza and Parma (Northern Italy). – Hydrobiologia 542: 287– 296. Sarı, N., 2007: Determination of ecological features of the freshwater Ostracoda (Crustacea) in Bolu region (Turkey). – M. Sc. Thesis, Abant İzzet Baysal University, Bolu. Seaby, R. M. & Henderson, P. A., 2006: Species Diversity and Richness, Version 4. – Pisces Conservation Ltd., Lymington, UK. Slack, J. M., Kaesler, R. L. & Kontrovitz, M., 2000: Trend, signal and noise in the ecology of Ostracoda: information from rare species in low-diversity assemblages. – Hydrobiologia 419: 181–189. Szlauer-Łukaszewska, A., 2012: Ostracod assemblages in relation to littoral plant communities of a shallow lake (Lake Świdwie, Poland). – Int. Rev. Hydrobiol. 97 (4): 262 – 275. ter Braak, C. J. F., 1987: The analysis of vegetation-environment relationships by canonical correspondence analysis. – Vegetatio 69: 69 –77. ter Braak, C. J. F. & Barendregt, J. G., 1986: Weighted averaging of species indicator values: its efficiency in environmental calibration. – Math. Biosci. 78: 57–72. Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M. C., Schwager, M. & Jeltsch, F., 2004: Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. – J. Biogeogr. 31: 79 – 92. Uçak, S., Külköylüoğlu, O., Akdemir, D. & Başak, E., 2014: Distribution, diversity and ecological characteristics of freshwater Ostracoda (Crustacea) in shallow aquatic bodies of the Ankara region, Turkey. – Wetlands 34: 309 – 324. Whittaker, R. H., 1972: Evolution and measurement of species diversity. – Taxon 21: 213 – 251. Williams, C. B., 1943: Area and number of species. – Nature 152: 264 – 267. Yavuzatmaca, M., Külköylüoğlu, O. & Yılmaz, O., 2015: Distributional patterns of non-marine Ostracoda (Crustacea) in Adıyaman Province (Turkey). – Ann. Limnol. Int. J. Limnol. 51: 101–113.
eschweizerbart_xxx
Ostracod species diversity, distribution and ecology Zar, J. A., 1999: Biostatistical Analysis. – Prentice-Hall, Upper Saddle River, New Jersey, pp. 1– 944.
Manuscript received: 13 November 2015 Revisions required: 20 March 2016 Revised version received: 26 February 2017 Manuscript accepted: 01 March 2017
Zhai, M., Nováček, O., Výravský, D., Syrovátka, V., Bojková, J. & Helešic, J., 2014: Environmental and spatial control of ostracod assemblages in the Western Carpathian spring fens. – Hydrobiologia 745: 225 – 239.
eschweizerbart_xxx
75
eschweizerbart_xxx
Limnocrene spring
5 trough
Limnocrene spring
Pelitçik trough
Pöyrek trough
Nameless trough
14
15
16
17
18
19
İsmail bey trough
9
Nameless trough
Göksu stream
8
13
A.Özkan trough
7
1994 trough
Dry trough
6
12
Railroad trough
5
Adiller trough
Tefen trough
4
11
Tasman trough
3
Nameless trough
Bayındır trough
2
10
StNa İ. Paşa stream
St.no 1
8.66
7.22
7.42
7.48
7.88
8.14
7.9
7.55
8.06
7.71
7.78
8.3
7.43
7.59
7.44
7.42
7.43
7.97
pH 7.57
136.38
210.34
193.68
195.63
171.37
147.05
166.23
193.37
164.15
180.245
167.295
149.72
193.795
176.055
199.955
203.08
213.695
211.03
SHE 207.845
10.32
2.7
4.03
5.37
7.61
7.85
6.99
7.11
10.84
8.27
6.93
7.85
10.41
0.89
4.79
8.68
6.05
7.45
DO 0.75
23.5
28.5
52
58
83.6
103.7
83.2
71.1
128.6
89.4
79.5
83.9
8.86
11.9
47.3
80.2
60.1
80.6
%S 8.9
582
1129
877
499.4
463.6
512
388.2
495.5
513
385
462.2
391
617
696
710
468.6
548
1016
EC 739
595
1316
832
568.2
514.8
468
388.9
609.6
525
427.5
503.5
450
597
633
895
626.6
681
1152
Sp.EC 758
0.29
0.66
0.4
0.28
0.25
0.22
0.19
0.3
0.25
0.21
0.24
0.22
0.29
0.3
0.44
0.31
0.33
0.57
Sal 0.37
23.8
17.4
27.8
18.8
19.2
30
24.8
15.2
24
19.7
36.7
18.2
26.7
30.3
14.3
11.8
14.7
18.8
Tw 23.7
0.3835
0.858
0.5395
0.3705
0.3347
0.3055
0.2536
0.3959
0.338
0.2782
0.3276
0.2819
0.39
0.4095
0.5785
0.4075
0.442
0.7475
TDS 0.494
686.6
675
659.9
640.2
643.2
657.9
657.9
672
643.5
653.6
662.2
682.9
684.1
686.7
688.9
639.7
672.5
672.5
Atmp 674.6
Coordinates 40° 52′ 165″ N 32° 37′ 960″ E 40° 52′ 449″ N 32° 36′ 038″ E 40° 54′ 977″ N 32° 33′ 346″ E 40° 54′ 867″ N 32° 12′ 136″ E 40° 56′ 188″ N 32° 31′ 955″ E 40° 56′ 093″ N 32° 30′ 252″ E 40° 55′ 908″ N 32° 29′ 934″ E 40° 55′ 666″ N 32° 28′ 256″ E 40° 55′ 683″ N 32° 26′ 535″ E 40° 55′ 256″ N 32° 24′ 492″ E 40° 53′ 907″ N 32° 23′ 073″ E 40° 55′ 900″ N 32° 37′ 244″ E 40° 55′ 965″ N 32° 40′ 771″ E 40° 55′ 984″ N 32° 40′ 804″ E 40° 58′ 369″ N 32° 50′ 483″ E 40° 58′ 581″ N 32° 51′ 247″ E 41° 00′ 075″ N 32° 51′ 264″ E 41° 00′ 761″ N 32° 53′ 608″ E 41° 02′ 298″ N 32° 58′ 040″ E 833
981
1189
1436
1392
1189
1178
1012
1390
1252
1135
859
844
807
781
1005
1015
Alt 1004
23
23.6
25.9
20.1
22.5
17.4
17
20.5
17.2
19.2
17.3
19.2
18
18.6
21.9
29
24.6
Mois 19.5
Appendix S1. Ecological variables measured from different aquatic bodies (StNa) of Karabük. Abbreviations: SHE (redox potential); DO (dissolved oxygen); %S (percent oxygen saturation); EC (electrical conductivity); Sp.EC (specific conductivity at 25 °C); Sal (salinity); Tw (water temperature); TDS (Total Dissolved Solids); Atmp (atmospheric pressure); Alt (altitude); Mois (air moisture).
76 O. Külköylüoğlu, S. Yılmaz, and M. Yavuzatmaca
Çamaşırhane trough
Long trough
Alıncak torugh
Small pond
Bağırsak 1 stream
Tek trough
Gogoren trough
Feride Goncuoglu trough
Gövören creek
YSE trough
Roadside puddle
Eflani foucet trough
Creek pond
Small pond
Ulupınar trough
Çamlık Haslemoğlu trough
7/7/2008 trough
Kavaloğlu trough
Bostancılar lake led
Ortakcilar lake led
Tabaklar stream
20
21
22
23
24
25
26
27
28
29
30
31
eschweizerbart_xxx
32
33
34
35
36
37
38
39
40 7.82
8.61
8.14
7.25
7.85
7.89
8.12
8.05
7.85
7.99
7.69
8.05
8.03
7.63
7.85
7.54
8.18
7.65
7.46
7.36
7.49
173.23
123.41
152.285
211.79
169.455
169.225
152.55
159.66
169.705
161.425
179.095
156.645
161.165
179.975
166.755
191.625
148.26
178.23
193.005
199.35
197.25
5.63
6.46
7.06
4
5.19
7.54
6.17
6.69
4.38
3.92
3.94
4.11
9
8.37
4.71
7.28
8.28
0.78
7.24
5.51
6.4
63.2
82.1
80.5
38.3
60.5
87.6
71.9
75.2
50.1
47.4
44.3
45.1
85.7
88.5
54.1
72.6
92.4
10.1
83.2
63.5
74.1
437.5
197.2
283.3
453.4
450.4
476.4
555
469.9
487.8
728
1400
367.5
280
548
597
527
963
1051
693
905
117.9
475.8
188.3
278
589.1
474.4
500.7
589
514.2
525
735
1527
408.4
364.2
640
628
601
1052
1015
746
960
1253
0.23
0.09
0.13
0.29
0.23
0.24
0.29
0.25
0.25
0.36
0.77
0.2
0.18
0.31
0.3
0.29
0.52
0.5
0.36
0.47
0.62
20.8
27.6
26.1
12.4
22.3
22.5
22
20.6
21.3
24.5
20.7
19.7
12.9
17.5
22.3
18.5
20.6
26.8
21.3
22
22
0.3087
0.1222
0.1807
0.39
0.3081
0.3256
0.3835
0.3441
0.3412
0.481
0.9945
0.2652
0.2366
0.416
0.4095
0.39
0.6825
0.663
0.4875
0.624
0.8125
682.2
678
677.8
671.9
680.8
789.4
687.5
704.8
717.9
722.6
701.9
698.6
666.8
667.2
667.5
671.2
716.8
688.5
661.7
670.3
680.2
41° 02′ 505″ N 32° 55′ 867″ E 41° 02′ 264″ N 32° 53′ 484″ E 41° 03′ 718″ N 32° 52′ 979″ E 41° 30′ 79″ N 32° 50′ 920″ E 41° 06′ 101″ N 32° 48′ 438″ E 41° 21′ 104″ N 32° 42′ 012″ E 41° 20′ 831″ N 32° 41′ 494″ E 41° 21′ 540″ N 32° 41′ 938″ E 41° 22′ 450″ N 32° 42′ 291″ E 41° 23′ 735″ N 32° 43′ 667″ E 41° 21′ 399″ N 32° 43′ 368″ E 41° 27′ 558″ N 32° 46′ 617″ E 41° 28′ 347″ N 32° 48′ 893″ E 41° 30′ 900″ N 32° 53′ 363″ E 41° 31′ 441″ N 32° 55′ 201″ E 41° 32′ 257″ N 32° 57′ 491″ E 41° 31′ 330″ N 32° 57′ 501″ E 41° 29′ 204″ N 32° 57′ 339″ E 41° 27′ 371″ N 32° 56′ 976″ E 41° 25′ 646″ N 33° 00′ 603″ E 41° 23′ 982″ N 32° 58′ 472″ E 879
938
945
1015
903
796
822
606
445
385
659
692
963
1068
1047
999
456
826
1153
1036
913
32.5
40
30.6
39.5
48.3
45
52.6
51.3
60.6
58.7
61.2
65.6
59.8
60.5
61.5
48
44.3
42.1
34
30.5
30
Ostracod species diversity, distribution and ecology
77
Big puddle
Foucet trough
Ceviz trough
Mencilis cave stream
Mencilis cave inside
Aslanlar trough
Konarı lake
Araç creek
Toprakcuma trough
Ovacık river
Abdi bag trough
Oluk trough
Yellow pond
Camli trough
Belenkoy trough
11/03/1989 trough
Odemis trough
Yangın deposu trough
Pirinçlik stream
Soğuk su trough
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
StNa 30 June 1990 trough
42
St.no 41
Appendix S1. Continued.
eschweizerbart_xxx
7.92
8.72
8.64
8.1
8.17
7.69
8.67
9.59
8.7
8.83
8.25
7.89
7.67
7.1
7.92
7.6
7.81
7.99
7.99
7.74
pH 7.74
173.965
138.425
116.605
155.965
144.355
185.55
119.535
62.89
114.455
106.81
141.98
160.17
182.065
191.85
163.56
189.825
185.235
160.245
163.515
179.21
SHE 178.925
10.88
6.71
5.66
6.72
8.71
8.23
5.67
13.63
7.64
6.75
7.38
9.59
8.51
5
9.14
4.86
10.81
8.96
6.85
5.2
DO 8.78
88
77.7
75.5
81.9
112.7
91
75.5
186.3
92
84.6
93.8
135
99.7
61.9
106.2
47.1
95
114.2
44.2
64.9
%S 92.3
346.5
612
2154
525
1057
1143
954
661
1980
1792
703
901
737
755
598
411.2
302.4
743
414.5
573
EC 468
473.6
643
1088
526
995
1265
917
599.2
2008
1709
668
779
769
740
625
540.2
434.5
707
422.9
556
Sp.EC 549.2
0.23
0.31
1
0.25
0.49
0.63
0.45
3.23
1.02
0.86
0.32
0.37
0.38
0.36
0.3
0.26
0.21
0.34
0.2
0.27
Sal 0.27
10.9
22.5
29.3
24.9
28.3
20
27.1
30.4
24.3
27.6
27.8
33.2
22.9
26
22.6
12.5
9.1
27.7
23.9
25.6
Tw 26.5
0.318
0.416
1.2935
0.3445
0.65
0.819
0.598
3.9
1.3065
0.1115
0.4355
0.507
0.5005
0.481
0.4095
0.351
0.2821
0.4615
0.275
0.364
TDS 0.3539
715.4
734.2
719.8
718.5
721.2
720.5
691.1
694
697.5
697.4
726.2
717.4
718.3
717.5
704.2
689.4
696
711
678
680.6
Atmp 680
41° 09′ 466″ N 32° 27′ 919″ E
Coordinates 41° 24′ 790″ N 32° 55′ 781″ E 41° 23′ 461″ N 32° 49′ 189″ E 41° 22′ 705″ N 32° 46′ 508″ E 41° 15′ 130″ N 32° 41′ 710″ E 41° 16′ 425″ N 32° 37′ 526″ E 41° 16′ 425″ N 32° 37′ 524″ E 41° 15′ 536″ N 32° 40′ 335″ E 41° 13′ 217″ N 32° 47′ 031″ E 41° 11′ 984″ N 32° 54′ 624″ E 41° 12′ 325″ N 32° 54′ 207″ E 41° 07′ 850″ N 32° 40′ 632″ E 41° 10′ 372″ N 32° 41′ 292″ E 41° 10′ 474″ N 32° 41′ 360″ E 41° 10′ 810″ N 32° 41′ 985″ E 41° 11′ 218″ N 32° 41′ 774″ E 41° 09′ 887″ N 32° 36′ 626″ E 41° 09′ 870″ N 32° 36′ 894″ E 41° 09′ 443″ N 32° 35′ 700″ E 41° 09′ 534″ N 32° 35′ 591″ E – 231
251
408
417
382
393
747
704
659
646
312
413
411
437
592
682
685
551
933
915
Alt 900
66.5
62.4
55.4
53.7
52.1
50.2
47.4
45.1
43.7
46
44.4
30
28.9
33
24.8
45.4
38.8
29.8
32.5
27.2
Mois 17.5
78 O. Külköylüoğlu, S. Yılmaz, and M. Yavuzatmaca
Soğuksu leaking
Hes şantiye stream
Balıkısık stream
Çamlıköy trough
Aziziye Oren trough
Mezarlik trough
Mezarlık spring
İncebacak stream
İncebacak köy girişi trough
Nizam Naciye trough
1/8/2005 trough
Şeker Pınar Kanyonu
Hacıosman trough
Yortan trough
Demir yolu üstü leaking
Derebaşı trough
Köy içi trough
Derebacı trough
Filyos creek
İl sınırı leaking
62
63
64
65
66
67
68
69
70
71
72
73
eschweizerbart_xxx
74
75
76
77
78
79
80
81 7.58
8.43
7.9
7.61
7.18
8
7.71
7.7
8.29
7.95
8.05
7.77
7.54
7.93
7.78
7.7
7.69
7.89
8.14
7.91
194.595
129.365
161.98
182.82
216.305
157.18
176.27
176.365
148.775
160.94
156.405
166.79
182.655
158.62
172.995
183.605
179.15
173.08
153.395
132.32
8.68
7.46
9.3
4.53
9.01
6.92
2.75
9.87
6.61
10.29
7.24
3.86
8.49
2.01
6.34
5.48
7.29
6.12
10.51
94.2
79.2
92.5
97.2
47.5
115.4
90.8
33.2
98.9
72.5
99.3
79.9
43.1
94
24.6
69.1
65.6
86.5
68.8
97.2
585
642
627
571
1484
626
802
593
360.8
542
406.7
519
476.7
94.9
401.1
677
669
538
332.3
311.7
638
599
618
656
1741
594
742
594
440.6
606
523.3
569
524.5
435.5
404.3
760
681
551
362.2
417.8
0.31
0.29
0.3
0.32
0.89
0.29
0.36
0.29
0.21
0.29
0.25
0.28
0.25
0.21
0.19
0.37
0.33
0.27
0.17
0.2
20.7
28.9
25.8
18.2
17.3
27.8
29.2
24.9
15.5
19.4
13.3
20.4
20.3
20.2
24.7
19.3
24
23.8
20.7
11.7
0.416
0.39
0.403
0.429
1.131
0.3835
0.481
0.3835
0.286
0.3965
0.34
0.3705
0.3406
0.2827
0.2626
0.494
0.442
0.3575
0.2353
0.2717
747
744.8
727.6
727.2
715
741.7
733.1
737.2
740.9
740.3
736.8
729
726.5
720
718.7
710.4
729.2
740.3
740.5
735.2
41° 09′ 466″ N 32° 27′ 919″ E 41° 11′ 453″ N 32° 26′ 426″ E 41° 12′ 538″ N 32° 25′ 124″ E 41° 13′ 823″ N 32° 25′ 905″ E 41° 13′ 030″ N 32° 26′ 681″ E 41° 12′ 673″ N 32° 25′ 934″ E 41° 12′ 605″ N 32° 25′ 885″ E 41° 10′ 112″ N 32° 21′ 050″ E 41° 10′ 463″ N 37° 21′ 111″ E 41° 11′ 576″ N 32° 71′ 671″ E 41° 11′ 782″ N 32° 21′ 869″ E 41° 11′ 938″ N 32° 21′ 737″ E 41° 13′ 888″ N 32° 21′ 744″ E 41° 15′ 463″ N 32° 21′ 058″ E 41° 12′ 095″ N 32° 22′ 935″ E 41° 14′ 558″ N 32° 17′ 976″ E 41° 14′ 081″ N 32° 18′ 274″ E 41° 14′ 036″ N 32° 18′ 337″ E 41° 12′ 949″ N 32° 14′ 041″ E 41° 16′ 144″ N 32° 09′ 737″ E 82
118
323
333
470
171
264
228
185
191
231
317
354
428
443
530
307
181
172
231
44.7
43
51
54.2
46.5
55.9
57.1
69.5
70.1
72.5
72.3
20.4
65.7
54.8
59.5
58.5
69.2
69.2
67.6
Ostracod species diversity, distribution and ecology
79
StNa Kurtsuyu village
Kurtsuyu cave
Water ditch
Kurtsuyu spring
Subatak spring
Trough
Trough
Saklıkent waterfall
Saklıkent cave
Water ditch
Creek
Serenaltı village
Hacı Ahmet trough
Unnamed spring
Dutlar village
Unnamed water
Hasanlar Reservoir
Trough
Creek
Altunçay village
Dereköy stream
Dadallı stream
St.no 1
2
3
4
5
6
7
8
9
10
11
12
eschweizerbart_xxx
13
14
15
16
17
18
19
20
21
22 7.85
7.8
7.94
8.01
8.04
8.22
7.95
7.58
7.55
7.95
8.12
8.62
8.23
8.33
8.29
8.18
7.76
7.74
8.05
7.91
7.65
pH 8.47
130.655
139.39
108.69
127.065
125.285
115.63
132.365
146.83
145.5
123.73
114.1
96.545
115.82
126.18
136.84
112.895
150.99
135.88
150.565
133.93
163.845
SHE 124.875
6.82
7.88
8.39
7.56
7.66
7.78
5.07
13.54
4.25
7.07
7.13
9.08
6.88
10.54
8
11.59
9.21
7.51
6.76
9.04
9.47
DO 6.46
69.9
80.7
88.1
82.6
82.3
85.5
56.4
49.2
44.5
80.6
77.2
95.7
76.4
93
80.5
131.4
94.6
72.9
67.7
82.9
80.3
%S 68.2
301.2
318.1
165.8
387.3
459.4
308.5
402.1
538
458.7
597
511
351.6
360.6
301.9
346.1
519
371.3
313.7
396.2
334.7
330
EC 200
361.5
380.2
191.4
438.7
528.9
335.1
455.6
614
542.3
649
577
409.2
396.6
426.2
425.3
566
444.9
399.3
491.1
452
461.4
Sp.EC 233.2
0.17
0.18
0.09
0.21
0.26
0.16
0.22
0.3
0.26
0.32
0.28
0.2
0.19
0.21
0.21
0.27
0.22
0.19
0.24
0.22
0.23
Sal 0.11
16.3
16.4
16.4
18.9
18.1
20.8
18.9
18.8
17
20.8
19
17.7
20.2
9.8
15.4
20.7
16.4
13.8
14.9
20.8
11.7
Tw 17.5
20.6
17.2
18
20.7
20.1
18.8
20.4
20.8
21.1
21.1
21.4
20.9
19.7
28.4
29
25.2
23.5
26.1
11.4
16.3
Ta 18.3
0.2346
0.247
0.1241
0.2854
0.3438
0.2178
0.2958
0.3965
0.3523
0.4225
0.377
0.2659
0.2581
0.2769
0.2763
0.3705
0.2892
0.2593
0.3192
0.2938
0.3023
TDS 0.1514
Appendix S2. Ecological variables measured at different aquatic bodies of Düzce. Ta (air temperature). See Appendix S1 for abbreviations.
760.9
753.9
739.1
744.6
735
739.4
735.9
735.6
736.3
732.2
734.8
731.5
722.5
702.5
709.8
731.8
728.1
723.1
721.9
725.6
725.6
Atm 715.3
Coordinates 40° 59′ 412″ N 31° 12′ 164″ E 40° 57′ 968″ N 31° 13′ 419″ E 40° 57′ 968″ N 31° 13′ 419″ E 40° 58′ 589″ N 31° 13′ 425″ E 40° 58′ 399″ N 31° 13′ 358″ E 40° 58′ 014″ N 31° 10′ 240″ E 40° 57′ 656″ N 31° 10′ 406″ E 40° 56′ 433″ N 31° 29′ 415″ E 40° 56′ 429″ N 31° 29′ 416″ E 40° 57′ 003″ N 31° 29′ 213″ E 40° 58′ 058″ N 31° 27′ 862″ E 40° 56′ 952″ N 31° 23′ 257″ E 40° 57′ 124″ N 31° 23′ 226″ E 40° 56′ 692″ N 31° 20′ 408″ E 40° 56′ 379″ N 31° 20′ 286″ E 40° 55′ 809″ N 31° 18′ 362″ E 40° 55′ 673″ N 31° 18′ 294″ E 40° 55′ 941″ N 31° 17′ 196″ E 40° 54′ 394″ N 31° 15′ 388″ E 41° 01′ 266″ N 31° 12′ 723″ E 41° 00′ 717″ N 31° 13′ 738″ E 41° 03′ 709″ N 31° 12′ 117″ E
44
123
279
197
312
251
304
290
300
347
320
358
475
656
582
331
370
433
429
387
387
Alt 510
80 O. Külköylüoğlu, S. Yılmaz, and M. Yavuzatmaca
Çelikdere village
Unnamed water body
Üveyzbeli trough
Hacıkadirler stream
Sırtpınar trough
Recep muhtar trough
Kıyıköy stream
38
39
40
41
42
43
Hemsin village
32
37
Aktaş waterfall
31
Harmankaya waterfall
Arabacı stream
30
36
Yaylacık spring
29
Melen creek
Sarıyayla trough
28
35
Yeşilköy stream
27
Akpınar stream
1985 trough
26
34
Belören spring
25
Esmahanım stream
Doğancılar village
24
33
Akkaya stream
23
eschweizerbart_xxx
8.23
7.93
8.04
8.12
7.68
8.04
8.32
8.08
8.28
7.96
8.2
7.69
8.17
8.4
8.21
8.19
8.2
8.16
7.95
8.23
7.99
121.63
141.345
113.405
124.54
144.64
122.055
112.475
122.385
112.205
122.34
116.99
129.36
117.55
107.845
122.64
119.74
126.01
109.46
117.13
103.6
121.415
10.29
5.18
6.17
6.11
7.87
7.84
8.37
8.51
8.67
6.35
9.67
6.25
9.23
11.38
9.23
9.98
8.53
6.93
5.82
7.05
9.26
97.5
50.3
59.2
66.8
78.7
73.2
87.9
94.9
90.3
67.1
99.4
64.3
89.9
115
89.6
97.1
86.5
74.2
60.1
78.8
94.7
441.6
514
484.3
448.6
548
291.7
401.1
550
437.2
487.3
329.6
387.7
281.9
338.5
255.6
287.6
329.9
101.8
74.7
105
190.5
575.5
657
624.2
500.3
673
349.9
468.1
606
512.9
569.5
394.5
462.3
356.4
411.2
328.2
369.4
402.2
116
88.5
113.6
230.7
0.28
0.32
0.31
0.24
0.33
0.17
0.23
0.29
0.25
0.28
0.19
0.22
0.17
0.2
0.16
0.18
0.19
0.05
0.04
0.05
0.11
12.8
13.7
13.3
19.4
15.4
16.3
17.5
20.1
17.3
17.4
16.4
16.6
14
15.7
13.4
13.4
15.6
18.6
16.8
21
15.9
18.8
19.6
17.8
22.2
20
20.8
20
21.4
22
24.5
23
23.2
23
20.5
22
22
24.2
20.5
20.5
21.3
19.6
0.3744
0.429
0.4056
0.3256
0.4365
0.2275
0.3042
0.3965
0.3325
0.3698
0.2561
0.3003
0.2671
0.2132
0.2398
0.2613
0.0754
0.0579
0.0741
0.1502
751.8
745.3
729.5
753.6
736
733.8
731.8
757
753.8
745.1
754.1
745.6
736
755.6
725.1
720.6
753.7
753.5
752.7
750.9
763.2
41° 06′ 135″ N 31° 15′ 107″ E 41° 03′ 571″ N 31° 88′ 839″ E 41° 03′ 483″ N 31° 08′ 843″ E 41° 02′ 595″ N 31° 09′ 105″ E 41° 01′ 672″ N 31° 06′ 617″ E 41° 00′ 908″ N 31° 04′ 786″ E 41° 00′ 282″ N 31° 04′ 114″ E 41° 02′ 626″ N 31° 05′ 085″ E 41° 00′ 797″ N 31° 02′ 534″ E 41° 01′ 537″ N 31° 01′ 480″ E 40° 59′ 856″ N 30° 59′ 249″ E 40° 55′ 863″ N 30° 57′ 930″ E 40° 54′ 436″ N 30° 56′ 969″ E 40° 56′ 625″ N 30° 56′ 182″ E 40° 55′ 622″ N 30° 53′ 916″ E 40° 54′ 988″ N 30° 53′ 596″ E 40° 53′ 902″ N 30° 53′ 322″ E 40° 50′ 794″ N 31° 00′ 636″ E 40° 53′ 374″ N 30° 56′ 093″ E 40° 52′ 584″ N 30° 55′ 577″ E 40° 52′ 584″ N 30° 55′ 577″ E
250
250
401
115
319
342
372
76
113
198
114
208
319
104
452
494
108
110
122
143
7
Ostracod species diversity, distribution and ecology
81
Hızar stream
Yenivakık stream 2
Yaka village stream
Boğazici stream
Muncur stream
Sallar stream
58
59
60
61
62
63
Güzeldere waterfall
52
Şerefiye water channel
Saçmalıpınar village spring
51
57
Çay village stream
50
Şaziye village trough
Aksu stream
49
56
Kıyıdüzü pond
48
İçmeler village melen
Dereköy trough
47
55
Yesilyayla stream
46
Efteni lake 2
Halilbey stream
45
54
Soguksu trough
44
Efteni lake 1
Halilbey stream
45
53
StNa Soguksu trough
St.no 44
Appendix S2. Continued.
eschweizerbart_xxx
8.26
8.09
7.69
8.17
8.11
8.07
8.2
8.27
8.62
8.58
7.66
8.07
7.38
8.32
8.25
8.36
8.32
7.97
7.88
8.11
8.34
pH 8.14
120.855
136.285
158.17
126.985
122.34
127.07
118.765
141.1
92.995
96.665
142.965
124.665
154.04
133.36
120.305
202.33
118.525
125.095
137.17
118.295
118.29
SHE 117.1
9.93
8.92
4.55
9.1
7.62
7.86
8.99
9.49
14.59
8.96
2.92
6.16
0.63
10.02
9.83
10.27
10.5
4.19
8.22
9.21
10.53
DO 7.35
96.6
94.7
45.4
87.7
71.5
81.7
93
94.1
176
105.8
2.71
67
6.7
94.5
93.7
104.5
103.5
46.8
82.6
90.8
99
%S 76.5
407.4
849
690
378.5
421.4
423.5
409.6
215.8
168.3
162.8
496.1
562
459.2
118.2
223.2
279.6
247.7
193.2
502
380.7
403.4
EC 698
512.3
977
849
476.8
512.6
498.2
484.5
267
176.2
169.8
561.7
636
538.7
155.2
288.3
337.5
310.5
210.4
667
473.7
531.1
Sp.EC 823
0.25
0.49
0.42
0.23
0.25
0.24
0.23
0.13
0.89
0.08
0.27
0.31
0.26
0.07
0.14
0.16
0.15
0.1
0.3
0.23
0.26
Sal 0.41
14.3
18.1
15.2
14.1
15.4
17.2
16.9
15
22.7
22.9
18.9
18.9
17.4
12.6
13.3
16
14.5
20.7
15.2
14.7
12.4
Tw 17
22.8
21.4
18
17.2
22.3
24.3
25.1
26
26.5
26.6
23.9
26
24.6
24.5
26
26.2
27.4
24.4
21.6
21.5
19.7
Ta 18.5
0.3328
0.637
0.5525
0.36
0.3335
0.3327
0.3146
0.1735
0.144
0.1105
0.3653
0.416
0.3497
0.1008
0.1482
0.2197
0.2015
0.1365
0.403
0.3081
0.3452
TDS 0.533
749.7
748
748.2
742.6
741.3
747.5
746.7
730.1
748.9
752.2
753.2
753.4
753.2
717
704
749.9
745.3
728.7
737.4
754.3
743.8
Atm 741.6
Coordinates 40° 51′ 331″ N 30° 53′ 898″ E 40° 51′ 331″ N 30° 53′ 898″ E 40° 51′ 331″ N 30° 53′ 898″ E 40° 51′ 331″ N 30° 53′ 898″ E 40° 47′ 366″ N 30° 51′ 186″ E 40° 48′ 769″ N 30° 53′ 847″ E 40° 47′ 720″ N 30° 58′ 227″ E 40° 45′ 056″ N 30° 54′ 286″ E 40° 45′ 349″ N 30° 56′ 431″ E 40° 43′ 620″ N 30° 57′ 401″ E 40° 43′ 344″ N 31° 02′ 632″ E 40° 45′ 254″ N 31° 03′ 624″ E 40° 45′ 480″ N 31° 02′ 211″ E 40° 49′ 311″ N 31° 01′ 524″ E 40° 50′ 676″ N 31° 02′ 836″ E 40° 53′ 093″ N 31° 01′ 987″ E 40° 55′ 733″ N 31° 04′ 023″ E 40° 54′ 118″ N 31° 05′ 359″ E 40° 54′ 877″ N 31° 08′ 086″ E 40° 57′ 483″ N 31° 17′ 077″ E 40° 48′ 894″ N 31° 15′ 407″ E 40° 50′ 928″ N 31° 13′ 850″ E 193
239
264
196
209
389
165
124
105
125
114
538
698
174
228
423
319
137
261
261
261
Alt 261
82 O. Külköylüoğlu, S. Yılmaz, and M. Yavuzatmaca
eschweizerbart_xxx
Esenler village channel
Mamure water channel
Turaplar
Unnamed water body
Aydınpınar waterfall 1
Aydınpınar waterfall 2
Bey village stream
Torkul stream
Torkul pond 1
Torkul pond 2
Unnamed water body
Unnamed water body
Derdin Hot spring
Samandere waterfall
Topuk village pond 1 Topuk village pond 2 Dipsiz lake
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
81
80
Akyazı water channel
64
7.65
8.47
8.41
8.73
8.27
8.59
6.62
8.37
7.64
7.1
7.32
8.4
8.17
8.23
8.59
7.76
7.84
8.02
163.845
124.875
95.485
89.435
110.92
106.26
201.415
115.835
142.395
209.665
151.155
115.73
128.095
123.78
109.975
138.2
136.26
125.39
9.47
6.46
6.31
8.09
5.4
8.37
0.63
9.54
8.23
0.28
1.76
10.28
8.79
8.82
10.28
3.84
7.42
9.57
80.3
68.2
70.6
91.3
57.3
82.3
8.3
94.5
81.1
3.3
18.7
92.9
90.4
84.5
99.9
38.2
73.1
98.1
330
200
85.6
148.2
148.5
272.2
970.2
328.3
287.6
518
267.8
248.1
382.8
135
137.9
514
503
325.6
461.4
233.2
54.5
160.2
170.6
340.7
882.4
404.9
358.2
562
303.1
340.1
455.2
73.8
117.2
635
628
389.6
0.23
0.11
0.04
0.08
0.08
0.16
4.9
0.2
0.17
0.27
0.14
0.16
0.22
0.08
0.08
0.31
0.31
0.19
11.7
17.5
20.1
21.1
18.2
14.6
29.9
15.1
14.7
20.9
18.3
10.8
16.7
13.8
13.5
15
14.6
16.4
16.3
18.3
20.8
22.2
22.2
24.3
24.1
26
23.5
22.2
27.7
28.5
27.2
22.5
24.9
26.8
23.2
0.3023
0.1514
0.0611
0.104
0.1112
0.2203
5.746
0.2652
0.2327
0.364
0.1976
0.221
0.2958
0.1131
0.1151
0.416
0.4095
0.2535
725.6
715.3
676.6
654.9
655.1
696.4
725.6
725.2
667.7
657.4
681.2
744.9
731.5
731.7
751.6
751
751.7
40° 53′ 977″ N 31° 10′ 929″ E 40° 54′ 118″ N 31° 05′ 359″ E 40° 50′ 577″ N 31° 06′ 743″ E 40° 48′ 715″ N 31° 07′ 453″ E 40° 48′ 343″ N 31° 06′ 016″ E 40° 44′ 675″ N 31° 06′ 264″ E 40° 44′ 675″ N 31° 06′ 264″ E 40° 46′ 279″ N 31° 09′ 832″ E 40° 41′ 465″ N 31° 08′ 205″ E 40° 40′ 764″ N 31° 10′ 383″ E 40° 40′ 764″ N 31° 10′ 383″ E 40° 41′ 086″ N 31° 08′ 979″ E 40° 43′ 188″ N 31° 14′ 415″ E 40° 43′ 271″ N 31° 14′ 482″ E 40° 41′ 457″ N 31° 15′ 635″ E 40° 41′ 489″ N 31° 21′ 690″ E 40° 41′ 489″ N 31° 21′ 690″ E 40° 43′ 289″ N 31° 23′ 031″ E
1009
1295
1295
817
472
439
1121
1270
1270
960
204
352
352
134
141
138
209
194
Ostracod species diversity, distribution and ecology
83
1
eschweizerbart_xxx
86
16
32
34
42
41
40
39
38
37
10
1
91
31
35
1 6
1
4
30
28
27
26
24
22
21
19
18
16
15
14
13
12
11
1
25
23
3
13
1
2
1
1
4
9
10
2
8
3
145
45
7
1
4
192
6
10
128
9
1
I.sp Cd Pfo
5
32
8
Ib
4
3
Hs
700 15
Hi
3
3
1
2
Pal
St.no
56
Ci
15
Hc
1
25
8
1
Pm Pvi
3
19
3
Ii
4
7
25
37
104
2 1
2
15
3
16
6
Po Hrc Psi
3
3
He
Py
1
Fc
3
Hb
1
Ec
7
10
Pp
2
Sc
13
6
1
Ep Pav Cy
5
Cv
1
Lc
4
Id
3
Pz
7
Cp
Hr
Pc
31
Pfa
Ps
Cn
Li
sp., Cv: C. vidua, Cy: Cypris sp., Ec: Eucypris sp., Ep: E. pigra, Fc: Fabaeformiscandona sp., I.sp: Ilyocypris sp., Ib: I. bradyi, Id: I. decipiens, Ii: I. inermis, Lc: Limnocythere sp., Li: L. inopinata, He: Herpetocypris sp., Hc: H. chevreuxi, Hb: H. brevicaudata, Hrc: Heterocypris sp., Hr: H. reptans, Hi: H. incongruens, Hs: H. salina, Pm: Potamocypris sp., Pfa: P. fallax, Pp: P. pallida, Ps: P. smaragdina, Psi: P. similis, Pv: P. variegata, Pvi: P. villosa, Py: Psychrodromus sp., Pfo: P. fontinalis, Po: P. olivaceus, Pc: Pseudocandona sp., Pal: P. albicans, Pz: Prionocypris zenkeri, Sc: Schellencandona sp. Note to the species underlined above in the caption are called as “cosmoecious” species.
Appendix S3. List of living ostracods along with the numbers of individuals found from Karabük. Abbreviations; Cd: Candona sp., Ci: C. improvisa, Cn: C. neglecta, Cp: Cypridopsis
84 O. Külköylüoğlu, S. Yılmaz, and M. Yavuzatmaca
eschweizerbart_xxx
4 2
162
6
3
76
77
79
80
1
1
350 23
74
1
1
13
13
72
71
70
35 51 6
68
163
5
23
49
19
67
7
7
63
66
69
7
1
65
1
103
1
44
2
2
1
64
2
3
94
62
1
203
57
21
253
56
60
136
55
63
59
15
45
54
53
47
44
43
3
5
17
1
2
160
Ostracod species diversity, distribution and ecology
85
86
O. Külköylüoğlu, S. Yılmaz, and M. Yavuzatmaca
Appendix S4. List of 19 living ostracod species along with the numbers of individuals found 34 of 81 sites from Düzce. Abbrevia-
tions: Hi: H. incongruens, Hs: H. salina, Ib: I. bradyi, Ii: I. inermis, Po: P. olivaceus, Ps: P. similis, Pv: P. variegata, Cv: C. vidua, Id: I. decipiens, Cn: C. neglecta, Tl: Tonnacypris lutaria, Pa: P. arcuata, Ds: Dolerocypris sinensis, Im: I. monstrifica, Cc: C. candida, Cp: C. pubera, Co: Cypria ophtalmica, Cs: C. sywulae, Cla: Cyclocypris laevis. StNo 1 7 13 14 15 18 28 29 32 33 37 38 39 41 42 43 44 45 46 47 49 51 53 54 56 60 63 67 71 72 73 74 75 78
Hi
Hs
Ib
Ii
24 122 9
5
Po 1 5 6 17 3 155
Ps
Pv
Cv
15
16
82
Id
Cn
Tl 1
Pa
Ds
Im
Cc
Cp
81 32
2
Co
Cs
Cla
80 83
18 100
24 8 4
56 5
7 25
18
2 2 185
104 15
1 125 10 101 3
30 110
1
13 200 1
2 2 2
80
1 3
7
188 3 3 119 7 13
1 25
2
31
325 24
eschweizerbart_xxx