Comparison of Ostracoda (Crustacea) species ...

1 downloads 0 Views 893KB Size Report
Mar 16, 2017 - A total of 36 (Karabük) and 30 (Düzce) ostracod taxa were found from 148 out of 162 .... species diversity of ostracod species between Düzce.
E

Fundam. Appl. Limnol. 190/1 (2017), 63–86Article published online 16 March 2017, published in print April 2017

Comparison of Ostracoda (Crustacea) species diversity, distribution and ecological characteristics among habitat types Okan Külköylüoğlu  *, Sinem Yılmaz and Mehmet Yavuzatmaca 1 With 4 figures, 5 tables and 4 appendices Abstract: To understand the relationship between habitat differences and ostracod species diversity, distribution and ecological characteristics, eleven different habitat types (spring, creek, stream, lake, waterfall, cave, puddle, pond, reservoir, trough, irrigation canal) across 162 aquatic bodies were sampled from July to September of 2012 in the Karabük and Düzce regions of Turkey. A total of 36 (Karabük) and 30 (Düzce) ostracod taxa were found from 148 out of 162 sites. All taxa are newly reported for Karabük whereas 16 species are new for Düzce. In Düzce, total numbers of species and sites were higher at altitudes 0 – 400 m and lower at altitudes 401–1200 m a.s.l. than in the Karabük region. However, they were equal at altitudes 1201–1400 m. Most species were found in troughs followed by streams, springs and ponds. Canonical Correspondence Analysis explains about 74 % of the relationships between species and environmental variables in both regions where water temperature was a significant (p  7). Therefore, CCA along with Monte Carlo Permutation test (499 permutations used to determine the levels of significance) and forward selection was used on data that were log-transformed; rare species were down-weighted to reduce the multicollinearity and arc effects on the relationship between ecological variables and species (ter Braak 1987). Finally the most influential variables on species were manually selected based on significance values. This also corresponds to the length of the arrows on the CCA diagrams. Analyses of CCA and DCA were conducted with the software package CANOCO 4.5 while UPGMA was performed with Multi Variate Statistical Package (MVSP) version 3.1 (Kovach 1998). Additionally, the C2 program (Juggins 2003) was used to measure tolerance and optimum values of species that occurred more than three times and where ecological variables were available. The program includes a transfer function of weighted averaging (WA) regression method where the mean optimum values for individual species that occurred in all sites were weighted by the abundance of species. According to ter Braak & Barendregt (1986) species could be the most abundant in sites where environmental variables are closer to their opti-

mum estimations. It is considered that species have unimodal responses to environmental variables. The Species Diversity and Richness (SDR) program version 4.2 (Seaby & Henderson 2006) was used to compare species richness and diversity, computed using a variety of diversity indices, between the Karabük and Düzce regions. Index values were compared with t-test in Microsoft Excel 2010.

Results A total of 36 (22 living (with 3972 individuals) and 14 sub-recent) ostracod taxa were found from 75 out of 81 sites from the Karabük region. 30 (19 living (with 2745 individuals) and 11 sub-recent) ostracods were found from 73 out of 81 sites from the Düzce region (Appendix S2). All taxa are new reports for Karabük (Appendix S3) and 16 species are new for Düzce (Appendix S4). Fifty taxa belonging to 41 genera were reported in both regions. No ostracods were found from cave waters. Troughs contained higher species diversity (24 spp.) than the other habitat types such as streams (18 spp.), springs (13 spp.) and ponds (9 spp.) in the regions. In contrast, the average numbers of species per trough were lower than the number per spring. The only variable showing a significant positive correlation (p  0.05) effects on species distribution.

Discussion All 36 taxa (22 species) representing the alpha diversity are newly reported for Karabük. In contrast, seven species (Cypridopsis vidua, Candona neglecta, Heterocypris salina, Prionocypris zenkeri, Darwinula stevensoni, Herpetocypris chevreuxi, Physocypris kraepelini) were previously known from Düzce (Gülen 1985). Alpha diversity of Düzce is now increased to 23 living species. There is no significant difference (p = 0. 34, t-test = 2.22) in the total numbers of species between the two regions despite the fact that there were differences in species numbers at different altitudes. Supporting results were obtained from finding low β-diversity values between Karabük (7.84) and Düzce (8.26). It is probable that these differences in the numbers of species between the regions may be related to several factors such as numbers of sampling sites, geographic variation and habitat type. Additionally, seasonality, which we did not examine in this study, can influence the species captured, (Külköylüoğlu 1998; Nagorskaya & de Jonge 2002). On the other hand, increasing the number of sampling sites did not significantly increase the ratio of the numbers of species per site, as in the case of troughs and other habitats (Fig. 2, Table 5). For example, we sampled more troughs in Karabük (50) than Düzce (17), but the ratio (species/site) was lower (0.75 > 0.40). However, the ratio was higher in stream, spring and ponds in Karabük than Düzce. This supports our view that increasing the numbers of sampling sites may not increase the number of species caught per site. This corresponds to earlier studies (Külköylüoğlu 2004; Akdemir & Külköylüoğlu 2011; Külköylüoğlu et al. 2012a; Külköylüoğlu et al. 2012b; Külköylüoğlu et al. 2012c; Külköylüoğlu et al. 2015; Yavuzatmaca et al. 2015). Interpretation of these studies suggests that sampling in suitable habitats with optimum conditions may be better for finding more ostracod species than increasing numbers of sampling sites to increase the chance of encountering more species. However, this view requires defining “suitable habitat” for ostracods eschweizerbart_xxx

Ostracod species diversity, distribution and ecology

71

Table 4. Comparison of species distribution at 10 and 8 different habitat types in (A) Düzce and (B) Karabük, respectively. Ab-

breviations: Numbers of stations (NuSt.), numbers of species (NuSpp), ratio of species per site (Spp/Site), Cd: Candona sp., Cc: C. candida, Ci: C. improvisa, Cn: C. neglecta, Cr: Cypridopsis sp., Cv: C. vidua, Co: Cypria ophtalmica, Cs: C. sywulae, Cy: Cypris sp., Cp: C. pubera, Cl: Cyclocypris laevis, Ds: Dolerocypris sinensis, Ec: Eucypris sp., Ep: E. pigra, Fc: Fabaeformiscandona sp., Ic: Ilyocypris sp., Ib: I. bradyi, Id: I. decipiens, Ii: I. inermis, Im: I. monstrifica, Lc: Limnocythere sp., Li: L. inopinata, He: Herpetocypris sp., Hc: H. chevreuxi, Hb: H. brevicaudata, Hrc: Heterocypris sp., Hr: H. reptans, Hi: H. incongruens, Hs: H. salina, Pm: Potamocypris sp., Pa: P. arcuata, Pfa: P. fallax, Pp: P. pallida, Ps: P. smaragdina, Psi: P. similis, Pv: P. variegata, Pvi: P. villosa, Py: Psychrodromus sp., Pf: P. fontinalis, Po: P. olivaceus, Pc: Pseudocandona sp., Pal: P. albicans, Pz: Prionocypris zenkeri, Sc: Schellencandona sp. Tl: Tonnacypris lutaria. Note the lack of species in cave, creek and water canals. Species underlined above in the caption are considered as “cosmoecious species”. A) Habitat type Trough Stream Puddle Waterfall Lake Pond Cave Spring Creek Water canal

NuSt. 17 26  7  7  4  5  2  7  1  4

NuSpp 12 12  8  5  4  3  – 10  –  1

Species codes Po, Cn, Hi, Hs, Cv, Pv, Psi, Pc, Py, Cy, Pa, Pm Po, Hs, Psi, Ib, Hi, Ii, Cn, Ic, Cd, Py, Pm, Cr Po, Pl, Hs, Id, Im, Ic, Hc, Py Psi, Ic, Cd, Hrc, Pm Cv, Cc, Cp, Cs Hi, Tl, Cl  – Po, Psi, Ds, Ib, Hi, Cc, Cn, Pc, Hc, Py  – Cr

Spp/Site 0.70 0.46 1.14 0.71 1.00 0.60 – 1.42 – 0.25

NuSt. 50

NuSpp 20

Spp/Site 0.40

14  1  3  7  3  1  2

12  –  5  7  8  –  2

Species Hi, Hs, Ib, Ic, Ci, Pf, Ii, Po, Psi, Hc, Pc, Ec, Pp, Sc, Pv, Pz, Hr, Pfa, Cn, Ep Pal, Hi, Hs, Ib, Pm, Po, Ps, Pz, Pse, Pfa, Psi, Li  – Ib, Pf, Hc, Fc, Hb Hi, Hs, Ib, Ic, Pm, Po, Psi Hi, Ic, Cd, Pm, Cy, Cv, Lc, Id  – Hs, Ic

B) Habitat type Trough  Stream Cave Spring Pond Reservoir Lake Creek

0.85 – 1.66 1.00 2.66 – 1.00

Table 5. Comparison of the numbers of species and mean values among 11 cities (regions) in Turkey. Abbreviations: numbers

of species (Num.Spp), numbers of sites (Num.Site), numbers of species per site (Spp/site) and numbers of species per km2 (Spp/ km2), a Yavuzatmaca et al. 2015., b Külköylüoğlu et al. (in review), c Külköylüoğlu et al. 2015, dAkdemir & Külköylüoğlu 2011, e Külköylüoğlu et al. 2012c, f Külköylüoğlu et al. 2012a, g Uçak et al. 2014, *this study.   Adıyamana Bartınb Çankırıc Diyarbakır d Vanf Zonguldak b Karabük* Düzce* Ankarag Maraşe

Area  7164  2079  7388 15272 10115  3306  4145  2573 25437  7173

Num.Spp 27 13 25 23 29 18 22 19 29 30

Num.Site 111  27 114  48  57  42  75  73 152  68

eschweizerbart_xxx

Spp/site 0.2432 0.4815 0.2193 0.4792 0.5088 0.4286 0.2933 0.2603 0.1908 0.4412

Spp/km2 0.0038 0.0063 0.0034 0.0015 0.0029 0.0054 0.0053 0.0074 0.0011 0.0042

 72

O. Külköylüoğlu, S. Yılmaz, and M. Yavuzatmaca

and this is currently difficult because of a lack of data about optimum conditions for each species. Geographic factors (e.g., altitudinal differences, area-size relationship, east-west and/or north-south latitudinal direction) may also affect the diversity. For example, Düzce, nearby the Black Sea has ostracod habitats across a lower range of altitudes than Karabük (Appendix S1). Similarly, Karabük has ostracod habitats at higher ranges (1201–1400 m a.s.l.) where the numbers of species and number of sites were equal (3 species from 2 sites) in each region. However, a comparison between the regions cannot be done at the highest altitudes (> 1400 m a.s.l.) due to lack of sampling sites in Düzce. The role of altitude on species distribution has been widely discussed. Some studies (Mezquita et al. 1999; Pieri et al. 2009; Külköylüoğlu et al. 2015) showed that altitude had a strong effect on ostracod distribution but Külköylüoğlu et al. (2012c) did not find significant differences in the numbers of species at the ranges of 400 – 600 m a.s.l. and 800 –1000 m a.s.l. in Kahramanmaraş (south eastern Turkey). Additionally, some other studies (Külköylüoğlu et al. 2012a; Uçak et al. 2014) in other parts of Turkey revealed the indirect effect of altitude on the physicochemical characteristics of the aquatic habitats that ostracods inhabit. The size of the area studied may also explain the differences between the two investigated regions (Fig. 4b). For example, when we compared the number of ostracod species among 11 regions with different size (surface area) (Table 5), the area sampled seems to have a weak or not significant effect on the numbers of species per sampling site. This is actually supported if one compares species numbers in the smallest (Bartın) and largest (Ankara) regions (see Table 5). Although there is a big variation between the size and numbers of sites sampled, Bartın illustrates the high possibility of finding more species per site (0.48 spp/ site) per square kilometer (spp/km2 = 0.0063) than Ankara (0.19 spp/site; 0.001 spp/km2). The comparison of various regions showed that the size of the area per se is not enough to explain the numbers of ostracod species found in that particular region. Nevertheless, increasing the sample size will reduce the error terms around the estimates (Zar 1999). Another possible explanation for variations in the numbers of species may be habitat type. There were more habitat types in Düzce (10 habitats) than Karabük (8 habitats). Of these, there were about 3 times more troughs in Karabük (50 sites with 20 species) than Düzce (17 sites with 12 species). However, the ratio (species per trough) was higher in Düzce (0.70

spp/site) than Karabük (0.40 spp/site). In contrast, the mean numbers of species was higher in the springs, streams and ponds of Karabük than Düzce. Interestingly, Külköylüoğlu et al. (2012c) reported similar results in the Kahramanmaraş region of Turkey where alpha diversity and evenness were significantly higher in limnocrene springs, streams and ponds than other habitat types. Similar results (0.46 spp/site) were reported by Zhai et al. (2014) who found 34 species from 74 samples collected from the Western Carpathian spring fens of Czech Republic. Most recently, Yavuzatmaca et al. (2015) reported high species diversity and numbers of individuals in the springs, creeks and ponds of Adıyaman Turkey which was higher than the diversity values of flowing waters in Eastern Iberian Peninsula (Mezquita et al. 1999) and a shallow lake in Poland (Szlauer-Łukaszewska 2012). In the freshwater habitats of subarctic and temperate Europe (Lapland and Poland), Iglikowska & Namiotko (2012) found significant differences in average species richness among different habitats in riparian shallow lakes, temporary water bodies, and peatbogs. These studies support the fact that the presence of morphological and ecological differences among the habitats in the region probably enhances the regional species richness, regardless of the size of sampling area. Although differences in the species composition may occur between temporary and permanent water bodies, we were not able to distinguish between these types of water bodies because we only visited each location once. However, species quantity and quality (e.g., endemic, rare etc.) can vary depending on the presence of suitable physicochemical conditions in aquatic bodies and tolerance (and optimum) levels of individual species. The five clustering groups recognized by the UPGMA dendrogram (Fig. 3) seem to be based on ecological characteristics and habitat preference of species in both regions. The first group contains six species (H. salina, C. vidua, P. variegata, I. decipiens, P. similis, P. pallida) found across a wide range of altitudes where water temperature was usually equal or higher than 20 °C. Supportive data are shown in the CCA diagram (Fig. 4a) where the species are located closer to the water temperature (except P. similis). Most of these species can be found in similar aquatic habitats where their optimum and tolerance ranges are relatively higher than the mean of the other species (Table 3). Nevertheless, similarity of their occurrences in different habitats may imply their common needs in habitat (see Appendices 1, 2). Thus, occurrence of these species in the same group is not considered to be by chance only. eschweizerbart_xxx

Ostracod species diversity, distribution and ecology

In the meantime, the second group includes two species (Prionocypris zenkeri and Psychrodromus fontinalis) encountered from Karabük. The species, P. zenkeri, is known to have a cosmopolitan distribution (Külköylüoğlu 2013), whereas Ps. fontinalis appears to have a narrow geographic distribution (Meisch 2000; Karakaş-Sarı 2006; Sarı 2007; Uçak et al. 2014). Although studies revealed that P. zenkeri was usually found with I. inermis and/or I. bradyi from springs and waters related to springs (Rossetti et al. 2005; Külköylüoğlu & Sarı 2012), we found it from troughs and littoral parts of slowly flowing waters. In contrast, Ps. fontinalis was found from springs where it displayed low tolerance values for the variables measured except dissolved oxygen (Table 3). The third group of UPGMA covers two other cosmoecious species (C. candida and I. bradyi) which were commonly found in troughs and springs. Both species are known to have wide tolerance levels to different environmental variables and occur across a wide geographic distribution (Table 3). During the present study, however, C. candida was encountered only two times and occurrence of I. bradyi varied across the habitat. Co-occurrence patterns of both species (e.g., see Külköylüoğlu & Sarı 2012) may be related to their common characteristics of habitat preferences. For example, both of them are bottom dependent species due to a lack of swimming seta on their second antenna and exhibited similar occurrences in a spring. Similarly, the fourth group of UPGMA consists of three species (P. olivaceus, I. inermis and P. fallax) found in medium to well oxygenated (4 –10.29 mg l–1) alkaline (mean pH = 8) waters of troughs, stagnant and littoral zones of streams, and springs where water temperature varied from 13 to 21 °C. All three species are located on the same site of the CCA diagram. Of which, P. olivaceus, with a broad geographical distribution was placed closer to the arrow of dissolved oxygen than the others (Fig. 4a). Besides, similar tolerance and optimum ranges in similar habitats, these species have short (or not well developed) swimming setae on their second antenna, which indicate their low swimming ability. This characteristic may explain their occurrences in the same habitats of bottom-dependent species. The fifth UPGMA clustering group includes two well-known cosmoecious species (C. neglecta and H. incongruens). During this study, they were found from troughs, streams and springs. There is a clear dominance of these two species over the others. While C. neglecta was the most common species in Karabük, eschweizerbart_xxx

73

dominacy of H. incongruens was definitely clear in Düzce. Overall, five species (C. neglecta, H. incongruens, H. salina, I. bradyi and P. olivaceus) constituted more than 67 % of the total abundance of all living species in both regions. Of these, H. incongruens showed the highest ecological optimum and tolerance values to electrical conductivity and dissolved oxygen while I. bradyi was the only species with relatively high tolerance values to all the variables measured (Table 3).

Conclusion Our results suggest that cosmopolitan (if not cosmoecious) species found in a variety of habitats with high abundance and occurrence can influence species diversity. Also, diversity can be affected by habitat differences among sampling sites. However, we should also keep in mind that under some suitable conditions, dominant species can mask environmental signals (Slack et al. 2000) and make it difficult to understand changes in biodiversity. For example, since our sampling was done in shallow parts of each site, numbers of species found may not represent the true species diversity. However, considering our extensive sampling size, results are statistically and ecologically valuable and can be useful for future studies. Although the relationship between habitat heterogeneity/diversity and species diversity is still controversial (Tews et al. 2004), we believe that habitat heterogeneity with high values of ecological tolerance and/or the optimum estimates of the species may increase their chance of survival in a variety of habitats through wide geographical ranges. Acknowledgements We would like to thank Dr. Liubov Nagorskaya (Belarus) and Dr. Lianne C. Ball (U.S.A.) for their comments and corrections on the earlier draft of the paper. We also acknowledge Ozan Yılmaz, Elif Başak (Abant İzzet Baysal University) and Hamdi Mengi for their help both in laboratory and field work. This is part of MSc thesis of SY who also thanks to Prof. Dr. Rachel Toyosi Idowu (Nigeria) for her help and suggestions on the first draft of the thesis.

References Akdemir, D. & Külköylüoğlu, O., 2011: Freshwater Ostracoda (Crustacea) of Diyarbakır Province, including a new report for Turkey. – Turk. J. Zool. 35: 671– 675. Birks, H. J. B., Line, J. M., Juggins, S., Stevenson, A. C. & ter Braak, C. J. F., 1990: Diatoms and pH reconstruction. – Phil. Trans. R. Soc. 327: 263 – 278.

 74

O. Külköylüoğlu, S. Yılmaz, and M. Yavuzatmaca

Bronshtein, Z. S., 1947: Fauna SSSR. Crustacea. vol 2 no: 1 Ostracodes des Eaux Douches. – Institut Zoologique de l’Académie des Sciences de URSS, Nouvelle Serie 31: 1– 339. Gülen, D., 1985: The species and distribution of the group Podocopa (Ostracoda-Crustacea) in the fresh waters of western Anatolia. – İstanbul Üniversitesi Fen Fakültesi Mecmuası Seri B. 50: 65 – 80. Higuti, J., Lansac-Tôha, F. A., Velho, L. F. M. & Martens, K., 2009: Biodiversity of non-marine ostracods (Crustacea, Ostracoda) in the alluvial valley of the upper Paraná River. – Braz. J. Biol. 69: 661– 668. Iglikowska, A. & Namiotko, T., 2012: The impact of environmental factors on diversity of Ostracoda in freshwater habitats of subarctic and temperate Europe. – Annls. Zool. Fennici 49: 193 – 218. Juggins, S., 2003: C2 user guide. Software for ecological and palaeoecological data analysis and visualization. – University of Newcastle, Newcastle upon Tyne, UK. Karakaş-Sarı, P., 2006: Comparative ecology of Ostracoda (Crustacea) in two rheocrene springs (Bolu,Turkey). – M. Sc. Thesis, Abant İzzet Baysal University, Bolu. Kolasa, J., Hewitt, C. L. & Drake, J. A., 1998: Rapoport’s rule: an explanation or a byproduct of the latitudinal gradient in species richness. – Biodivers. Conserv. 7: 1447–1455. Kovach, W., 1998: Multivariate statistical package, ver. 3.0. – Kovach Computer Services, Pentraeth, UK. Külköylüoğlu, O., 1998: Freshwater Ostracoda (Crustacea) and their quarterly occurrence in Şamlar Lake (İstanbul, Turkey). – Limnologica 28: 229 – 235. Külköylüoğlu, O., 2004: On the use of ostracods (Crustacea) as bioindicator species in different aquatic habitats in the Bolu region, Turkey. – Ecol. Indic. 4: 139 –147. Külköylüoğlu, O., 2009: Ecological succession of freshwater Ostracoda (Crustacea) in a newly developed rheocrene spring (Bolu, Turkey). – Turk. J. Zool. 33: 115 –123. Külköylüoğlu, O., 2013: Diversity, distribution and ecology of nonmarine Ostracoda (Crustacea) in Turkey: Application of pseudorichness and cosmoecious species concepts. Recent Research Developments in Ecology. – Transworld Research Network 37/661 (2), Kerala, India. Külköylüoğlu, O. & Vinyard, G. L., 2000: Distribution and ecology of freshwater Ostracoda (Crustacea) collected from spring of Nevada, Utah, and Oregon: A preliminary study. – W. N. Am. Nat. 60: 291– 301. Külköylüoğlu, O. & Sarı, N., 2012: Ecological characteristic of the freshwater Ostracoda in Bolu Region (Turkey). – Hydrobiologia 688: 37– 46. Külköylüoğlu, O., Sarı, N. & Akdemir, D., 2012a: Distribution and ecological requirements of Ostracods (Crustacea) at high elevational ranges in Northeastern Van (Turkey). – Ann. Limnol. Int. J. Limnol. 48: 39 – 51. Külköylüoğlu, O., Sarı, N., Akdemir, D., Yavuzatmaca, M. & Altınbağ, C., 2012b: On the relationship between altitudinal changes and ostracod species reproductive mode in Ordu (Turkey). – High Alt. Med. Biol. 13: 126 –137. Külköylüoğlu, O., Yavuzatmaca, M., Akdemir, D. & Sarı, N., 2012c: Distribution and Local Species Diversity of Freshwater Ostracoda in Relation to Habitat in the Kahramanmaraş Province of Turkey. – Int. Rev. Hydrobiol. 97: 247– 261. Külköylüoğlu, O., Yavuzatmaca, M., Sarı, N. & Akdemir, D., 2015: Elevational distribution and species diversity of freshwater Ostracoda (Crustacea) in Çankırı re-

gion (Turkey). – J. Freshw. Ecol. 31: 219 – 230. doi: 10.1080/02705060.2015.1050467 Meisch, C., 2000: Freshwater Ostracoda of Western and Central Europe. Süßwasserfauna von Mitteleuropa 8/3. – Spektrum Akademischer Verlag, Heidelberg, Berlin. Mezquita, F., Hernandez, R. & Rueda, J., 1999: Ecology and distribution of Ostracods in a polluted Mediterranean river. – Palaeogeogr. Palaeoclimatol. Palaeoecol. 148: 87–103. Nagorskaya, L. & de Jonge, J., 2002: Ostracoda (Crustacea) from the Lowland Floodplain of the River Pripyat. – In: Escobar-Briones, E. & Alvarez, F. (eds): Modern Approaches to the Study of Crustacea. – Kluwer Academic, Plenum Publishers, pp. 263 – 273. Nagorskaya, L. & Keyser, D., 2005: Habitat diversity and ostracod distribution patterns in Belarus. – Hydrobiologia 538: 167–178. Pieri, V., Martens, K., Stoch, F. & Rosetti, G., 2009: Distribution and ecology of non-marine ostracods (Crustacea, Ostracoda) from Friuli Venezia Giulia (NE Italy). – J. Limnol. 68: 1–15. Rader, R. B., Keleher, M. J., Billman, E. & Larsen, R., 2012: History, rather than contemporary processes, determines variation in macroinvertebrate diversity in artesian springs: the expansion hypothesis. – Freshw. Biol. 57: 2475 – 2486. Rossetti, G., Pieri, V. & Martens, K., 2005: Recent ostracods (Crustacea, Ostracoda)found in lowland springs of the provinces of Piancenza and Parma (Northern Italy). – Hydrobiologia 542: 287– 296. Sarı, N., 2007: Determination of ecological features of the freshwater Ostracoda (Crustacea) in Bolu region (Turkey). – M. Sc. Thesis, Abant İzzet Baysal University, Bolu. Seaby, R. M. & Henderson, P. A., 2006: Species Diversity and Richness, Version 4. – Pisces Conservation Ltd., Lymington, UK. Slack, J. M., Kaesler, R. L. & Kontrovitz, M., 2000: Trend, signal and noise in the ecology of Ostracoda: information from rare species in low-diversity assemblages. – Hydrobiologia 419: 181–189. Szlauer-Łukaszewska, A., 2012: Ostracod assemblages in relation to littoral plant communities of a shallow lake (Lake Świdwie, Poland). – Int. Rev. Hydrobiol. 97 (4): 262 – 275. ter Braak, C. J. F., 1987: The analysis of vegetation-environment relationships by canonical correspondence analysis. – Vegetatio 69: 69 –77. ter Braak, C. J. F. & Barendregt, J. G., 1986: Weighted averaging of species indicator values: its efficiency in environmental calibration. – Math. Biosci. 78: 57–72. Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M. C., Schwager, M. & Jeltsch, F., 2004: Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. – J. Biogeogr. 31: 79 – 92. Uçak, S., Külköylüoğlu, O., Akdemir, D. & Başak, E., 2014: Distribution, diversity and ecological characteristics of freshwater Ostracoda (Crustacea) in shallow aquatic bodies of the Ankara region, Turkey. – Wetlands 34: 309 – 324. Whittaker, R. H., 1972: Evolution and measurement of species diversity. – Taxon 21: 213 – 251. Williams, C. B., 1943: Area and number of species. – Nature 152: 264 – 267. Yavuzatmaca, M., Külköylüoğlu, O. & Yılmaz, O., 2015: Distributional patterns of non-marine Ostracoda (Crustacea) in Adıyaman Province (Turkey). – Ann. Limnol. Int. J. Limnol. 51: 101–113.

eschweizerbart_xxx

Ostracod species diversity, distribution and ecology Zar, J. A., 1999: Biostatistical Analysis. – Prentice-Hall, Upper Saddle River, New Jersey, pp. 1– 944.

Manuscript received: 13 November 2015 Revisions required: 20 March 2016 Revised version received: 26 February 2017 Manuscript accepted: 01 March 2017

Zhai, M., Nováček, O., Výravský, D., Syrovátka, V., Bojková, J. & Helešic, J., 2014: Environmental and spatial control of ostracod assemblages in the Western Carpathian spring fens. – Hydrobiologia 745: 225 – 239.



eschweizerbart_xxx

75

eschweizerbart_xxx

Limnocrene spring

5 trough

Limnocrene spring

Pelitçik trough

Pöyrek trough

Nameless trough

14

15

16

17

18

19

İsmail bey trough

 9

Nameless trough

Göksu stream

 8

13

A.Özkan trough

 7

1994 trough

Dry trough

 6

12

Railroad trough

 5

Adiller trough

Tefen trough

 4

11

Tasman trough

 3

Nameless trough

Bayındır trough

 2

10

StNa İ. Paşa stream

St.no  1

8.66

7.22

7.42

7.48

7.88

8.14

7.9

7.55

8.06

7.71

7.78

8.3

7.43

7.59

7.44

7.42

7.43

7.97

pH 7.57

136.38

210.34

193.68

195.63

171.37

147.05

166.23

193.37

164.15

180.245

167.295

149.72

193.795

176.055

199.955

203.08

213.695

211.03

SHE 207.845

10.32

 2.7

 4.03

 5.37

 7.61

 7.85

 6.99

 7.11

10.84

 8.27

 6.93

 7.85

10.41

 0.89

 4.79

 8.68

 6.05

 7.45

DO  0.75

 23.5

 28.5

 52

 58

 83.6

103.7

 83.2

 71.1

128.6

 89.4

 79.5

 83.9

  8.86

 11.9

 47.3

 80.2

 60.1

 80.6

%S   8.9

 582

1129

 877

 499.4

 463.6

 512

 388.2

 495.5

 513

 385

 462.2

 391

 617

 696

 710

 468.6

 548

1016

EC  739

 595

1316

 832

 568.2

 514.8

 468

 388.9

 609.6

 525

 427.5

 503.5

 450

 597

 633

 895

 626.6

 681

1152

Sp.EC  758

0.29

0.66

0.4

0.28

0.25

0.22

0.19

0.3

0.25

0.21

0.24

0.22

0.29

0.3

0.44

0.31

0.33

0.57

Sal 0.37

23.8

17.4

27.8

18.8

19.2

30

24.8

15.2

24

19.7

36.7

18.2

26.7

30.3

14.3

11.8

14.7

18.8

Tw 23.7

0.3835

0.858

0.5395

0.3705

0.3347

0.3055

0.2536

0.3959

0.338

0.2782

0.3276

0.2819

0.39

0.4095

0.5785

0.4075

0.442

0.7475

TDS 0.494

686.6

675

659.9

640.2

643.2

657.9

657.9

672

643.5

653.6

662.2

682.9

684.1

686.7

688.9

639.7

672.5

672.5

Atmp 674.6

Coordinates 40° 52′ 165″ N 32° 37′ 960″ E 40° 52′ 449″ N 32° 36′ 038″ E 40° 54′ 977″ N 32° 33′ 346″ E 40° 54′ 867″ N 32° 12′ 136″ E 40° 56′ 188″ N 32° 31′ 955″ E 40° 56′ 093″ N 32° 30′ 252″ E 40° 55′ 908″ N 32° 29′ 934″ E 40° 55′ 666″ N 32° 28′ 256″ E 40° 55′ 683″ N 32° 26′ 535″ E 40° 55′ 256″ N 32° 24′ 492″ E 40° 53′ 907″ N 32° 23′ 073″ E 40° 55′ 900″ N 32° 37′ 244″ E 40° 55′ 965″ N 32° 40′ 771″ E 40° 55′ 984″ N 32° 40′ 804″ E 40° 58′ 369″ N 32° 50′ 483″ E 40° 58′ 581″ N 32° 51′ 247″ E 41° 00′ 075″ N 32° 51′ 264″ E 41° 00′ 761″ N 32° 53′ 608″ E 41° 02′ 298″ N 32° 58′ 040″ E  833

 981

1189

1436

1392

1189

1178

1012

1390

1252

1135

 859

 844

 807

 781

1005

1015

Alt 1004

23

23.6

25.9

20.1

22.5

17.4

17

20.5

17.2

19.2

17.3

19.2

18

18.6

21.9

29

24.6

Mois 19.5

Appendix S1. Ecological variables measured from different aquatic bodies (StNa) of Karabük. Abbreviations: SHE (redox potential); DO (dissolved oxygen); %S (percent oxygen saturation); EC (electrical conductivity); Sp.EC (specific conductivity at 25 °C); Sal (salinity); Tw (water temperature); TDS (Total Dissolved Solids); Atmp (atmospheric pressure); Alt (altitude); Mois (air moisture).

 76 O. Külköylüoğlu, S. Yılmaz, and M. Yavuzatmaca

Çamaşırhane trough

Long trough

Alıncak torugh

Small pond

Bağırsak 1 stream

Tek trough

Gogoren trough

Feride Goncuoglu trough

Gövören creek

YSE trough

Roadside puddle

Eflani foucet trough

Creek pond

Small pond

Ulupınar trough

Çamlık Haslemoğlu trough

7/7/2008 trough

Kavaloğlu trough

Bostancılar lake led

Ortakcilar lake led

Tabaklar stream

20

21

22

23

24

25

26

27

28

29

30

31

eschweizerbart_xxx

32

33

34

35

36

37

38

39

40 7.82

8.61

8.14

7.25

7.85

7.89

8.12

8.05

7.85

7.99

7.69

8.05

8.03

7.63

7.85

7.54

8.18

7.65

7.46

7.36

7.49

173.23

123.41

152.285

211.79

169.455

169.225

152.55

159.66

169.705

161.425

179.095

156.645

161.165

179.975

166.755

191.625

148.26

178.23

193.005

199.35

197.25

 5.63

 6.46

 7.06

 4

 5.19

 7.54

 6.17

 6.69

 4.38

 3.92

 3.94

 4.11

 9

 8.37

 4.71

 7.28

 8.28

 0.78

 7.24

 5.51

 6.4

 63.2

 82.1

 80.5

 38.3

 60.5

 87.6

 71.9

 75.2

 50.1

 47.4

 44.3

 45.1

 85.7

 88.5

 54.1

 72.6

 92.4

 10.1

 83.2

 63.5

 74.1

 437.5

 197.2

 283.3

 453.4

 450.4

 476.4

 555

 469.9

 487.8

 728

1400

 367.5

 280

 548

 597

 527

 963

1051

 693

 905

 117.9

 475.8

 188.3

 278

 589.1

 474.4

 500.7

 589

 514.2

 525

 735

1527

 408.4

 364.2

 640

 628

 601

1052

1015

 746

 960

1253

0.23

0.09

0.13

0.29

0.23

0.24

0.29

0.25

0.25

0.36

0.77

0.2

0.18

0.31

0.3

0.29

0.52

0.5

0.36

0.47

0.62

20.8

27.6

26.1

12.4

22.3

22.5

22

20.6

21.3

24.5

20.7

19.7

12.9

17.5

22.3

18.5

20.6

26.8

21.3

22

22

0.3087

0.1222

0.1807

0.39

0.3081

0.3256

0.3835

0.3441

0.3412

0.481

0.9945

0.2652

0.2366

0.416

0.4095

0.39

0.6825

0.663

0.4875

0.624

0.8125

682.2

678

677.8

671.9

680.8

789.4

687.5

704.8

717.9

722.6

701.9

698.6

666.8

667.2

667.5

671.2

716.8

688.5

661.7

670.3

680.2

41° 02′ 505″ N 32° 55′ 867″ E 41° 02′ 264″ N 32° 53′ 484″ E 41° 03′ 718″ N 32° 52′ 979″ E 41° 30′ 79″ N 32° 50′ 920″ E 41° 06′ 101″ N 32° 48′ 438″ E 41° 21′ 104″ N 32° 42′ 012″ E 41° 20′ 831″ N 32° 41′ 494″ E 41° 21′ 540″ N 32° 41′ 938″ E 41° 22′ 450″ N 32° 42′ 291″ E 41° 23′ 735″ N 32° 43′ 667″ E 41° 21′ 399″ N 32° 43′ 368″ E 41° 27′ 558″ N 32° 46′ 617″ E 41° 28′ 347″ N 32° 48′ 893″ E 41° 30′ 900″ N 32° 53′ 363″ E 41° 31′ 441″ N 32° 55′ 201″ E 41° 32′ 257″ N 32° 57′ 491″ E 41° 31′ 330″ N 32° 57′ 501″ E 41° 29′ 204″ N 32° 57′ 339″ E 41° 27′ 371″ N 32° 56′ 976″ E 41° 25′ 646″ N 33° 00′ 603″ E 41° 23′ 982″ N 32° 58′ 472″ E  879

 938

 945

1015

 903

 796

 822

 606

 445

 385

 659

 692

 963

1068

1047

 999

 456

 826

1153

1036

 913

32.5

40

30.6

39.5

48.3

45

52.6

51.3

60.6

58.7

61.2

65.6

59.8

60.5

61.5

48

44.3

42.1

34

30.5

30

Ostracod species diversity, distribution and ecology

77

Big puddle

Foucet trough

Ceviz trough

Mencilis cave stream

Mencilis cave inside

Aslanlar trough

Konarı lake

Araç creek

Toprakcuma trough

Ovacık river

Abdi bag trough

Oluk trough

Yellow pond

Camli trough

Belenkoy trough

11/03/1989 trough

Odemis trough

Yangın deposu trough

Pirinçlik stream

Soğuk su trough

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

StNa 30 June 1990 trough

42

St.no 41

Appendix S1. Continued.

eschweizerbart_xxx

7.92

8.72

8.64

8.1

8.17

7.69

8.67

9.59

8.7

8.83

8.25

7.89

7.67

7.1

7.92

7.6

7.81

7.99

7.99

7.74

pH 7.74

173.965

138.425

116.605

155.965

144.355

185.55

119.535

 62.89

114.455

106.81

141.98

160.17

182.065

191.85

163.56

189.825

185.235

160.245

163.515

179.21

SHE 178.925

10.88

 6.71

 5.66

 6.72

 8.71

 8.23

 5.67

13.63

 7.64

 6.75

 7.38

 9.59

 8.51

 5

 9.14

 4.86

10.81

 8.96

 6.85

 5.2

DO  8.78

 88

 77.7

 75.5

 81.9

112.7

 91

 75.5

186.3

 92

 84.6

 93.8

135

 99.7

 61.9

106.2

 47.1

 95

114.2

 44.2

 64.9

%S  92.3

 346.5

 612

2154

 525

1057

1143

 954

 661

1980

1792

 703

 901

 737

 755

 598

 411.2

 302.4

 743

 414.5

 573

EC  468

 473.6

 643

1088

 526

 995

1265

 917

 599.2

2008

1709

 668

 779

 769

 740

 625

 540.2

 434.5

 707

 422.9

 556

Sp.EC  549.2

0.23

0.31

1

0.25

0.49

0.63

0.45

3.23

1.02

0.86

0.32

0.37

0.38

0.36

0.3

0.26

0.21

0.34

0.2

0.27

Sal 0.27

10.9

22.5

29.3

24.9

28.3

20

27.1

30.4

24.3

27.6

27.8

33.2

22.9

26

22.6

12.5

 9.1

27.7

23.9

25.6

Tw 26.5

0.318

0.416

1.2935

0.3445

0.65

0.819

0.598

3.9

1.3065

0.1115

0.4355

0.507

0.5005

0.481

0.4095

0.351

0.2821

0.4615

0.275

0.364

TDS 0.3539

715.4

734.2

719.8

718.5

721.2

720.5

691.1

694

697.5

697.4

726.2

717.4

718.3

717.5

704.2

689.4

696

711

678

680.6

Atmp 680

41° 09′ 466″ N 32° 27′ 919″ E

Coordinates 41° 24′ 790″ N 32° 55′ 781″ E 41° 23′ 461″ N 32° 49′ 189″ E 41° 22′ 705″ N 32° 46′ 508″ E 41° 15′ 130″ N 32° 41′ 710″ E 41° 16′ 425″ N 32° 37′ 526″ E 41° 16′ 425″ N 32° 37′ 524″ E 41° 15′ 536″ N 32° 40′ 335″ E 41° 13′ 217″ N 32° 47′ 031″ E 41° 11′ 984″ N 32° 54′ 624″ E 41° 12′ 325″ N 32° 54′ 207″ E 41° 07′ 850″ N 32° 40′ 632″ E 41° 10′ 372″ N 32° 41′ 292″ E 41° 10′ 474″ N 32° 41′ 360″ E 41° 10′ 810″ N 32° 41′ 985″ E 41° 11′ 218″ N 32° 41′ 774″ E 41° 09′ 887″ N 32° 36′ 626″ E 41° 09′ 870″ N 32° 36′ 894″ E 41° 09′ 443″ N 32° 35′ 700″ E 41° 09′ 534″ N 32° 35′ 591″ E –  231

 251

 408

 417

 382

 393

 747

 704

 659

 646

 312

 413

 411

 437

 592

 682

 685

 551

 933

 915

Alt  900

66.5

62.4

55.4

53.7

52.1

50.2

47.4

45.1

43.7

46

44.4

30

28.9

33

24.8

45.4

38.8

29.8

32.5

27.2

Mois 17.5

 78 O. Külköylüoğlu, S. Yılmaz, and M. Yavuzatmaca

Soğuksu leaking

Hes şantiye stream

Balıkısık stream

Çamlıköy trough

Aziziye Oren trough

Mezarlik trough

Mezarlık spring

İncebacak stream

İncebacak köy girişi trough

Nizam Naciye trough

1/8/2005 trough

Şeker Pınar Kanyonu

Hacıosman trough

Yortan trough

Demir yolu üstü leaking

Derebaşı trough

Köy içi trough

Derebacı trough

Filyos creek

İl sınırı leaking

62

63

64

65

66

67

68

69

70

71

72

73

eschweizerbart_xxx

74

75

76

77

78

79

80

81 7.58

8.43

7.9

7.61

7.18

8

7.71

7.7

8.29

7.95

8.05

7.77

7.54

7.93

7.78

7.7

7.69

7.89

8.14

7.91

194.595

129.365

161.98

182.82

216.305

157.18

176.27

176.365

148.775

160.94

156.405

166.79

182.655

158.62

172.995

183.605

179.15

173.08

153.395

132.32

 8.68

 7.46

 9.3

 4.53

 9.01

 6.92

 2.75

 9.87

 6.61

10.29

 7.24

 3.86

 8.49

 2.01

 6.34

 5.48

 7.29

 6.12

10.51

 94.2

 79.2

 92.5

 97.2

 47.5

115.4

 90.8

 33.2

 98.9

 72.5

 99.3

 79.9

 43.1

 94

 24.6

 69.1

 65.6

 86.5

 68.8

 97.2

 585

 642

 627

 571

1484

 626

 802

 593

 360.8

 542

 406.7

 519

 476.7

  94.9

 401.1

 677

 669

 538

 332.3

 311.7

 638

 599

 618

 656

1741

 594

 742

 594

 440.6

 606

 523.3

 569

 524.5

 435.5

 404.3

 760

 681

 551

 362.2

 417.8

0.31

0.29

0.3

0.32

0.89

0.29

0.36

0.29

0.21

0.29

0.25

0.28

0.25

0.21

0.19

0.37

0.33

0.27

0.17

0.2

20.7

28.9

25.8

18.2

17.3

27.8

29.2

24.9

15.5

19.4

13.3

20.4

20.3

20.2

24.7

19.3

24

23.8

20.7

11.7

0.416

0.39

0.403

0.429

1.131

0.3835

0.481

0.3835

0.286

0.3965

0.34

0.3705

0.3406

0.2827

0.2626

0.494

0.442

0.3575

0.2353

0.2717

747

744.8

727.6

727.2

715

741.7

733.1

737.2

740.9

740.3

736.8

729

726.5

720

718.7

710.4

729.2

740.3

740.5

735.2

41° 09′ 466″ N 32° 27′ 919″ E 41° 11′ 453″ N 32° 26′ 426″ E 41° 12′ 538″ N 32° 25′ 124″ E 41° 13′ 823″ N 32° 25′ 905″ E 41° 13′ 030″ N 32° 26′ 681″ E 41° 12′ 673″ N 32° 25′ 934″ E 41° 12′ 605″ N 32° 25′ 885″ E 41° 10′ 112″ N 32° 21′ 050″ E 41° 10′ 463″ N 37° 21′ 111″ E 41° 11′ 576″ N 32° 71′ 671″ E 41° 11′ 782″ N 32° 21′ 869″ E 41° 11′ 938″ N 32° 21′ 737″ E 41° 13′ 888″ N 32° 21′ 744″ E 41° 15′ 463″ N 32° 21′ 058″ E 41° 12′ 095″ N 32° 22′ 935″ E 41° 14′ 558″ N 32° 17′ 976″ E 41° 14′ 081″ N 32° 18′ 274″ E 41° 14′ 036″ N 32° 18′ 337″ E 41° 12′ 949″ N 32° 14′ 041″ E 41° 16′ 144″ N 32° 09′ 737″ E   82

 118

 323

 333

 470

 171

 264

 228

 185

 191

 231

 317

 354

 428

 443

 530

 307

 181

 172

 231

44.7

43

51

54.2

46.5

55.9

57.1

69.5

70.1

72.5

72.3

20.4

65.7

54.8

59.5

58.5

69.2

69.2

67.6

Ostracod species diversity, distribution and ecology

79

StNa Kurtsuyu village

Kurtsuyu cave

Water ditch

Kurtsuyu spring

Subatak spring

Trough

Trough

Saklıkent waterfall

Saklıkent cave

Water ditch

Creek

Serenaltı village

Hacı Ahmet trough

Unnamed spring

Dutlar village

Unnamed water

Hasanlar Reservoir

Trough

Creek

Altunçay village

Dereköy stream

Dadallı stream

St.no  1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

eschweizerbart_xxx

13

14

15

16

17

18

19

20

21

22 7.85

7.8

7.94

8.01

8.04

8.22

7.95

7.58

7.55

7.95

8.12

8.62

8.23

8.33

8.29

8.18

7.76

7.74

8.05

7.91

7.65

pH 8.47

130.655

139.39

108.69

127.065

125.285

115.63

132.365

146.83

145.5

123.73

114.1

 96.545

115.82

126.18

136.84

112.895

150.99

135.88

150.565

133.93

163.845

SHE 124.875

 6.82

 7.88

 8.39

 7.56

 7.66

 7.78

 5.07

13.54

 4.25

 7.07

 7.13

 9.08

 6.88

10.54

 8

11.59

 9.21

 7.51

 6.76

 9.04

 9.47

DO  6.46

 69.9

 80.7

 88.1

 82.6

 82.3

 85.5

 56.4

 49.2

 44.5

 80.6

 77.2

 95.7

 76.4

 93

 80.5

131.4

 94.6

 72.9

 67.7

 82.9

 80.3

%S  68.2

301.2

318.1

165.8

387.3

459.4

308.5

402.1

538

458.7

597

511

351.6

360.6

301.9

346.1

519

371.3

313.7

396.2

334.7

330

EC 200

361.5

380.2

191.4

438.7

528.9

335.1

455.6

614

542.3

649

577

409.2

396.6

426.2

425.3

566

444.9

399.3

491.1

452

461.4

Sp.EC 233.2

0.17

0.18

0.09

0.21

0.26

0.16

0.22

0.3

0.26

0.32

0.28

0.2

0.19

0.21

0.21

0.27

0.22

0.19

0.24

0.22

0.23

Sal 0.11

16.3

16.4

16.4

18.9

18.1

20.8

18.9

18.8

17

20.8

19

17.7

20.2

 9.8

15.4

20.7

16.4

13.8

14.9

20.8

11.7

Tw 17.5

20.6

17.2

18

20.7

20.1

18.8

20.4

20.8

21.1

21.1

21.4

20.9

19.7

28.4

29

25.2

23.5

26.1

11.4

16.3

Ta 18.3

0.2346

0.247

0.1241

0.2854

0.3438

0.2178

0.2958

0.3965

0.3523

0.4225

0.377

0.2659

0.2581

0.2769

0.2763

0.3705

0.2892

0.2593

0.3192

0.2938

0.3023

TDS 0.1514

Appendix S2. Ecological variables measured at different aquatic bodies of Düzce. Ta (air temperature). See Appendix S1 for abbreviations.

760.9

753.9

739.1

744.6

735

739.4

735.9

735.6

736.3

732.2

734.8

731.5

722.5

702.5

709.8

731.8

728.1

723.1

721.9

725.6

725.6

Atm 715.3

Coordinates 40° 59′ 412″ N 31° 12′ 164″ E 40° 57′ 968″ N 31° 13′ 419″ E 40° 57′ 968″ N 31° 13′ 419″ E 40° 58′ 589″ N 31° 13′ 425″ E 40° 58′ 399″ N 31° 13′ 358″ E 40° 58′ 014″ N 31° 10′ 240″ E 40° 57′ 656″ N 31° 10′ 406″ E 40° 56′ 433″ N 31° 29′ 415″ E 40° 56′ 429″ N 31° 29′ 416″ E 40° 57′ 003″ N 31° 29′ 213″ E 40° 58′ 058″ N 31° 27′ 862″ E 40° 56′ 952″ N 31° 23′ 257″ E 40° 57′ 124″ N 31° 23′ 226″ E 40° 56′ 692″ N 31° 20′ 408″ E 40° 56′ 379″ N 31° 20′ 286″ E 40° 55′ 809″ N 31° 18′ 362″ E 40° 55′ 673″ N 31° 18′ 294″ E 40° 55′ 941″ N 31° 17′ 196″ E 40° 54′ 394″ N 31° 15′ 388″ E 41° 01′ 266″ N 31° 12′ 723″ E 41° 00′ 717″ N 31° 13′ 738″ E 41° 03′ 709″ N 31° 12′ 117″ E

  44

 123

 279

 197

 312

 251

 304

 290

 300

 347

 320

 358

 475

 656

 582

 331

 370

 433

 429

 387

 387

Alt  510

 80 O. Külköylüoğlu, S. Yılmaz, and M. Yavuzatmaca

Çelikdere village

Unnamed water body

Üveyzbeli trough

Hacıkadirler stream

Sırtpınar trough

Recep muhtar trough

Kıyıköy stream

38

39

40

41

42

43

Hemsin village

32

37

Aktaş waterfall

31

Harmankaya waterfall

Arabacı stream

30

36

Yaylacık spring

29

Melen creek

Sarıyayla trough

28

35

Yeşilköy stream

27

Akpınar stream

1985 trough

26

34

Belören spring

25

Esmahanım stream

Doğancılar village

24

33

Akkaya stream

23

eschweizerbart_xxx

8.23

7.93

8.04

8.12

7.68

8.04

8.32

8.08

8.28

7.96

8.2

7.69

8.17

8.4

8.21

8.19

8.2

8.16

7.95

8.23

7.99

121.63

141.345

113.405

124.54

144.64

122.055

112.475

122.385

112.205

122.34

116.99

129.36

117.55

107.845

122.64

119.74

126.01

109.46

117.13

103.6

121.415

10.29

 5.18

 6.17

 6.11

 7.87

 7.84

 8.37

 8.51

 8.67

 6.35

 9.67

 6.25

 9.23

11.38

 9.23

 9.98

 8.53

 6.93

 5.82

 7.05

 9.26

 97.5

 50.3

 59.2

 66.8

 78.7

 73.2

 87.9

 94.9

 90.3

 67.1

 99.4

 64.3

 89.9

115

 89.6

 97.1

 86.5

 74.2

 60.1

 78.8

 94.7

441.6

514

484.3

448.6

548

291.7

401.1

550

437.2

487.3

329.6

387.7

281.9

338.5

255.6

287.6

329.9

101.8

 74.7

105

190.5

575.5

657

624.2

500.3

673

349.9

468.1

606

512.9

569.5

394.5

462.3

356.4

411.2

328.2

369.4

402.2

116

 88.5

113.6

230.7

0.28

0.32

0.31

0.24

0.33

0.17

0.23

0.29

0.25

0.28

0.19

0.22

0.17

0.2

0.16

0.18

0.19

0.05

0.04

0.05

0.11

12.8

13.7

13.3

19.4

15.4

16.3

17.5

20.1

17.3

17.4

16.4

16.6

14

15.7

13.4

13.4

15.6

18.6

16.8

21

15.9

18.8

19.6

17.8

22.2

20

20.8

20

21.4

22

24.5

23

23.2

23

20.5

22

22

24.2

20.5

20.5

21.3

19.6

0.3744

0.429

0.4056

0.3256

0.4365

0.2275

0.3042

0.3965

0.3325

0.3698

0.2561

0.3003

0.2671

0.2132

0.2398

0.2613

0.0754

0.0579

0.0741

0.1502

751.8

745.3

729.5

753.6

736

733.8

731.8

757

753.8

745.1

754.1

745.6

736

755.6

725.1

720.6

753.7

753.5

752.7

750.9

763.2

41° 06′ 135″ N 31° 15′ 107″ E 41° 03′ 571″ N 31° 88′ 839″ E 41° 03′ 483″ N 31° 08′ 843″ E 41° 02′ 595″ N 31° 09′ 105″ E 41° 01′ 672″ N 31° 06′ 617″ E 41° 00′ 908″ N 31° 04′ 786″ E 41° 00′ 282″ N 31° 04′ 114″ E 41° 02′ 626″ N 31° 05′ 085″ E 41° 00′ 797″ N 31° 02′ 534″ E 41° 01′ 537″ N 31° 01′ 480″ E 40° 59′ 856″ N 30° 59′ 249″ E 40° 55′ 863″ N 30° 57′ 930″ E 40° 54′ 436″ N 30° 56′ 969″ E 40° 56′ 625″ N 30° 56′ 182″ E 40° 55′ 622″ N 30° 53′ 916″ E 40° 54′ 988″ N 30° 53′ 596″ E 40° 53′ 902″ N 30° 53′ 322″ E 40° 50′ 794″ N 31° 00′ 636″ E 40° 53′ 374″ N 30° 56′ 093″ E 40° 52′ 584″ N 30° 55′ 577″ E 40° 52′ 584″ N 30° 55′ 577″ E

 250

 250

 401

 115

 319

 342

 372

  76

 113

 198

 114

 208

 319

 104

 452

 494

 108

 110

 122

 143

   7

Ostracod species diversity, distribution and ecology

81

Hızar stream

Yenivakık stream 2

Yaka village stream

Boğazici stream

Muncur stream

Sallar stream

58

59

60

61

62

63

Güzeldere waterfall

52

Şerefiye water channel

Saçmalıpınar village spring

51

57

Çay village stream

50

Şaziye village trough

Aksu stream

49

56

Kıyıdüzü pond

48

İçmeler village melen

Dereköy trough

47

55

Yesilyayla stream

46

Efteni lake 2

Halilbey stream

45

54

Soguksu trough

44

Efteni lake 1

Halilbey stream

45

53

StNa Soguksu trough

St.no 44

Appendix S2. Continued.

eschweizerbart_xxx

8.26

8.09

7.69

8.17

8.11

8.07

8.2

8.27

8.62

8.58

7.66

8.07

7.38

8.32

8.25

8.36

8.32

7.97

7.88

8.11

8.34

pH 8.14

120.855

136.285

158.17

126.985

122.34

127.07

118.765

141.1

 92.995

 96.665

142.965

124.665

154.04

133.36

120.305

202.33

118.525

125.095

137.17

118.295

118.29

SHE 117.1

 9.93

 8.92

 4.55

 9.1

 7.62

 7.86

 8.99

 9.49

14.59

 8.96

 2.92

 6.16

 0.63

10.02

 9.83

10.27

10.5

 4.19

 8.22

 9.21

10.53

DO  7.35

 96.6

 94.7

 45.4

 87.7

 71.5

 81.7

 93

 94.1

176

105.8

  2.71

 67

  6.7

 94.5

 93.7

104.5

103.5

 46.8

 82.6

 90.8

 99

%S  76.5

407.4

849

690

378.5

421.4

423.5

409.6

215.8

168.3

162.8

496.1

562

459.2

118.2

223.2

279.6

247.7

193.2

502

380.7

403.4

EC 698

512.3

977

849

476.8

512.6

498.2

484.5

267

176.2

169.8

561.7

636

538.7

155.2

288.3

337.5

310.5

210.4

667

473.7

531.1

Sp.EC 823

0.25

0.49

0.42

0.23

0.25

0.24

0.23

0.13

0.89

0.08

0.27

0.31

0.26

0.07

0.14

0.16

0.15

0.1

0.3

0.23

0.26

Sal 0.41

14.3

18.1

15.2

14.1

15.4

17.2

16.9

15

22.7

22.9

18.9

18.9

17.4

12.6

13.3

16

14.5

20.7

15.2

14.7

12.4

Tw 17

22.8

21.4

18

17.2

22.3

24.3

25.1

26

26.5

26.6

23.9

26

24.6

24.5

26

26.2

27.4

24.4

21.6

21.5

19.7

Ta 18.5

0.3328

0.637

0.5525

0.36

0.3335

0.3327

0.3146

0.1735

0.144

0.1105

0.3653

0.416

0.3497

0.1008

0.1482

0.2197

0.2015

0.1365

0.403

0.3081

0.3452

TDS 0.533

749.7

748

748.2

742.6

741.3

747.5

746.7

730.1

748.9

752.2

753.2

753.4

753.2

717

704

749.9

745.3

728.7

737.4

754.3

743.8

Atm 741.6

Coordinates 40° 51′ 331″ N 30° 53′ 898″ E 40° 51′ 331″ N 30° 53′ 898″ E 40° 51′ 331″ N 30° 53′ 898″ E 40° 51′ 331″ N 30° 53′ 898″ E 40° 47′ 366″ N 30° 51′ 186″ E 40° 48′ 769″ N 30° 53′ 847″ E 40° 47′ 720″ N 30° 58′ 227″ E 40° 45′ 056″ N 30° 54′ 286″ E 40° 45′ 349″ N 30° 56′ 431″ E 40° 43′ 620″ N 30° 57′ 401″ E 40° 43′ 344″ N 31° 02′ 632″ E 40° 45′ 254″ N 31° 03′ 624″ E 40° 45′ 480″ N 31° 02′ 211″ E 40° 49′ 311″ N 31° 01′ 524″ E 40° 50′ 676″ N 31° 02′ 836″ E 40° 53′ 093″ N 31° 01′ 987″ E 40° 55′ 733″ N 31° 04′ 023″ E 40° 54′ 118″ N 31° 05′ 359″ E 40° 54′ 877″ N 31° 08′ 086″ E 40° 57′ 483″ N 31° 17′ 077″ E 40° 48′ 894″ N 31° 15′ 407″ E 40° 50′ 928″ N 31° 13′ 850″ E  193

 239

 264

 196

 209

 389

 165

 124

 105

 125

 114

 538

 698

 174

 228

 423

 319

 137

 261

 261

 261

Alt  261

 82 O. Külköylüoğlu, S. Yılmaz, and M. Yavuzatmaca

eschweizerbart_xxx

Esenler village channel

Mamure water channel

Turaplar

Unnamed water body

Aydınpınar waterfall 1

Aydınpınar waterfall 2

Bey village stream

Torkul stream

Torkul pond 1

Torkul pond 2

Unnamed water body

Unnamed water body

Derdin Hot spring

Samandere waterfall

Topuk village pond 1 Topuk village pond 2 Dipsiz lake

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

81

80

Akyazı water channel

64

7.65

8.47

8.41

8.73

8.27

8.59

6.62

8.37

7.64

7.1

7.32

8.4

8.17

8.23

8.59

7.76

7.84

8.02

163.845

124.875

 95.485

 89.435

110.92

106.26

201.415

115.835

142.395

209.665

151.155

115.73

128.095

123.78

109.975

138.2

136.26

125.39

 9.47

 6.46

 6.31

 8.09

 5.4

 8.37

 0.63

 9.54

 8.23

 0.28

 1.76

10.28

 8.79

 8.82

10.28

 3.84

 7.42

 9.57

 80.3

 68.2

 70.6

 91.3

 57.3

 82.3

  8.3

 94.5

 81.1

  3.3

 18.7

 92.9

 90.4

 84.5

 99.9

 38.2

 73.1

 98.1

330

200

 85.6

148.2

148.5

272.2

970.2

328.3

287.6

518

267.8

248.1

382.8

135

137.9

514

503

325.6

461.4

233.2

 54.5

160.2

170.6

340.7

882.4

404.9

358.2

562

303.1

340.1

455.2

 73.8

117.2

635

628

389.6

0.23

0.11

0.04

0.08

0.08

0.16

4.9

0.2

0.17

0.27

0.14

0.16

0.22

0.08

0.08

0.31

0.31

0.19

11.7

17.5

20.1

21.1

18.2

14.6

29.9

15.1

14.7

20.9

18.3

10.8

16.7

13.8

13.5

15

14.6

16.4

16.3

18.3

20.8

22.2

22.2

24.3

24.1

26

23.5

22.2

27.7

28.5

27.2

22.5

24.9

26.8

23.2

0.3023

0.1514

0.0611

0.104

0.1112

0.2203

5.746

0.2652

0.2327

0.364

0.1976

0.221

0.2958

0.1131

0.1151

0.416

0.4095

0.2535

725.6

715.3

676.6

654.9

655.1

696.4

725.6

725.2

667.7

657.4

681.2

744.9

731.5

731.7

751.6

751

751.7

40° 53′ 977″ N 31° 10′ 929″ E 40° 54′ 118″ N 31° 05′ 359″ E 40° 50′ 577″ N 31° 06′ 743″ E 40° 48′ 715″ N 31° 07′ 453″ E 40° 48′ 343″ N 31° 06′ 016″ E 40° 44′ 675″ N 31° 06′ 264″ E 40° 44′ 675″ N 31° 06′ 264″ E 40° 46′ 279″ N 31° 09′ 832″ E 40° 41′ 465″ N 31° 08′ 205″ E 40° 40′ 764″ N 31° 10′ 383″ E 40° 40′ 764″ N 31° 10′ 383″ E 40° 41′ 086″ N 31° 08′ 979″ E 40° 43′ 188″ N 31° 14′ 415″ E 40° 43′ 271″ N 31° 14′ 482″ E 40° 41′ 457″ N 31° 15′ 635″ E 40° 41′ 489″ N 31° 21′ 690″ E 40° 41′ 489″ N 31° 21′ 690″ E 40° 43′ 289″ N 31° 23′ 031″ E

1009

1295

1295

 817

 472

 439

1121

1270

1270

 960

 204

 352

 352

 134

 141

 138

 209

 194

Ostracod species diversity, distribution and ecology

83

1

eschweizerbart_xxx

 86

 16

32

34

42

41

40

39

38

37

 10

  1

 91

31

35

  1   6

  1

  4

30

28

27

26

24

22

21

19

18

16

15

14

13

12

11

 1

25

23

 3

13

1

2

1

1

  4

 9

10

  2

 8

  3

145

 45

 7

  1

  4

192

 6

10

128

  9

1

I.sp Cd Pfo

 5

32

 8

Ib

 4

  3

Hs

700  15

Hi

 3

3

 1

 2

Pal

St.no

56

Ci

15

Hc

 1

25

 8

1

Pm Pvi

 3

19

 3

Ii

  4

  7

 25

 37

104

  2 1

 2

15

 3

16

 6

Po Hrc Psi

3

3

He

Py

1

Fc

3

Hb

1

Ec

  7

 10

Pp

2

Sc

13

6

1

Ep Pav Cy

5

Cv

1

Lc

4

Id

 3

Pz

7

Cp

Hr

Pc

31

Pfa

Ps

Cn

Li

sp., Cv: C. vidua, Cy: Cypris sp., Ec: Eucypris sp., Ep: E. pigra, Fc: Fabaeformiscandona sp., I.sp: Ilyocypris sp., Ib: I. bradyi, Id: I. decipiens, Ii: I. inermis, Lc: Limnocythere sp., Li: L. inopinata, He: Herpetocypris sp., Hc: H. chevreuxi, Hb: H. brevicaudata, Hrc: Heterocypris sp., Hr: H. reptans, Hi: H. incongruens, Hs: H. salina, Pm: Potamocypris sp., Pfa: P. fallax, Pp: P. pallida, Ps: P. smaragdina, Psi: P. similis, Pv: P. variegata, Pvi: P. villosa, Py: Psychrodromus sp., Pfo: P. fontinalis, Po: P. olivaceus, Pc: Pseudocandona sp., Pal: P. albicans, Pz: Prionocypris zenkeri, Sc: Schellencandona sp. Note to the species underlined above in the caption are called as “cosmoecious” species.

Appendix S3. List of living ostracods along with the numbers of individuals found from Karabük. Abbreviations; Cd: Candona sp., Ci: C. improvisa, Cn: C. neglecta, Cp: Cypridopsis

 84 O. Külköylüoğlu, S. Yılmaz, and M. Yavuzatmaca

eschweizerbart_xxx

  4   2

162

  6

  3

76

77

79

80

1

1

350  23

74

1

1

13

13

72

71

70

 35  51  6

68

163

  5

 23

 49

 19

67

 7

  7

 63

66

69

  7

  1

65

1

103

1

44

2

2

1

64

 2

  3

94

62

  1

203

57

 21

253

56

60

136

55

 63

59

 15

 45

54

53

47

44

43

 3

5

17

 1

  2

160

Ostracod species diversity, distribution and ecology

85

 86

O. Külköylüoğlu, S. Yılmaz, and M. Yavuzatmaca

Appendix S4. List of 19 living ostracod species along with the numbers of individuals found 34 of 81 sites from Düzce. Abbrevia-

tions: Hi: H. incongruens, Hs: H. salina, Ib: I. bradyi, Ii: I. inermis, Po: P. olivaceus, Ps: P. similis, Pv: P. variegata, Cv: C. vidua, Id: I. decipiens, Cn: C. neglecta, Tl: Tonnacypris lutaria, Pa: P. arcuata, Ds: Dolerocypris sinensis, Im: I. monstrifica, Cc: C. candida, Cp: C. pubera, Co: Cypria ophtalmica, Cs: C. sywulae, Cla: Cyclocypris laevis. StNo  1  7 13 14 15 18 28 29 32 33 37 38 39 41 42 43 44 45 46 47 49 51 53 54 56 60 63 67 71 72 73 74 75 78

Hi

Hs

Ib

Ii

 24 122   9

  5

Po   1   5   6  17   3 155

Ps

Pv

Cv

 15

16

82

Id

Cn

Tl 1

Pa

Ds

Im

Cc

Cp

81 32

2

Co

Cs

Cla

80 83

 18 100

24 8   4

 56   5

  7 25

18

  2   2 185

104  15

  1 125 10 101   3

 30 110

  1

13 200   1

  2   2   2

 80

 1   3

7

188   3   3 119  7 13

  1  25

  2

 31

325  24

eschweizerbart_xxx