Compositional Relative Permeability Modeling

0 downloads 0 Views 1MB Size Report
16. Courtesy: Jerauld et al., 2008. • Application: oil recovery factor increases as injected water salinity decreases. • Main mechanism: changing rock wettability.
Compositional Multiphase Relative Permeability Modeling for EOR processes

Mohammad R. Beygi, Mojdeh Delshad, and Mary F. Wheeler Center for Subsurface Modeling Institute for Computational Engineering and Sciences The University of Texas at Austin CSM Affiliate Meeting, Nov-04-2015

Motivation •

Mass-transfer intensive processes  Hydrocarbon: miscible and near-miscible condition o Volatile oil/gas condensate fluids close to Pb /Pdew o Gasflood at enrichment/pressure slightly below MME/MMP o MCM gas injection: condensing/vaporizing gas drive



 Brine-rock: low-salinity water flood  Hydrocarbon-rock: Asphaltene precipitation  Non hydrocarbon-brine-rock: CO2 sequestration and CO2-EOR

Limitation in modeling compositional processes  Inaccurate results o Neglecting compositional effect (hydrocarbon/aqueous phase) o Low-saturation region

 Numerical instability: Slow- or non- convergence (phase labeling?)

2

Outline • Miscible and near-miscible gas flood modeling • Low-salinity waterflood modeling • Contribution

3

Miscible/Near-Miscible Condition Relative Permeability Modeling



A) Viscous/gravitational assisted phase mobilization  Capillary desaturation curve  Capillary/trapping number

Phase Relative Permeability

Adding compositional effect to relative permeability:

Relative Permeability Parameter

1 0.9 0.8 0.7 0.6

0.5 0.4 0.3 0.2 0.1 0 1.E-08

1.E-06

1.E-04 1.E-02 Trapping Number

1.E+00

1.0 0.8 0.6 0.4

Inc. Nt

0.2 0.0 0

0.2

0.4

0.6

Phase Saturation

0.8

1 4

Miscible/Near-Miscible Condition Relative Permeability Modeling (cont’d) •

Compositional Inconsistency: Non-physical discontinuity in relative permeability (Phase labeling based on mass density)



B) Compositional consistent models  Parachor-weighted molar density (Jerauld, 1997)  Molar Gibbs free energy (Yuan and Pope, 2010)

Relative Permeability

1.2

𝑘𝑟𝑔

1 0.8

𝑘𝑟ℎ

0.6

𝑘𝑟𝑜

0.4 0.2 0 0

50

100

150

Block Number

200

5

𝑘𝑟,ℎ = 𝑓 Fℎ 𝐹ℎ = 𝑓(Gℎ )

Relative Permeability Parameter

Kr(GFE) Application (Yuan and Pope, 2010) 𝐹2𝑅 𝑭𝒉 𝐹3𝑅

𝐹1𝑅 𝐺1𝑅

𝐺2𝑅 𝑮𝒉 𝐺3𝑅 Molar GFE

Partly introduces compositional consistency but is incomplete 6

Complete Kr(GFE) Application (Current Issues) Components: C1/C4/nC10, Zi=0.6/0.2/0.2, T=280℉ Phase-2



Single phase

GFE non-monotonicity Phase-1



Implementation to multiphase flow  Dissimilar effect of composition on two-phase rel. perm. parameters 0 0 (𝑘𝑟𝑗𝑙 𝑎𝑛𝑑 𝑘𝑟𝑗𝑚 , 𝐶1𝑗𝑙 𝑎𝑛𝑑 𝐶1𝑗𝑚 , …)

𝐹3𝑅

𝐹2𝑅 𝐹1𝑅 𝐺1𝑅

𝐺2𝑅

𝐺3𝑅

6

Complete GFE Application (Background) 𝐺 = 𝐺 𝛼 + 𝐺𝛽 + 𝐺 𝑠 + 𝜎𝐴

𝜕𝐺 𝜎= 𝜕𝐴

Gibbs ideal interface

β P,T,n

σ

Guggenheim model

β S

α

α 8

Complete GFE Application 𝑘𝑟𝑗 = 𝑓 𝐹𝑗3𝑃

𝐹𝑗3𝑃 = 𝑓 𝐹𝑗𝑖

𝑭𝒋𝒊 𝑅 𝐹23

𝐹𝑗𝑖 = 𝑓 𝐺𝐹𝐸𝑗 , 𝜎 𝐺𝐹𝐸 𝑗𝑖 𝑆

𝑅 𝐹32 𝑅 𝐹13 𝑅 𝐹31

Two-phase parameters: Use bilinear GFE-IFT-weighted interpolation scheme

𝑅 𝐹21 𝑅 𝐹12 𝑅 𝜎23

𝑅 𝜎12

𝐺1𝑅

𝐺2𝑅

𝐺3𝑅

𝑮𝒋

𝑅 𝜎13

𝝈𝒋𝒊 9

Miscible/Near-Miscible Gas-flood Rel. Perm. Modeling Compositional UTKR3P model (Beygi et al., 2013) 𝑘𝑟,ℎ = 𝑓 Fℎ 𝐹ℎ = 𝑓(Fℎ,𝑙 , Fℎ,𝑘 )

Parameter set: 𝑟𝑒𝑓 ° P, T, X, Gh , σh,n , Fℎ,𝑛

𝐹ℎ,𝑛 = 𝑓(Gh , σh,n ) Gh = 𝑓(Gℎ𝑖 ) ° 𝐺ℎ𝑖 = 𝑓(P, T, xi , Ghi ) ° Ghi = 𝑓(P, T, 𝐶𝑝𝑖 )

10

Case-study: CO2/C1/FC6 (T=260℉, P=1750 psi) Single HC phase in composition space Z3 mole fraction in single HC phase

Saturation space

*: Gaseous phase *: Oleic phase

Z1 mole fraction in single HC phase

11

Case-study: CO2/C1/FC6 (T=260℉, P=1750 psi) (cont’d) Two-phase HC in composition Space

Iso-GFE in composition Space

12

Case-study: CO2/C1/FC6 Single Hydrocarbon Phase Relative Permeability Hydrocarbon Saturation=0.9 Gibbs Free Energy

Phase Labeling 0.8

0.2

GFE modeling results in continuous relative permeability

13

Case-study: CO2/C1/FC6 Two Hydrocarbon Phase Region:Phase-1 Relative Permeability

Complete compositional relative permeability based on GFE modeling

14

Outline • Miscible and near-miscible gas flood modeling • Low-salinity waterflood modeling • Contribution

15

Low-Salinity Waterflood (Background)

• Application: oil recovery factor increases as injected water salinity decreases

∆𝑹𝑭

• Main mechanism: changing rock wettability

• Implication: 𝑘𝑟𝑤 ↓ and 𝑘𝑟𝑜𝑤 ↑

Courtesy: Jerauld et al., 2008

16

Low-Salinity Waterflood (Background)

Wettability Alteration Mechanism • Sandstone Rock  Clay Content  Oil wet surface: Electrical Double Layer  Wettability alteration toward increased water wetness o Low-Sal expands EDL

• Carbonate Rock  Calcite dissolution

Courtesy: Lee et al., 2010

Courtesy: Hiorth et al., 2010 17

Low-Salinity Waterflood (Background)

Rel. Perm. Modeling 𝐻𝑆 ∗ 𝐿𝑆 ∗ 𝑘𝑟𝑗 = 𝜃𝑘𝑟𝑗 𝑆 + (1 − 𝜃)𝑘𝑟𝑗 𝑆

𝜃 =f() 𝐿𝑆 𝑘𝑟𝑜𝑤

Sorw TDS

Omekeh et al. (2012)

Divalent cation desorption

Korrani (2014) Sandsone

Total Ionic strength

Korrani (2014) Carbonate

Calcite content

Dang et al. (2013)

Exchange capacity of clays

Wu and Bai (2009): Sorw = 𝑓(Salinity)

Relative Permeability

Jerauld et al. (2008)

𝐻𝑆 𝑘𝑟𝑜𝑤

𝐻𝑆 𝑘𝑟𝑤 𝐿𝑆 𝑘𝑟𝑤

Water Saturation

18

Low-Salinity Waterflood GFE-Wettability Contact Angle (Degree)

Wettability= f(contact angle) 100 95 90 85 80 75 70 65 60

Contact angle=f(GFE)

Sea water (HS)

Dilution × 100

1st Coreflood 2nd Coreflood

-200

Low. Sal

-150

-100 Molar GFE (kJ/mol)

-50

Yousef et al. (2011) experiments on carbonate rocks, (Courtesy: Alshalabi, 2014)

0 19

Low-Salinity Waterflood Rel. Perm. Modeling 𝑘𝑟,𝑎𝑞 = 𝑓 F𝑎𝑞 (UTKR3P model) 𝐹𝑎𝑞 = 𝑓(F𝑎𝑞,𝑙 , F𝑎𝑞,𝑘 ) 𝐹𝑎𝑞,𝑛 = 𝑓(Gaq , σaq,n )

Gaq = 𝑓(G𝑊𝑖 )

Parameter set: 𝑟𝑒𝑓 ∗ ,σ P, T, W, Gaq , F aq,n ℎ,𝑛 , Brine(rock) composition UT-PGE bridge model: Petrophysic- GeochemistryElectrolyte thermodynamic

∗ 𝐺𝑊𝑖 = 𝑓(P, T, m𝑖 , γ𝑖 , G𝑊𝑖 )

γi : Appropriate Activity model {Batch reaction simulation results (PHREEQC®) or a general purpose in-house code}

20

Modified Salinity Case Study Water analysis for South American formation, Kazempour et al., 2013 Ions

High Salinity (ppm)

Low Salinity (ppm)

Na+

2430

40

1

K+

66