Computation of Best Possible Low Degree Expanders

3 downloads 31333 Views 465KB Size Report
n of vertices and degree k onlythose k. -regular bipartite graphs on. 2n vertices that are candidates for having the best possible expansion.There exist veryfast ...
This paper appeared in: Discrete Applied Mathematics 155 (2007), 2539-2545

      !" #$&% '(*),+- .0/12 345+- 86 7:9=@?BACD5E =@FHG‹NŒ>XŽyTˆNŒ‘‰T’”“T•–yˆ|’—’˜™>š

›uœ CžŸ&7  :?&¡ZE ¢™ULOZ\ZY[\ZSV\]£_VM¢¤Uy]¥KNMZijg \ZY[c ¦ SVi5§wKN¨b©y\«ª¤k^UVY[lXdeMPOZY[\nm \ ¬sS,odeMZ¨[Y[U }u­|­|®|® o8deMZ¨[Y[Uqxw~€‚ f¯„^… † °Vˆ—šN±T‡—’“"ŠTL“’>²>ˆNŒX³L‹|±”“°‘‡T‰•u–VšNŒV´y“’¤yš

n¿µHÆ×|Á™¶w¿^À—·¹ÆuÆu¸nėÇܺs¤ØXÊ*»X¿n¼ÁwÅÓ¸ÍXÏb½ Ê¿ÅHà:¿nÁÛÆuÁÓÊuÄ ¿¹Ï>™ÒXÚÆuÇÌ¿nÇÉÅÓÈÁ™ÂřÊ"ËÜËÌÁ™ÑPÄ ËÌ¿ÃřÂn͗ÅÓÝÛÍXÎпnÞNÊ"җÏbÁ™ÊÑ«¿nÍ^ÁHřËÜÈÑnÑnÁ«ÊÆÆu΁ÇÀXÑPÀX͗Ê"Ò|Âw΁ÅÓÆuËÌÀXÁÓėÒ|¿ßÈřė¿¹ÆÕ¿nÁ¿¹ÔTÂÓØXÑP¿Ã¿¹ËÉ‘Ø^¿nÅ5ÄTËÌÄÂq¿¿¹ÏbÆu¤ÊÅ5Ä:Áß¿nÀ>ÒX×|Ê"ÀXÀ—ÂÓÀ>Æu¤¿nËÉėÔXÁƒØXÇÉÔ>¿ã¿nÊÁÙ¿PÒXÈ×|ÄTÁ«À—ØHÆuÆÀ—Ä—Ïb͗Ê"™ÂÙÁêËÌÊ"àNřÄLÍXËÌ¿¹Ýç¿ÇÉØ©K ]ßdugNQPROPde\˜K ]qlXdeMZ\ZYbQsdsO8R”gNO˜¨äg MZWXdQug MP©yY[U”g ¨[Y[\ Xtƒ€-ü>ý”g UL©VdeMPOg MPd^ULdsds©Vds© ]¥KNMjijg U g ýVýV¨[YbQug \ZYbKNULOåg UL©çg MPd¯g ¨bOnK SLOPds©2]£KNMãijg U 2MPdsOZSV¨[\PO@Y[U \ZRLdsKNMPde\ZYbQug ¨*QsKNi ýVSV\PdeMÕOPQeYbdeULQsd|x ]¥KNM:dÃüLg i ýV¨bdjULde\ ˜KNMZc1©VdsOZY[W|U ƒY[ý >x ê† |v ¤xƒQsKNi ýV¨bdÃü>Y[\ \ZRLdsKNM g ¨ >x TY[ý ¤x©VdeMng UL©VKNi Y[¬g"ª \ZYbKNU ÿ¢ $® ¤xßQsK>©yY[UVW\ZRLdsKNM y® ¤xêQeM TýV\PKNW|Mng ýVR Ö~¢™p ®|­ ¤xêg UL© ULKNUyª™g ýVýVMPKsüyY[ijg §VY[¨[Y[\ 1MPdsOZSV¨[\PO êg ý”® ¤t ¢™Ué\ZRVYbOHý”g ýwdeM ˜d@QsKNULOZYb©VdeM5MPdeW|SV¨äg M:§VY[ý”g MZ\ZY[\PddÃü>ý”g UL©VdeMPOux Y‘tÿd|tÕ§VY[ý”g MZ\ZY[\Pd@W|Mng ýVRLOHY[U RVYbQPR2g ¨[¨ lXdeMZ\ZYbQsdsO^R”gslXd*\ZRLd5Ong iãd©VdeW|MPdsd|t„ §VY[ý”g MZ\ZY[\PdHW|Mng ýVR G = (A ∪ B, E) YbO Ong Yb©\PK R”gulXdHdÃüyý”g ULOZYbKNU c ]¥KNM A YÜ]q]¥KNM˜delXdeM jOPSV§LOPde\ S ⊆ A Y[\ZR |S| ≤ |A|/2 \ZRLd^ULdeY[W|R—§ÛKNMZRLK>KT© N (S) K ] S R”gNOOPY[¬udULK U ÿfhg M N{yx”~~ y}|xV‚ $­y} §VSV\\ZRLd @KNUV¨ @ýVMPKT©ySLQsd*dÃüyý”g UL©VdeMPO Y[\ZRgH]¥g Y[MZ¨ OZijg ¨[¨ÙdÃü>ý”g ULOPYbKNUåQsKNi ý”g MPds©\PK:\ZRLd^§ÛdsOZ\8ýÛK|OPOZY[§V¨bd dÃüyý”g ULOZYbKNUqt 8RVYbOjg ¨bOPK RLKN¨b©VO ]£KNM \ZRLddÃüyý”g UL©VdeMãW|Mng ýVRLOjQsKNULOP\ZMZSLQe\Pds© Y[U ÿp Y[UVWã\ZRLdYbOP\lXdeM ¯]¥gNOZ\:2ng ¨[WXKNMZY[\ZRViãO]¥KNMdeU—SViãdeMng \ZY[UVW g ¨[¨ kª‘MPdeW|SV¨äg MH§VY[ý”g MZ\ZY[\Pd W|Mng ýVRLOKNU lXdeMZ\ZYbQsdsO ÿf¯deMn® ¤t5„\ZMPdei ¨ ,]¥gNOP\uxÙY[\YbOULKN\ ]¥dugNOng §V¨bd\PK 2nLMPOZ\WXdeULdeMng \Pd¯g ¨[¨Y[UVW\ZRLd5¨äg MZWXdsOZ\*dÃüyý”g ULOZYbKNUqt 8RVYbO*g ýVýVMPKXgNQnR YbO^dsOZýÛdsQeYäg ¨[¨ åULKN\^]£dugNO¹g §V¨bd:gNOQsKNi ýVSV\ZY[UVWÕ\ZRLd dÃüyý”g ULOZYbKNUK ]ƒg:W|Mng ýVRåYbO g QsK ª¤… ꪑR”g MP©ýVMPKN§V¨bdei ÿo y} ¤t +



;

=



>+

2

?



@

+

;

2

+

¸¢ª©(§O¢O¢

°

¢¶A´(¬Õ¬’´



Ýw­

|B| = |A| + 1 ±­ d (v) = 2 ¢7¬ ²2¢

|B| < |A| + 1 ±

·© °

¥§7£ £¢S©(§Š¥ ¤­¯® ­ ®°± ´(¬¸é

¶A´(§I¢¥º

²«!º

£

¥£I¢¥º

n = |A| ± ° ° ¥· x ∈ {1, . . . , n} X ⊆ A

°

v∈A

¥(·¹¸

n = |A| ± G ­

²7«;º

²¥³£ã§O¢O¢

,

°

£ °

¥£>¢¥º

°ZÛ

Ýw­

£

° °

¢7§£¢Ü

¥(·0¸

TY[ULQsd YbOêQsKNUVULdsQe\Pds©&Y[\ ]¥KN¨[¨bK O xNYÜ] YbO-g\ZMPdsdg UL© NK \ZRLdeM YbOPd|t TY[ULQsd5GdugNQnR¯ds©yWXd5YbO^Y[ULQeYb©VdeU—\ Y[|A|+|B|−1 \ZRhgjlXdeMZ\PdÃü=Y[U |E|A g UL©¯GgãlXdeMZ\PdÃüY[U B |A|+|B|−1 g UL©¯dugNQPR¯lXde§´2´Š¶ 

¼



¼

2

4

§´2´Š¶

 ¼ ž!ì2œ*Ÿí

ß



+

2



(b − x) (y − x) = by − bx − xy + x2 < a (y + 1) − (a + 1) x − xy − x2 = ay − ax + a − xy + x2 − x = (a − x) (y − x + 1) .

&pqde\ t 8RLdeUég ¨bOPK ULdeW—g \ZY[lXd5g UL©ÕY[\]£KNb¨[¨bK ≤O a ß

ž!ì2œÙÓí

@+



TY[ULQsd 

RLKN¨b©VOut TY[ULQsd ¦

y≥x

\ZRLd&\PdeMZi

YbOULKN\

y−x

(b − x) (y − x) ≤ (a − x) (y − x) .

\ZRLd*\PdeMZi

a>x

b−x ≤ a−x



YbOýwK|OZY[\ZY[lXd5g UL©Y[\8]£KN¨[¨bK O 

a−x



(b − x) (y − x) ≤ (a − x) (y − x) < (a − x) (y − x) + a − x = (a − x) (y − x + 1) .

d*ULK Qug UåýVMPK>K ] \ZRLd*]£KN¨[¨bK Y[UVWã\ZRLdsKNMPdeiåt 







`/ à0á œhðïè¡5¢£ «§£

N (R) ⊆ S ¼>½

¢©(§Š¥

R ⊆ A± S ⊆ B

®°± ¥(·0¸

Ýw­

£ °

Q = B \ S ¼8ë y + 1 ≤ |P |

|Q| y < 3 (|S| − |R|) (y + 1) , £ °

¢7·Ë£ °

¢7§O¢3¢Ü ­

²7£Õ²»¥x²« ¤

²A¢A£

X ⊆ P

£

Ýw­

°

¥(·¹¸

|X| = x

|N (X) ∩ Q| ≤ x + 1

¶´(§B¢¥º

x ∈ °

dHQsKNULOZYb©VdeM \ZRLd5OPde\ g UL©å\ZRLdHY[UL©ySLQsds©OZSV§VW|Mng ýVR K] tG 8RLd*ýVMPK>K ] ˜KNMZcyO§ @Y[UL©ySLQe\ZYbKNPU¯KN=U Ny t (S)TY[UL∩QsdHPg&lXdeMZ\PdÃüY[U P R”gNO g \iãK|OP\\ GKãUL=deY[GW|R—[P§ÛKNMP∪OY[Q]U Q x \ZRLd*MPdsOZSV¨[\Qug U§wd*OPdsdeUådugNOPY[¨ @]¥KNM\ZRLd*QugNOPd y = 0 t pqde\8ULK y > 0 t d LMPOZ\gNOPOZSViãd|x>\ZR”g \8\ZRLd^lXdeMZ\ZYbQsdsOK ] P R”gslXd*©VdeW|MPdsddÃüVgNQe\Z¨ @\ K&Y[U G g UL© g ¨[¨-QsKNi ýwKNULdeUT\POK ] g MPd&\ZMPdsdsOutk

+

7

2

2

M

2

/

Œ

"

0 >ó

B"

This paper appeared in: Discrete Applied Mathematics 155 (2007), 2539-2545

{ 

ÿ

 ü



þ û



dÃü>ý”g ULOPYbKNNU { N{ N{ yþ nv ªn} n &ø

&ø $

vyt z

&ø $6&ø





v

ú û üÿ ü ýþ ú ûü

}|t z }uv } v —U SVi5§wdeMý”g ULOZYbKNU,K ]-{"ª‘MPdeW|SV¨äg M^§VY[ý”g MZ\ZY[\PdW|Mng ýVRLO "

4&

2



OPSV§VW|Mng ýVRLO \ZY[iãd dÃüyý”g ULOZYbKNU { v ­&OPdsQ { >} ­&OPdsQ Nv z }u­ ­&OPdsQ Nv } ­&OPdsQ z N{ }u® ­&OPdsQ N{ —v ­&OPdsQ ® zy} ­&OPdsQ }u­ |­ ­&OPdsQ Nz }|} } ­&OPdsQ Nz }uv v Nv ­&OPdsQ ® }u{ z|z|v ­&OPdsQ }u­ } ­&OPdsQ }|} }uz z Nv ­yt[}*OPdsQ }|} } {|v|®|{|z }|t {&OPdsQ }uv } y} >} ­yt {&OPdsQ }uv } y} —z zyt v&OPdsQ }u{ N® }u® ® —v|{ >t[}*OPdsQ } N® v|­ y}uzy} ­yt z&OPdsQ }uz >}u­ vy} } N®|®|v }*i Y[U }|}OndsQ }uz >}u­ v|v vy}u­|z|v|{ |® }R,v|®:i Y[U } >}|} v|{ {y}uz N® v:R —{:i Y[U } >}|} v y}uz|­|v N® R,{|­:i Y[U } >}uv g §V¨bdj} ê§ÛdsOZ\ýÛK|OPOZY[§V¨bd*dÃüyý”g ULOZYbKNUK ]ƒ{"ª‘MPdeW|SV¨äg M §VY[ý”g MZ\ZY[\Pd*W|Mng ýVRLO n



&

&

&ø &ø

"

2





"ø



&

ø& ø&

&

ø

&"

ø



ø("

ø("

&

"

ø

 

ø

2"

ø(



" 

2

ø(

" & "



"'&



&ø





2

'&







2"ø

+

'&





–&

&

2"ø



ø



'&

This paper appeared in: Discrete Applied Mathematics 155 (2007), 2539-2545

OZSV§VW|Mng ýVRLO \ZY[iãd ULKN\^O Tiåt O Tiåt A = B OZSVi A∨B { ­&OPdsQ ­ ­ } } } ­&OPdsQ ­ ­ } } } v|­ ­&OPdsQ ­ ­ } } } z|­ ­&OPdsQ ­ ­ { { { ­&OPdsQ ­ ­ } } } }|}u{ ­&OPdsQ ­ ­ } } } |­ ­&OPdsQ ­ ­ } |z ­&OPdsQ }|} v|z v|® —­ }uzy} ­yt v OPdsQ }u® v v|­|v |z } |v|{|­ {yt OPdsQ v|v|®|v v|®|{y} Nz|v { |{ z|® Nz { ­&OPdsQ ­ ­ } } } }uz |{y} ­yt v OPdsQ ­ ­ } |­y} y}|} —{yt { OndsQ v|® —z N®|{ —v|{ }uvy} L} y} { |­|{ |v|{ { ãi Y[U ãOndsQ } L}|} v|z|®|v v|® N® v |®||­ { |v ­ |{y} }u{y} |­ |z|{|v|z &R &i Y[U }uz|{|z L} N­ |z|v Nz —{y} |{||® z|z v Lu} { y}uv|v vy} |®|­ } yt { OndsQ } ­ ­ ­ } ®y} N® —v|{ } :R|z v&i Y[U } ­ z g §V¨bdHv -UTSViH§ÛdeM^K ]ê§wdsOP\dÃü>ý”g UL©VdeMPO

{



n

z &

O



" 

"

® }u­ }|} }uv }u{ } }uz 

&



2





&

2""

&

'&&

&

&&"

¯"



&"

"



&

&



}

2"

}

2"

"

} }u® v|­



&

2"

&

'&"

'&

2 "

2

2"

'&

"



–&&



&

Z&"

'&

'&

2"

&

&

&

 

2"



'&

&



 '&

2"

"

(

'&

&



2"

 '&'&



&

+

&



\ZRLdÕW|Mng ýVRLO Y[\ZR §ÛdsOZ\&ýwK|OnOZY[§V¨bdÕdÃü>ý”g ULOZYbKNU]¥KNM dÃüVgNQe\Z¨ KNULdÕ§VY[ý”g MZ\ZY[\ZYbKNU OPde\ut ~ý”g ULOZYbKNU4]¥KNM5§ÛKN\ZR4§VY[ý”g MZ\ZY[\ZYbKNU2Onde\PO&g MPd©yY[l>Yb©Vds©4§ \ZRLK|OPd@\ZR”g \ãg MPd@O >i iãde\ZMZYbQug ¨g UL© \ZRLK|OPd:\ZR”g \*g MPd5ULKN\*O >i iãde\ZMZYbQug ¨‘xÛY‘tÿd5\ZRLdeMPd&YbOýÛKNULdeU—\ZYäg ¨QeY[MPQeSVY[\PO adeMng UL©VKNi Y[¬sY[UVW\ZRL"d ! x”v|v|­"ª™v|v|®yt  $#% & ¢Ãt ('N\ZRVUVY[WLt€êüyý”g ULOZYbKNU,{"ª‘MPdeW|SV¨äm MPdeM}ê |­yxq}u® N{yt .-   ãf1tVf,deMZY[UVWXdeMux”€-MZ¬udeSVW|SVUVWjMPdeW|SV¨äm MPdeM*~}ê™{y} Lx T\PK>QPc>RLKN¨[iåxq}u® N{yt  43819 :; …:t -Y[ýVýÛdeUVWXdeMut >KNMZ\ZY[UVW g UL©OPde¨bdsQe\ZY[UVWçY[U MPKNSVUL©VOut >¢Ó„^f XKNSVMZU”g ¨ KNU KNi ýVSV\ZY[UVWLx } Vþ [}u­|{|v"ªn}u­|{ yxwadsQsdeiH§ÛdeM5}u® >t  = & …:t -Y[ýVýwdeUVWXdeMg UL©h„:t O Y[\ZRh¨[Y[i Y[\Pds© ©VdeýV\ZRqt >¢Ó„