Home
Add Document
Sign In
Create An Account
Computation of Best Possible Low Degree Expanders
Recommend Documents
No documents
Computation of Best Possible Low Degree Expanders
Download PDF
3 downloads
31333 Views
465KB Size
Report
Comment
n of vertices and
degree
k onlythose k. -regular bipartite graphs on. 2n vertices that are candidates for having the
best
possible expansion.There exist veryfast ...
This paper appeared in: Discrete Applied Mathematics 155 (2007), 2539-2545
!" #$&% '(*),+- .0/12 345+- 86 7:9=@?BACD5E =@FHGN>XyTNTTy|>
u C&7 :?&¡ZE ¢ULOZ\ZY[\ZSV\]£_VM¢¤Uy]¥KNMZijg \ZY[c ¦SVi5§wKN¨b©y\«ª¤k^UVY[lXdeMPOZY[\nm \¬sS,odeMZ¨[Y[U }u||®|® o8deMZ¨[Y[Uqxw~f¯^ °VN±T"TL>²>NX³L|±°TuVNV´y¤y
n¿µHÆ×|Á¶w¿^À·¹ÆuÆu¸nÄÇܺs¤ØXÊ*»X¿n¼ÁwÅÓ¸ÍXÏb½ Ê¿ÅHà:¿nÁÛÆuÁÓÊuÄ ¿¹Ï>ÂÒXÚÆuÇÌ¿nÇÉÅÓÈÁÂÅÊ"ËÜËÌÁÑPÄ ËÌ¿ÃÅÂnÍÅÓÝÛÍXÎпnÞNÊ"ÒÏbÁÊÑ«¿nÍ^ÁHÅËÜÈÑnÑnÁ«ÊÆÆuÎÇÀXÑPÀXÍÊ"Ò|ÂwÎÅÓÆuËÌÀXÁÓÄÒ|¿ßÈÅÄ¿¹ÆÕ¿nÁ¿¹ÔTÂÓØXÑP¿Ã¿¹ËÉÂØ^¿nÅ5ÄTËÌÄÂq¿¿¹ÏbÆu¤ÊÅ5Ä:Áß¿nÀ>ÒX×|Ê"ÀXÀÂÓÀ>Æu¤¿nËÉÄÔXÁØXÇÉÔ>¿ã¿nÊÁÙ¿PÒXÈ×|ÄTÁ«ÀØHÆuÆÀÄÏbÍÊ"ÂÂÙÁêËÌÊ"àNÅÄLÍXËÌ¿¹Ýç¿ÇÉØ©K ]ßdugNQPROPde\K ]qlXdeMZ\ZYbQsdsO8RgNO¨äg MZWXdQug MP©yY[Ug ¨[Y[\ Xt-ü>ýg UL©VdeMPOg MPd^ULdsds©Vds© ]¥KNMjijg U g ýVýV¨[YbQug \ZYbKNULOåg UL©çg MPd¯g ¨bOnK SLOPds©2]£KNMãijg U 2MPdsOZSV¨[\PO@Y[U \ZRLdsKNMPde\ZYbQug ¨*QsKNi ýVSV\PdeMÕOPQeYbdeULQsd|x ]¥KNM:dÃüLg i ýV¨bdjULde\ KNMZc1©VdsOZY[W|U Y[ý >x ê |v ¤xQsKNi ýV¨bdÃü>Y[\ \ZRLdsKNM g ¨ >x TY[ý ¤x©VdeMng UL©VKNi Y[¬g"ª \ZYbKNU ÿ¢ $® ¤xßQsK>©yY[UVW\ZRLdsKNM y® ¤xêQeM TýV\PKNW|Mng ýVR Ö~¢p ®| ¤xêg UL© ULKNUyªg ýVýVMPKsüyY[ijg §VY[¨[Y[\ 1MPdsOZSV¨[\PO êg ý® ¤t ¢Ué\ZRVYbOHýg ýwdeM d@QsKNULOZYb©VdeM5MPdeW|SV¨äg M:§VY[ýg MZ\ZY[\PddÃü>ýg UL©VdeMPOux Ytÿd|tÕ§VY[ýg MZ\ZY[\Pd@W|Mng ýVRLOHY[U RVYbQPR2g ¨[¨ lXdeMZ\ZYbQsdsO^RgslXd*\ZRLd5Ong iãd©VdeW|MPdsd|t §VY[ýg MZ\ZY[\PdHW|Mng ýVR G = (A ∪ B, E) YbOOng Yb©\PK RgulXdHdÃüyýg ULOZYbKNU c ]¥KNM A YÜ]q]¥KNMdelXdeM jOPSV§LOPde\ S ⊆ A Y[\ZR |S| ≤ |A|/2 \ZRLd^ULdeY[W|R§ÛKNMZRLK>KT© N (S) K ] S RgNOOPY[¬udULK U ÿfhg M N{yx~~ y}|xV $y} §VSV\\ZRLd @KNUV¨ @ýVMPKT©ySLQsd*dÃüyýg UL©VdeMPO Y[\ZRgH]¥g Y[MZ¨ OZijg ¨[¨ÙdÃü>ýg ULOPYbKNUåQsKNi ýg MPds©\PK:\ZRLd^§ÛdsOZ\8ýÛK|OPOZY[§V¨bd dÃüyýg ULOZYbKNUqt 8RVYbOjg ¨bOPK RLKN¨b©VO ]£KNM \ZRLddÃüyýg UL©VdeMãW|Mng ýVRLOjQsKNULOP\ZMZSLQe\Pds© Y[U ÿp Y[UVWã\ZRLdYbOP\lXdeM ¯]¥gNOZ\:2ng ¨[WXKNMZY[\ZRViãO]¥KNMdeUSViãdeMng \ZY[UVW g ¨[¨ kªMPdeW|SV¨äg MH§VY[ýg MZ\ZY[\Pd W|Mng ýVRLOKNU lXdeMZ\ZYbQsdsO ÿf¯deMn® ¤t5\ZMPdei ¨ ,]¥gNOP\uxÙY[\YbOULKN\ ]¥dugNOng §V¨bd\PK 2nLMPOZ\WXdeULdeMng \Pd¯g ¨[¨Y[UVW\ZRLd5¨äg MZWXdsOZ\*dÃüyýg ULOZYbKNUqt 8RVYbO*g ýVýVMPKXgNQnR YbO^dsOZýÛdsQeYäg ¨[¨ åULKN\^]£dugNO¹g §V¨bd:gNOQsKNi ýVSV\ZY[UVWÕ\ZRLd dÃüyýg ULOZYbKNUK ]g:W|Mng ýVRåYbOg QsK ª¤ êªRg MP©ýVMPKN§V¨bdei ÿo y} ¤t +
;
=
>+
2
?
@
+
;
2
+
¸¢ª©(§O¢O¢
°
¢¶A´(¬Õ¬´
¶
Ýw
|B| = |A| + 1 ± d (v) = 2 ¢7¬ ²2¢
|B| < |A| + 1 ±
·© °
¥§7£ £¢S©(§¥ ¤¯® ®°± ´(¬¸é
¶A´(§I¢¥º
²«!º
£
¥£I¢¥º
n = |A| ± ° ° ¥· x ∈ {1, . . . , n} X ⊆ A
°
v∈A
¥(·¹¸
n = |A| ± G
²7«;º
²¥³£ã§O¢O¢
,
°
£ °
¥£>¢¥º
°ZÛ
Ýw
£
° °
¢7§£¢Ü
¥(·0¸
TY[ULQsd YbOêQsKNUVULdsQe\Pds©&Y[\ ]¥KN¨[¨bK O xNYÜ] YbO-g\ZMPdsdg UL© NK \ZRLdeM YbOPd|t TY[ULQsd5GdugNQnR¯ds©yWXd5YbO^Y[ULQeYb©VdeU\ Y[|A|+|B|−1 \ZRhgjlXdeMZ\PdÃü=Y[U |E|A g UL©¯GgãlXdeMZ\PdÃüY[U B |A|+|B|−1 g UL©¯dugNQPR¯lXde§´2´¶
¼
¼
2
4
§´2´¶
¼ !ì2*í
ß
+
2
2
(b − x) (y − x) = by − bx − xy + x2 < a (y + 1) − (a + 1) x − xy − x2 = ay − ax + a − xy + x2 − x = (a − x) (y − x + 1) .
&pqde\ t 8RLdeUég ¨bOPK ULdeWg \ZY[lXd5g UL©ÕY[\]£KNb¨[¨bK ≤O a ß
!ì2ÙÓí
@+
TY[ULQsd
RLKN¨b©VOut TY[ULQsd ¦
y≥x
\ZRLd&\PdeMZi
YbOULKN\
y−x
(b − x) (y − x) ≤ (a − x) (y − x) .
\ZRLd*\PdeMZi
a>x
b−x ≤ a−x
2
YbOýwK|OZY[\ZY[lXd5g UL©Y[\8]£KN¨[¨bK O
a−x
2
(b − x) (y − x) ≤ (a − x) (y − x) < (a − x) (y − x) + a − x = (a − x) (y − x + 1) .
d*ULK Qug UåýVMPK>K ] \ZRLd*]£KN¨[¨bK Y[UVWã\ZRLdsKNMPdeiåt
`/î à0á hðïè¡5¢£ «§£
N (R) ⊆ S ¼>½
¢©(§¥
R ⊆ A± S ⊆ B
®°± ¥(·0¸
Ýw
£ °
Q = B \ S ¼8ë y + 1 ≤ |P |
|Q| y < 3 (|S| − |R|) (y + 1) , £ °
¢7·Ë£ °
¢7§O¢3¢Ü
²7£Õ²»¥x²« ¤
²A¢A£
X ⊆ P
£
Ýw
°
¥(·¹¸
|X| = x
|N (X) ∩ Q| ≤ x + 1
¶´(§B¢¥º
x ∈ °
dHQsKNULOZYb©VdeM\ZRLd5OPde\ g UL©å\ZRLdHY[UL©ySLQsds©OZSV§VW|Mng ýVR K] tG 8RLd*ýVMPK>K ] KNMZcyO§ @Y[UL©ySLQe\ZYbKNPU¯KN=U Ny t (S)TY[UL∩QsdHPg&lXdeMZ\PdÃüY[U P RgNOg \iãK|OP\\ GKãUL=deY[GW|R[P§ÛKNMP∪OY[Q]U Q x \ZRLd*MPdsOZSV¨[\Qug U§wd*OPdsdeUådugNOPY[¨ @]¥KNM\ZRLd*QugNOPd y = 0 t pqde\8ULK y > 0 t d LMPOZ\gNOPOZSViãd|x>\ZRg \8\ZRLd^lXdeMZ\ZYbQsdsOK ] P RgslXd*©VdeW|MPdsddÃüVgNQe\Z¨ @\ K&Y[U G g UL© g ¨[¨-QsKNi ýwKNULdeUT\POK ] g MPd&\ZMPdsdsOutk
+
7
2
2
M
2
/
"
0 >ó
B"
This paper appeared in: Discrete Applied Mathematics 155 (2007), 2539-2545
{
ÿ
ü
þ û
dÃü>ýg ULOPYbKNNU { N{ N{ yþ nv ªn} n &ø
&ø $
vyt z
&ø $6&ø
ø
v
ú û üÿ ü ýþ ú ûü
}|t z }uv } v U SVi5§wdeMýg ULOZYbKNU,K ]-{"ªMPdeW|SV¨äg M^§VY[ýg MZ\ZY[\PdW|Mng ýVRLO "
4&
2
OPSV§VW|Mng ýVRLO \ZY[iãd dÃüyýg ULOZYbKNU { v &OPdsQ { >} &OPdsQ Nv z }u &OPdsQ Nv } &OPdsQ z N{ }u® &OPdsQ N{ v &OPdsQ ® zy} &OPdsQ }u | &OPdsQ Nz }|} } &OPdsQ Nz }uv v Nv &OPdsQ ® }u{ z|z|v &OPdsQ }u } &OPdsQ }|} }uz z Nv yt[}*OPdsQ }|} } {|v|®|{|z }|t {&OPdsQ }uv } y} >} yt {&OPdsQ }uv } y} z zyt v&OPdsQ }u{ N® }u® ® v|{ >t[}*OPdsQ } N® v| y}uzy} yt z&OPdsQ }uz >}u vy} } N®|®|v }*i Y[U }|}OndsQ }uz >}u v|v vy}u|z|v|{ |® }R,v|®:i Y[U } >}|} v|{ {y}uz N® v:R {:i Y[U } >}|} v y}uz||v N® R,{|:i Y[U } >}uv g §V¨bdj} ê§ÛdsOZ\ýÛK|OPOZY[§V¨bd*dÃüyýg ULOZYbKNUK ]{"ªMPdeW|SV¨äg M§VY[ýg MZ\ZY[\Pd*W|Mng ýVRLO n
ø
&
&
&ø &ø
"
2
ø
"ø
&
ø& ø&
&
ø
&"
ø
ø("
ø("
&
"
ø
ø
2"
ø(
"
2
ø(
" & "
ø
"'&
&ø
ø
2
'&
ø
2"ø
+
'&
&
&
2"ø
ø
'&
This paper appeared in: Discrete Applied Mathematics 155 (2007), 2539-2545
OZSV§VW|Mng ýVRLO \ZY[iãd ULKN\^O Tiåt O Tiåt A = B OZSVi A∨B { &OPdsQ } } } &OPdsQ } } } v| &OPdsQ } } } z| &OPdsQ { { { &OPdsQ } } } }|}u{ &OPdsQ } } } | &OPdsQ } |z &OPdsQ }|} v|z v|® }uzy} yt v OPdsQ }u® v v||v |z } |v|{| {yt OPdsQ v|v|®|v v|®|{y} Nz|v { |{ z|® Nz { &OPdsQ } } } }uz |{y} yt v OPdsQ } |y} y}|} {yt { OndsQ v|® z N®|{ v|{ }uvy} L} y} { ||{ |v|{ { ãi Y[U ãOndsQ } L}|} v|z|®|v v|® N® v |®|| { |v |{y} }u{y} | |z|{|v|z &R &i Y[U }uz|{|z L} N |z|v Nz {y} |{||® z|z v Lu} { y}uv|v vy} |®| } yt { OndsQ } } ®y} N® v|{ } :R|z v&i Y[U } z g §V¨bdHv -UTSViH§ÛdeM^K ]ê§wdsOP\dÃü>ýg UL©VdeMPO
{
n
z &
O
"
"
® }u }|} }uv }u{ } }uz
&
2
&
2""
&
'&&
&
&&"
¯"
&"
"
&
&
}
2"
}
2"
"
} }u® v|
&
2"
&
'&"
'&
2 "
2
2"
'&
"
&&
&
Z&"
'&
'&
2"
&
&
&
2"
'&
&
'&
2"
"
(
'&
&
2"
'&'&
&
+
&
;
\ZRLdÕW|Mng ýVRLO Y[\ZR §ÛdsOZ\&ýwK|OnOZY[§V¨bdÕdÃü>ýg ULOZYbKNU]¥KNM dÃüVgNQe\Z¨ KNULdÕ§VY[ýg MZ\ZY[\ZYbKNU OPde\ut ~ýg ULOZYbKNU4]¥KNM5§ÛKN\ZR4§VY[ýg MZ\ZY[\ZYbKNU2Onde\PO&g MPd©yY[l>Yb©Vds©4§ \ZRLK|OPd@\ZRg \ãg MPd@O >i iãde\ZMZYbQug ¨g UL© \ZRLK|OPd:\ZRg \*g MPd5ULKN\*O >i iãde\ZMZYbQug ¨xÛYtÿd5\ZRLdeMPd&YbOýÛKNULdeU\ZYäg ¨QeY[MPQeSVY[\PO adeMng UL©VKNi Y[¬sY[UVW\ZRL"d ! xv|v|"ªv|v|®yt $#% & ¢Ãt ('N\ZRVUVY[WLtêüyýg ULOZYbKNU,{"ªMPdeW|SV¨äm MPdeM}ê |yxq}u® N{yt .- ãf1tVf,deMZY[UVWXdeMux-MZ¬udeSVW|SVUVWjMPdeW|SV¨äm MPdeM*~}ê{y} Lx T\PK>QPc>RLKN¨[iåxq}u® N{yt 43819 :; :t -Y[ýVýÛdeUVWXdeMut >KNMZ\ZY[UVW g UL©OPde¨bdsQe\ZY[UVWçY[U MPKNSVUL©VOut >¢Ó^f XKNSVMZUg ¨ KNU KNi ýVSV\ZY[UVWLx } Vþ [}u|{|v"ªn}u|{ yxwadsQsdeiH§ÛdeM5}u® >t = & :t -Y[ýVýwdeUVWXdeMg UL©h:t O Y[\ZRh¨[Y[i Y[\Pds© ©VdeýV\ZRqt >¢Ó
×
Report "Computation of Best Possible Low Degree Expanders"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
×
Sign In
Email
Password
Remember me
Forgot password?
Sign In
Our partners will collect data and use cookies for ad personalization and measurement.
Learn how we and our ad partner Google, collect and use data
.
Agree & close