Hindawi Journal of Function Spaces Volume 2017, Article ID 9389768, 11 pages https://doi.org/10.1155/2017/9389768
Research Article Common Fixed Points of Four Maps Satisfying ๐น-Contraction on ๐-Metric Spaces Muhammad Nazam,1 Ma Zhenhua,2,3 Sami Ullah Khan,1,4 and Muhammad Arshad1 1
Department of Mathematics and Statistics, International Islamic University, H-10, Islamabad, Pakistan Department of Mathematics and Physics, Hebei University of Architecture, Zhangjiakou 075024, China 3 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 10001, China 4 Department of Mathematics, Gomal University D. I. Khan, Khyber Pakhtunkhwa 29050, Pakistan 2
Correspondence should be addressed to Ma Zhenhua; mazhenghua
[email protected] Received 16 October 2017; Accepted 7 December 2017; Published 28 December 2017 Academic Editor: Ahmad S. Al-Rawashdeh Copyright ยฉ 2017 Muhammad Nazam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We manifest some common fixed point theorems for four maps satisfying Cยดฤฑrยดฤฑc type ๐น-contraction and Hardy-Rogers type ๐นcontraction defined on complete ๐-metric spaces. We apply these results to infer several new and old corresponding results. These results also generalize some results obtained previously. We dispense examples to validate our results.
1. Introduction and Preliminaries After the famous Banach Contraction Principle, a large number of researchers revealed many fruitful generalizations of Banachโs fixed point theorem. One of these generalizations is known as ๐น-contraction presented by Wardowski [1]. Wardowski [1] evinced the fact that every ๐น-contraction defined on complete ๐-metric space has a unique fixed point. The concept of ๐น-contraction proved to be another milestone in fixed point theory and numerous research papers on ๐นcontraction have been published (see, e.g., [2โ8]). Recently, Cosentino and Vetro [9] established a fixed point result for Hardy-Rogers type ๐น-contraction and Mฤฑnak et al. [10] presented a fixed point result for Cยดฤฑrยดฤฑc type generalized ๐นcontraction. In 1989, Bakhtin [11] investigated the concept of ๐-metric spaces; however, Czerwik [12] initiated study of fixed point of self-mappings in ๐-metric spaces and proved an analogue of Banachโs fixed point theorem. Since then, numerous research articles have been published comprising fixed point theorems for various classes of single-valued and multivalued operators in ๐-metric spaces (see, e.g., [13โ19]). We shall bring into use the idea of Cยดฤฑrยดฤฑc type ๐น-contraction and Hardy-Rogers type ๐น-contraction comprising four
self-mappings defined on ๐-metric space. We present common fixed point results for four self-maps satisfying Cยดฤฑrยดฤฑc type and Hardy-Rogers type ๐น-contraction on ๐-metric space. We apply our results to infer several new and old results. We denote (0, โ) by R+ , [0, โ) by R+0 , (โโ, +โ) by R, and set of natural numbers by N. We bring back into readerโs mind some definitions and properties of ๐-metric. Definition 1 (see [12]). Let ๐ be a nonempty set and ๐ โฅ 1 be a real number. A function ๐๐ : ๐ ร ๐ โ [0, โ) is said to be a ๐-metric if, for all ๐, ๐, ๐ โ ๐, one has (๐๐ 1) ๐ = ๐ if and only if ๐๐ (๐, ๐) = 0, (๐๐ 2) ๐๐ (๐, ๐) = ๐๐ (๐, ๐), (๐๐ 3) ๐๐ (๐, ๐) โค ๐ [๐๐ (๐, ๐) + ๐๐ (๐, ๐)]. In this case, the pair (๐, ๐๐ , ๐ ) is called a ๐-metric space (with coefficient ๐ ). Definition 1 allows us to remark that the class of ๐-metric spaces is effectually more general than that of metric spaces because a ๐-metric is a metric when ๐ = 1. The following example describes the significance of a ๐-metric.
2
Journal of Function Spaces
Example 2. Let (๐, ๐) be a metric space and ๐๐ (๐, ๐) = (๐(๐, ๐))๐ , ๐ > 1 is a real number. Then ๐๐ is ๐-metric space with ๐ = 2๐โ1 . Apparently, (๐๐ 1) and (๐๐ 2) of Definition 1 are satisfied. If 1 < ๐ < โ, then the convexity of the function ๐(๐) = ๐๐ (๐ > 0) implies (
๐+๐ 1 ) โค (๐๐ + ๐๐ ) 2 2
(๐๐ , ๐ ๐ ) = 0, lim ๐๐ = ๐ก for some ๐ก โ ๐,
๐
๐
๐
โค 2๐โ1 [(๐ (๐, ๐)) + (๐ (๐, ๐)) ]
For the notions like convergence, completeness, and Cauchy sequence in the setting of ๐-metric spaces, the reader is referred to Aghajani et al. [20], Czerwik [12], AminiHarandi [21], Huang et al. [13], Hussain et al. [14], Radenoviยดc et al. [15], Khamsi and Hussain [16], Latif et al. [22], Parvaneh et al. [17], Roshan et al. [18], and Zabihi and Razani [23]. In line with Wardowski [1], Cosentino et al. [24] investigated a nonlinear function ๐น : R+ โ R complying with the following axioms: (๐น1 ) ๐น is strictly increasing. (๐น2 ) For each sequence {๐๐ } of positive numbers, the following equation holds: lim๐โโ ๐๐ = 0 if and only if lim๐โโ ๐น(๐๐ ) = โโ. (๐น3 ) There exists ๐ โ (0, 1) such that lim๐๐ โ0+ (๐๐ )๐ ๐น(๐๐ ) = 0. (๐น4 ) ๐ + ๐น(๐ ๐๐ ) โค ๐น(๐๐โ1 ) implies ๐ + ๐น(๐ ๐ ๐๐ ) โค ๐น(๐ ๐โ1 ๐๐โ1 ), for each ๐ โ N and some ๐ > 0. We denote by ฮ ๐น๐ the set of all functions satisfying the conditions (๐น1 )โ(๐น4 ). Example 3. Let ๐น : R+ โ R be defined by (a) ๐น(๐) = ln(๐), (b) ๐น(๐) = ๐ + ln(๐). It is easy to check that (a) and (b) are members of ฮ ๐น๐ . Definition 4 (see [25]). Let (๐, ๐๐ , ๐ ) be a ๐-metric space. The pair {๐, ๐} is said to be compatible if and only if (๐๐ (๐๐ ) , ๐๐ (๐๐ )) = 0,
๐โโ
for some ๐ก โ ๐.
Proof. Due to the triangular inequality we have ๐๐ (๐ ๐ , ๐ก) โค ๐ [๐๐ (๐ ๐ , ๐๐ ) + ๐๐ (๐๐ , ๐ก)] ,
(5)
and the result follows after applying limit as ๐ โ โ.
Therefore, ๐๐ (๐, ๐) โค ๐ [๐๐ (๐, ๐) + ๐๐ (๐, ๐)], where ๐ = 2๐โ1 , which shows that (๐, ๐๐ , ๐ ) is a ๐-metric space. Nevertheless, if (๐, ๐) is a metric space, then (๐, ๐๐ , ๐ ) may not be a metric space. Indeed, if ๐ = R and ๐(๐, ๐) = |๐โ ๐| (a usual metric), then ๐๐ (๐, ๐) = [๐(๐, ๐)]2 does not define a metric on ๐.
lim ๐ (๐๐ ) = lim ๐ (๐๐ ) = ๐ก
Then lim๐โโ ๐ ๐ = ๐ก.
(2)
= 2๐โ1 [๐๐ (๐, ๐) + ๐๐ (๐, ๐)] .
whenever {๐๐ } is a sequence in ๐ so that
(4)
๐โโ
(1)
๐๐ (๐, ๐) = (๐ (๐, ๐))๐ โค (๐ (๐, ๐) + ๐ (๐, ๐))
๐โโ
lim ๐ ๐โโ ๐
๐
that gives (๐ + ๐)๐ โค 2๐โ1 (๐๐ + ๐๐ ). Thus, for all ๐, ๐, ๐ โ ๐, one has
lim ๐ ๐โโ ๐
Lemma 5. Let (๐, ๐๐ , ๐ ) be a ๐-metric space. If there exist two sequences {๐๐ }, {๐ ๐ } such that
(3)
2. Cรญrรญc Type Fixed Point Theorem In this section we set up a fixed point theorem for four selfmaps satisfying Cยดฤฑrยดฤฑc type ๐น-contraction. We explain this theorem through an example and discuss its consequences. Theorem 6. Let (๐, ๐๐ , ๐ ) be a complete ๐-metric space and ๐, ๐, ๐, and ๐ are self-mappings on (๐, ๐๐ , ๐ ) such that ๐(๐) โ ๐(๐), ๐(๐) โ ๐(๐). If, for all ๐1 , ๐2 โ ๐, for some ๐น โ ฮ ๐น๐ and ๐ > 0, the inequality (๐๐ (๐ (๐1 ) , ๐ (๐2 )) > 0 implies ๐ + ๐น (๐ ๐๐ (๐ (๐1 ) , ๐ (๐2 ))) โค ๐น (M (๐1 , ๐2 ))) ,
(6)
holds, where M (๐1 , ๐2 ) = max {๐๐ (๐ (๐1 ) , ๐ (๐2 )) , ๐๐ (๐ (๐1 ) , ๐ (๐1 )) , ๐๐ (๐ (๐2 ) , ๐ (๐2 )) ,
(7)
๐๐ (๐ (๐1 ) , ๐ (๐2 )) + ๐๐ (๐ (๐1 ) , ๐ (๐2 )) }, 2๐ then ๐, ๐, ๐, and ๐ have a unique common fixed point ๐ provided ๐, ๐ are continuous and pairs {๐, ๐}, {๐, ๐} are compatible. Proof. Let ๐0 โ ๐. As ๐(๐) โ ๐(๐), there exists ๐1 โ ๐ such that ๐(๐0 ) = ๐(๐1 ). Since ๐(๐1 ) โ ๐(๐), we can choose ๐2 โ ๐ such that ๐(๐1 ) = ๐(๐2 ). In general, ๐2๐+1 and ๐2๐+2 are chosen in ๐ such that ๐(๐2๐ ) = ๐(๐2๐+1 ) and ๐(๐2๐+1 ) = ๐(๐2๐+2 ). Define a sequence {๐๐ } in ๐ such that ๐2๐ = ๐(๐2๐ ) = ๐(๐2๐+1 ) and ๐2๐+1 = ๐(๐2๐+1 ) = ๐(๐2๐+2 ) for all ๐ โฅ 0; we show that {๐๐ } is a Cauchy sequence. Assume that ๐๐ (๐(๐2๐ ), ๐(๐2๐+1 )) > 0; then from contractive condition (6), we get ๐น (๐ ๐๐ (๐2๐ , ๐2๐+1 )) = ๐น (๐ ๐๐ (๐ (๐2๐ ) , ๐ (๐2๐+1 ))) โค ๐น (M (๐2๐ , ๐2๐+1 )) โ ๐,
(8)
Journal of Function Spaces
3
for all ๐ โ N โช {0}, where
To prove {๐๐ } as a Cauchy sequence, we use (19) and, for ๐ > ๐ โฅ ๐1 , we consider
M (๐2๐ , ๐2๐+1 ) = max {๐๐ (๐ (๐2๐ ) , ๐ (๐2๐+1 )) ,
๐โ1
๐๐ (๐ (๐2๐ ) , ๐ (๐2๐ )) , ๐๐ (๐ (๐2๐+1 ) , ๐ (๐2๐+1 )) , ๐๐ (๐ (๐2๐ ) , ๐ (๐2๐+1 )) + ๐๐ (๐ (๐2๐ ) , ๐ (๐2๐+1 )) } 2๐
๐=๐
(9)
= max {๐๐ (๐2๐โ1 , ๐2๐ ) , ๐๐ (๐2๐ , ๐2๐โ1 ) , ๐๐ (๐2๐+1 , ๐2๐ ) ,
๐=๐
๐=๐
1 ๐1/๐
.
(20)
lim ๐ (๐2๐ ) = lim ๐ (๐2๐+1 ) = lim ๐ (๐2๐+1 )
๐โโ
๐โโ
๐โโ
(21)
= lim ๐ (๐2๐+2 ) = ๐. ๐โโ
= max {๐๐ (๐2๐โ1 , ๐2๐ ) , ๐๐ (๐2๐ , ๐2๐+1 )} .
We show that ๐ is a common fixed point of ๐, ๐, ๐, and ๐. Since ๐ is continuous, therefore,
If M(๐2๐ , ๐2๐+1 ) = ๐๐ (๐2๐ , ๐2๐+1 ), then ๐น (๐ ๐๐ (๐2๐ , ๐2๐+1 )) โค ๐น (๐๐ (๐2๐ , ๐2๐+1 )) โ ๐,
๐น (๐ ๐๐ (๐2๐ , ๐2๐+1 )) โค ๐น (๐๐ (๐2๐โ1 , ๐2๐ )) โ ๐,
lim ๐๐ (๐2๐ ) = ๐ (๐) = lim ๐2 (๐2๐+2 ) .
๐โโ
(10)
(22)
๐โโ
Since, the pair {๐, ๐} is compatible, so,
which is a contradiction due to ๐น1 . Therefore,
lim ๐ ๐โโ ๐
(11)
(๐๐ (๐2๐ ) , ๐๐ (๐2๐ )) = 0, (23)
by Lemma 5 lim ๐๐ (๐2๐ ) = ๐ (๐) .
for all ๐ โ N. Similarly,
๐โโ
๐น (๐ ๐๐ (๐2๐โ1 , ๐2๐ )) โค ๐น (๐๐ (๐2๐โ2 , ๐2๐โ1 )) โ ๐,
(12)
for all ๐ โ N. Hence, from (11) and (12), we have ๐น (๐ ๐๐ (๐๐ , ๐๐+1 )) โค ๐น (๐๐ (๐๐โ1 , ๐๐ )) โ ๐,
๐ + ๐น (๐ ๐ ๐๐ ) โค ๐น (๐ ๐โ1 ๐๐โ1 ) , ๐ โ N.
(14)
Repeating the process, we obtain ๐น (๐ ๐ ๐๐ ) โค ๐น (๐0 ) โ ๐๐, ๐ โ N.
(15)
On taking limit ๐ โ โ in (15), we have lim๐โโ ๐น(๐ ๐ ๐๐ ) = โโ; due to axiom (๐น2 ) we get lim๐โโ ๐ ๐ ๐๐ = 0 and (๐น3 ) implies that there exists ๐
โ (0, 1) such that ๐
lim (๐ ๐ ๐๐ ) ๐น (๐ ๐ ๐๐ ) = 0.
(16)
๐โโ
Now put ๐1 = ๐(๐2๐ ) and ๐2 = ๐2๐+1 in (6) and suppose on the contrary that ๐๐ (๐(๐), ๐) > 0; we obtain ๐น (๐๐ (๐๐ (๐2๐ ) , ๐ (๐2๐+1 )))
(13)
for all ๐ โ N. Let ๐๐ = ๐๐ (๐๐ , ๐๐+1 ) for each ๐ โ N, from (13) and axiom (๐น4 ) we have
๐
๐
(๐ ๐ ๐๐ ) ๐น (๐ ๐ ๐๐ ) โ (๐ ๐ ๐๐ ) ๐น (๐0 ) โค โ (๐ ๐ ๐๐ ) ๐๐ โค 0.
where M (๐ (๐2๐ ) , ๐2๐+1 ) = max {๐๐ (๐2 (๐2๐ ) , ๐ (๐2๐+1 )) , ๐๐ (๐๐ (๐2๐ ) , ๐2 (๐2๐ )) , ๐๐ (๐ (๐2๐+1 ) , ๐ (๐2๐+1 )) , ๐๐ (๐2 (๐2๐ ) , ๐ (๐2๐+1 )) + ๐๐ (๐๐ (๐2๐ ) , ๐ (๐2๐+1 )) 2๐
On taking limit ๐ โ โ in (17), we have ๐
lim (๐ (๐ ๐ ๐๐ ) ) = 0.
๐โโ
(18)
This implies there exists ๐1 โ N, such that ๐(๐ ๐ ๐๐ )๐
โค 1 for all ๐ โฅ ๐1 or 1 ๐1/๐
โ๐ โฅ ๐1 .
(19)
(25) }.
Taking the upper limit in (24), we have ๐น (๐๐ (๐ (๐) , ๐)) โค ๐น (๐๐ (๐ (๐) , ๐)) โ ๐ < ๐น (๐๐ (๐ (๐) , ๐)) ,
(17)
(24)
โค ๐น (M (๐ (๐2๐ ) , ๐2๐+1 )) โ ๐,
From (15), for all ๐ โ N, we obtain
๐ ๐ ๐๐ โค
โ
1/๐
) entails The convergence of the series โโ ๐=๐ (1/๐ lim๐,๐โโ ๐๐ (๐๐ , ๐๐ ) = 0. Hence {๐๐ } is a Cauchy sequence in (๐, ๐๐ , ๐ ). Since (๐, ๐๐ , ๐ ) is a complete ๐-metric space, there exists ๐ โ ๐ such that lim๐โโ ๐๐ (๐๐ , ๐) = 0. Also we have
๐๐ (๐2๐โ1 , ๐2๐+1 ) + ๐๐ (๐2๐ , ๐2๐ ) } 2๐
๐
โ
๐๐ (๐๐ , ๐๐ ) โค โ ๐ ๐ ๐๐ โค โ๐ ๐ ๐๐ โค โ
(26)
a contradiction; hence, ๐๐ (๐(๐), ๐) = 0 implies ๐(๐) = ๐. Again since ๐ is continuous, therefore, lim ๐๐ (๐2๐+1 ) = ๐ (๐) = lim ๐2 (๐2๐+1 ) .
๐โโ
๐โโ
(27)
Since the pair {๐, ๐} is compatible, so, lim ๐ ๐โโ ๐
(๐๐ (๐2๐+1 ) , ๐๐ (๐2๐+1 )) = 0,
by Lemma 5 lim ๐๐ (๐2๐+1 ) = ๐ (๐) . ๐โโ
(28)
4
Journal of Function Spaces
Now put ๐2 = ๐(๐2๐+1 ) and ๐1 = ๐2๐ in (6) and suppose on the contrary that ๐๐ (๐, ๐(๐)) > 0; we obtain ๐น (๐๐ (๐ (๐2๐ ) , ๐๐ (๐2๐+1 )))
< ๐น (๐๐ (๐, ๐ (๐))) ,
(37)
a contradiction; hence, ๐๐ (๐(๐), ๐) = 0 which then implies ๐(๐) = ๐. Hence, ๐ proves to be a common fixed point of the four maps ๐, ๐, ๐, and ๐. Also ๐ is unique; indeed if ๐ is another fixed point of ๐, ๐, ๐, and ๐, then from (6), we have
where M (๐2๐ , ๐ (๐2๐+1 )) = max {๐๐ (๐ (๐2๐ ) , ๐2 (๐2๐+1 )) ,
๐น (๐๐ (๐, ๐)) = ๐น (๐๐ (๐ (๐) , ๐ (๐)))
2
๐๐ (๐ (๐2๐ ) , ๐ (๐2๐ )) , ๐๐ (๐๐ (๐2๐+1 ) , ๐ (๐2๐+1 )) , 2๐
๐น (๐๐ (๐, ๐ (๐))) โค ๐น (๐๐ (๐, ๐ (๐))) โ ๐
(29)
โค ๐น (M (๐2๐ , ๐ (๐2๐+1 ))) โ ๐,
๐๐ (๐ (๐2๐ ) , ๐๐ (๐2๐+1 )) + ๐๐ (๐ (๐2๐ ) , ๐2 (๐2๐+1 ))
This implies that
(30)
โค ๐น (M (๐, ๐)) โ ๐,
(38)
where
}.
M (๐, ๐) = max {๐๐ (๐ (๐) , ๐ (๐)) , ๐๐ (๐ (๐) , ๐ (๐)) ,
Taking the upper limit in (29), we have ๐น (๐๐ (๐, ๐ (๐))) โค ๐น (๐๐ (๐, ๐ (๐))) โ ๐ < ๐น (๐๐ (๐, ๐ (๐))) ,
๐๐ (๐ (๐) , ๐ (๐)) , (31)
a contradiction; hence, ๐๐ (๐, ๐(๐)) = 0 which then implies ๐(๐) = ๐. Now assuming ๐๐ (๐(๐), ๐) > 0 on the contrary, from (6) we get ๐น (๐๐ (๐ (๐) , ๐ (๐2๐+1 ))) โค ๐น (M (๐, ๐2๐+1 )) โ ๐,
(32)
where
๐๐ (๐ (๐) , ๐ (๐)) + ๐๐ (๐ (๐) , ๐ (๐)) }. 2๐ Thus, from (38), we have ๐น (๐๐ (๐, ๐)) < ๐น (๐๐ (๐, ๐)) ,
(33)
๐๐ (๐ (๐) , ๐ (๐2๐+1 )) + ๐๐ (๐ (๐) , ๐ (๐2๐+1 )) }. 2๐
which is a contradiction. Hence, ๐ = ๐ and ๐ is a unique common fixed point of the four maps ๐, ๐, ๐, and ๐.
Example 7. Let ๐ = [0, 1] and define ๐๐ : ๐ ร ๐ โ R+0 by ๐๐ (๐1 , ๐2 ) = |๐1 โ ๐2 |2 , so (๐, ๐๐ , 2) is a complete ๐-metric space. Define the mappings ๐, ๐, ๐, ๐ : ๐ โ ๐, for all ๐ โ ๐ by ๐ 16 ๐ (๐) = ( ) , 3
Taking the upper limit in (32) and using the fact that ๐(๐) = ๐(๐) = ๐, we have ๐น (๐๐ (๐ (๐) , ๐)) โค ๐น (๐๐ (๐ (๐) , ๐)) โ ๐
๐ 8 ๐ (๐) = ( ) , 3
(34)
๐ 8 ๐ (๐) = ( ) , 3
a contradiction; hence, ๐๐ (๐(๐), ๐) = 0 which then implies ๐(๐) = ๐. Finally, assume on the contrary ๐๐ (๐, ๐(๐)) > 0. From (6) and the fact that ๐(๐) = ๐(๐) = ๐(๐) = ๐, we obtain
๐ 4 ๐ (๐) = ( ) . 3
< ๐น (๐๐ (๐ (๐) , ๐)) ,
๐น (๐๐ (๐, ๐ (๐))) = ๐น (๐๐ (๐ (๐) , ๐ (๐))) โค ๐น (M (๐, ๐)) โ ๐,
(35)
lim ๐ (๐๐ ) = lim ๐ (๐๐ ) = ๐ก,
๐โโ
๐โโ
for some ๐ก โ ๐,
(42)
then
M (๐, ๐) = max {๐๐ (๐ (๐) , ๐ (๐)) , ๐๐ (๐ (๐) , ๐ (๐)) ,
๐๐ (๐ (๐) , ๐ (๐)) + ๐๐ (๐ (๐) , ๐ (๐)) }. 2๐
(41)
Clearly, ๐, ๐, ๐, and ๐ are self-mappings complying with ๐(๐) โ ๐(๐), ๐(๐) โ ๐(๐). We note that the pair {๐, ๐} is compatible. If {๐๐ } is a sequence in ๐ satisfying
where
๐๐ (๐ (๐) , ๐ (๐)) ,
(40)
The following example explains Theorem 6.
M (๐, ๐2๐+1 ) = max {๐๐ (๐ (๐) , ๐ (๐2๐+1 )) , ๐๐ (๐ (๐) , ๐ (๐)) , ๐๐ (๐ (๐2๐+1 ) , ๐ (๐2๐+1 )) ,
(39)
๓ตจ ๓ตจ ๓ตจ2 ๓ตจ2 lim ๓ตจ๓ตจ๐ (๐๐ ) โ ๐ก๓ตจ๓ตจ๓ตจ = lim ๓ตจ๓ตจ๓ตจ๐ (๐๐ ) โ ๐ก๓ตจ๓ตจ๓ตจ = 0, ๐โโ
๐โโ ๓ตจ
(36)
(43)
and equivalently ๓ตจ๓ตจ ๐ 16 ๓ตจ๓ตจ2 ๓ตจ๓ตจ ๐ 8 ๓ตจ๓ตจ2 ๓ตจ ๓ตจ ๓ตจ ๓ตจ lim ๓ตจ๓ตจ๓ตจ( ๐ ) โ ๐ก๓ตจ๓ตจ๓ตจ = lim ๓ตจ๓ตจ๓ตจ( ๐ ) โ ๐ก๓ตจ๓ตจ๓ตจ = 0 ๐โโ ๓ตจ 3 ๐โโ ๓ตจ 3 ๓ตจ ๓ตจ๓ตจ ๓ตจ ๓ตจ ๓ตจ
(44)
Journal of Function Spaces
5
implies
holds, where
๓ตจ2 ๓ตจ2 ๓ตจ ๓ตจ 16 8 lim ๓ตจ๓ตจ(๐๐ ) โ 316 ๐ก๓ตจ๓ตจ๓ตจ๓ตจ = lim ๓ตจ๓ตจ๓ตจ๓ตจ(๐๐ ) โ 38 ๐ก๓ตจ๓ตจ๓ตจ๓ตจ = 0. ๐โโ
๐โโ ๓ตจ๓ตจ
1/16
(45)
๓ตจ ๓ตจ2 lim ๐ (๐๐ (๐๐ ) , ๐๐ (๐๐ )) = lim ๓ตจ๓ตจ๓ตจ๐๐ (๐๐ ) โ ๐๐ (๐๐ )๓ตจ๓ตจ๓ตจ ๐โโ ๐ ๐โโ ๓ตจ ๓ตจ2 = ๓ตจ๓ตจ๓ตจ๐ (๐ก) โ ๐ (๐ก)๓ตจ๓ตจ๓ตจ = |0 โ 0|2 = 0
(46)
for ๐ก = 0 โ ๐.
๓ตจ ๓ตจ2 ๐๐ (๐ (๐1 ) , ๐ (๐2 )) = ๓ตจ๓ตจ๓ตจ๐ (๐1 ) โ ๐ (๐2 )๓ตจ๓ตจ๓ตจ 2 ๓ตจ๓ตจ ๐ 16 ๐ 8 ๓ตจ๓ตจ๓ตจ ๓ตจ = ๓ตจ๓ตจ๓ตจ( 1 ) โ ( 2 ) ๓ตจ๓ตจ๓ตจ ๓ตจ๓ตจ 3 3 ๓ตจ๓ตจ 2
1 1 2 โค( + ) ๐๐ (๐ (๐1 ) , ๐ (๐2 )) 6561 81 =
then ๐, ๐, ๐, and ๐ have a unique common fixed point ๐ provided ๐, ๐ are continuous and pairs {๐, ๐}, {๐, ๐} are compatible.
Theorem 9 (Sehgal type). Let (๐, ๐๐ , ๐ ) be a complete ๐metric space and ๐, ๐, ๐, and ๐ are self-mappings on (๐, ๐๐ , ๐ ) such that ๐(๐) โ ๐(๐), ๐(๐) โ ๐(๐). If, for all ๐1 , ๐2 โ ๐, for some ๐น โ ฮ ๐น๐ ๐ > 0, the inequality + ๐น (๐ ๐๐ (๐ (๐1 ) , ๐ (๐2 ))) โค ๐น (M4 (๐1 , ๐2 )))
(47)
(53)
with ๐ โ [0, ๐ ) , then ๐, ๐, ๐, and ๐ have a unique common fixed point ๐ provided ๐, ๐ are continuous and pairs {๐, ๐}, {๐, ๐} are compatible.
The above inequality can be written as
Theorem 10 generalizes the result presented by Cยดฤฑrยดฤฑc [28].
(48)
โค ln (M (๐1 , ๐2 )) . Define the function ๐น : R+ โ R by ๐น(๐) = ln(๐), for all ๐ โ ๐
+ > 0. Hence, for all ๐1 , ๐2 โ ๐ such that ๐๐ (๐(๐1 ), ๐(๐2 )) > 0, ๐ = ln(43046721/6724) we obtain ๐ + ๐น (๐๐ (๐ (๐1 ) , ๐ (๐2 ))) โค ๐น (M (๐1 , ๐2 )) .
M4 (๐1 , ๐2 ) = ๐ max {๐๐ (๐ (๐1 ) , ๐ (๐2 )) , ๐๐ (๐ (๐1 ) , ๐ (๐1 )) , ๐๐ (๐ (๐2 ) , ๐ (๐2 ))} ,
6724 ๐ (๐ (๐1 ) , ๐ (๐2 )) 43046721 ๐
43046721 ) + ln (๐๐ (๐ (๐1 ) , ๐ (๐2 ))) 6724
(52)
holds, where
6724 โค M (๐1 , ๐2 ) . 43046721
ln (
with ๐ โ [0, ๐ ) ,
(๐๐ (๐ (๐1 ) , ๐ (๐2 )) > 0 implies ๐ 2 ๓ตจ๓ตจ ๐ 8 ๐ 4 ๓ตจ๓ตจ๓ตจ ๓ตจ๓ตจ 1 ๓ตจ๓ตจ( ) โ ( 2 ) ๓ตจ๓ตจ๓ตจ ๓ตจ๓ตจ 3 3 ๓ตจ๓ตจ
(51)
Theorem 9 generalizes the result presented by Sehgal [27].
Similarly, the pair {๐, ๐} is compatible. Now for each ๐1 , ๐2 โ ๐, consider
๐1 8 ๐ 4 ) + ( 2) ] 3 3
= ๐ max {๐๐ (๐ (๐1 ) , ๐ (๐1 )) , ๐๐ (๐ (๐2 ) , ๐ (๐2 ))} ,
1/8
Uniqueness of limit gives ๐ก = ๐ก which implies ๐ก = 0, 1. Due to the continuity of ๐, ๐ we have
= [(
M3 (๐1 , ๐2 )
(49)
Thus, contractive condition (6) is satisfied for all ๐1 , ๐2 โ ๐. Hence, all the hypotheses of Theorem 6 are satisfied; note that ๐, ๐, ๐, ๐ have a unique common fixed point ๐ = 0.
Theorem 10. Let (๐, ๐๐ , ๐ ) be a complete ๐-metric space and ๐, ๐, ๐, and ๐ are self-mappings on (๐, ๐๐ , ๐ ) such that ๐(๐) โ ๐(๐), ๐(๐) โ ๐(๐). If, for all ๐1 , ๐2 โ ๐, for some ๐น โ ฮ ๐น๐ ๐ > 0, the inequality (๐น (๐๐ (๐ (๐1 ) , ๐ (๐2 ))) > 0 implies ๐ + ๐น (๐ ๐๐ (๐ (๐1 ) , ๐ (๐2 ))) โค ๐น (M5 (๐1 , ๐2 )))
(54)
holds, where for all ๐ โ [0, ๐ ) M5 (๐1 , ๐2 ) = ๐ max {๐๐ (๐ (๐1 ) , ๐ (๐2 )) , ๐๐ (๐ (๐1 ) , ๐ (๐1 )) , ๐๐ (๐ (๐2 ) , ๐ (๐2 )) ,
(55)
๐๐ (๐ (๐2 ) , ๐ (๐1 )) , ๐๐ (๐ (๐1 ) , ๐ (๐2 ))} ,
The following theorems can easily be obtained by chasing the proof of Theorem 6. Theorem 8 generalizes the result presented by Bianchini [26].
then ๐, ๐, ๐, and ๐ have a unique common fixed point ๐ provided ๐, ๐ are continuous and pairs {๐, ๐}, {๐, ๐} are compatible.
Theorem 8 (Bianchini type). Let (๐, ๐๐ , ๐ ) be a complete ๐metric space and ๐, ๐, ๐, ๐ are self-mappings on (๐, ๐๐ , ๐ ) such that ๐(๐) โ ๐(๐), ๐(๐) โ ๐(๐). If, for all ๐1 , ๐2 โ ๐, for some ๐น โ ฮ ๐น๐ ๐ > 0, the inequality
Theorem 11. Let (๐, ๐๐ , ๐ ) be a complete ๐-metric space and ๐, ๐, ๐, and ๐ are self-mappings on (๐, ๐๐ , ๐ ) such that ๐(๐) โ ๐(๐), ๐(๐) โ ๐(๐). If, for all ๐1 , ๐2 โ ๐, for some ๐น โ ฮ ๐น๐ ๐ > 0, the inequality
(๐๐ (๐ (๐1 ) , ๐ (๐2 )) > 0 implies ๐ + ๐น (๐ ๐๐ (๐ (๐1 ) , ๐ (๐2 ))) โค ๐น (M3 (๐1 , ๐2 )))
(50)
(๐น (๐๐ (๐ (๐1 ) , ๐ (๐2 ))) > 0 implies ๐ + ๐น (๐ ๐๐ (๐ (๐1 ) , ๐ (๐2 ))) โค ๐น (M6 (๐1 , ๐2 )))
(56)
6
Journal of Function Spaces
holds, where for all ๐ โ [0, ๐ )
holds, where M1 (๐1 , ๐2 ) = ๐1 ๐๐ (๐ (๐1 ) , ๐ (๐2 )) + ๐2 ๐๐ (๐ (๐1 ) , ๐ (๐1 ))
M6 (๐1 , ๐2 ) = ๐ max {๐๐ (๐ (๐1 ) , ๐ (๐2 )) , ๐๐ (๐ (๐1 ) , ๐ (๐1 )) + ๐๐ (๐ (๐2 ) , ๐ (๐2 )) , 2
+ ๐3 ๐๐ (๐ (๐2 ) , ๐ (๐2 ))
(57)
then ๐, ๐, ๐, and ๐ have a unique common fixed point ๐ provided ๐, ๐ are continuous and pairs {๐, ๐}, {๐, ๐} are compatible. Theorem 12. Let (๐, ๐๐ , ๐ ) be a complete ๐-metric space and ๐, ๐, ๐, and ๐ are self-mappings on (๐, ๐๐ , ๐ ) such that ๐(๐) โ ๐(๐), ๐(๐) โ ๐(๐). If for all ๐1 , ๐2 โ ๐, ๐ โ [0, ๐ ) the inequality (58)
holds, where M (๐1 , ๐2 ) = max {๐๐ (๐ (๐1 ) , ๐ (๐2 )) , ๐๐ (๐ (๐1 ) , ๐ (๐1 )) , ๐๐ (๐ (๐2 ) , ๐ (๐2 )) ,
(64)
M1 (๐2๐ , ๐2๐+1 ) = ๐1 ๐๐ (๐ (๐2๐ ) , ๐ (๐2๐+1 )) + ๐2 ๐๐ (๐ (๐2๐ ) , ๐ (๐2๐ )) + ๐3 ๐๐ (๐ (๐2๐+1 ) , ๐ (๐2๐+1 ))
(60)
thus, if ๐๐ (๐(๐1 ), ๐(๐2 )) > 0, we have (61)
where ๐ = ln(๐ /๐) > 0; thus, the contractive condition (58) reduces to (6) with ๐น(๐) = ln(๐). Hence, Theorem 6 is a generalization of [29, Theorem 3.1].
3. Hardy and Rogers Type Fixed Point Theorem
+ ๐4 [๐๐ (๐ (๐2๐ ) , ๐ (๐2๐+1 )) + ๐๐ (๐ (๐2๐ ) , ๐ (๐2๐+1 ))] = ๐1 ๐๐ (๐2๐โ1 , ๐2๐ )
(65)
+ ๐2 ๐๐ (๐2๐ , ๐2๐โ1 ) + ๐3 ๐๐ (๐2๐+1 , ๐2๐ ) + ๐4 [๐๐ (๐2๐โ1 , ๐2๐+1 ) + ๐๐ (๐2๐ , ๐2๐ )] = (๐1 + ๐2 + ๐ ๐4 ) ๐๐ (๐2๐โ1 , ๐2๐ ) + (๐3 + ๐ ๐4 ) ๐๐ (๐2๐ , ๐2๐+1 ) .
In this section, we set up a fixed point theorem for four self-maps satisfying Hardy and Rogers type ๐น-contraction. We give an example to validate this theorem and discuss its consequences. Theorem 13. Let (๐, ๐๐ , ๐ ) be a complete ๐-metric space and ๐, ๐, ๐, and ๐ are self-mappings on (๐, ๐๐ , ๐ ) such that ๐(๐) โ ๐(๐), ๐(๐) โ ๐(๐). If, for all ๐1 , ๐2 โ ๐, for some ๐น โ ฮ ๐น๐ ๐ > 0, the inequality + ๐น (๐ ๐๐ (๐ (๐1 ) , ๐ (๐2 ))) โค ๐น (M1 (๐1 , ๐2 )))
โค ๐น (M1 (๐2๐ , ๐2๐+1 )) โ ๐, for all ๐ โ N โช {0}, where
Proof. Since, for all ๐1 , ๐2 โ ๐, we have
(๐๐ (๐ (๐1 ) , ๐ (๐2 )) > 0 implies ๐
Proof. Let ๐0 โ ๐. As ๐(๐) โ ๐(๐), there exists ๐1 โ ๐ such that ๐(๐0 ) = ๐(๐1 ). Since ๐(๐1 ) โ ๐(๐), we can choose ๐2 โ ๐ such that ๐(๐1 ) = ๐(๐2 ). In general ๐2๐+1 and ๐2๐+2 are chosen in ๐ such that ๐(๐2๐ ) = ๐(๐2๐+1 ) and ๐(๐2๐+1 ) = ๐(๐2๐+2 ). Define a sequence {๐๐ } in ๐ such that ๐2๐ = ๐(๐2๐ ) = ๐(๐2๐+1 ) and ๐2๐+1 = ๐(๐2๐+1 ) = ๐(๐2๐+2 ) for all ๐ โฅ 0; we show that {๐๐ } is a Cauchy sequence. Assume that ๐๐ (๐(๐2๐ ), ๐(๐2๐+1 )) > 0; then from contractive condition (62), we get
(59)
then ๐, ๐, ๐, and ๐ have a unique common fixed point ๐ provided ๐, ๐ are continuous and pairs {๐, ๐}, {๐, ๐} are compatible.
๐ + ln (๐๐ (๐ (๐1 ) , ๐ (๐2 ))) โค ln (M (๐1 , ๐2 )) ,
then ๐, ๐, ๐, and ๐ have a unique common fixed point ๐ provided ๐, ๐ are continuous and pairs {๐, ๐}, {๐, ๐} are compatible.
๐น (๐ ๐๐ (๐2๐ , ๐2๐+1 )) = ๐น (๐ ๐๐ (๐ (๐2๐ ) , ๐ (๐2๐+1 )))
๐๐ (๐ (๐1 ) , ๐ (๐2 )) + ๐๐ (๐ (๐1 ) , ๐ (๐2 )) }, 2๐
๐๐ (๐ (๐1 ) , ๐ (๐2 )) โค ๐M (๐1 , ๐2 ) ,
(63)
๐ค๐๐กโ ๐๐ โฅ 0 (๐ = 1, 2, 3, 4) ๐ ๐ข๐โ ๐กโ๐๐ก ๐1 + ๐2 + ๐3 + 2๐ ๐4 = 1,
๐๐ (๐ (๐2 ) , ๐ (๐1 )) + ๐๐ (๐ (๐1 ) , ๐ (๐2 )) }, 2๐
๐ ๐๐ (๐ (๐1 ) , ๐ (๐2 )) โค ๐M (๐1 , ๐2 )
+ ๐4 [๐๐ (๐ (๐1 ) , ๐ (๐2 )) + ๐๐ (๐ (๐1 ) , ๐ (๐2 ))]
(62)
Now from (64) we have ๐น (๐ ๐๐ (๐2๐ , ๐2๐+1 )) โค ๐น ((๐1 + ๐2 + ๐ ๐4 ) ๐๐ (๐2๐โ1 , ๐2๐ ) + (๐3 + ๐ ๐4 ) ๐๐ (๐2๐ , ๐2๐+1 )) โ ๐. Since ๐น is strictly increasing, (66) implies ๐ ๐๐ (๐2๐ , ๐2๐+1 ) โค (๐1 + ๐2 + ๐ ๐4 ) ๐๐ (๐2๐โ1 , ๐2๐ ) + (๐3 + ๐ ๐4 ) ๐๐ (๐2๐ , ๐2๐+1 ) ,
(66)
Journal of Function Spaces
7 1/๐
) entails The convergence of the series โโ ๐=๐ (1/๐ lim๐,๐โโ ๐๐ (๐๐ , ๐๐ ) = 0. Hence {๐๐ } is a Cauchy sequence in (๐, ๐๐ , ๐ ). Since (๐, ๐๐ , ๐ ) is a complete ๐-metric space, there exists ๐ โ ๐ such that lim๐โโ ๐๐ (๐๐ , ๐) = 0. Also we have
(1 โ ๐3 โ ๐ ๐4 ) ๐๐ (๐2๐ , ๐2๐+1 ) < (๐ โ ๐3 โ ๐ ๐4 ) ๐๐ (๐2๐ , ๐2๐+1 ) โค (๐1 + ๐2 + ๐ ๐4 ) ๐๐ (๐2๐โ1 , ๐2๐ ) ,
lim ๐ (๐2๐ ) = lim ๐ (๐2๐+1 ) = lim ๐ (๐2๐+1 )
๐1 + ๐2 + ๐ ๐4 ๐ (๐ , ๐ ) . 1 โ ๐3 โ ๐ ๐4 ๐ 2๐โ1 2๐
๐๐ (๐2๐ , ๐2๐+1 ) โค
๐โโ
๐โโ
= lim ๐ (๐2๐+2 ) = ๐.
We show that ๐ is a common fixed point of ๐, ๐, ๐, and ๐. Since ๐ is continuous, therefore,
Since ๐1 + ๐2 + ๐3 + 2๐ ๐4 = 1, therefore ๐1 + ๐2 + ๐ ๐4 ๐ (๐ , ๐ ) 1 โ ๐3 โ ๐ ๐4 ๐ 2๐โ1 2๐
(68)
= ๐๐ (๐2๐โ1 , ๐2๐ ) .
lim ๐๐ (๐2๐ ) = ๐ (๐) = lim ๐2 (๐2๐+2 ) .
๐โโ
lim ๐ ๐โโ ๐
๐น (๐ ๐๐ (๐2๐โ1 , ๐2๐ )) โค ๐น (๐๐ (๐2๐โ2 , ๐2๐โ1 )) โ ๐,
(70)
(71)
for all ๐ โ N. Let ๐๐ = ๐๐ (๐๐ , ๐๐+1 ) for each ๐ โ N; from (71) and axiom (๐น4 ) we have ๐ + ๐น (๐ ๐ ๐๐ ) โค ๐น (๐ ๐โ1 ๐๐โ1 ) , ๐ โ N.
(72)
Now put ๐1 = ๐(๐2๐ ) and ๐2 = ๐2๐+1 in (62) and suppose on the contrary that ๐๐ (๐(๐), ๐) > 0; we obtain ๐น (๐๐ (๐๐ (๐2๐ ) , ๐ (๐2๐+1 ))) โค ๐น (M1 (๐ (๐2๐ ) , ๐2๐+1 )) โ ๐,
๐น (๐ ๐ ๐๐ ) โค ๐น (๐0 ) โ ๐๐, ๐ โ N.
(73)
On taking limit ๐ โ โ in (73), we have lim๐โโ ๐น(๐ ๐ ๐๐ ) = โโ; due to axiom (๐น2 ) we get lim๐โโ ๐ ๐ ๐๐ = 0 and (๐น3 ) implies that there exists ๐
โ (0, 1) such that ๐
lim (๐ ๐ ๐๐ ) ๐น (๐ ๐ ๐๐ ) = 0.
(74)
๐โโ
M1 (๐ (๐2๐ ) , ๐2๐+1 ) = ๐1 ๐๐ (๐2 (๐2๐ ) , ๐ (๐2๐+1 )) + ๐2 ๐๐ (๐๐ (๐2๐ ) , ๐2 (๐2๐ ))
๐
๐
+ ๐๐ (๐๐ (๐2๐ ) , ๐ (๐2๐+1 ))] . Taking the upper limit in (82) and considering the fact that ๐1 + 2๐4 < 1, we have ๐น (๐๐ (๐ (๐) , ๐)) โค ๐น (๐๐ (๐ (๐) , ๐)) โ ๐ < ๐น (๐๐ (๐ (๐) , ๐)) ,
(75)
On taking limit ๐ โ โ in (75), we have ๐
lim (๐ (๐ ๐ ๐๐ ) ) = 0.
(76)
๐โโ
This implies there exists ๐1 โ N, such that ๐(๐ ๐ ๐๐ )๐
โค 1 for all ๐ โฅ ๐1 or ๐ ๐ ๐๐ โค
1 ๐1/๐
โ๐ โฅ ๐1 .
(77)
To prove {๐๐ } as a Cauchy sequence, we use (77) and for ๐ > ๐ โฅ ๐1 ; we consider ๐โ1
โ
โ
๐๐ (๐๐ , ๐๐ ) โค โ ๐ ๐ ๐๐ โค โ๐ ๐ ๐๐ โค โ ๐=๐
๐=๐
๐=๐ ๐
1
. 1/๐
(84)
a contradiction; hence, ๐๐ (๐(๐), ๐) = 0 implies ๐(๐) = ๐. Again since ๐ is continuous, therefore, lim ๐๐ (๐2๐+1 ) = ๐ (๐) = lim ๐2 (๐2๐+1 ) .
๐โโ
๐โโ
(85)
Since, the pair {๐, ๐} is compatible, lim ๐ ๐โโ ๐
(๐๐ (๐2๐+1 ) , ๐๐ (๐2๐+1 )) = 0,
by Lemma 5 lim ๐๐ (๐2๐+1 ) = ๐ (๐) .
(86)
๐โโ
Now put ๐2 = ๐(๐2๐+1 ) and ๐1 = ๐2๐ in (62) and suppose on the contrary that ๐๐ (๐, ๐(๐)) > 0; we obtain ๐น (๐๐ (๐ (๐2๐ ) , ๐๐ (๐2๐+1 )))
(78)
(83)
+ ๐4 [๐๐ (๐2 (๐2๐ ) , ๐ (๐2๐+1 ))
From (73), for all ๐ โ N, we obtain (๐ ๐ ๐๐ ) ๐น (๐ ๐ ๐๐ ) โ (๐ ๐ ๐๐ ) ๐น (๐0 ) โค โ (๐ ๐ ๐๐ ) ๐๐ โค 0.
(82)
where
+ ๐3 ๐๐ (๐ (๐2๐+1 ) , ๐ (๐2๐+1 ))
Repeating the process, we obtain
(81)
๐โโ
for all ๐ โ N. Hence, from (69) and (70), we have ๐น (๐ ๐๐ (๐๐ , ๐๐+1 )) โค ๐น (๐๐ (๐๐โ1 , ๐๐ )) โ ๐,
(80)
(๐๐ (๐2๐ ) , ๐๐ (๐2๐ )) = 0,
by Lemma 5 lim ๐๐ (๐2๐ ) = ๐ (๐) .
(69)
for all ๐ โ N. Similarly,
๐
๐โโ
Since, the pair {๐, ๐} is compatible, so,
Thus, from (66) we obtain ๐น (๐ ๐๐ (๐2๐ , ๐2๐+1 )) โค ๐น (๐๐ (๐2๐โ1 , ๐2๐ )) โ ๐,
(79)
๐โโ
(67)
๐๐ (๐2๐ , ๐2๐+1 ) โค
๐โโ
โค ๐น (M1 (๐2๐ , ๐ (๐2๐+1 ))) โ ๐,
(87)
8
Journal of Function Spaces a contradiction; hence, ๐๐ (๐(๐), ๐) = 0 which then implies ๐(๐) = ๐. Hence, ๐ proves to be a common fixed point of the four maps ๐, ๐, ๐, and ๐. Also ๐ is unique. Indeed if ๐ is another fixed point of ๐, ๐, ๐, and ๐, then, from (62), we have
where M1 (๐2๐ , ๐ (๐2๐+1 )) = ๐1 ๐๐ (๐ (๐2๐ ) , ๐2 (๐2๐+1 )) + ๐2 ๐๐ (๐ (๐2๐ ) , ๐ (๐2๐ )) + ๐3 ๐๐ (๐๐ (๐2๐+1 ) , ๐2 (๐2๐+1 ))
๐น (๐๐ (๐, ๐)) = ๐น (๐๐ (๐ (๐) , ๐ (๐)))
(88)
โค ๐น (M1 (๐, ๐)) โ ๐,
+ ๐4 [๐๐ (๐ (๐2๐ ) , ๐๐ (๐2๐+1 )) where
+ ๐๐ (๐ (๐2๐ ) , ๐2 (๐2๐+1 ))] .
M1 (๐, ๐)
Taking the upper limit in (87), we have ๐น (๐๐ (๐, ๐ (๐))) โค ๐น (๐๐ (๐, ๐ (๐))) โ ๐ < ๐น (๐๐ (๐, ๐ (๐))) ,
= ๐1 ๐๐ (๐ (๐) , ๐ (๐)) + ๐2 ๐๐ (๐ (๐) , ๐ (๐)) + ๐3 ๐๐ (๐ (๐) , ๐ (๐))
(89)
a contradiction; hence, ๐๐ (๐, ๐(๐)) = 0 which then implies ๐(๐) = ๐. Assume that ๐๐ (๐(๐), ๐) > 0 and from (62) we get ๐น (๐๐ (๐ (๐) , ๐ (๐2๐+1 ))) โค ๐น (M1 (๐, ๐2๐+1 )) โ ๐,
(96)
(97)
+ ๐4 [๐๐ (๐ (๐) , ๐ (๐)) + ๐๐ (๐ (๐) , ๐ (๐))] . Thus, from (96), we have ๐น (๐๐ (๐, ๐)) < ๐น (๐๐ (๐, ๐)) ,
(90)
(98)
which is a contradiction. Hence, ๐ = ๐ and ๐ is a unique common fixed point of the four maps ๐, ๐, ๐, and ๐.
where M1 (๐, ๐2๐+1 )
The following example explains Theorem 13.
= ๐1 ๐๐ (๐ (๐) , ๐ (๐2๐+1 )) + ๐2 ๐๐ (๐ (๐) , ๐ (๐))
+ ๐4 [๐๐ (๐ (๐) , ๐ (๐2๐+1 )) + ๐๐ (๐ (๐) , ๐ (๐2๐+1 ))] .
Example 14. Let ๐ = [0, โ) and define ๐๐ : ๐ ร ๐ โ R+0 by ๐๐ (๐1 , ๐2 ) = |๐1 โ ๐2 |2 , so, (๐, ๐๐ , 2) is a complete ๐-metric space. Define the mappings ๐, ๐, ๐, ๐ : ๐ โ ๐, for all ๐ โ ๐, by
Taking the upper limit in (90) and using the fact that ๐(๐) = ๐(๐) = ๐, we have
๐ ๐ (๐) = ln (1 + ) , 6
๐น (๐๐ (๐ (๐) , ๐)) โค ๐น (๐๐ (๐ (๐) , ๐)) โ ๐
๐ ๐ (๐) = ln (1 + ) , 7
+ ๐3 ๐๐ (๐ (๐2๐+1 ) , ๐ (๐2๐+1 ))
< ๐น (๐๐ (๐ (๐) , ๐)) ,
(91)
(92)
๐ (๐) = ๐ โ 1,
a contradiction; hence, ๐๐ (๐(๐), ๐) = 0 which then implies ๐(๐) = ๐. Finally, assume that ๐๐ (๐, ๐(๐)) > 0. From (62) and the equation ๐(๐) = ๐(๐) = ๐(๐) = ๐, we obtain ๐น (๐๐ (๐, ๐ (๐))) = ๐น (๐๐ (๐ (๐) , ๐ (๐))) โค ๐น (M1 (๐, ๐)) โ ๐,
(99)
7๐
(93)
๐ (๐) = ๐6๐ โ 1. Clearly, ๐, ๐, ๐, and ๐ are continuous self-mappings complying with ๐(๐) = ๐(๐) = ๐(๐) = ๐(๐). We note that the pair {๐, ๐} is compatible. Indeed, let {๐๐ } be a sequence in ๐ satisfying lim ๐ (๐๐ ) = lim ๐ (๐๐ ) = ๐ก, for some ๐ก โ ๐.
(100)
๓ตจ ๓ตจ ๓ตจ2 ๓ตจ2 lim ๓ตจ๓ตจ๐ (๐๐ ) โ ๐ก๓ตจ๓ตจ๓ตจ = lim ๓ตจ๓ตจ๓ตจ๐ (๐๐ ) โ ๐ก๓ตจ๓ตจ๓ตจ = 0, ๐โโ
(101)
๐โโ
where M1 (๐, ๐)
๐โโ
Then
= ๐1 ๐๐ (๐ (๐) , ๐ (๐)) + ๐2 ๐๐ (๐ (๐) , ๐ (๐)) + ๐3 ๐๐ (๐ (๐) , ๐ (๐))
๐โโ ๓ตจ
(94)
and equivalently ๓ตจ๓ตจ ๓ตจ๓ตจ2 ๐ ๓ตจ2 ๓ตจ lim ๓ตจ๓ตจ๓ตจ๓ตจln (1 + ๐ ) โ ๐ก๓ตจ๓ตจ๓ตจ๓ตจ = lim ๓ตจ๓ตจ๓ตจ๓ตจ๐7๐๐ โ 1 โ ๐ก๓ตจ๓ตจ๓ตจ๓ตจ = 0 ๐โโ ๓ตจ ๐โโ 6 ๓ตจ
+ ๐4 [๐๐ (๐ (๐) , ๐ (๐)) + ๐๐ (๐ (๐) , ๐ (๐))] . This implies that
(102)
implies
๐น (๐๐ (๐, ๐ (๐))) โค ๐น (๐๐ (๐, ๐ (๐))) โ ๐ < ๐น (๐๐ (๐, ๐ (๐))) ,
(95)
๓ตจ๓ตจ ln (๐ก + 1) ๓ตจ๓ตจ๓ตจ๓ตจ2 ๓ตจ2 ๓ตจ ๓ตจ lim ๓ตจ๓ตจ๓ตจ๓ตจ๐๐ โ (6๐๐ก โ 6)๓ตจ๓ตจ๓ตจ๓ตจ = lim ๓ตจ๓ตจ๓ตจ๐๐ โ ๓ตจ๓ตจ = 0. ๐โโ ๐โโ ๓ตจ ๓ตจ๓ตจ 7 ๓ตจ
(103)
Journal of Function Spaces
9
The uniqueness of limit gives 6๐๐ก โ 6 = ln(๐ก + 1)/7; thus, ๐ก = 0 is only possible solution. Due to the continuity of ๐, ๐ we have ๓ตจ ๓ตจ2 lim ๐ (๐๐ (๐๐ ) , ๐๐ (๐๐ )) = lim ๓ตจ๓ตจ๓ตจ๐๐ (๐๐ ) โ ๐๐ (๐๐ )๓ตจ๓ตจ๓ตจ ๐โโ ๐ ๐โโ (104) ๓ตจ ๓ตจ2 = ๓ตจ๓ตจ๓ตจ๐ (๐ก) โ ๐ (๐ก)๓ตจ๓ตจ๓ตจ = |0 โ 0|2 = 0 for ๐ก = 0 โ ๐. Similarly, the pair {๐, ๐} is compatible. Now for each ๐1 , ๐2 โ ๐, consider ๓ตจ ๓ตจ2 ๐๐ (๐ (๐1 ) , ๐ (๐2 )) = ๓ตจ๓ตจ๓ตจ๐ (๐1 ) โ ๐ (๐2 )๓ตจ๓ตจ๓ตจ ๓ตจ๓ตจ ๐ ๐ ๓ตจ๓ตจ2 = ๓ตจ๓ตจ๓ตจ๓ตจln (1 + ) โ ln (1 + )๓ตจ๓ตจ๓ตจ๓ตจ 6 7 ๓ตจ ๓ตจ ๐ ๐ 2 1 2 โค ( โ ) โค ( ) |7๐ โ 6๐|2 6 7 42 โค( =(
1 2 ๓ตจ๓ตจ 7๐ 6๐ ๓ตจ๓ตจ2 ) ๓ตจ๓ตจ๐ โ ๐ ๓ตจ๓ตจ๓ตจ 42 ๓ตจ
(105)
1 ) ๐๐ (๐ (๐1 ) , ๐ (๐2 )) 42
โค ln (M1 (๐1 , ๐2 )) .
(106)
Define the function ๐น : R+ โ R by ๐น(๐) = ln(๐), for all ๐ โ ๐
+ > 0. Hence, for all ๐1 , ๐2 โ ๐, such that ๐๐ (๐(๐1 ), ๐(๐2 )) > 0, ๐ = 2 ln(42) we obtain ๐ + ๐น (๐๐ (๐ (๐1 ) , ๐ (๐2 ))) โค ๐น (M (๐1 , ๐2 )) .
(107)
Thus, contractive condition (62) is satisfied for all ๐1 , ๐2 โ ๐. Hence, all the hypotheses of Theorem 13 are satisfied. Note that ๐, ๐, ๐, and ๐ have a unique common fixed point ๐ = 0. Theorem 15 generalizes the result presented by Reich [30] and can be proved by following the proof of Theorem 13. Theorem 15 (Reich type). Let (๐, ๐๐ , ๐ ) be a complete ๐metric space and ๐, ๐, ๐, and ๐ are self-mappings on (๐, ๐๐ , ๐ ) such that ๐(๐) โ ๐(๐), ๐(๐) โ ๐(๐). If, for all ๐1 , ๐2 โ ๐, for some ๐น โ ฮ ๐น๐ , ๐ > 0, the inequality (๐๐ (๐ (๐1 ) , ๐ (๐2 )) > 0 implies ๐ + ๐น (๐ ๐๐ (๐ (๐1 ) , ๐ (๐2 ))) โค ๐น (M2 (๐1 , ๐2 )))
(108)
holds, where for all ๐๐ โฅ 0 (๐ = 1, 2, 3) such that ๐1 + ๐2 + ๐3 = 1 M2 (๐1 , ๐2 ) = ๐1 ๐๐ (๐ (๐1 ) , ๐ (๐2 )) + ๐2 ๐๐ (๐ (๐1 ) , ๐ (๐1 ))
(๐๐ (๐ (๐1 ) , ๐ (๐2 )) > 0 implies ๐ + ๐น (๐ ๐๐ (๐ (๐1 ) , ๐ (๐2 )))
(110)
โค ๐น (๐ [๐๐ (๐ (๐1 ) , ๐ (๐2 )) + ๐๐ (๐ (๐1 ) , ๐ (๐2 ))])) holds for all ๐ โฅ 0 such that 2๐ = 1, then ๐, ๐, ๐, and ๐ have a unique common fixed point ๐ provided ๐, ๐ are continuous and pairs {๐, ๐}, {๐, ๐} are compatible.
Theorem 17. Let (๐, ๐๐ , ๐ ) be a complete ๐-metric space and ๐, ๐, ๐, and ๐ are self-mappings on (๐, ๐๐ , ๐ ) such that ๐(๐) โ ๐(๐), ๐(๐) โ ๐(๐). If for all ๐1 , ๐2 โ ๐ for some ๐น โ ฮ ๐น๐ , ๐ > 0 the inequality
2
2 ln (42) + ln (๐๐ (๐ (๐1 ) , ๐ (๐2 )))
Theorem 16 (Chatterjea type). Let (๐, ๐๐ , ๐ ) be a complete ๐metric space and ๐, ๐, ๐, and ๐ are self-mappings on (๐, ๐๐ , ๐ ) such that ๐(๐) โ ๐(๐), ๐(๐) โ ๐(๐). If for all ๐1 , ๐2 โ ๐ for some ๐น โ ฮ ๐น๐ ๐ > 0 the inequality
Similarly, Theorems 17 and 18 can be proved by following the proof of Theorem 13.
2
1 ) M1 (๐1 , ๐2 ) . 42 The above inequality can be written as โค(
Theorem 16 generalizes the result presented by Chatterjea [31] and can be proved by following the proof of Theorem 13.
(109)
+ ๐3 ๐๐ (๐ (๐2 ) , ๐ (๐2 )) , then ๐, ๐, ๐, and ๐ have a unique common fixed point ๐ provided ๐, ๐ are continuous and pairs {๐, ๐}, {๐, ๐} are compatible.
(๐๐ (๐ (๐1 ) , ๐ (๐2 )) > 0 implies ๐ + ๐น (๐ ๐๐ (๐ (๐1 ) , ๐ (๐2 ))) โค ๐น (M7 (๐1 , ๐2 )))
(111)
holds, where M7 (๐1 , ๐2 ) = ๐1 (๐1 , ๐2 ) ๐๐ (๐ (๐1 ) , ๐ (๐2 )) + ๐2 (๐1 , ๐2 ) ๐๐ (๐ (๐1 ) , ๐ (๐1 )) + ๐3 (๐1 , ๐2 ) ๐๐ (๐ (๐2 ) , ๐ (๐2 )) + ๐4 (๐1 , ๐2 )
(112)
โ
[๐๐ (๐ (๐1 ) , ๐ (๐2 )) + ๐๐ (๐ (๐1 ) , ๐ (๐2 ))] with ๐๐ (๐1 , ๐2 ) (๐ = 1, 2, 3, 4) are nonnegative functions such that sup {๐1 (๐1 , ๐2 ) + ๐2 (๐1 , ๐2 ) + ๐3 (๐1 , ๐2 )
๐1 ,๐2 โ๐
(113)
+ 2๐ ๐4 (๐1 , ๐2 )} = 1, then ๐, ๐, ๐, and ๐ have a unique common fixed point ๐ provided ๐, ๐ are continuous and pairs {๐, ๐}, {๐, ๐} are compatible. Theorem 18. Let (๐, ๐๐ , ๐ ) be a complete ๐-metric space and ๐, ๐, ๐, and ๐ are self-mappings on (๐, ๐๐ , ๐ ) such that ๐(๐) โ ๐(๐), ๐(๐) โ ๐(๐). If for all ๐1 , ๐2 โ ๐ for some ๐น โ ฮ ๐น๐ , ๐ > 0 the inequality (๐๐ (๐ (๐1 ) , ๐ (๐2 )) > 0 implies ๐ + ๐น (๐ ๐๐ (๐ (๐1 ) , ๐ (๐2 ))) โค ๐น (M8 (๐1 , ๐2 )))
(114)
10
Journal of Function Spaces (ii) There exists ๐ > 0 and, for each ๐ โ ๐, one has
holds, where M8 (๐1 , ๐2 ) = ๐1 ๐๐ (๐ (๐1 ) , ๐ (๐2 ))
๐ก
โซ ๐ป (๐) ๐๐ โค โ
๐ + ๐3 + 2 [๐๐ (๐ (๐1 ) , ๐ (๐1 )) 2
๐
+ ๐๐ (๐ (๐2 ) , ๐ (๐2 ))]
(115)
๐ + ๐5 [๐๐ (๐ (๐1 ) , ๐ (๐2 )) + 4 2๐
(120)
๐ก โ [๐, ๐] .
(iii) There exists a sequence {๐๐ } in = that lim๐โโ ๐๐ (๐๐(๐๐ ), ๐๐(๐๐ )) lim๐โโ ๐๐ (๐๐(๐๐ ), ๐๐(๐๐ )) = 0, whenever
๐ such 0 and
lim ๐ (๐๐ ) = lim ๐ (๐๐ ) = ๐ก,
๐โโ 5
+ ๐๐ (๐ (๐1 ) , ๐ (๐2 ))]
๐โ๐ , ๐
lim ๐ (๐๐ ) = lim ๐ (๐๐ ) = ๐ก
with ๐๐ โฅ 0, โ๐๐ = 1,
๐โโ
๐=1
then ๐, ๐, ๐, and ๐ have a unique common fixed point ๐ provided ๐, ๐ are continuous and pairs {๐, ๐}, {๐, ๐} are compatible.
Then the system of integral equations given in (117) has a solution.
๓ตจ ๓ตจ ๐๐ (๐๐ข (๐ก) , ๐V (๐ก)) = ( sup ๓ตจ๓ตจ๓ตจ๐๐ข (๐ก) โ ๐V (๐ก)๓ตจ๓ตจ๓ตจ) ๐กโ[๐,๐]
2
๐ก
= ( sup โซ |๐พ (๐ก, ๐, ๐ (๐ข (๐ก)) โ ๐ฝ (๐ก, ๐, ๐ (V (๐ก))))| ๐๐) ๐กโ[๐,๐] ๐
2
(116)
๐กโ[๐,๐]
2
๐ก
โค ( sup โซ ๐ป (๐) |๐ (๐ข (๐ก)) โ ๐ (V (๐ก))| ๐๐)
for all ๐ข, V โ ๐ถ([๐, ๐], R). Obviously, (๐, ๐๐ , 2) is a complete ๐-metric space. We shall apply Theorem 6 to show the existence of a common solution of the system of Volterra type integral equations given by ๐ก
๐กโ[๐,๐] ๐
(122) ๐ก
โค (โ sup |๐ (๐ข (๐ก)) โ ๐ (V (๐ก))|2 โซ ๐ป (๐) ๐๐)
2
๐
๐กโ[๐,๐]
๐ก
๐ข (๐ก) = ๐ (๐ก) + โซ ๐พ (๐ก, ๐, ๐ (๐ข (๐ก))) ๐๐, ๐ก
for some ๐ก โ ๐.
2
Let ๐ = ๐ถ([๐, ๐], R) be the space of all continuous real valued functions defined on [๐, ๐], ๐ > 0. Let the function ๐๐ : ๐ ร ๐ โ [0, โ) be defined by
๐
(121)
๐โโ
Proof. Following assumptions (i) and (ii), we have
4. Application of Theorem 6 to a System of Integral Equations
๐๐ (๐ข, V) = ( sup |๐ข (๐ก) โ V (๐ก)|) ,
๐โโ
2
= ๐๐ (๐ (๐ข (๐ก)) , ๐ (V (๐ก))) (โซ ๐ป (๐) ๐๐) ๐
(117) โค ๐๐ (๐ (๐ข (๐ก)) , ๐ (V (๐ก)))
๐ค (๐ก) = ๐ (๐ก) + โซ ๐ฝ (๐ก, ๐, ๐ (V (๐ก))) ๐๐, ๐
for all ๐ก, where ๐ : ๐ โ R is a continuous function and ๐พ, ๐ฝ : [๐, ๐] ร [๐, ๐] ร ๐ โ R are lower semicontinuous operators. Now we prove the following theorem to ensure the existence of a solution of the system of integral equations (117). Theorem 19. Let ๐ = ๐ถ([๐, ๐], R) and define the mappings ๐, ๐ : ๐ โ ๐ by
โ๐
๐
๐
โค M1 (๐ข (๐ก) , V (๐ก))
๐โ๐ . ๐
Consequently, we have ๐ ๐๐ (๐๐ข (๐ก) , ๐V (๐ก)) โค ๐โ๐ M1 (๐ข (๐ก) , V (๐ก)) .
(123)
As the natural logarithm belongs to ฮ ๐น๐ , applying it on above inequality and after some simplification, we get ๐ + ln (๐ ๐๐ (๐๐ข (๐ก) , ๐V (๐ก))) โค ln (M1 (๐ข (๐ก) , V (๐ก))) . (124)
๐ก
๐๐ข (๐ก) = ๐ (๐ก) + โซ ๐พ (๐ก, ๐, ๐ (๐ข (๐ก))) ๐๐, ๐
๐ก
(118)
๐๐ข (๐ก) = ๐ (๐ก) + โซ ๐ฝ (๐ก, ๐, ๐ (V (๐ก))) ๐๐,
So taking ๐น(๐) = ln(๐), all hypotheses of Theorem 6 are satisfied. Hence the system of integral equations given in (117) has a unique common solution.
๐
where ๐ : ๐ โ R is a continuous function and ๐พ, ๐ฝ : [๐, ๐] ร [๐, ๐] ร ๐ โ R are lower semicontinuous operators. Assume the following conditions are satisfied: (i) There exists a continuous function ๐ป : ๐ โ [0, โ) such that |๐พ (๐ก, ๐, ๐) โ ๐ฝ (๐ก, ๐, ๐)| โค ๐ป (๐) |๐ (๐ข (๐ก)) โ ๐ (V (๐ก))| for each ๐ก, ๐ โ [๐, ๐] and ๐, ๐ โ ๐.
(119)
Conflicts of Interest The authors declare that they have no conflicts of interest.
Acknowledgments Ma Zhenhua acknowledges the support of Scientific Research Foundations of Education Burrean of Hebei Province, Grant no. QN2016191.
Journal of Function Spaces
References [1] D. Wardowski, โFixed points of a new type of contractive mappings in complete metric spaces,โ Fixed Point Theory and Applications, vol. 2012, article 94, 2012. [2] O. Acar and I. Altun, โMultivalued F-contractive mappings with a graph and some fixed point results,โ Publicationes Mathematicae, vol. 88, no. 3-4, pp. 305โ317, 2016. [3] M. U. Ali and T. Kamran, โMultivalued F-contractions and related fixed point theorems with an application,โ Filomat, vol. 30, no. 14, pp. 3779โ3793, 2016. [4] G. Durmaz, G. Minak, and I. Altun, โFixed points of ordered Fcontractions,โ Hacettepe Journal of Mathematics and Statistics, vol. 45, no. 1, pp. 15โ21, 2016. [5] A. Hussain, M. Nazam, and M. Arshad, โConnection of ciric type F-contraction involving fixed point on closed ball,โ Gazi University Journal of Science, vol. 30, no. 1, pp. 283โ291, 2017. [6] A. Hussain, H. F. Ahmad, M. Arshad, and M. Nazam, โNew type of multivalued F-contraction involving fixed points on closed ball,โ Journal of Mathematics and Computer Science, vol. 17, no. 02, pp. 246โ254, 2017. [7] H. Piri and P. Kumam, โSome fixed point theorems concerning F-contraction in complete metric spaces,โ Fixed Point Theory and Applications, vol. 2014, no. 1, article 210, p. 11, 2014. [8] N.-A. Secelean, โIterated function systems consisting of Fcontractions,โ Fixed Point Theory and Applications, vol. 2013, article 277, 2013. [9] M. Cosentino and P. Vetro, โFixed point results for F-contractive mappings of Hardy-Rogers-type,โ Filomat, vol. 28, no. 4, pp. 715โ722, 2014. ยด c type generalized F[10] G. Mฤฑnak, A. Helvacฤฑ, and I. Altun, โCiriยด contractions on complete metric spaces and fixed point results,โ Filomat, vol. 28, no. 6, pp. 1143โ1151, 2014. [11] I. A. Bakhtin, โThe contraction mapping principle in almost metric space,โ Functional Analysis, vol. 30, pp. 26โ37, 1989. [12] S. Czerwik, โContraction mappings in b-metric spaces,โ Acta Mathematica et Informatica Universitatis Ostraviensis, vol. 1, pp. 5โ11, 1993. [13] H. Huang, J. Vujakoviยดc, and S. Radenoviยดc, โA note on common fixed point theorems for isotone increasing mappings in ordered b-metric spaces,โ Journal of Nonlinear Sciences and Applications, vol. 8, no. 5, pp. 808โ815, 2015. [14] N. Hussain, D. Doriยดc, Z. Kadelburg, and S. Radenoviยดc, โSuzukitype fixed point results in metric type spaces,โ Fixed Point Theory and Applications, vol. 2012, article 126, 2012. [15] S. Radenoviยดc, M. Jovanoviยดc, and Z. Kadelburg, โCommon fixed point results in metric-type spaces,โ Fixed Point Theory and Applications, vol. 2010, Article ID 978121, p. 15, 2010. [16] M. A. Khamsi and N. Hussain, โKKM mappings in metric type spaces,โ Nonlinear Analysis, vol. 73, no. 9, pp. 3123โ3129, 2010. [17] V. Parvaneh, J. R. Roshan, and S. Radenoviยดc, โExistence of tripled coincidence points in ordered b-metric spaces and an application to a system of integral equations,โ Fixed Point Theory and Applications, vol. 2013, article 130, p. 19, 2013. [18] J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, and W. Shatanawi, โCommon fixed points of almost generalized (๐, ๐) s-contractive mappings in ordered b-metric spaces,โ Fixed Point Theory and Applications, vol. 2013, article 159, 2013. [19] W. Shatanawi, A. Pitea, and R. Lazoviยดc, โContraction conditions using comparison functions on b-metric spaces,โ Fixed Point Theory and Applications, vol. 2014, no. 1, article 135, 2014.
11 [20] A. Aghajani, M. Abbas, and J. R. Roshan, โCommon fixed point of generalized weak contractive mappings in partially ordered b-metric spaces,โ Mathematica Slovaca, vol. 64, no. 4, pp. 941โ 960, 2014. [21] A. Amini-Harandi, โFixed point theory for quasi-contraction maps in b-metric spaces,โ Fixed Point Theory, vol. 15, no. 2, pp. 351โ358, 2014. [22] A. Latif, V. Parvaneh, P. Salimi, and A. E. Al-Mazrooei, โVarious Suzuki type theorems in b-metric spaces,โ Journal of Nonlinear Sciences and Applications, vol. 8, no. 4, pp. 363โ377, 2015. [23] F. Zabihi and A. Razani, โFixed point theorems for hybrid rational geraghty contractive mappings in ordered b-metric spaces,โ Journal of Applied Mathematics, vol. 2014, Article ID 929821, 9 pages, 2014. [24] M. Cosentino, M. Jleli, B. Samet, and C. Vetro, โSolvability of integrodifferential problems via fixed point theory in b-metric spaces,โ Fixed Point Theory and Applications, vol. 2015, no. 70, 2015. [25] G. Jungck, โCompatible mappings and common fixed points,โ International Journal of Mathematics and Mathematical Sciences, vol. 9, no. 4, pp. 771โ779, 1986. [26] R. M. T. Bianchini, โSu un problema di S. Reich riguardante la teoria dei punti fissi,โ The Bollettino dellโUnione Matematica Italiana, vol. 5, pp. 103โ108, 1972. [27] V. M. Sehgal, โOn fixed and periodic points for a class of mappings,โ Journal Of The London Mathematical Society-Second Series, vol. 5, pp. 571โ576, 1972. [28] L. B. Cยดฤฑrยดฤฑc, โA generalization of Banachโs contraction principle,โ Proceedings of the American Mathematical Society, vol. 45, pp. 267โ273, 1974. [29] G. Jungck, โCommon fixed points for commuting and compatible maps on compacta,โ Proceedings of the American Mathematical Society, vol. 103, no. 3, pp. 977โ983, 1988. [30] S. Reich, โSome remarks concerning contraction mappings,โ Canadian Mathematical Bulletin, vol. 14, pp. 121โ124, 1971. [31] S. K. Chatterjea, โFixed-point theorems,โ Comptes rendus de lโAcademie bulgare des Sciences, vol. 25, pp. 727โ730, 1972.
Advances in
Operations Research Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics Volume 2014
The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at https://www.hindawi.com International Journal of
Advances in
Combinatorics Hindawi Publishing Corporation http://www.hindawi.com
Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of Mathematics and Mathematical Sciences
Mathematical Problems in Engineering
Journal of
Mathematics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
#HRBQDSDฤฎ,@SGDL@SHBR
Journal of
Volume 201
Hindawi Publishing Corporation http://www.hindawi.com
Discrete Dynamics in Nature and Society
Journal of
Function Spaces Hindawi Publishing Corporation http://www.hindawi.com
Abstract and Applied Analysis
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014