Contraction on -Metric Spaces

4 downloads 0 Views 2MB Size Report
Dec 28, 2017 - Muhammad Nazam,1 Ma Zhenhua,2,3 Sami Ullah Khan,1,4 and Muhammad Arshad1 ... 4Department of Mathematics, Gomal University D. I. Khan, Khyber ...... [5] A. Hussain, M. Nazam, and M. Arshad, รขย€ยœConnection of ciric.
Hindawi Journal of Function Spaces Volume 2017, Article ID 9389768, 11 pages https://doi.org/10.1155/2017/9389768

Research Article Common Fixed Points of Four Maps Satisfying ๐น-Contraction on ๐‘-Metric Spaces Muhammad Nazam,1 Ma Zhenhua,2,3 Sami Ullah Khan,1,4 and Muhammad Arshad1 1

Department of Mathematics and Statistics, International Islamic University, H-10, Islamabad, Pakistan Department of Mathematics and Physics, Hebei University of Architecture, Zhangjiakou 075024, China 3 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 10001, China 4 Department of Mathematics, Gomal University D. I. Khan, Khyber Pakhtunkhwa 29050, Pakistan 2

Correspondence should be addressed to Ma Zhenhua; mazhenghua [email protected] Received 16 October 2017; Accepted 7 December 2017; Published 28 December 2017 Academic Editor: Ahmad S. Al-Rawashdeh Copyright ยฉ 2017 Muhammad Nazam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We manifest some common fixed point theorems for four maps satisfying Cยดฤฑrยดฤฑc type ๐น-contraction and Hardy-Rogers type ๐นcontraction defined on complete ๐‘-metric spaces. We apply these results to infer several new and old corresponding results. These results also generalize some results obtained previously. We dispense examples to validate our results.

1. Introduction and Preliminaries After the famous Banach Contraction Principle, a large number of researchers revealed many fruitful generalizations of Banachโ€™s fixed point theorem. One of these generalizations is known as ๐น-contraction presented by Wardowski [1]. Wardowski [1] evinced the fact that every ๐น-contraction defined on complete ๐‘-metric space has a unique fixed point. The concept of ๐น-contraction proved to be another milestone in fixed point theory and numerous research papers on ๐นcontraction have been published (see, e.g., [2โ€“8]). Recently, Cosentino and Vetro [9] established a fixed point result for Hardy-Rogers type ๐น-contraction and Mฤฑnak et al. [10] presented a fixed point result for Cยดฤฑrยดฤฑc type generalized ๐นcontraction. In 1989, Bakhtin [11] investigated the concept of ๐‘-metric spaces; however, Czerwik [12] initiated study of fixed point of self-mappings in ๐‘-metric spaces and proved an analogue of Banachโ€™s fixed point theorem. Since then, numerous research articles have been published comprising fixed point theorems for various classes of single-valued and multivalued operators in ๐‘-metric spaces (see, e.g., [13โ€“19]). We shall bring into use the idea of Cยดฤฑrยดฤฑc type ๐น-contraction and Hardy-Rogers type ๐น-contraction comprising four

self-mappings defined on ๐‘-metric space. We present common fixed point results for four self-maps satisfying Cยดฤฑrยดฤฑc type and Hardy-Rogers type ๐น-contraction on ๐‘-metric space. We apply our results to infer several new and old results. We denote (0, โˆž) by R+ , [0, โˆž) by R+0 , (โˆ’โˆž, +โˆž) by R, and set of natural numbers by N. We bring back into readerโ€™s mind some definitions and properties of ๐‘-metric. Definition 1 (see [12]). Let ๐‘€ be a nonempty set and ๐‘  โ‰ฅ 1 be a real number. A function ๐‘‘๐‘ : ๐‘€ ร— ๐‘€ โ†’ [0, โˆž) is said to be a ๐‘-metric if, for all ๐œƒ, ๐œŒ, ๐œŽ โˆˆ ๐‘€, one has (๐‘‘๐‘ 1) ๐œƒ = ๐œŒ if and only if ๐‘‘๐‘ (๐œƒ, ๐œŒ) = 0, (๐‘‘๐‘ 2) ๐‘‘๐‘ (๐œƒ, ๐œŒ) = ๐‘‘๐‘ (๐œŒ, ๐œƒ), (๐‘‘๐‘ 3) ๐‘‘๐‘ (๐œƒ, ๐œŒ) โ‰ค ๐‘ [๐‘‘๐‘ (๐œƒ, ๐œŽ) + ๐‘‘๐‘ (๐œŽ, ๐œŒ)]. In this case, the pair (๐‘€, ๐‘‘๐‘ , ๐‘ ) is called a ๐‘-metric space (with coefficient ๐‘ ). Definition 1 allows us to remark that the class of ๐‘-metric spaces is effectually more general than that of metric spaces because a ๐‘-metric is a metric when ๐‘  = 1. The following example describes the significance of a ๐‘-metric.

2

Journal of Function Spaces

Example 2. Let (๐‘€, ๐‘‘) be a metric space and ๐‘‘๐‘ (๐œƒ, ๐œŒ) = (๐‘‘(๐œƒ, ๐œŒ))๐‘Ÿ , ๐‘Ÿ > 1 is a real number. Then ๐‘‘๐‘ is ๐‘-metric space with ๐‘  = 2๐‘Ÿโˆ’1 . Apparently, (๐‘‘๐‘ 1) and (๐‘‘๐‘ 2) of Definition 1 are satisfied. If 1 < ๐‘Ÿ < โˆž, then the convexity of the function ๐‘“(๐œƒ) = ๐œƒ๐‘Ÿ (๐œƒ > 0) implies (

๐‘—+๐‘™ 1 ) โ‰ค (๐‘—๐‘Ÿ + ๐‘™๐‘Ÿ ) 2 2

(๐‘Ÿ๐‘› , ๐‘ ๐‘› ) = 0, lim ๐‘Ÿ๐‘› = ๐‘ก for some ๐‘ก โˆˆ ๐‘€,

๐‘Ÿ

๐‘Ÿ

๐‘Ÿ

โ‰ค 2๐‘Ÿโˆ’1 [(๐‘‘ (๐œƒ, ๐œŒ)) + (๐‘‘ (๐œŒ, ๐œŽ)) ]

For the notions like convergence, completeness, and Cauchy sequence in the setting of ๐‘-metric spaces, the reader is referred to Aghajani et al. [20], Czerwik [12], AminiHarandi [21], Huang et al. [13], Hussain et al. [14], Radenoviยดc et al. [15], Khamsi and Hussain [16], Latif et al. [22], Parvaneh et al. [17], Roshan et al. [18], and Zabihi and Razani [23]. In line with Wardowski [1], Cosentino et al. [24] investigated a nonlinear function ๐น : R+ โ†’ R complying with the following axioms: (๐น1 ) ๐น is strictly increasing. (๐น2 ) For each sequence {๐‘Ÿ๐‘› } of positive numbers, the following equation holds: lim๐‘›โ†’โˆž ๐‘Ÿ๐‘› = 0 if and only if lim๐‘›โ†’โˆž ๐น(๐‘Ÿ๐‘› ) = โˆ’โˆž. (๐น3 ) There exists ๐œƒ โˆˆ (0, 1) such that lim๐‘Ÿ๐‘› โ†’0+ (๐‘Ÿ๐‘› )๐œƒ ๐น(๐‘Ÿ๐‘› ) = 0. (๐น4 ) ๐œ + ๐น(๐‘ ๐‘Ÿ๐‘› ) โ‰ค ๐น(๐‘Ÿ๐‘›โˆ’1 ) implies ๐œ + ๐น(๐‘ ๐‘› ๐‘Ÿ๐‘› ) โ‰ค ๐น(๐‘ ๐‘›โˆ’1 ๐‘Ÿ๐‘›โˆ’1 ), for each ๐‘› โˆˆ N and some ๐œ > 0. We denote by ฮ” ๐น๐‘  the set of all functions satisfying the conditions (๐น1 )โ€“(๐น4 ). Example 3. Let ๐น : R+ โ†’ R be defined by (a) ๐น(๐‘Ÿ) = ln(๐‘Ÿ), (b) ๐น(๐‘Ÿ) = ๐‘Ÿ + ln(๐‘Ÿ). It is easy to check that (a) and (b) are members of ฮ” ๐น๐‘  . Definition 4 (see [25]). Let (๐‘€, ๐‘‘๐‘ , ๐‘ ) be a ๐‘-metric space. The pair {๐‘“, ๐‘”} is said to be compatible if and only if (๐‘“๐‘” (๐‘Ÿ๐‘› ) , ๐‘”๐‘“ (๐‘Ÿ๐‘› )) = 0,

๐‘›โ†’โˆž

for some ๐‘ก โˆˆ ๐‘€.

Proof. Due to the triangular inequality we have ๐‘‘๐‘ (๐‘ ๐‘› , ๐‘ก) โ‰ค ๐‘  [๐‘‘๐‘ (๐‘ ๐‘› , ๐‘Ÿ๐‘› ) + ๐‘‘๐‘ (๐‘Ÿ๐‘› , ๐‘ก)] ,

(5)

and the result follows after applying limit as ๐‘› โ†’ โˆž.

Therefore, ๐‘‘๐‘ (๐œƒ, ๐œŒ) โ‰ค ๐‘ [๐‘‘๐‘ (๐œƒ, ๐œŒ) + ๐‘‘๐‘ (๐œŒ, ๐œŽ)], where ๐‘  = 2๐‘Ÿโˆ’1 , which shows that (๐‘€, ๐‘‘๐‘ , ๐‘ ) is a ๐‘-metric space. Nevertheless, if (๐‘€, ๐‘‘) is a metric space, then (๐‘€, ๐‘‘๐‘ , ๐‘ ) may not be a metric space. Indeed, if ๐‘€ = R and ๐‘‘(๐œƒ, ๐œŒ) = |๐œƒโˆ’ ๐œŒ| (a usual metric), then ๐‘‘๐‘ (๐œƒ, ๐œŒ) = [๐‘‘(๐œƒ, ๐œŒ)]2 does not define a metric on ๐‘€.

lim ๐‘“ (๐‘Ÿ๐‘› ) = lim ๐‘” (๐‘Ÿ๐‘› ) = ๐‘ก

Then lim๐‘›โ†’โˆž ๐‘ ๐‘› = ๐‘ก.

(2)

= 2๐‘Ÿโˆ’1 [๐‘‘๐‘ (๐œƒ, ๐œŒ) + ๐‘‘๐‘ (๐œŒ, ๐œŽ)] .

whenever {๐‘Ÿ๐‘› } is a sequence in ๐‘€ so that

(4)

๐‘›โ†’โˆž

(1)

๐‘‘๐‘ (๐œƒ, ๐œŽ) = (๐‘‘ (๐œƒ, ๐œŽ))๐‘Ÿ โ‰ค (๐‘‘ (๐œƒ, ๐œŒ) + ๐‘‘ (๐œŒ, ๐œŽ))

๐‘›โ†’โˆž

lim ๐‘‘ ๐‘›โ†’โˆž ๐‘

๐‘Ÿ

that gives (๐‘— + ๐‘™)๐‘Ÿ โ‰ค 2๐‘Ÿโˆ’1 (๐‘—๐‘Ÿ + ๐‘™๐‘Ÿ ). Thus, for all ๐œƒ, ๐œŒ, ๐œŽ โˆˆ ๐‘€, one has

lim ๐‘‘ ๐‘›โ†’โˆž ๐‘

Lemma 5. Let (๐‘€, ๐‘‘๐‘ , ๐‘ ) be a ๐‘-metric space. If there exist two sequences {๐‘Ÿ๐‘› }, {๐‘ ๐‘› } such that

(3)

2. Cรญrรญc Type Fixed Point Theorem In this section we set up a fixed point theorem for four selfmaps satisfying Cยดฤฑrยดฤฑc type ๐น-contraction. We explain this theorem through an example and discuss its consequences. Theorem 6. Let (๐‘€, ๐‘‘๐‘ , ๐‘ ) be a complete ๐‘-metric space and ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ are self-mappings on (๐‘€, ๐‘‘๐‘ , ๐‘ ) such that ๐‘“(๐‘€) โŠ† ๐‘‡(๐‘€), ๐‘”(๐‘€) โŠ† ๐‘†(๐‘€). If, for all ๐‘Ÿ1 , ๐‘Ÿ2 โˆˆ ๐‘€, for some ๐น โˆˆ ฮ” ๐น๐‘  and ๐œ > 0, the inequality (๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )) > 0 implies ๐œ + ๐น (๐‘ ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 ))) โ‰ค ๐น (M (๐‘Ÿ1 , ๐‘Ÿ2 ))) ,

(6)

holds, where M (๐‘Ÿ1 , ๐‘Ÿ2 ) = max {๐‘‘๐‘ (๐‘† (๐‘Ÿ1 ) , ๐‘‡ (๐‘Ÿ2 )) , ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘† (๐‘Ÿ1 )) , ๐‘‘๐‘ (๐‘” (๐‘Ÿ2 ) , ๐‘‡ (๐‘Ÿ2 )) ,

(7)

๐‘‘๐‘ (๐‘† (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )) + ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘‡ (๐‘Ÿ2 )) }, 2๐‘  then ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ have a unique common fixed point ๐œ provided ๐‘†, ๐‘‡ are continuous and pairs {๐‘“, ๐‘†}, {๐‘”, ๐‘‡} are compatible. Proof. Let ๐‘Ÿ0 โˆˆ ๐‘€. As ๐‘“(๐‘€) โŠ† ๐‘‡(๐‘€), there exists ๐‘Ÿ1 โˆˆ ๐‘€ such that ๐‘“(๐‘Ÿ0 ) = ๐‘‡(๐‘Ÿ1 ). Since ๐‘”(๐‘Ÿ1 ) โˆˆ ๐‘†(๐‘€), we can choose ๐‘Ÿ2 โˆˆ ๐‘€ such that ๐‘”(๐‘Ÿ1 ) = ๐‘†(๐‘Ÿ2 ). In general, ๐‘Ÿ2๐‘›+1 and ๐‘Ÿ2๐‘›+2 are chosen in ๐‘€ such that ๐‘“(๐‘Ÿ2๐‘› ) = ๐‘‡(๐‘Ÿ2๐‘›+1 ) and ๐‘”(๐‘Ÿ2๐‘›+1 ) = ๐‘†(๐‘Ÿ2๐‘›+2 ). Define a sequence {๐‘—๐‘› } in ๐‘€ such that ๐‘—2๐‘› = ๐‘“(๐‘Ÿ2๐‘› ) = ๐‘‡(๐‘Ÿ2๐‘›+1 ) and ๐‘—2๐‘›+1 = ๐‘”(๐‘Ÿ2๐‘›+1 ) = ๐‘†(๐‘Ÿ2๐‘›+2 ) for all ๐‘› โ‰ฅ 0; we show that {๐‘—๐‘› } is a Cauchy sequence. Assume that ๐‘‘๐‘ (๐‘“(๐‘Ÿ2๐‘› ), ๐‘”(๐‘Ÿ2๐‘›+1 )) > 0; then from contractive condition (6), we get ๐น (๐‘ ๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘›+1 )) = ๐น (๐‘ ๐‘‘๐‘ (๐‘“ (๐‘Ÿ2๐‘› ) , ๐‘” (๐‘Ÿ2๐‘›+1 ))) โ‰ค ๐น (M (๐‘Ÿ2๐‘› , ๐‘Ÿ2๐‘›+1 )) โˆ’ ๐œ,

(8)

Journal of Function Spaces

3

for all ๐‘› โˆˆ N โˆช {0}, where

To prove {๐‘—๐‘› } as a Cauchy sequence, we use (19) and, for ๐‘š > ๐‘› โ‰ฅ ๐‘›1 , we consider

M (๐‘Ÿ2๐‘› , ๐‘Ÿ2๐‘›+1 ) = max {๐‘‘๐‘ (๐‘† (๐‘Ÿ2๐‘› ) , ๐‘‡ (๐‘Ÿ2๐‘›+1 )) ,

๐‘šโˆ’1

๐‘‘๐‘ (๐‘“ (๐‘Ÿ2๐‘› ) , ๐‘† (๐‘Ÿ2๐‘› )) , ๐‘‘๐‘ (๐‘” (๐‘Ÿ2๐‘›+1 ) , ๐‘‡ (๐‘Ÿ2๐‘›+1 )) , ๐‘‘๐‘ (๐‘† (๐‘Ÿ2๐‘› ) , ๐‘” (๐‘Ÿ2๐‘›+1 )) + ๐‘‘๐‘ (๐‘“ (๐‘Ÿ2๐‘› ) , ๐‘‡ (๐‘Ÿ2๐‘›+1 )) } 2๐‘ 

๐‘–=๐‘›

(9)

= max {๐‘‘๐‘ (๐‘—2๐‘›โˆ’1 , ๐‘—2๐‘› ) , ๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘›โˆ’1 ) , ๐‘‘๐‘ (๐‘—2๐‘›+1 , ๐‘—2๐‘› ) ,

๐‘–=๐‘›

๐‘–=๐‘›

1 ๐‘›1/๐œ…

.

(20)

lim ๐‘“ (๐‘Ÿ2๐‘› ) = lim ๐‘‡ (๐‘Ÿ2๐‘›+1 ) = lim ๐‘” (๐‘Ÿ2๐‘›+1 )

๐‘›โ†’โˆž

๐‘›โ†’โˆž

๐‘›โ†’โˆž

(21)

= lim ๐‘† (๐‘Ÿ2๐‘›+2 ) = ๐œ. ๐‘›โ†’โˆž

= max {๐‘‘๐‘ (๐‘—2๐‘›โˆ’1 , ๐‘—2๐‘› ) , ๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘›+1 )} .

We show that ๐œ is a common fixed point of ๐‘“, ๐‘”, ๐‘†, and ๐‘‡. Since ๐‘† is continuous, therefore,

If M(๐‘Ÿ2๐‘› , ๐‘Ÿ2๐‘›+1 ) = ๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘›+1 ), then ๐น (๐‘ ๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘›+1 )) โ‰ค ๐น (๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘›+1 )) โˆ’ ๐œ,

๐น (๐‘ ๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘›+1 )) โ‰ค ๐น (๐‘‘๐‘ (๐‘—2๐‘›โˆ’1 , ๐‘—2๐‘› )) โˆ’ ๐œ,

lim ๐‘†๐‘“ (๐‘Ÿ2๐‘› ) = ๐‘† (๐œ) = lim ๐‘†2 (๐‘Ÿ2๐‘›+2 ) .

๐‘›โ†’โˆž

(10)

(22)

๐‘›โ†’โˆž

Since, the pair {๐‘“, ๐‘†} is compatible, so,

which is a contradiction due to ๐น1 . Therefore,

lim ๐‘‘ ๐‘›โ†’โˆž ๐‘

(11)

(๐‘“๐‘† (๐‘Ÿ2๐‘› ) , ๐‘†๐‘“ (๐‘Ÿ2๐‘› )) = 0, (23)

by Lemma 5 lim ๐‘“๐‘† (๐‘Ÿ2๐‘› ) = ๐‘† (๐œ) .

for all ๐‘› โˆˆ N. Similarly,

๐‘›โ†’โˆž

๐น (๐‘ ๐‘‘๐‘ (๐‘—2๐‘›โˆ’1 , ๐‘—2๐‘› )) โ‰ค ๐น (๐‘‘๐‘ (๐‘—2๐‘›โˆ’2 , ๐‘—2๐‘›โˆ’1 )) โˆ’ ๐œ,

(12)

for all ๐‘› โˆˆ N. Hence, from (11) and (12), we have ๐น (๐‘ ๐‘‘๐‘ (๐‘—๐‘› , ๐‘—๐‘›+1 )) โ‰ค ๐น (๐‘‘๐‘ (๐‘—๐‘›โˆ’1 , ๐‘—๐‘› )) โˆ’ ๐œ,

๐œ + ๐น (๐‘ ๐‘› ๐‘๐‘› ) โ‰ค ๐น (๐‘ ๐‘›โˆ’1 ๐‘๐‘›โˆ’1 ) , ๐‘› โˆˆ N.

(14)

Repeating the process, we obtain ๐น (๐‘ ๐‘› ๐‘๐‘› ) โ‰ค ๐น (๐‘0 ) โˆ’ ๐‘›๐œ, ๐‘› โˆˆ N.

(15)

On taking limit ๐‘› โ†’ โˆž in (15), we have lim๐‘›โ†’โˆž ๐น(๐‘ ๐‘› ๐‘๐‘› ) = โˆ’โˆž; due to axiom (๐น2 ) we get lim๐‘›โ†’โˆž ๐‘ ๐‘› ๐‘๐‘› = 0 and (๐น3 ) implies that there exists ๐œ… โˆˆ (0, 1) such that ๐œ…

lim (๐‘ ๐‘› ๐‘๐‘› ) ๐น (๐‘ ๐‘› ๐‘๐‘› ) = 0.

(16)

๐‘›โ†’โˆž

Now put ๐‘Ÿ1 = ๐‘†(๐‘Ÿ2๐‘› ) and ๐‘Ÿ2 = ๐‘Ÿ2๐‘›+1 in (6) and suppose on the contrary that ๐‘‘๐‘ (๐‘†(๐œ), ๐œ) > 0; we obtain ๐น (๐‘‘๐‘ (๐‘“๐‘† (๐‘Ÿ2๐‘› ) , ๐‘” (๐‘Ÿ2๐‘›+1 )))

(13)

for all ๐‘› โˆˆ N. Let ๐‘๐‘› = ๐‘‘๐‘ (๐‘—๐‘› , ๐‘—๐‘›+1 ) for each ๐‘› โˆˆ N, from (13) and axiom (๐น4 ) we have

๐œ…

๐œ…

(๐‘ ๐‘› ๐‘๐‘› ) ๐น (๐‘ ๐‘› ๐‘๐‘› ) โˆ’ (๐‘ ๐‘› ๐‘๐‘› ) ๐น (๐‘0 ) โ‰ค โˆ’ (๐‘ ๐‘› ๐‘๐‘› ) ๐‘›๐œ โ‰ค 0.

where M (๐‘† (๐‘Ÿ2๐‘› ) , ๐‘Ÿ2๐‘›+1 ) = max {๐‘‘๐‘ (๐‘†2 (๐‘Ÿ2๐‘› ) , ๐‘‡ (๐‘Ÿ2๐‘›+1 )) , ๐‘‘๐‘ (๐‘“๐‘† (๐‘Ÿ2๐‘› ) , ๐‘†2 (๐‘Ÿ2๐‘› )) , ๐‘‘๐‘ (๐‘” (๐‘Ÿ2๐‘›+1 ) , ๐‘‡ (๐‘Ÿ2๐‘›+1 )) , ๐‘‘๐‘ (๐‘†2 (๐‘Ÿ2๐‘› ) , ๐‘” (๐‘Ÿ2๐‘›+1 )) + ๐‘‘๐‘ (๐‘“๐‘† (๐‘Ÿ2๐‘› ) , ๐‘‡ (๐‘Ÿ2๐‘›+1 )) 2๐‘ 

On taking limit ๐‘› โ†’ โˆž in (17), we have ๐œ…

lim (๐‘› (๐‘ ๐‘› ๐‘๐‘› ) ) = 0.

๐‘›โ†’โˆž

(18)

This implies there exists ๐‘›1 โˆˆ N, such that ๐‘›(๐‘ ๐‘› ๐‘๐‘› )๐œ… โ‰ค 1 for all ๐‘› โ‰ฅ ๐‘›1 or 1 ๐‘›1/๐œ…

โˆ€๐‘› โ‰ฅ ๐‘›1 .

(19)

(25) }.

Taking the upper limit in (24), we have ๐น (๐‘‘๐‘ (๐‘† (๐œ) , ๐œ)) โ‰ค ๐น (๐‘‘๐‘ (๐‘† (๐œ) , ๐œ)) โˆ’ ๐œ < ๐น (๐‘‘๐‘ (๐‘† (๐œ) , ๐œ)) ,

(17)

(24)

โ‰ค ๐น (M (๐‘† (๐‘Ÿ2๐‘› ) , ๐‘Ÿ2๐‘›+1 )) โˆ’ ๐œ,

From (15), for all ๐‘› โˆˆ N, we obtain

๐‘ ๐‘› ๐‘๐‘› โ‰ค

โˆž

1/๐œ… ) entails The convergence of the series โˆ‘โˆž ๐‘–=๐‘› (1/๐‘– lim๐‘›,๐‘šโ†’โˆž ๐‘‘๐‘ (๐‘—๐‘› , ๐‘—๐‘š ) = 0. Hence {๐‘—๐‘› } is a Cauchy sequence in (๐‘€, ๐‘‘๐‘ , ๐‘ ). Since (๐‘€, ๐‘‘๐‘ , ๐‘ ) is a complete ๐‘-metric space, there exists ๐œ โˆˆ ๐‘€ such that lim๐‘›โ†’โˆž ๐‘‘๐‘ (๐‘—๐‘› , ๐œ) = 0. Also we have

๐‘‘๐‘ (๐‘—2๐‘›โˆ’1 , ๐‘—2๐‘›+1 ) + ๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘› ) } 2๐‘ 

๐œ…

โˆž

๐‘‘๐‘ (๐‘—๐‘› , ๐‘—๐‘š ) โ‰ค โˆ‘ ๐‘ ๐‘– ๐‘๐‘– โ‰ค โˆ‘๐‘ ๐‘– ๐‘๐‘– โ‰ค โˆ‘

(26)

a contradiction; hence, ๐‘‘๐‘ (๐‘†(๐œ), ๐œ) = 0 implies ๐‘†(๐œ) = ๐œ. Again since ๐‘‡ is continuous, therefore, lim ๐‘‡๐‘” (๐‘Ÿ2๐‘›+1 ) = ๐‘‡ (๐œ) = lim ๐‘‡2 (๐‘Ÿ2๐‘›+1 ) .

๐‘›โ†’โˆž

๐‘›โ†’โˆž

(27)

Since the pair {๐‘”, ๐‘‡} is compatible, so, lim ๐‘‘ ๐‘›โ†’โˆž ๐‘

(๐‘”๐‘‡ (๐‘Ÿ2๐‘›+1 ) , ๐‘‡๐‘” (๐‘Ÿ2๐‘›+1 )) = 0,

by Lemma 5 lim ๐‘”๐‘‡ (๐‘Ÿ2๐‘›+1 ) = ๐‘‡ (๐œ) . ๐‘›โ†’โˆž

(28)

4

Journal of Function Spaces

Now put ๐‘Ÿ2 = ๐‘‡(๐‘Ÿ2๐‘›+1 ) and ๐‘Ÿ1 = ๐‘Ÿ2๐‘› in (6) and suppose on the contrary that ๐‘‘๐‘ (๐œ, ๐‘‡(๐œ)) > 0; we obtain ๐น (๐‘‘๐‘ (๐‘“ (๐‘Ÿ2๐‘› ) , ๐‘”๐‘‡ (๐‘Ÿ2๐‘›+1 )))

< ๐น (๐‘‘๐‘ (๐œ, ๐‘” (๐œ))) ,

(37)

a contradiction; hence, ๐‘‘๐‘ (๐‘”(๐œ), ๐œ) = 0 which then implies ๐‘”(๐œ) = ๐œ. Hence, ๐œ proves to be a common fixed point of the four maps ๐‘“, ๐‘”, ๐‘†, and ๐‘‡. Also ๐œ is unique; indeed if ๐œ” is another fixed point of ๐‘“, ๐‘”, ๐‘†, and ๐‘‡, then from (6), we have

where M (๐‘Ÿ2๐‘› , ๐‘‡ (๐‘Ÿ2๐‘›+1 )) = max {๐‘‘๐‘ (๐‘† (๐‘Ÿ2๐‘› ) , ๐‘‡2 (๐‘Ÿ2๐‘›+1 )) ,

๐น (๐‘‘๐‘ (๐œ, ๐œ”)) = ๐น (๐‘‘๐‘ (๐‘† (๐œ) , ๐‘‡ (๐œ”)))

2

๐‘‘๐‘ (๐‘“ (๐‘Ÿ2๐‘› ) , ๐‘† (๐‘Ÿ2๐‘› )) , ๐‘‘๐‘ (๐‘”๐‘‡ (๐‘Ÿ2๐‘›+1 ) , ๐‘‡ (๐‘Ÿ2๐‘›+1 )) , 2๐‘ 

๐น (๐‘‘๐‘ (๐œ, ๐‘” (๐œ))) โ‰ค ๐น (๐‘‘๐‘ (๐œ, ๐‘” (๐œ))) โˆ’ ๐œ

(29)

โ‰ค ๐น (M (๐‘Ÿ2๐‘› , ๐‘‡ (๐‘Ÿ2๐‘›+1 ))) โˆ’ ๐œ,

๐‘‘๐‘ (๐‘† (๐‘Ÿ2๐‘› ) , ๐‘”๐‘‡ (๐‘Ÿ2๐‘›+1 )) + ๐‘‘๐‘ (๐‘“ (๐‘Ÿ2๐‘› ) , ๐‘‡2 (๐‘Ÿ2๐‘›+1 ))

This implies that

(30)

โ‰ค ๐น (M (๐œ, ๐œ”)) โˆ’ ๐œ,

(38)

where

}.

M (๐œ, ๐œ”) = max {๐‘‘๐‘ (๐‘† (๐œ) , ๐‘‡ (๐œ”)) , ๐‘‘๐‘ (๐‘“ (๐œ) , ๐‘† (๐œ)) ,

Taking the upper limit in (29), we have ๐น (๐‘‘๐‘ (๐œ, ๐‘‡ (๐œ))) โ‰ค ๐น (๐‘‘๐‘ (๐œ, ๐‘‡ (๐œ))) โˆ’ ๐œ < ๐น (๐‘‘๐‘ (๐œ, ๐‘‡ (๐œ))) ,

๐‘‘๐‘ (๐‘” (๐œ”) , ๐‘‡ (๐œ”)) , (31)

a contradiction; hence, ๐‘‘๐‘ (๐œ, ๐‘‡(๐œ)) = 0 which then implies ๐‘‡(๐œ) = ๐œ. Now assuming ๐‘‘๐‘ (๐‘“(๐œ), ๐œ) > 0 on the contrary, from (6) we get ๐น (๐‘‘๐‘ (๐‘“ (๐œ) , ๐‘” (๐‘Ÿ2๐‘›+1 ))) โ‰ค ๐น (M (๐œ, ๐‘Ÿ2๐‘›+1 )) โˆ’ ๐œ,

(32)

where

๐‘‘๐‘ (๐‘† (๐œ) , ๐‘” (๐œ”)) + ๐‘‘๐‘ (๐‘“ (๐œ) , ๐‘‡ (๐œ”)) }. 2๐‘  Thus, from (38), we have ๐น (๐‘‘๐‘ (๐œ, ๐œ”)) < ๐น (๐‘‘๐‘ (๐œ, ๐œ”)) ,

(33)

๐‘‘๐‘ (๐‘† (๐œ) , ๐‘” (๐‘Ÿ2๐‘›+1 )) + ๐‘‘๐‘ (๐‘“ (๐œ) , ๐‘‡ (๐‘Ÿ2๐‘›+1 )) }. 2๐‘ 

which is a contradiction. Hence, ๐œ = ๐œ” and ๐œ is a unique common fixed point of the four maps ๐‘“, ๐‘”, ๐‘†, and ๐‘‡.

Example 7. Let ๐‘€ = [0, 1] and define ๐‘‘๐‘ : ๐‘€ ร— ๐‘€ โ†’ R+0 by ๐‘‘๐‘ (๐‘Ÿ1 , ๐‘Ÿ2 ) = |๐‘Ÿ1 โˆ’ ๐‘Ÿ2 |2 , so (๐‘€, ๐‘‘๐‘ , 2) is a complete ๐‘-metric space. Define the mappings ๐‘“, ๐‘”, ๐‘†, ๐‘‡ : ๐‘€ โ†’ ๐‘€, for all ๐‘Ÿ โˆˆ ๐‘€ by ๐‘Ÿ 16 ๐‘“ (๐‘Ÿ) = ( ) , 3

Taking the upper limit in (32) and using the fact that ๐‘†(๐œ) = ๐‘‡(๐œ) = ๐œ, we have ๐น (๐‘‘๐‘ (๐‘“ (๐œ) , ๐œ)) โ‰ค ๐น (๐‘‘๐‘ (๐‘“ (๐œ) , ๐œ)) โˆ’ ๐œ

๐‘Ÿ 8 ๐‘” (๐‘Ÿ) = ( ) , 3

(34)

๐‘Ÿ 8 ๐‘† (๐‘Ÿ) = ( ) , 3

a contradiction; hence, ๐‘‘๐‘ (๐‘“(๐œ), ๐œ) = 0 which then implies ๐‘“(๐œ) = ๐œ. Finally, assume on the contrary ๐‘‘๐‘ (๐œ, ๐‘”(๐œ)) > 0. From (6) and the fact that ๐‘†(๐œ) = ๐‘‡(๐œ) = ๐‘“(๐œ) = ๐œ, we obtain

๐‘Ÿ 4 ๐‘‡ (๐‘Ÿ) = ( ) . 3

< ๐น (๐‘‘๐‘ (๐‘“ (๐œ) , ๐œ)) ,

๐น (๐‘‘๐‘ (๐œ, ๐‘” (๐œ))) = ๐น (๐‘‘๐‘ (๐‘“ (๐œ) , ๐‘” (๐œ))) โ‰ค ๐น (M (๐œ, ๐œ)) โˆ’ ๐œ,

(35)

lim ๐‘“ (๐‘Ÿ๐‘› ) = lim ๐‘† (๐‘Ÿ๐‘› ) = ๐‘ก,

๐‘›โ†’โˆž

๐‘›โ†’โˆž

for some ๐‘ก โˆˆ ๐‘€,

(42)

then

M (๐œ, ๐œ) = max {๐‘‘๐‘ (๐‘† (๐œ) , ๐‘‡ (๐œ)) , ๐‘‘๐‘ (๐‘“ (๐œ) , ๐‘† (๐œ)) ,

๐‘‘๐‘ (๐‘† (๐œ) , ๐‘” (๐œ)) + ๐‘‘๐‘ (๐‘“ (๐œ) , ๐‘‡ (๐œ)) }. 2๐‘ 

(41)

Clearly, ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ are self-mappings complying with ๐‘“(๐‘€) โŠ† ๐‘‡(๐‘€), ๐‘”(๐‘€) โŠ† ๐‘†(๐‘€). We note that the pair {๐‘“, ๐‘†} is compatible. If {๐‘Ÿ๐‘› } is a sequence in ๐‘€ satisfying

where

๐‘‘๐‘ (๐‘” (๐œ) , ๐‘‡ (๐œ)) ,

(40)

The following example explains Theorem 6.

M (๐œ, ๐‘Ÿ2๐‘›+1 ) = max {๐‘‘๐‘ (๐‘† (๐œ) , ๐‘‡ (๐‘Ÿ2๐‘›+1 )) , ๐‘‘๐‘ (๐‘“ (๐œ) , ๐‘† (๐œ)) , ๐‘‘๐‘ (๐‘” (๐‘Ÿ2๐‘›+1 ) , ๐‘‡ (๐‘Ÿ2๐‘›+1 )) ,

(39)

๓ต„จ ๓ต„จ ๓ต„จ2 ๓ต„จ2 lim ๓ต„จ๓ต„จ๐‘“ (๐‘Ÿ๐‘› ) โˆ’ ๐‘ก๓ต„จ๓ต„จ๓ต„จ = lim ๓ต„จ๓ต„จ๓ต„จ๐‘† (๐‘Ÿ๐‘› ) โˆ’ ๐‘ก๓ต„จ๓ต„จ๓ต„จ = 0, ๐‘›โ†’โˆž

๐‘›โ†’โˆž ๓ต„จ

(36)

(43)

and equivalently ๓ต„จ๓ต„จ ๐‘Ÿ 16 ๓ต„จ๓ต„จ2 ๓ต„จ๓ต„จ ๐‘Ÿ 8 ๓ต„จ๓ต„จ2 ๓ต„จ ๓ต„จ ๓ต„จ ๓ต„จ lim ๓ต„จ๓ต„จ๓ต„จ( ๐‘› ) โˆ’ ๐‘ก๓ต„จ๓ต„จ๓ต„จ = lim ๓ต„จ๓ต„จ๓ต„จ( ๐‘› ) โˆ’ ๐‘ก๓ต„จ๓ต„จ๓ต„จ = 0 ๐‘›โ†’โˆž ๓ต„จ 3 ๐‘›โ†’โˆž ๓ต„จ 3 ๓ต„จ ๓ต„จ๓ต„จ ๓ต„จ ๓ต„จ ๓ต„จ

(44)

Journal of Function Spaces

5

implies

holds, where

๓ต„จ2 ๓ต„จ2 ๓ต„จ ๓ต„จ 16 8 lim ๓ต„จ๓ต„จ(๐‘Ÿ๐‘› ) โˆ’ 316 ๐‘ก๓ต„จ๓ต„จ๓ต„จ๓ต„จ = lim ๓ต„จ๓ต„จ๓ต„จ๓ต„จ(๐‘Ÿ๐‘› ) โˆ’ 38 ๐‘ก๓ต„จ๓ต„จ๓ต„จ๓ต„จ = 0. ๐‘›โ†’โˆž

๐‘›โ†’โˆž ๓ต„จ๓ต„จ

1/16

(45)

๓ต„จ ๓ต„จ2 lim ๐‘‘ (๐‘“๐‘† (๐‘Ÿ๐‘› ) , ๐‘†๐‘“ (๐‘Ÿ๐‘› )) = lim ๓ต„จ๓ต„จ๓ต„จ๐‘“๐‘† (๐‘Ÿ๐‘› ) โˆ’ ๐‘†๐‘“ (๐‘Ÿ๐‘› )๓ต„จ๓ต„จ๓ต„จ ๐‘›โ†’โˆž ๐‘ ๐‘›โ†’โˆž ๓ต„จ ๓ต„จ2 = ๓ต„จ๓ต„จ๓ต„จ๐‘“ (๐‘ก) โˆ’ ๐‘† (๐‘ก)๓ต„จ๓ต„จ๓ต„จ = |0 โˆ’ 0|2 = 0

(46)

for ๐‘ก = 0 โˆˆ ๐‘€.

๓ต„จ ๓ต„จ2 ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )) = ๓ต„จ๓ต„จ๓ต„จ๐‘“ (๐‘Ÿ1 ) โˆ’ ๐‘” (๐‘Ÿ2 )๓ต„จ๓ต„จ๓ต„จ 2 ๓ต„จ๓ต„จ ๐‘Ÿ 16 ๐‘Ÿ 8 ๓ต„จ๓ต„จ๓ต„จ ๓ต„จ = ๓ต„จ๓ต„จ๓ต„จ( 1 ) โˆ’ ( 2 ) ๓ต„จ๓ต„จ๓ต„จ ๓ต„จ๓ต„จ 3 3 ๓ต„จ๓ต„จ 2

1 1 2 โ‰ค( + ) ๐‘‘๐‘ (๐‘‡ (๐‘Ÿ1 ) , ๐‘† (๐‘Ÿ2 )) 6561 81 =

then ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ have a unique common fixed point ๐œ provided ๐‘†, ๐‘‡ are continuous and pairs {๐‘“, ๐‘†}, {๐‘”, ๐‘‡} are compatible.

Theorem 9 (Sehgal type). Let (๐‘€, ๐‘‘๐‘ , ๐‘ ) be a complete ๐‘metric space and ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ are self-mappings on (๐‘€, ๐‘‘๐‘ , ๐‘ ) such that ๐‘“(๐‘€) โŠ† ๐‘‡(๐‘€), ๐‘”(๐‘€) โŠ† ๐‘†(๐‘€). If, for all ๐‘Ÿ1 , ๐‘Ÿ2 โˆˆ ๐‘€, for some ๐น โˆˆ ฮ” ๐น๐‘  ๐œ > 0, the inequality + ๐น (๐‘ ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 ))) โ‰ค ๐น (M4 (๐‘Ÿ1 , ๐‘Ÿ2 )))

(47)

(53)

with ๐‘˜ โˆˆ [0, ๐‘ ) , then ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ have a unique common fixed point ๐œ provided ๐‘†, ๐‘‡ are continuous and pairs {๐‘“, ๐‘†}, {๐‘”, ๐‘‡} are compatible.

The above inequality can be written as

Theorem 10 generalizes the result presented by Cยดฤฑrยดฤฑc [28].

(48)

โ‰ค ln (M (๐‘Ÿ1 , ๐‘Ÿ2 )) . Define the function ๐น : R+ โ†’ R by ๐น(๐‘Ÿ) = ln(๐‘Ÿ), for all ๐‘Ÿ โˆˆ ๐‘…+ > 0. Hence, for all ๐‘Ÿ1 , ๐‘Ÿ2 โˆˆ ๐‘€ such that ๐‘‘๐‘ (๐‘“(๐‘Ÿ1 ), ๐‘”(๐‘Ÿ2 )) > 0, ๐œ = ln(43046721/6724) we obtain ๐œ + ๐น (๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 ))) โ‰ค ๐น (M (๐‘Ÿ1 , ๐‘Ÿ2 )) .

M4 (๐‘Ÿ1 , ๐‘Ÿ2 ) = ๐‘˜ max {๐‘‘๐‘ (๐‘† (๐‘Ÿ1 ) , ๐‘‡ (๐‘Ÿ2 )) , ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘† (๐‘Ÿ1 )) , ๐‘‘๐‘ (๐‘” (๐‘Ÿ2 ) , ๐‘‡ (๐‘Ÿ2 ))} ,

6724 ๐‘‘ (๐‘‡ (๐‘Ÿ1 ) , ๐‘† (๐‘Ÿ2 )) 43046721 ๐‘

43046721 ) + ln (๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 ))) 6724

(52)

holds, where

6724 โ‰ค M (๐‘Ÿ1 , ๐‘Ÿ2 ) . 43046721

ln (

with ๐‘˜ โˆˆ [0, ๐‘ ) ,

(๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )) > 0 implies ๐œ 2 ๓ต„จ๓ต„จ ๐‘Ÿ 8 ๐‘Ÿ 4 ๓ต„จ๓ต„จ๓ต„จ ๓ต„จ๓ต„จ 1 ๓ต„จ๓ต„จ( ) โˆ’ ( 2 ) ๓ต„จ๓ต„จ๓ต„จ ๓ต„จ๓ต„จ 3 3 ๓ต„จ๓ต„จ

(51)

Theorem 9 generalizes the result presented by Sehgal [27].

Similarly, the pair {๐‘”, ๐‘‡} is compatible. Now for each ๐‘Ÿ1 , ๐‘Ÿ2 โˆˆ ๐‘€, consider

๐‘Ÿ1 8 ๐‘Ÿ 4 ) + ( 2) ] 3 3

= ๐‘˜ max {๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘† (๐‘Ÿ1 )) , ๐‘‘๐‘ (๐‘” (๐‘Ÿ2 ) , ๐‘‡ (๐‘Ÿ2 ))} ,

1/8

Uniqueness of limit gives ๐‘ก = ๐‘ก which implies ๐‘ก = 0, 1. Due to the continuity of ๐‘“, ๐‘† we have

= [(

M3 (๐‘Ÿ1 , ๐‘Ÿ2 )

(49)

Thus, contractive condition (6) is satisfied for all ๐‘Ÿ1 , ๐‘Ÿ2 โˆˆ ๐‘€. Hence, all the hypotheses of Theorem 6 are satisfied; note that ๐‘“, ๐‘”, ๐‘†, ๐‘‡ have a unique common fixed point ๐‘Ÿ = 0.

Theorem 10. Let (๐‘€, ๐‘‘๐‘ , ๐‘ ) be a complete ๐‘-metric space and ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ are self-mappings on (๐‘€, ๐‘‘๐‘ , ๐‘ ) such that ๐‘“(๐‘€) โŠ† ๐‘‡(๐‘€), ๐‘”(๐‘€) โŠ† ๐‘†(๐‘€). If, for all ๐‘Ÿ1 , ๐‘Ÿ2 โˆˆ ๐‘€, for some ๐น โˆˆ ฮ” ๐น๐‘  ๐œ > 0, the inequality (๐น (๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 ))) > 0 implies ๐œ + ๐น (๐‘ ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 ))) โ‰ค ๐น (M5 (๐‘Ÿ1 , ๐‘Ÿ2 )))

(54)

holds, where for all ๐‘˜ โˆˆ [0, ๐‘ ) M5 (๐‘Ÿ1 , ๐‘Ÿ2 ) = ๐‘˜ max {๐‘‘๐‘ (๐‘† (๐‘Ÿ1 ) , ๐‘‡ (๐‘Ÿ2 )) , ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘† (๐‘Ÿ1 )) , ๐‘‘๐‘ (๐‘” (๐‘Ÿ2 ) , ๐‘‡ (๐‘Ÿ2 )) ,

(55)

๐‘‘๐‘ (๐‘” (๐‘Ÿ2 ) , ๐‘† (๐‘Ÿ1 )) , ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘‡ (๐‘Ÿ2 ))} ,

The following theorems can easily be obtained by chasing the proof of Theorem 6. Theorem 8 generalizes the result presented by Bianchini [26].

then ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ have a unique common fixed point ๐œ provided ๐‘†, ๐‘‡ are continuous and pairs {๐‘“, ๐‘†}, {๐‘”, ๐‘‡} are compatible.

Theorem 8 (Bianchini type). Let (๐‘€, ๐‘‘๐‘ , ๐‘ ) be a complete ๐‘metric space and ๐‘“, ๐‘”, ๐‘†, ๐‘‡ are self-mappings on (๐‘€, ๐‘‘๐‘ , ๐‘ ) such that ๐‘“(๐‘€) โŠ† ๐‘‡(๐‘€), ๐‘”(๐‘€) โŠ† ๐‘†(๐‘€). If, for all ๐‘Ÿ1 , ๐‘Ÿ2 โˆˆ ๐‘€, for some ๐น โˆˆ ฮ” ๐น๐‘  ๐œ > 0, the inequality

Theorem 11. Let (๐‘€, ๐‘‘๐‘ , ๐‘ ) be a complete ๐‘-metric space and ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ are self-mappings on (๐‘€, ๐‘‘๐‘ , ๐‘ ) such that ๐‘“(๐‘€) โŠ† ๐‘‡(๐‘€), ๐‘”(๐‘€) โŠ† ๐‘†(๐‘€). If, for all ๐‘Ÿ1 , ๐‘Ÿ2 โˆˆ ๐‘€, for some ๐น โˆˆ ฮ” ๐น๐‘  ๐œ > 0, the inequality

(๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )) > 0 implies ๐œ + ๐น (๐‘ ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 ))) โ‰ค ๐น (M3 (๐‘Ÿ1 , ๐‘Ÿ2 )))

(50)

(๐น (๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 ))) > 0 implies ๐œ + ๐น (๐‘ ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 ))) โ‰ค ๐น (M6 (๐‘Ÿ1 , ๐‘Ÿ2 )))

(56)

6

Journal of Function Spaces

holds, where for all ๐‘˜ โˆˆ [0, ๐‘ )

holds, where M1 (๐‘Ÿ1 , ๐‘Ÿ2 ) = ๐‘Ž1 ๐‘‘๐‘ (๐‘† (๐‘Ÿ1 ) , ๐‘‡ (๐‘Ÿ2 )) + ๐‘Ž2 ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘† (๐‘Ÿ1 ))

M6 (๐‘Ÿ1 , ๐‘Ÿ2 ) = ๐‘˜ max {๐‘‘๐‘ (๐‘† (๐‘Ÿ1 ) , ๐‘‡ (๐‘Ÿ2 )) , ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘† (๐‘Ÿ1 )) + ๐‘‘๐‘ (๐‘” (๐‘Ÿ2 ) , ๐‘‡ (๐‘Ÿ2 )) , 2

+ ๐‘Ž3 ๐‘‘๐‘ (๐‘” (๐‘Ÿ2 ) , ๐‘‡ (๐‘Ÿ2 ))

(57)

then ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ have a unique common fixed point ๐œ provided ๐‘†, ๐‘‡ are continuous and pairs {๐‘“, ๐‘†}, {๐‘”, ๐‘‡} are compatible. Theorem 12. Let (๐‘€, ๐‘‘๐‘ , ๐‘ ) be a complete ๐‘-metric space and ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ are self-mappings on (๐‘€, ๐‘‘๐‘ , ๐‘ ) such that ๐‘“(๐‘€) โŠ† ๐‘‡(๐‘€), ๐‘”(๐‘€) โŠ† ๐‘†(๐‘€). If for all ๐‘Ÿ1 , ๐‘Ÿ2 โˆˆ ๐‘€, ๐‘˜ โˆˆ [0, ๐‘ ) the inequality (58)

holds, where M (๐‘Ÿ1 , ๐‘Ÿ2 ) = max {๐‘‘๐‘ (๐‘† (๐‘Ÿ1 ) , ๐‘‡ (๐‘Ÿ2 )) , ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘† (๐‘Ÿ1 )) , ๐‘‘๐‘ (๐‘” (๐‘Ÿ2 ) , ๐‘‡ (๐‘Ÿ2 )) ,

(64)

M1 (๐‘Ÿ2๐‘› , ๐‘Ÿ2๐‘›+1 ) = ๐‘Ž1 ๐‘‘๐‘ (๐‘† (๐‘Ÿ2๐‘› ) , ๐‘‡ (๐‘Ÿ2๐‘›+1 )) + ๐‘Ž2 ๐‘‘๐‘ (๐‘“ (๐‘Ÿ2๐‘› ) , ๐‘† (๐‘Ÿ2๐‘› )) + ๐‘Ž3 ๐‘‘๐‘ (๐‘” (๐‘Ÿ2๐‘›+1 ) , ๐‘‡ (๐‘Ÿ2๐‘›+1 ))

(60)

thus, if ๐‘‘๐‘ (๐‘“(๐‘Ÿ1 ), ๐‘”(๐‘Ÿ2 )) > 0, we have (61)

where ๐œ = ln(๐‘ /๐‘˜) > 0; thus, the contractive condition (58) reduces to (6) with ๐น(๐‘Ÿ) = ln(๐‘Ÿ). Hence, Theorem 6 is a generalization of [29, Theorem 3.1].

3. Hardy and Rogers Type Fixed Point Theorem

+ ๐‘Ž4 [๐‘‘๐‘ (๐‘† (๐‘Ÿ2๐‘› ) , ๐‘” (๐‘Ÿ2๐‘›+1 )) + ๐‘‘๐‘ (๐‘“ (๐‘Ÿ2๐‘› ) , ๐‘‡ (๐‘Ÿ2๐‘›+1 ))] = ๐‘Ž1 ๐‘‘๐‘ (๐‘—2๐‘›โˆ’1 , ๐‘—2๐‘› )

(65)

+ ๐‘Ž2 ๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘›โˆ’1 ) + ๐‘Ž3 ๐‘‘๐‘ (๐‘—2๐‘›+1 , ๐‘—2๐‘› ) + ๐‘Ž4 [๐‘‘๐‘ (๐‘—2๐‘›โˆ’1 , ๐‘—2๐‘›+1 ) + ๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘› )] = (๐‘Ž1 + ๐‘Ž2 + ๐‘ ๐‘Ž4 ) ๐‘‘๐‘ (๐‘—2๐‘›โˆ’1 , ๐‘—2๐‘› ) + (๐‘Ž3 + ๐‘ ๐‘Ž4 ) ๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘›+1 ) .

In this section, we set up a fixed point theorem for four self-maps satisfying Hardy and Rogers type ๐น-contraction. We give an example to validate this theorem and discuss its consequences. Theorem 13. Let (๐‘€, ๐‘‘๐‘ , ๐‘ ) be a complete ๐‘-metric space and ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ are self-mappings on (๐‘€, ๐‘‘๐‘ , ๐‘ ) such that ๐‘“(๐‘€) โŠ† ๐‘‡(๐‘€), ๐‘”(๐‘€) โŠ† ๐‘†(๐‘€). If, for all ๐‘Ÿ1 , ๐‘Ÿ2 โˆˆ ๐‘€, for some ๐น โˆˆ ฮ” ๐น๐‘  ๐œ > 0, the inequality + ๐น (๐‘ ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 ))) โ‰ค ๐น (M1 (๐‘Ÿ1 , ๐‘Ÿ2 )))

โ‰ค ๐น (M1 (๐‘Ÿ2๐‘› , ๐‘Ÿ2๐‘›+1 )) โˆ’ ๐œ, for all ๐‘› โˆˆ N โˆช {0}, where

Proof. Since, for all ๐‘Ÿ1 , ๐‘Ÿ2 โˆˆ ๐‘€, we have

(๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )) > 0 implies ๐œ

Proof. Let ๐‘Ÿ0 โˆˆ ๐‘€. As ๐‘“(๐‘€) โŠ† ๐‘‡(๐‘€), there exists ๐‘Ÿ1 โˆˆ ๐‘€ such that ๐‘“(๐‘Ÿ0 ) = ๐‘‡(๐‘Ÿ1 ). Since ๐‘”(๐‘Ÿ1 ) โˆˆ ๐‘†(๐‘€), we can choose ๐‘Ÿ2 โˆˆ ๐‘€ such that ๐‘”(๐‘Ÿ1 ) = ๐‘†(๐‘Ÿ2 ). In general ๐‘Ÿ2๐‘›+1 and ๐‘Ÿ2๐‘›+2 are chosen in ๐‘€ such that ๐‘“(๐‘Ÿ2๐‘› ) = ๐‘‡(๐‘Ÿ2๐‘›+1 ) and ๐‘”(๐‘Ÿ2๐‘›+1 ) = ๐‘†(๐‘Ÿ2๐‘›+2 ). Define a sequence {๐‘—๐‘› } in ๐‘€ such that ๐‘—2๐‘› = ๐‘“(๐‘Ÿ2๐‘› ) = ๐‘‡(๐‘Ÿ2๐‘›+1 ) and ๐‘—2๐‘›+1 = ๐‘”(๐‘Ÿ2๐‘›+1 ) = ๐‘†(๐‘Ÿ2๐‘›+2 ) for all ๐‘› โ‰ฅ 0; we show that {๐‘—๐‘› } is a Cauchy sequence. Assume that ๐‘‘๐‘ (๐‘“(๐‘Ÿ2๐‘› ), ๐‘”(๐‘Ÿ2๐‘›+1 )) > 0; then from contractive condition (62), we get

(59)

then ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ have a unique common fixed point ๐œ provided ๐‘†, ๐‘‡ are continuous and pairs {๐‘“, ๐‘†}, {๐‘”, ๐‘‡} are compatible.

๐œ + ln (๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 ))) โ‰ค ln (M (๐‘Ÿ1 , ๐‘Ÿ2 )) ,

then ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ have a unique common fixed point ๐œ provided ๐‘†, ๐‘‡ are continuous and pairs {๐‘“, ๐‘†}, {๐‘”, ๐‘‡} are compatible.

๐น (๐‘ ๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘›+1 )) = ๐น (๐‘ ๐‘‘๐‘ (๐‘“ (๐‘Ÿ2๐‘› ) , ๐‘” (๐‘Ÿ2๐‘›+1 )))

๐‘‘๐‘ (๐‘† (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )) + ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘‡ (๐‘Ÿ2 )) }, 2๐‘ 

๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )) โ‰ค ๐‘˜M (๐‘Ÿ1 , ๐‘Ÿ2 ) ,

(63)

๐‘ค๐‘–๐‘กโ„Ž ๐‘Ž๐‘– โ‰ฅ 0 (๐‘– = 1, 2, 3, 4) ๐‘ ๐‘ข๐‘โ„Ž ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + 2๐‘ ๐‘Ž4 = 1,

๐‘‘๐‘ (๐‘” (๐‘Ÿ2 ) , ๐‘† (๐‘Ÿ1 )) + ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘‡ (๐‘Ÿ2 )) }, 2๐‘ 

๐‘ ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )) โ‰ค ๐‘˜M (๐‘Ÿ1 , ๐‘Ÿ2 )

+ ๐‘Ž4 [๐‘‘๐‘ (๐‘† (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )) + ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘‡ (๐‘Ÿ2 ))]

(62)

Now from (64) we have ๐น (๐‘ ๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘›+1 )) โ‰ค ๐น ((๐‘Ž1 + ๐‘Ž2 + ๐‘ ๐‘Ž4 ) ๐‘‘๐‘ (๐‘—2๐‘›โˆ’1 , ๐‘—2๐‘› ) + (๐‘Ž3 + ๐‘ ๐‘Ž4 ) ๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘›+1 )) โˆ’ ๐œ. Since ๐น is strictly increasing, (66) implies ๐‘ ๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘›+1 ) โ‰ค (๐‘Ž1 + ๐‘Ž2 + ๐‘ ๐‘Ž4 ) ๐‘‘๐‘ (๐‘—2๐‘›โˆ’1 , ๐‘—2๐‘› ) + (๐‘Ž3 + ๐‘ ๐‘Ž4 ) ๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘›+1 ) ,

(66)

Journal of Function Spaces

7 1/๐œ… ) entails The convergence of the series โˆ‘โˆž ๐‘–=๐‘› (1/๐‘– lim๐‘›,๐‘šโ†’โˆž ๐‘‘๐‘ (๐‘—๐‘› , ๐‘—๐‘š ) = 0. Hence {๐‘—๐‘› } is a Cauchy sequence in (๐‘€, ๐‘‘๐‘ , ๐‘ ). Since (๐‘€, ๐‘‘๐‘ , ๐‘ ) is a complete ๐‘-metric space, there exists ๐œ โˆˆ ๐‘€ such that lim๐‘›โ†’โˆž ๐‘‘๐‘ (๐‘—๐‘› , ๐œ) = 0. Also we have

(1 โˆ’ ๐‘Ž3 โˆ’ ๐‘ ๐‘Ž4 ) ๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘›+1 ) < (๐‘  โˆ’ ๐‘Ž3 โˆ’ ๐‘ ๐‘Ž4 ) ๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘›+1 ) โ‰ค (๐‘Ž1 + ๐‘Ž2 + ๐‘ ๐‘Ž4 ) ๐‘‘๐‘ (๐‘—2๐‘›โˆ’1 , ๐‘—2๐‘› ) ,

lim ๐‘“ (๐‘Ÿ2๐‘› ) = lim ๐‘‡ (๐‘Ÿ2๐‘›+1 ) = lim ๐‘” (๐‘Ÿ2๐‘›+1 )

๐‘Ž1 + ๐‘Ž2 + ๐‘ ๐‘Ž4 ๐‘‘ (๐‘— , ๐‘— ) . 1 โˆ’ ๐‘Ž3 โˆ’ ๐‘ ๐‘Ž4 ๐‘ 2๐‘›โˆ’1 2๐‘›

๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘›+1 ) โ‰ค

๐‘›โ†’โˆž

๐‘›โ†’โˆž

= lim ๐‘† (๐‘Ÿ2๐‘›+2 ) = ๐œ.

We show that ๐œ is a common fixed point of ๐‘“, ๐‘”, ๐‘†, and ๐‘‡. Since ๐‘† is continuous, therefore,

Since ๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 + 2๐‘ ๐‘Ž4 = 1, therefore ๐‘Ž1 + ๐‘Ž2 + ๐‘ ๐‘Ž4 ๐‘‘ (๐‘— , ๐‘— ) 1 โˆ’ ๐‘Ž3 โˆ’ ๐‘ ๐‘Ž4 ๐‘ 2๐‘›โˆ’1 2๐‘›

(68)

= ๐‘‘๐‘ (๐‘—2๐‘›โˆ’1 , ๐‘—2๐‘› ) .

lim ๐‘†๐‘“ (๐‘Ÿ2๐‘› ) = ๐‘† (๐œ) = lim ๐‘†2 (๐‘Ÿ2๐‘›+2 ) .

๐‘›โ†’โˆž

lim ๐‘‘ ๐‘›โ†’โˆž ๐‘

๐น (๐‘ ๐‘‘๐‘ (๐‘—2๐‘›โˆ’1 , ๐‘—2๐‘› )) โ‰ค ๐น (๐‘‘๐‘ (๐‘—2๐‘›โˆ’2 , ๐‘—2๐‘›โˆ’1 )) โˆ’ ๐œ,

(70)

(71)

for all ๐‘› โˆˆ N. Let ๐‘๐‘› = ๐‘‘๐‘ (๐‘—๐‘› , ๐‘—๐‘›+1 ) for each ๐‘› โˆˆ N; from (71) and axiom (๐น4 ) we have ๐œ + ๐น (๐‘ ๐‘› ๐‘๐‘› ) โ‰ค ๐น (๐‘ ๐‘›โˆ’1 ๐‘๐‘›โˆ’1 ) , ๐‘› โˆˆ N.

(72)

Now put ๐‘Ÿ1 = ๐‘†(๐‘Ÿ2๐‘› ) and ๐‘Ÿ2 = ๐‘Ÿ2๐‘›+1 in (62) and suppose on the contrary that ๐‘‘๐‘ (๐‘†(๐œ), ๐œ) > 0; we obtain ๐น (๐‘‘๐‘ (๐‘“๐‘† (๐‘Ÿ2๐‘› ) , ๐‘” (๐‘Ÿ2๐‘›+1 ))) โ‰ค ๐น (M1 (๐‘† (๐‘Ÿ2๐‘› ) , ๐‘Ÿ2๐‘›+1 )) โˆ’ ๐œ,

๐น (๐‘ ๐‘› ๐‘๐‘› ) โ‰ค ๐น (๐‘0 ) โˆ’ ๐‘›๐œ, ๐‘› โˆˆ N.

(73)

On taking limit ๐‘› โ†’ โˆž in (73), we have lim๐‘›โ†’โˆž ๐น(๐‘ ๐‘› ๐‘๐‘› ) = โˆ’โˆž; due to axiom (๐น2 ) we get lim๐‘›โ†’โˆž ๐‘ ๐‘› ๐‘๐‘› = 0 and (๐น3 ) implies that there exists ๐œ… โˆˆ (0, 1) such that ๐œ…

lim (๐‘ ๐‘› ๐‘๐‘› ) ๐น (๐‘ ๐‘› ๐‘๐‘› ) = 0.

(74)

๐‘›โ†’โˆž

M1 (๐‘† (๐‘Ÿ2๐‘› ) , ๐‘Ÿ2๐‘›+1 ) = ๐‘Ž1 ๐‘‘๐‘ (๐‘†2 (๐‘Ÿ2๐‘› ) , ๐‘‡ (๐‘Ÿ2๐‘›+1 )) + ๐‘Ž2 ๐‘‘๐‘ (๐‘“๐‘† (๐‘Ÿ2๐‘› ) , ๐‘†2 (๐‘Ÿ2๐‘› ))

๐œ…

๐œ…

+ ๐‘‘๐‘ (๐‘“๐‘† (๐‘Ÿ2๐‘› ) , ๐‘‡ (๐‘Ÿ2๐‘›+1 ))] . Taking the upper limit in (82) and considering the fact that ๐‘Ž1 + 2๐‘Ž4 < 1, we have ๐น (๐‘‘๐‘ (๐‘† (๐œ) , ๐œ)) โ‰ค ๐น (๐‘‘๐‘ (๐‘† (๐œ) , ๐œ)) โˆ’ ๐œ < ๐น (๐‘‘๐‘ (๐‘† (๐œ) , ๐œ)) ,

(75)

On taking limit ๐‘› โ†’ โˆž in (75), we have ๐œ…

lim (๐‘› (๐‘ ๐‘› ๐‘๐‘› ) ) = 0.

(76)

๐‘›โ†’โˆž

This implies there exists ๐‘›1 โˆˆ N, such that ๐‘›(๐‘ ๐‘› ๐‘๐‘› )๐œ… โ‰ค 1 for all ๐‘› โ‰ฅ ๐‘›1 or ๐‘ ๐‘› ๐‘๐‘› โ‰ค

1 ๐‘›1/๐œ…

โˆ€๐‘› โ‰ฅ ๐‘›1 .

(77)

To prove {๐‘—๐‘› } as a Cauchy sequence, we use (77) and for ๐‘š > ๐‘› โ‰ฅ ๐‘›1 ; we consider ๐‘šโˆ’1

โˆž

โˆž

๐‘‘๐‘ (๐‘—๐‘› , ๐‘—๐‘š ) โ‰ค โˆ‘ ๐‘ ๐‘– ๐‘๐‘– โ‰ค โˆ‘๐‘ ๐‘– ๐‘๐‘– โ‰ค โˆ‘ ๐‘–=๐‘›

๐‘–=๐‘›

๐‘–=๐‘› ๐‘›

1

. 1/๐œ…

(84)

a contradiction; hence, ๐‘‘๐‘ (๐‘†(๐œ), ๐œ) = 0 implies ๐‘†(๐œ) = ๐œ. Again since ๐‘‡ is continuous, therefore, lim ๐‘‡๐‘” (๐‘Ÿ2๐‘›+1 ) = ๐‘‡ (๐œ) = lim ๐‘‡2 (๐‘Ÿ2๐‘›+1 ) .

๐‘›โ†’โˆž

๐‘›โ†’โˆž

(85)

Since, the pair {๐‘”, ๐‘‡} is compatible, lim ๐‘‘ ๐‘›โ†’โˆž ๐‘

(๐‘”๐‘‡ (๐‘Ÿ2๐‘›+1 ) , ๐‘‡๐‘” (๐‘Ÿ2๐‘›+1 )) = 0,

by Lemma 5 lim ๐‘”๐‘‡ (๐‘Ÿ2๐‘›+1 ) = ๐‘‡ (๐œ) .

(86)

๐‘›โ†’โˆž

Now put ๐‘Ÿ2 = ๐‘‡(๐‘Ÿ2๐‘›+1 ) and ๐‘Ÿ1 = ๐‘Ÿ2๐‘› in (62) and suppose on the contrary that ๐‘‘๐‘ (๐œ, ๐‘‡(๐œ)) > 0; we obtain ๐น (๐‘‘๐‘ (๐‘“ (๐‘Ÿ2๐‘› ) , ๐‘”๐‘‡ (๐‘Ÿ2๐‘›+1 )))

(78)

(83)

+ ๐‘Ž4 [๐‘‘๐‘ (๐‘†2 (๐‘Ÿ2๐‘› ) , ๐‘” (๐‘Ÿ2๐‘›+1 ))

From (73), for all ๐‘› โˆˆ N, we obtain (๐‘ ๐‘› ๐‘๐‘› ) ๐น (๐‘ ๐‘› ๐‘๐‘› ) โˆ’ (๐‘ ๐‘› ๐‘๐‘› ) ๐น (๐‘0 ) โ‰ค โˆ’ (๐‘ ๐‘› ๐‘๐‘› ) ๐‘›๐œ โ‰ค 0.

(82)

where

+ ๐‘Ž3 ๐‘‘๐‘ (๐‘” (๐‘Ÿ2๐‘›+1 ) , ๐‘‡ (๐‘Ÿ2๐‘›+1 ))

Repeating the process, we obtain

(81)

๐‘›โ†’โˆž

for all ๐‘› โˆˆ N. Hence, from (69) and (70), we have ๐น (๐‘ ๐‘‘๐‘ (๐‘—๐‘› , ๐‘—๐‘›+1 )) โ‰ค ๐น (๐‘‘๐‘ (๐‘—๐‘›โˆ’1 , ๐‘—๐‘› )) โˆ’ ๐œ,

(80)

(๐‘“๐‘† (๐‘Ÿ2๐‘› ) , ๐‘†๐‘“ (๐‘Ÿ2๐‘› )) = 0,

by Lemma 5 lim ๐‘“๐‘† (๐‘Ÿ2๐‘› ) = ๐‘† (๐œ) .

(69)

for all ๐‘› โˆˆ N. Similarly,

๐œ…

๐‘›โ†’โˆž

Since, the pair {๐‘“, ๐‘†} is compatible, so,

Thus, from (66) we obtain ๐น (๐‘ ๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘›+1 )) โ‰ค ๐น (๐‘‘๐‘ (๐‘—2๐‘›โˆ’1 , ๐‘—2๐‘› )) โˆ’ ๐œ,

(79)

๐‘›โ†’โˆž

(67)

๐‘‘๐‘ (๐‘—2๐‘› , ๐‘—2๐‘›+1 ) โ‰ค

๐‘›โ†’โˆž

โ‰ค ๐น (M1 (๐‘Ÿ2๐‘› , ๐‘‡ (๐‘Ÿ2๐‘›+1 ))) โˆ’ ๐œ,

(87)

8

Journal of Function Spaces a contradiction; hence, ๐‘‘๐‘ (๐‘”(๐œ), ๐œ) = 0 which then implies ๐‘”(๐œ) = ๐œ. Hence, ๐œ proves to be a common fixed point of the four maps ๐‘“, ๐‘”, ๐‘†, and ๐‘‡. Also ๐œ is unique. Indeed if ๐œ” is another fixed point of ๐‘“, ๐‘”, ๐‘†, and ๐‘‡, then, from (62), we have

where M1 (๐‘Ÿ2๐‘› , ๐‘‡ (๐‘Ÿ2๐‘›+1 )) = ๐‘Ž1 ๐‘‘๐‘ (๐‘† (๐‘Ÿ2๐‘› ) , ๐‘‡2 (๐‘Ÿ2๐‘›+1 )) + ๐‘Ž2 ๐‘‘๐‘ (๐‘“ (๐‘Ÿ2๐‘› ) , ๐‘† (๐‘Ÿ2๐‘› )) + ๐‘Ž3 ๐‘‘๐‘ (๐‘”๐‘‡ (๐‘Ÿ2๐‘›+1 ) , ๐‘‡2 (๐‘Ÿ2๐‘›+1 ))

๐น (๐‘‘๐‘ (๐œ, ๐œ”)) = ๐น (๐‘‘๐‘ (๐‘† (๐œ) , ๐‘‡ (๐œ”)))

(88)

โ‰ค ๐น (M1 (๐œ, ๐œ”)) โˆ’ ๐œ,

+ ๐‘Ž4 [๐‘‘๐‘ (๐‘† (๐‘Ÿ2๐‘› ) , ๐‘”๐‘‡ (๐‘Ÿ2๐‘›+1 )) where

+ ๐‘‘๐‘ (๐‘“ (๐‘Ÿ2๐‘› ) , ๐‘‡2 (๐‘Ÿ2๐‘›+1 ))] .

M1 (๐œ, ๐œ”)

Taking the upper limit in (87), we have ๐น (๐‘‘๐‘ (๐œ, ๐‘‡ (๐œ))) โ‰ค ๐น (๐‘‘๐‘ (๐œ, ๐‘‡ (๐œ))) โˆ’ ๐œ < ๐น (๐‘‘๐‘ (๐œ, ๐‘‡ (๐œ))) ,

= ๐‘Ž1 ๐‘‘๐‘ (๐‘† (๐œ) , ๐‘‡ (๐œ”)) + ๐‘Ž2 ๐‘‘๐‘ (๐‘“ (๐œ) , ๐‘† (๐œ)) + ๐‘Ž3 ๐‘‘๐‘ (๐‘” (๐œ”) , ๐‘‡ (๐œ”))

(89)

a contradiction; hence, ๐‘‘๐‘ (๐œ, ๐‘‡(๐œ)) = 0 which then implies ๐‘‡(๐œ) = ๐œ. Assume that ๐‘‘๐‘ (๐‘“(๐œ), ๐œ) > 0 and from (62) we get ๐น (๐‘‘๐‘ (๐‘“ (๐œ) , ๐‘” (๐‘Ÿ2๐‘›+1 ))) โ‰ค ๐น (M1 (๐œ, ๐‘Ÿ2๐‘›+1 )) โˆ’ ๐œ,

(96)

(97)

+ ๐‘Ž4 [๐‘‘๐‘ (๐‘† (๐œ) , ๐‘” (๐œ”)) + ๐‘‘๐‘ (๐‘“ (๐œ) , ๐‘‡ (๐œ”))] . Thus, from (96), we have ๐น (๐‘‘๐‘ (๐œ, ๐œ”)) < ๐น (๐‘‘๐‘ (๐œ, ๐œ”)) ,

(90)

(98)

which is a contradiction. Hence, ๐œ = ๐œ” and ๐œ is a unique common fixed point of the four maps ๐‘“, ๐‘”, ๐‘†, and ๐‘‡.

where M1 (๐œ, ๐‘Ÿ2๐‘›+1 )

The following example explains Theorem 13.

= ๐‘Ž1 ๐‘‘๐‘ (๐‘† (๐œ) , ๐‘‡ (๐‘Ÿ2๐‘›+1 )) + ๐‘Ž2 ๐‘‘๐‘ (๐‘“ (๐œ) , ๐‘† (๐œ))

+ ๐‘Ž4 [๐‘‘๐‘ (๐‘† (๐œ) , ๐‘” (๐‘Ÿ2๐‘›+1 )) + ๐‘‘๐‘ (๐‘“ (๐œ) , ๐‘‡ (๐‘Ÿ2๐‘›+1 ))] .

Example 14. Let ๐‘€ = [0, โˆž) and define ๐‘‘๐‘ : ๐‘€ ร— ๐‘€ โ†’ R+0 by ๐‘‘๐‘ (๐‘Ÿ1 , ๐‘Ÿ2 ) = |๐‘Ÿ1 โˆ’ ๐‘Ÿ2 |2 , so, (๐‘€, ๐‘‘๐‘ , 2) is a complete ๐‘-metric space. Define the mappings ๐‘“, ๐‘”, ๐‘†, ๐‘‡ : ๐‘€ โ†’ ๐‘€, for all ๐‘Ÿ โˆˆ ๐‘€, by

Taking the upper limit in (90) and using the fact that ๐‘†(๐œ) = ๐‘‡(๐œ) = ๐œ, we have

๐‘Ÿ ๐‘“ (๐‘Ÿ) = ln (1 + ) , 6

๐น (๐‘‘๐‘ (๐‘“ (๐œ) , ๐œ)) โ‰ค ๐น (๐‘‘๐‘ (๐‘“ (๐œ) , ๐œ)) โˆ’ ๐œ

๐‘Ÿ ๐‘” (๐‘Ÿ) = ln (1 + ) , 7

+ ๐‘Ž3 ๐‘‘๐‘ (๐‘” (๐‘Ÿ2๐‘›+1 ) , ๐‘‡ (๐‘Ÿ2๐‘›+1 ))

< ๐น (๐‘‘๐‘ (๐‘“ (๐œ) , ๐œ)) ,

(91)

(92)

๐‘† (๐‘Ÿ) = ๐‘’ โˆ’ 1,

a contradiction; hence, ๐‘‘๐‘ (๐‘“(๐œ), ๐œ) = 0 which then implies ๐‘“(๐œ) = ๐œ. Finally, assume that ๐‘‘๐‘ (๐œ, ๐‘”(๐œ)) > 0. From (62) and the equation ๐‘†(๐œ) = ๐‘‡(๐œ) = ๐‘“(๐œ) = ๐œ, we obtain ๐น (๐‘‘๐‘ (๐œ, ๐‘” (๐œ))) = ๐น (๐‘‘๐‘ (๐‘“ (๐œ) , ๐‘” (๐œ))) โ‰ค ๐น (M1 (๐œ, ๐œ)) โˆ’ ๐œ,

(99)

7๐‘Ÿ

(93)

๐‘‡ (๐‘Ÿ) = ๐‘’6๐‘Ÿ โˆ’ 1. Clearly, ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ are continuous self-mappings complying with ๐‘“(๐‘€) = ๐‘‡(๐‘€) = ๐‘”(๐‘€) = ๐‘†(๐‘€). We note that the pair {๐‘“, ๐‘†} is compatible. Indeed, let {๐‘Ÿ๐‘› } be a sequence in ๐‘€ satisfying lim ๐‘“ (๐‘Ÿ๐‘› ) = lim ๐‘† (๐‘Ÿ๐‘› ) = ๐‘ก, for some ๐‘ก โˆˆ ๐‘€.

(100)

๓ต„จ ๓ต„จ ๓ต„จ2 ๓ต„จ2 lim ๓ต„จ๓ต„จ๐‘“ (๐‘Ÿ๐‘› ) โˆ’ ๐‘ก๓ต„จ๓ต„จ๓ต„จ = lim ๓ต„จ๓ต„จ๓ต„จ๐‘† (๐‘Ÿ๐‘› ) โˆ’ ๐‘ก๓ต„จ๓ต„จ๓ต„จ = 0, ๐‘›โ†’โˆž

(101)

๐‘›โ†’โˆž

where M1 (๐œ, ๐œ)

๐‘›โ†’โˆž

Then

= ๐‘Ž1 ๐‘‘๐‘ (๐‘† (๐œ) , ๐‘‡ (๐œ)) + ๐‘Ž2 ๐‘‘๐‘ (๐‘“ (๐œ) , ๐‘† (๐œ)) + ๐‘Ž3 ๐‘‘๐‘ (๐‘” (๐œ) , ๐‘‡ (๐œ))

๐‘›โ†’โˆž ๓ต„จ

(94)

and equivalently ๓ต„จ๓ต„จ ๓ต„จ๓ต„จ2 ๐‘Ÿ ๓ต„จ2 ๓ต„จ lim ๓ต„จ๓ต„จ๓ต„จ๓ต„จln (1 + ๐‘› ) โˆ’ ๐‘ก๓ต„จ๓ต„จ๓ต„จ๓ต„จ = lim ๓ต„จ๓ต„จ๓ต„จ๓ต„จ๐‘’7๐‘Ÿ๐‘› โˆ’ 1 โˆ’ ๐‘ก๓ต„จ๓ต„จ๓ต„จ๓ต„จ = 0 ๐‘›โ†’โˆž ๓ต„จ ๐‘›โ†’โˆž 6 ๓ต„จ

+ ๐‘Ž4 [๐‘‘๐‘ (๐‘† (๐œ) , ๐‘” (๐œ)) + ๐‘‘๐‘ (๐‘“ (๐œ) , ๐‘‡ (๐œ))] . This implies that

(102)

implies

๐น (๐‘‘๐‘ (๐œ, ๐‘” (๐œ))) โ‰ค ๐น (๐‘‘๐‘ (๐œ, ๐‘” (๐œ))) โˆ’ ๐œ < ๐น (๐‘‘๐‘ (๐œ, ๐‘” (๐œ))) ,

(95)

๓ต„จ๓ต„จ ln (๐‘ก + 1) ๓ต„จ๓ต„จ๓ต„จ๓ต„จ2 ๓ต„จ2 ๓ต„จ ๓ต„จ lim ๓ต„จ๓ต„จ๓ต„จ๓ต„จ๐‘Ÿ๐‘› โˆ’ (6๐‘’๐‘ก โˆ’ 6)๓ต„จ๓ต„จ๓ต„จ๓ต„จ = lim ๓ต„จ๓ต„จ๓ต„จ๐‘Ÿ๐‘› โˆ’ ๓ต„จ๓ต„จ = 0. ๐‘›โ†’โˆž ๐‘›โ†’โˆž ๓ต„จ ๓ต„จ๓ต„จ 7 ๓ต„จ

(103)

Journal of Function Spaces

9

The uniqueness of limit gives 6๐‘’๐‘ก โˆ’ 6 = ln(๐‘ก + 1)/7; thus, ๐‘ก = 0 is only possible solution. Due to the continuity of ๐‘“, ๐‘† we have ๓ต„จ ๓ต„จ2 lim ๐‘‘ (๐‘“๐‘† (๐‘Ÿ๐‘› ) , ๐‘†๐‘“ (๐‘Ÿ๐‘› )) = lim ๓ต„จ๓ต„จ๓ต„จ๐‘“๐‘† (๐‘Ÿ๐‘› ) โˆ’ ๐‘†๐‘“ (๐‘Ÿ๐‘› )๓ต„จ๓ต„จ๓ต„จ ๐‘›โ†’โˆž ๐‘ ๐‘›โ†’โˆž (104) ๓ต„จ ๓ต„จ2 = ๓ต„จ๓ต„จ๓ต„จ๐‘“ (๐‘ก) โˆ’ ๐‘† (๐‘ก)๓ต„จ๓ต„จ๓ต„จ = |0 โˆ’ 0|2 = 0 for ๐‘ก = 0 โˆˆ ๐‘€. Similarly, the pair {๐‘”, ๐‘‡} is compatible. Now for each ๐‘Ÿ1 , ๐‘Ÿ2 โˆˆ ๐‘€, consider ๓ต„จ ๓ต„จ2 ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )) = ๓ต„จ๓ต„จ๓ต„จ๐‘“ (๐‘Ÿ1 ) โˆ’ ๐‘” (๐‘Ÿ2 )๓ต„จ๓ต„จ๓ต„จ ๓ต„จ๓ต„จ ๐‘Ÿ ๐‘Ÿ ๓ต„จ๓ต„จ2 = ๓ต„จ๓ต„จ๓ต„จ๓ต„จln (1 + ) โˆ’ ln (1 + )๓ต„จ๓ต„จ๓ต„จ๓ต„จ 6 7 ๓ต„จ ๓ต„จ ๐‘Ÿ ๐‘Ÿ 2 1 2 โ‰ค ( โˆ’ ) โ‰ค ( ) |7๐‘Ÿ โˆ’ 6๐‘Ÿ|2 6 7 42 โ‰ค( =(

1 2 ๓ต„จ๓ต„จ 7๐‘Ÿ 6๐‘Ÿ ๓ต„จ๓ต„จ2 ) ๓ต„จ๓ต„จ๐‘’ โˆ’ ๐‘’ ๓ต„จ๓ต„จ๓ต„จ 42 ๓ต„จ

(105)

1 ) ๐‘‘๐‘ (๐‘‡ (๐‘Ÿ1 ) , ๐‘† (๐‘Ÿ2 )) 42

โ‰ค ln (M1 (๐‘Ÿ1 , ๐‘Ÿ2 )) .

(106)

Define the function ๐น : R+ โ†’ R by ๐น(๐‘Ÿ) = ln(๐‘Ÿ), for all ๐‘Ÿ โˆˆ ๐‘…+ > 0. Hence, for all ๐‘Ÿ1 , ๐‘Ÿ2 โˆˆ ๐‘€, such that ๐‘‘๐‘ (๐‘“(๐‘Ÿ1 ), ๐‘”(๐‘Ÿ2 )) > 0, ๐œ = 2 ln(42) we obtain ๐œ + ๐น (๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 ))) โ‰ค ๐น (M (๐‘Ÿ1 , ๐‘Ÿ2 )) .

(107)

Thus, contractive condition (62) is satisfied for all ๐‘Ÿ1 , ๐‘Ÿ2 โˆˆ ๐‘€. Hence, all the hypotheses of Theorem 13 are satisfied. Note that ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ have a unique common fixed point ๐‘Ÿ = 0. Theorem 15 generalizes the result presented by Reich [30] and can be proved by following the proof of Theorem 13. Theorem 15 (Reich type). Let (๐‘€, ๐‘‘๐‘ , ๐‘ ) be a complete ๐‘metric space and ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ are self-mappings on (๐‘€, ๐‘‘๐‘ , ๐‘ ) such that ๐‘“(๐‘€) โŠ† ๐‘‡(๐‘€), ๐‘”(๐‘€) โŠ† ๐‘†(๐‘€). If, for all ๐‘Ÿ1 , ๐‘Ÿ2 โˆˆ ๐‘€, for some ๐น โˆˆ ฮ” ๐น๐‘  , ๐œ > 0, the inequality (๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )) > 0 implies ๐œ + ๐น (๐‘ ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 ))) โ‰ค ๐น (M2 (๐‘Ÿ1 , ๐‘Ÿ2 )))

(108)

holds, where for all ๐‘Ž๐‘– โ‰ฅ 0 (๐‘– = 1, 2, 3) such that ๐‘Ž1 + ๐‘Ž2 + ๐‘Ž3 = 1 M2 (๐‘Ÿ1 , ๐‘Ÿ2 ) = ๐‘Ž1 ๐‘‘๐‘ (๐‘† (๐‘Ÿ1 ) , ๐‘‡ (๐‘Ÿ2 )) + ๐‘Ž2 ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘† (๐‘Ÿ1 ))

(๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )) > 0 implies ๐œ + ๐น (๐‘ ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )))

(110)

โ‰ค ๐น (๐‘Ž [๐‘‘๐‘ (๐‘† (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )) + ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘‡ (๐‘Ÿ2 ))])) holds for all ๐‘Ž โ‰ฅ 0 such that 2๐‘Ž = 1, then ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ have a unique common fixed point ๐œ provided ๐‘†, ๐‘‡ are continuous and pairs {๐‘“, ๐‘†}, {๐‘”, ๐‘‡} are compatible.

Theorem 17. Let (๐‘€, ๐‘‘๐‘ , ๐‘ ) be a complete ๐‘-metric space and ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ are self-mappings on (๐‘€, ๐‘‘๐‘ , ๐‘ ) such that ๐‘“(๐‘€) โŠ† ๐‘‡(๐‘€), ๐‘”(๐‘€) โŠ† ๐‘†(๐‘€). If for all ๐‘Ÿ1 , ๐‘Ÿ2 โˆˆ ๐‘€ for some ๐น โˆˆ ฮ” ๐น๐‘  , ๐œ > 0 the inequality

2

2 ln (42) + ln (๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )))

Theorem 16 (Chatterjea type). Let (๐‘€, ๐‘‘๐‘ , ๐‘ ) be a complete ๐‘metric space and ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ are self-mappings on (๐‘€, ๐‘‘๐‘ , ๐‘ ) such that ๐‘“(๐‘€) โŠ† ๐‘‡(๐‘€), ๐‘”(๐‘€) โŠ† ๐‘†(๐‘€). If for all ๐‘Ÿ1 , ๐‘Ÿ2 โˆˆ ๐‘€ for some ๐น โˆˆ ฮ” ๐น๐‘  ๐œ > 0 the inequality

Similarly, Theorems 17 and 18 can be proved by following the proof of Theorem 13.

2

1 ) M1 (๐‘Ÿ1 , ๐‘Ÿ2 ) . 42 The above inequality can be written as โ‰ค(

Theorem 16 generalizes the result presented by Chatterjea [31] and can be proved by following the proof of Theorem 13.

(109)

+ ๐‘Ž3 ๐‘‘๐‘ (๐‘” (๐‘Ÿ2 ) , ๐‘‡ (๐‘Ÿ2 )) , then ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ have a unique common fixed point ๐œ provided ๐‘†, ๐‘‡ are continuous and pairs {๐‘“, ๐‘†}, {๐‘”, ๐‘‡} are compatible.

(๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )) > 0 implies ๐œ + ๐น (๐‘ ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 ))) โ‰ค ๐น (M7 (๐‘Ÿ1 , ๐‘Ÿ2 )))

(111)

holds, where M7 (๐‘Ÿ1 , ๐‘Ÿ2 ) = ๐‘Ž1 (๐‘Ÿ1 , ๐‘Ÿ2 ) ๐‘‘๐‘ (๐‘† (๐‘Ÿ1 ) , ๐‘‡ (๐‘Ÿ2 )) + ๐‘Ž2 (๐‘Ÿ1 , ๐‘Ÿ2 ) ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘† (๐‘Ÿ1 )) + ๐‘Ž3 (๐‘Ÿ1 , ๐‘Ÿ2 ) ๐‘‘๐‘ (๐‘” (๐‘Ÿ2 ) , ๐‘‡ (๐‘Ÿ2 )) + ๐‘Ž4 (๐‘Ÿ1 , ๐‘Ÿ2 )

(112)

โ‹… [๐‘‘๐‘ (๐‘† (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )) + ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘‡ (๐‘Ÿ2 ))] with ๐‘Ž๐‘– (๐‘Ÿ1 , ๐‘Ÿ2 ) (๐‘– = 1, 2, 3, 4) are nonnegative functions such that sup {๐‘Ž1 (๐‘Ÿ1 , ๐‘Ÿ2 ) + ๐‘Ž2 (๐‘Ÿ1 , ๐‘Ÿ2 ) + ๐‘Ž3 (๐‘Ÿ1 , ๐‘Ÿ2 )

๐‘Ÿ1 ,๐‘Ÿ2 โˆˆ๐‘€

(113)

+ 2๐‘ ๐‘Ž4 (๐‘Ÿ1 , ๐‘Ÿ2 )} = 1, then ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ have a unique common fixed point ๐œ provided ๐‘†, ๐‘‡ are continuous and pairs {๐‘“, ๐‘†}, {๐‘”, ๐‘‡} are compatible. Theorem 18. Let (๐‘€, ๐‘‘๐‘ , ๐‘ ) be a complete ๐‘-metric space and ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ are self-mappings on (๐‘€, ๐‘‘๐‘ , ๐‘ ) such that ๐‘“(๐‘€) โŠ† ๐‘‡(๐‘€), ๐‘”(๐‘€) โŠ† ๐‘†(๐‘€). If for all ๐‘Ÿ1 , ๐‘Ÿ2 โˆˆ ๐‘€ for some ๐น โˆˆ ฮ” ๐น๐‘  , ๐œ > 0 the inequality (๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )) > 0 implies ๐œ + ๐น (๐‘ ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 ))) โ‰ค ๐น (M8 (๐‘Ÿ1 , ๐‘Ÿ2 )))

(114)

10

Journal of Function Spaces (ii) There exists ๐œ > 0 and, for each ๐‘Ÿ โˆˆ ๐‘€, one has

holds, where M8 (๐‘Ÿ1 , ๐‘Ÿ2 ) = ๐‘Ž1 ๐‘‘๐‘ (๐‘† (๐‘Ÿ1 ) , ๐‘‡ (๐‘Ÿ2 ))

๐‘ก

โˆซ ๐ป (๐‘Ÿ) ๐‘‘๐‘Ÿ โ‰ค โˆš

๐‘Ž + ๐‘Ž3 + 2 [๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘† (๐‘Ÿ1 )) 2

๐‘Ž

+ ๐‘‘๐‘ (๐‘” (๐‘Ÿ2 ) , ๐‘‡ (๐‘Ÿ2 ))]

(115)

๐‘Ž + ๐‘Ž5 [๐‘‘๐‘ (๐‘† (๐‘Ÿ1 ) , ๐‘” (๐‘Ÿ2 )) + 4 2๐‘ 

(120)

๐‘ก โˆˆ [๐‘Ž, ๐‘] .

(iii) There exists a sequence {๐‘Ÿ๐‘› } in = that lim๐‘›โ†’โˆž ๐‘‘๐‘ (๐‘“๐‘†(๐‘Ÿ๐‘› ), ๐‘†๐‘“(๐‘Ÿ๐‘› )) lim๐‘›โ†’โˆž ๐‘‘๐‘ (๐‘”๐‘‡(๐‘Ÿ๐‘› ), ๐‘‡๐‘”(๐‘Ÿ๐‘› )) = 0, whenever

๐‘€ such 0 and

lim ๐‘“ (๐‘Ÿ๐‘› ) = lim ๐‘† (๐‘Ÿ๐‘› ) = ๐‘ก,

๐‘›โ†’โˆž 5

+ ๐‘‘๐‘ (๐‘“ (๐‘Ÿ1 ) , ๐‘‡ (๐‘Ÿ2 ))]

๐‘’โˆ’๐œ , ๐‘ 

lim ๐‘” (๐‘Ÿ๐‘› ) = lim ๐‘‡ (๐‘Ÿ๐‘› ) = ๐‘ก

with ๐‘Ž๐‘– โ‰ฅ 0, โˆ‘๐‘Ž๐‘– = 1,

๐‘›โ†’โˆž

๐‘–=1

then ๐‘“, ๐‘”, ๐‘†, and ๐‘‡ have a unique common fixed point ๐œ provided ๐‘†, ๐‘‡ are continuous and pairs {๐‘“, ๐‘†}, {๐‘”, ๐‘‡} are compatible.

Then the system of integral equations given in (117) has a solution.

๓ต„จ ๓ต„จ ๐‘‘๐‘ (๐‘“๐‘ข (๐‘ก) , ๐‘”V (๐‘ก)) = ( sup ๓ต„จ๓ต„จ๓ต„จ๐‘“๐‘ข (๐‘ก) โˆ’ ๐‘”V (๐‘ก)๓ต„จ๓ต„จ๓ต„จ) ๐‘กโˆˆ[๐‘Ž,๐‘]

2

๐‘ก

= ( sup โˆซ |๐พ (๐‘ก, ๐‘Ÿ, ๐‘† (๐‘ข (๐‘ก)) โˆ’ ๐ฝ (๐‘ก, ๐‘Ÿ, ๐‘‡ (V (๐‘ก))))| ๐‘‘๐‘Ÿ) ๐‘กโˆˆ[๐‘Ž,๐‘] ๐‘Ž

2

(116)

๐‘กโˆˆ[๐‘Ž,๐‘]

2

๐‘ก

โ‰ค ( sup โˆซ ๐ป (๐‘Ÿ) |๐‘† (๐‘ข (๐‘ก)) โˆ’ ๐‘‡ (V (๐‘ก))| ๐‘‘๐‘Ÿ)

for all ๐‘ข, V โˆˆ ๐ถ([๐‘Ž, ๐‘], R). Obviously, (๐‘€, ๐‘‘๐‘ , 2) is a complete ๐‘-metric space. We shall apply Theorem 6 to show the existence of a common solution of the system of Volterra type integral equations given by ๐‘ก

๐‘กโˆˆ[๐‘Ž,๐‘] ๐‘Ž

(122) ๐‘ก

โ‰ค (โˆš sup |๐‘† (๐‘ข (๐‘ก)) โˆ’ ๐‘‡ (V (๐‘ก))|2 โˆซ ๐ป (๐‘Ÿ) ๐‘‘๐‘Ÿ)

2

๐‘Ž

๐‘กโˆˆ[๐‘Ž,๐‘]

๐‘ก

๐‘ข (๐‘ก) = ๐‘ (๐‘ก) + โˆซ ๐พ (๐‘ก, ๐‘Ÿ, ๐‘† (๐‘ข (๐‘ก))) ๐‘‘๐‘Ÿ, ๐‘ก

for some ๐‘ก โˆˆ ๐‘€.

2

Let ๐‘€ = ๐ถ([๐‘Ž, ๐‘], R) be the space of all continuous real valued functions defined on [๐‘Ž, ๐‘], ๐‘Ž > 0. Let the function ๐‘‘๐‘ : ๐‘€ ร— ๐‘€ โ†’ [0, โˆž) be defined by

๐‘Ž

(121)

๐‘›โ†’โˆž

Proof. Following assumptions (i) and (ii), we have

4. Application of Theorem 6 to a System of Integral Equations

๐‘‘๐‘ (๐‘ข, V) = ( sup |๐‘ข (๐‘ก) โˆ’ V (๐‘ก)|) ,

๐‘›โ†’โˆž

2

= ๐‘‘๐‘ (๐‘† (๐‘ข (๐‘ก)) , ๐‘‡ (V (๐‘ก))) (โˆซ ๐ป (๐‘Ÿ) ๐‘‘๐‘Ÿ) ๐‘Ž

(117) โ‰ค ๐‘‘๐‘ (๐‘† (๐‘ข (๐‘ก)) , ๐‘‡ (V (๐‘ก)))

๐‘ค (๐‘ก) = ๐‘ (๐‘ก) + โˆซ ๐ฝ (๐‘ก, ๐‘Ÿ, ๐‘‡ (V (๐‘ก))) ๐‘‘๐‘Ÿ, ๐‘Ž

for all ๐‘ก, where ๐‘ : ๐‘€ โ†’ R is a continuous function and ๐พ, ๐ฝ : [๐‘Ž, ๐‘] ร— [๐‘Ž, ๐‘] ร— ๐‘€ โ†’ R are lower semicontinuous operators. Now we prove the following theorem to ensure the existence of a solution of the system of integral equations (117). Theorem 19. Let ๐‘€ = ๐ถ([๐‘Ž, ๐‘], R) and define the mappings ๐‘“, ๐‘” : ๐‘€ โ†’ ๐‘€ by

โˆ’๐œ

๐‘’

๐‘ 

โ‰ค M1 (๐‘ข (๐‘ก) , V (๐‘ก))

๐‘’โˆ’๐œ . ๐‘ 

Consequently, we have ๐‘ ๐‘‘๐‘ (๐‘“๐‘ข (๐‘ก) , ๐‘”V (๐‘ก)) โ‰ค ๐‘’โˆ’๐œ M1 (๐‘ข (๐‘ก) , V (๐‘ก)) .

(123)

As the natural logarithm belongs to ฮ” ๐น๐‘  , applying it on above inequality and after some simplification, we get ๐œ + ln (๐‘ ๐‘‘๐‘ (๐‘“๐‘ข (๐‘ก) , ๐‘”V (๐‘ก))) โ‰ค ln (M1 (๐‘ข (๐‘ก) , V (๐‘ก))) . (124)

๐‘ก

๐‘“๐‘ข (๐‘ก) = ๐‘ (๐‘ก) + โˆซ ๐พ (๐‘ก, ๐‘Ÿ, ๐‘† (๐‘ข (๐‘ก))) ๐‘‘๐‘Ÿ, ๐‘Ž

๐‘ก

(118)

๐‘”๐‘ข (๐‘ก) = ๐‘ (๐‘ก) + โˆซ ๐ฝ (๐‘ก, ๐‘Ÿ, ๐‘‡ (V (๐‘ก))) ๐‘‘๐‘Ÿ,

So taking ๐น(๐‘Ÿ) = ln(๐‘Ÿ), all hypotheses of Theorem 6 are satisfied. Hence the system of integral equations given in (117) has a unique common solution.

๐‘Ž

where ๐‘ : ๐‘€ โ†’ R is a continuous function and ๐พ, ๐ฝ : [๐‘Ž, ๐‘] ร— [๐‘Ž, ๐‘] ร— ๐‘€ โ†’ R are lower semicontinuous operators. Assume the following conditions are satisfied: (i) There exists a continuous function ๐ป : ๐‘€ โ†’ [0, โˆž) such that |๐พ (๐‘ก, ๐‘Ÿ, ๐‘†) โˆ’ ๐ฝ (๐‘ก, ๐‘Ÿ, ๐‘‡)| โ‰ค ๐ป (๐‘Ÿ) |๐‘† (๐‘ข (๐‘ก)) โˆ’ ๐‘‡ (V (๐‘ก))| for each ๐‘ก, ๐‘Ÿ โˆˆ [๐‘Ž, ๐‘] and ๐‘†, ๐‘‡ โˆˆ ๐‘€.

(119)

Conflicts of Interest The authors declare that they have no conflicts of interest.

Acknowledgments Ma Zhenhua acknowledges the support of Scientific Research Foundations of Education Burrean of Hebei Province, Grant no. QN2016191.

Journal of Function Spaces

References [1] D. Wardowski, โ€œFixed points of a new type of contractive mappings in complete metric spaces,โ€ Fixed Point Theory and Applications, vol. 2012, article 94, 2012. [2] O. Acar and I. Altun, โ€œMultivalued F-contractive mappings with a graph and some fixed point results,โ€ Publicationes Mathematicae, vol. 88, no. 3-4, pp. 305โ€“317, 2016. [3] M. U. Ali and T. Kamran, โ€œMultivalued F-contractions and related fixed point theorems with an application,โ€ Filomat, vol. 30, no. 14, pp. 3779โ€“3793, 2016. [4] G. Durmaz, G. Minak, and I. Altun, โ€œFixed points of ordered Fcontractions,โ€ Hacettepe Journal of Mathematics and Statistics, vol. 45, no. 1, pp. 15โ€“21, 2016. [5] A. Hussain, M. Nazam, and M. Arshad, โ€œConnection of ciric type F-contraction involving fixed point on closed ball,โ€ Gazi University Journal of Science, vol. 30, no. 1, pp. 283โ€“291, 2017. [6] A. Hussain, H. F. Ahmad, M. Arshad, and M. Nazam, โ€œNew type of multivalued F-contraction involving fixed points on closed ball,โ€ Journal of Mathematics and Computer Science, vol. 17, no. 02, pp. 246โ€“254, 2017. [7] H. Piri and P. Kumam, โ€œSome fixed point theorems concerning F-contraction in complete metric spaces,โ€ Fixed Point Theory and Applications, vol. 2014, no. 1, article 210, p. 11, 2014. [8] N.-A. Secelean, โ€œIterated function systems consisting of Fcontractions,โ€ Fixed Point Theory and Applications, vol. 2013, article 277, 2013. [9] M. Cosentino and P. Vetro, โ€œFixed point results for F-contractive mappings of Hardy-Rogers-type,โ€ Filomat, vol. 28, no. 4, pp. 715โ€“722, 2014. ยด c type generalized F[10] G. Mฤฑnak, A. Helvacฤฑ, and I. Altun, โ€œCiriยด contractions on complete metric spaces and fixed point results,โ€ Filomat, vol. 28, no. 6, pp. 1143โ€“1151, 2014. [11] I. A. Bakhtin, โ€œThe contraction mapping principle in almost metric space,โ€ Functional Analysis, vol. 30, pp. 26โ€“37, 1989. [12] S. Czerwik, โ€œContraction mappings in b-metric spaces,โ€ Acta Mathematica et Informatica Universitatis Ostraviensis, vol. 1, pp. 5โ€“11, 1993. [13] H. Huang, J. Vujakoviยดc, and S. Radenoviยดc, โ€œA note on common fixed point theorems for isotone increasing mappings in ordered b-metric spaces,โ€ Journal of Nonlinear Sciences and Applications, vol. 8, no. 5, pp. 808โ€“815, 2015. [14] N. Hussain, D. Doriยดc, Z. Kadelburg, and S. Radenoviยดc, โ€œSuzukitype fixed point results in metric type spaces,โ€ Fixed Point Theory and Applications, vol. 2012, article 126, 2012. [15] S. Radenoviยดc, M. Jovanoviยดc, and Z. Kadelburg, โ€œCommon fixed point results in metric-type spaces,โ€ Fixed Point Theory and Applications, vol. 2010, Article ID 978121, p. 15, 2010. [16] M. A. Khamsi and N. Hussain, โ€œKKM mappings in metric type spaces,โ€ Nonlinear Analysis, vol. 73, no. 9, pp. 3123โ€“3129, 2010. [17] V. Parvaneh, J. R. Roshan, and S. Radenoviยดc, โ€œExistence of tripled coincidence points in ordered b-metric spaces and an application to a system of integral equations,โ€ Fixed Point Theory and Applications, vol. 2013, article 130, p. 19, 2013. [18] J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, and W. Shatanawi, โ€œCommon fixed points of almost generalized (๐œ“, ๐œ‘) s-contractive mappings in ordered b-metric spaces,โ€ Fixed Point Theory and Applications, vol. 2013, article 159, 2013. [19] W. Shatanawi, A. Pitea, and R. Lazoviยดc, โ€œContraction conditions using comparison functions on b-metric spaces,โ€ Fixed Point Theory and Applications, vol. 2014, no. 1, article 135, 2014.

11 [20] A. Aghajani, M. Abbas, and J. R. Roshan, โ€œCommon fixed point of generalized weak contractive mappings in partially ordered b-metric spaces,โ€ Mathematica Slovaca, vol. 64, no. 4, pp. 941โ€“ 960, 2014. [21] A. Amini-Harandi, โ€œFixed point theory for quasi-contraction maps in b-metric spaces,โ€ Fixed Point Theory, vol. 15, no. 2, pp. 351โ€“358, 2014. [22] A. Latif, V. Parvaneh, P. Salimi, and A. E. Al-Mazrooei, โ€œVarious Suzuki type theorems in b-metric spaces,โ€ Journal of Nonlinear Sciences and Applications, vol. 8, no. 4, pp. 363โ€“377, 2015. [23] F. Zabihi and A. Razani, โ€œFixed point theorems for hybrid rational geraghty contractive mappings in ordered b-metric spaces,โ€ Journal of Applied Mathematics, vol. 2014, Article ID 929821, 9 pages, 2014. [24] M. Cosentino, M. Jleli, B. Samet, and C. Vetro, โ€œSolvability of integrodifferential problems via fixed point theory in b-metric spaces,โ€ Fixed Point Theory and Applications, vol. 2015, no. 70, 2015. [25] G. Jungck, โ€œCompatible mappings and common fixed points,โ€ International Journal of Mathematics and Mathematical Sciences, vol. 9, no. 4, pp. 771โ€“779, 1986. [26] R. M. T. Bianchini, โ€œSu un problema di S. Reich riguardante la teoria dei punti fissi,โ€ The Bollettino dellโ€™Unione Matematica Italiana, vol. 5, pp. 103โ€“108, 1972. [27] V. M. Sehgal, โ€œOn fixed and periodic points for a class of mappings,โ€ Journal Of The London Mathematical Society-Second Series, vol. 5, pp. 571โ€“576, 1972. [28] L. B. Cยดฤฑrยดฤฑc, โ€œA generalization of Banachโ€™s contraction principle,โ€ Proceedings of the American Mathematical Society, vol. 45, pp. 267โ€“273, 1974. [29] G. Jungck, โ€œCommon fixed points for commuting and compatible maps on compacta,โ€ Proceedings of the American Mathematical Society, vol. 103, no. 3, pp. 977โ€“983, 1988. [30] S. Reich, โ€œSome remarks concerning contraction mappings,โ€ Canadian Mathematical Bulletin, vol. 14, pp. 121โ€“124, 1971. [31] S. K. Chatterjea, โ€œFixed-point theorems,โ€ Comptes rendus de lโ€™Academie bulgare des Sciences, vol. 25, pp. 727โ€“730, 1972.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at https://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

#HRBQDSDฤฎ,@SGDL@SHBR

Journal of

Volume 201

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014