Controls of denitrification in papyrus wetlands in Kenya ... - UF/IFAS OCI

15 downloads 0 Views 5MB Size Report
1UNESCO-IHE, Institute of Water Education, Delft, The Netherlands. 2Royal University of Bhutan, Thimphu, Bhutan. 3National Water and Sewerage Corporation ...
Controls of denitrification in papyrus wetlands in Kenya and Tanzania Gretchen M. Gettel1, Kuenzang Tshering2, Hawa Nakitende3 1UNESCO-IHE,

Institute of Water Education, Delft, The Netherlands 2Royal University of Bhutan, Thimphu, Bhutan 3National Water and Sewerage Corporation, Kampala, Uganda

Ecosystem Services

How do we balance the competing demands for ecosystem services?

Figure from: http://www.metrovancouver.org/planning/development/ecologi calhealth/Pages/default.aspx

Cyperus papyrus wetlands

Cyperus papyrus wetlands

Provisioning, Regulating and Supporting Services of Papyrus Wetlands Papyrus wetlands are at the crux of balancing provisioning and regulating services.

Denitrification as part of the Nutrient Retention • Requires organic carbon

• Requires anaerobic conditions

Are regulating services lost as wetlands are converted to agricultural land uses? Objectives: 1. Assess C and N limitation of denitrification in agricultural and papyrus vegetation (Proximate controls) 2. Relate potential denitrification in natural vegetation and agricultural land uses and relate to soil characteristics (Distal controls)

Papyrus Wetland Zones (HGMUs) River discharge

Lake Victoria

Agriculture/ grazing Temporarily flooded

Figure: Edwin Hes

Permanently flooded Groundwater recharge

Study area: Nyando wetland, Kenya

Nyando basin Nyando wetland

: 3587 km2 : ±50 km2

Kisumu

Nyando river

Nyakach Bay (Lake Victoria)

Sampling locations: Nyando River Ogyena Site – Daily influx of water from the Lake, moderately impacted Singida Site – Floods with river during the wet season, lightly impacted

Papyrus

Maize

Sugarcane

Rice

Study area: Mara wetland, Tanzania

Sampling locations: Mara River 10 m

Agriculture/ Grazing HGMU

Temporarily flooded HGMU

Permanently flooded HGMU

Floating vegetation

III rd sampling

10 m

II nd sampling

I st sampling

Transact I: At Mangorey

T Sampling site

P Sampling site

Main River Channel

Methods: Field sampling

Sampling Frequency: Three times at each site December 2010 – January 2011

Data Analysis

Water (Permanent Wetland)

pH, EC, DO, temp. DOC, NO3, NH4, SUVA

Soil Sample (top 5 cm)

pH, % Moisture, AFDM, TOC, NH4, NO3

Denitrification

C vs. N limitation of Denitrification

ANOVA, Tukey Post-hoc

Potential Denitrification

Multivariate Analysis

Acetylene inhibition method - DEA +C+N

• Potential Denitrification

+N

+C - Anaerobic conditions with chloremphenicol - Acetylene blocks conversion of N2O to N2 - Denitrification rate was calculated from linear regression of N2O produced during incubation period. - Three replicates for each treatment

Potential Denitrification Rate 9

a

Nyando

PDR (ug N-N20/g DW/hour)

8 7 6

a

5

4 3 2

b

b b

1 0 Ogenya WL

4.5

Singida WL

Maize field

S.C Field

Rice field

a

Mara

PDR (ug N-N20/g DW/hour)

4 3.5 3

2.5 2

b

1.5 1

b

0.5 0 Permanent

Temporary

Agriculture

Limiting factors for potential denitrification 8

7

7

6

a

5

4 3 2

b

1

6

a a

5 4 3

b

2 1 0

0 +C+N

+N

+C+N

+C

+N

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Sugarcane

a a

b

+C+N +N

+C

+C

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

a b

a

3.5

3.5

3.0

3.0

a

2.5 2 1.5

a

1 b

0.5 0

+C+N +N

+C

+C+N +N

Agricultural

1.0

4.0

a

Rice 3

Temporarily Flooded

Permanently Flooded 4.0

Maize

N2O-N ug/g DW/hour

8

N2O-N ug/g DW/hour

9

a N2O-N ug/g DW/hour

N2O-N ug/g DW/hour

Nyando

9

Singida Wetland

N2O-N ug/g DW/hour

Ogenya Wetland

0.9

2.5 2.0 1.5

a

1.0

0.0 +C+N

+N

2.5 2.0 1.5

a a

1.0

b

0.5

+C

µg N2O/g DW /hour

µg N2O/g DW /hour

µg N2O/g DW /hour

Mara

0.8

0.6

a

0.5 0.4 0.3

a

0.2

b

0.5

0.7

0.1

b

0.0

0.0 +C+N

+N

+C

+C+N

+N

+C

+C

Nitrate limits PDR in Wetland Sites 8

7

7

6

a

5

4 3 2

b

1

6

a a

5 4 3

b

2 1 0

0 +C+N

+N

+C+N

+C

+N

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Sugarcane

a a

b

+C+N +N

+C

+C

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

a b

a

3.5

3.5

3.0

3.0

a

2.5 2 1.5

a

1 b

0.5 0

+C+N +N

+C

+C+N +N

Agricultural

1.0

4.0

a

Rice 3

Temporarily Flooded

Permanently Flooded 4.0

Maize

N2O-N ug/g DW/hour

8

N2O-N ug/g DW/hour

9

a N2O-N ug/g DW/hour

N2O-N ug/g DW/hour

Nyando

9

Singida Wetland

N2O-N ug/g DW/hour

Ogenya Wetland

0.9

2.5 2.0 1.5

a

1.0

0.0 +C+N

+N

2.5 2.0 1.5

a a

1.0

b

0.5

+C

µg N2O/g DW /hour

µg N2O/g DW /hour

µg N2O/g DW /hour

Mara

0.8

0.6

a

0.5 0.4 0.3

a

0.2

b

0.5

0.7

0.1

b

0.0

0.0 +C+N

+N

+C

+C+N

+N

+C

+C

Carbon limits PDR in agricultural sites 8

7

7

6

a

5

4 3 2

b

1

6

a a

5 4 3

b

2 1 0

0 +C+N

+N

+C+N

+C

+N

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Sugarcane

a a

b

+C+N +N

+C

+C

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

a b

a

3.5

3.5

3.0

3.0

a

2.5 2 1.5

a

1 b

0.5 0

+C+N +N

+C

+C+N +N

Agricultural

1.0

4.0

a

Rice 3

Temporarily Flooded

Permanently Flooded 4.0

Maize

N2O-N ug/g DW/hour

8

N2O-N ug/g DW/hour

9

a N2O-N ug/g DW/hour

N2O-N ug/g DW/hour

Nyando

9

Singida Wetland

N2O-N ug/g DW/hour

Ogenya Wetland

0.9

2.5 2.0 1.5

a

1.0

0.0 +C+N

+N

2.5 2.0 1.5

a a

1.0

b

0.5

+C

µg N2O/g DW /hour

µg N2O/g DW /hour

µg N2O/g DW /hour

Mara

0.8

0.6

a

0.5 0.4 0.3

a

0.2

b

0.5

0.7

0.1

b

0.0

0.0 +C+N

+N

+C

+C+N

+N

+C

+C

NO3 & NH4 among different land uses 0.45

0.4

0.40

0.35

0.35

0.3

0.30

0.25

a a

0.2

b

b

b

NH4-N (mg/g )

NO3-N (mg/g)

0.45

Nyando

N-NH4

N-NO3

a

0.20 0.15

0.1

0.10

0.05

0.05

0

0.00

0.025

a

0.25

0.15

Ogenya Singida WL WL

a

b b

Ogenya WL

Maize S.C Field Rice field field

0.35

b

b

Singida WL

Maize field

S.C Field Rice field

a

0.30

0.020

mg NH4-N/g resin/day

Mara

mg NO3-N/g resin/day

b

0.015 0.010 0.005

a

a

a

0.25 0.20 0.15

b

0.10 0.05

0.000 Permanent

Temporary Land Uses

Agriculture

0.00 Permanent

Temporary Land Uses

Agriculture

TN and TOC among different land uses TOC

TN 120

12

a

8

100

b

b

6

TOC (mg/g)

Nyando

TN (mg g-1 DM)

10

d c

4

b

80

c c

60

20

0

0

a

35 30

14

a a

25

12

b b

8 6

g AFDW

Mara

mg N/g soil sample

16

10

c

40

2

18

a

20 15

b

10

4

5

2 0

0 Permanent Temporary Agriculture

Permanent Temporary Agriculture

Land Uses

Land Uses

Moisture Content 90

Nyando

% Moisture content

80

a b

70 60

e

50

c

40

d

30 20 10 0 Ogentya WL Singida WL Maize field

90

80

S.C Field

Rice field

a a

Mara

% moisture content

70 60 50

40 30

b

20 10 0 Permanent

Temporary And Uses

Agriculture

Dissolved Oxygen and SUVA in Wetland Sites 14

DO % Saturation

12

Nyando

10 8 6

Singida

4

Ogenya

DO ranged from 0.2 – 0.8 mg/L

2 0

Permanently flooded HGMU

0.09

Temporarily flooded HGMU

0.08

Mara

DO % saturation

5.0 4.0 3.0 2.0 1.0 0.0

SUVA (Specific UV Absorbance

6.0

0.07

a a

0.06 0.05 0.04 0.03 0.02 0.01 0 Permanent

Temporary Wetland Types

Stepwise Multivariate Analysis: Wetland Sites pH, SUVA, DOC, moisture content, AFDW, NO3-N, NH4-N and TN were used as predictors of PDR. Nyando: No significant relationships

Mara: -SUVA (R2 = 0.73, p = 0.03) and +DOC (R2 = 0.98, p < 0.01) related to PDR.

23

Multivariate Regression Analysis, Agricultural Land, Mara

Moisture content, Ash Free Dry weight/TC, NO3-N, NH4-N and TN, used as predictors of PDR Nyando: +TOC and +Moisture Content (R2=0.66, p