CONVOLUTION SUMS ARISING FROM DIVISOR FUNCTIONS 1

0 downloads 0 Views 423KB Size Report
1. Introduction. For N,m,d ∈ N with r, s ∈ N U 10l, we define some necessary divisor func- .... + 12m+1(23n+3 - 15) - 2(8 · 16n - 15 · 2n)Nlσ3(N) + 1612m(15 - 23n). + (16n - 15 .... 1 ]. Note that the right-hand side of the above equation is a power series of q2. ... The first twelve values of U(N) and V (N) are given in Table. 1.
J. Korean Math. Soc. 50 (2013), No. 2, pp. 331–360 http://dx.doi.org/10.4134/JKMS.2013.50.2.331

CONVOLUTION SUMS ARISING FROM DIVISOR FUNCTIONS Aeran Kim, Daeyeoul Kim, and Li Yan Abstract. Let σs (N ) denote the sum of the sth Ppowers of the positive divisors of a positive integer N and let σ es (N ) = d|N (−1)d−1 ds with d, N , and s positive integers. Hahn [12] proved that X σ e1 (k)e σ3 (N − k) = −e σ5 (N ) + 2(N − 1)e σ3 (N ) + σ e1 (N ). 16 k

Suggest Documents