Coplanar Vectors and Cartesian Representa#on

144 downloads 1771 Views 663KB Size Report
Aug 31, 2012 ... 1. Coplanar Vectors and. Cartesian Representa#on. Opfimist – The glass is half full. Pessimist – The glass if half empty. Engineer – The glass is ...
Coplanar  Vectors  and   Cartesian  Representa1on  

Op#mist  –  The  glass  is  half  full.   Pessimist  –  The  glass  if  half  empty.   Engineer  –  The  glass  is  overdesigned.  

Review   ¢  Two  forces  can  be  combined  using  the  

parallelogram  law  to  form  a  resultant   ¢  A  resultant  can  be  broken  up  into  its   components  using  the  geometry  of  the  system   and  some  trig  

2

Cartesian Coordinates

31 August 2012

1

Forces  and  vector  components   ¢  Two  forces  act  on  

the  hook.  Determine   the  magnitude  of  the   resultant  force.  

To solve the problem we utilized the parallelogram law. We moved the 500 N force, maintaining its orientation, until the tail of the 500 N force was positioned on the head of the 200 N force. We then solved for the angle between the two vectors at this point of contact and using the law of cosines solved for the resultant vector.

Cartesian Coordinates

31 August 2012

Forces  and  vector  components   ¢  What  would  the  magnitude  of  the  600N  

force  have  to  change  to  so  that  the   resultant  of  the  two  forces  would  align   along  the  posi1ve  x-­‐axis?  

We considered the components of each of the forces along the positive x-axis (the i component) and the positive y-axis (the j-component). The problem condition states that the resultant cannot have a j-component so the sum of the jcomponents of the two vectors which are being added together must be equal to 0. Using a sign convention that a positive direction is toward the labeled end of the axis, we resolve the unknown force (represented by the 600 N vector in the drawing) into its x and y components and set the magnitude of the y-component equal to 800 N. This allows us to solve for the magnitude of the unknown vector. Cartesian Coordinates

31 August 2012

2

Cartesian  Coordinates   ¢  There  is  a  special  case  when  two  components  

that  are  perpendicular  are  combined  

5

Cartesian Coordinates

31 August 2012

Cartesian  Coordinates   ¢  The  resultant  of  these  two  vectors,  F,  is  

formed  in  the  usual  manner  by  connec1ng  the   tail  of  the  sta1onary  vector  to  the  head  of  the   moved  vector   y

   F = F1 + F 2

F

F1 x

F2 6

Cartesian Coordinates

31 August 2012

3

Cartesian  Coordinates   ¢  U1lizing  Cartesian  coordinates.  

   F = F1 + F 2

y

F

Fy

F = F +F 2 x

2 y

7

x

Fx

Cartesian Coordinates

31 August 2012

Cartesian  Coordinates   ¢  From  the  drawing,  we  have  the  following  

rela1onships  

tan (α ) =

Fy Fx

y

Fy = F sin (α )

Fx = F cos (α ) 8

Cartesian Coordinates

F α Fx

Fy x 31 August 2012

4

Resultant  of  a  Series  of  Vectors   ¢  The  really  nice  part  of  this  comes  when  we  

take  a  series  of  forces  at  a  point  and  develop  a   single  resultant  from  all  the  forces  

9

Cartesian Coordinates

31 August 2012

Resultant  of  a  Series  of  Vectors   ¢  We  will  start  with  three  forces  F1,  F2,  and  F3  

and  try  and  find  the  resultant,  F  which  is  the   vector  sum  of  the  three  forces   y

F3

F2 x

F1 10

Cartesian Coordinates

31 August 2012

5

Resultant  of  a  Series  of  Vectors   ¢  We  have  already  moved  (or  the  forces  were  

already  posi1oned)  so  that  their  tails  were  at   the  same  point   y

F3

F2 x

F1 11

Cartesian Coordinates

31 August 2012

Resultant  of  a  Series  of  Vectors   ¢  The  resultant  F  is  the  vector  sum  of  the  three  

forces,  F1,  F2,  and  F3  

    F = F1 + F 2 + F 3

y

F3

F2 x

F1 12

Cartesian Coordinates

31 August 2012

6

Resultant  of  a  Series  of  Vectors   ¢  Considering  the  two  forces  in  components.  

( ) = F sin ( β ) = F cos (α ) = F sin (α )

y

F1x = F1 cos β F1y

1

F2x F2y 13

F3

F2

F1x

2

F1y

2

Cartesian Coordinates

F2y

α

F2x

β

F1

x

31 August 2012

Resultant  of  a  Series  of  Vectors   ¢  The  components  of  F3  

y

F3 F3y

γ

x F3x

14

Cartesian Coordinates

F4 31 August 2012

7

Resultant  of  a  Series  of  Vectors   ¢  And  subs1tu1ng  our  trigonometric  evalua1ons  

Fx = F2 cos (α ) − F1 cos ( β ) − F3 cos (γ ) Fy = F2 sin (α ) − F1 sin ( β ) + F3 sin (γ ) y

F3 F3y

γ

x 15

F3x Cartesian Coordinates

F4

31 August 2012

Resultant  of  a  Series  of  Vectors   ¢  If  we  maintain  a  consistent  sign  conven1on,  

we  can  make  a  general  statement  about   finding  the  resultant  of  any  n  vectors  whose   lines  of  ac1on  intersect  at  a  point  

16

Cartesian Coordinates

31 August 2012

8

Resultant  of  a  Series  of  Vectors   n

Fx = ∑ Fxi i =1 n

Fy = ∑ Fy i i =1

17

Cartesian Coordinates

31 August 2012

Resultant  of  a  Series  of  Vectors   ¢  Remember  that  this  is  only  true  if  we  maintain  

a  consistent  sign  conven1on  and  take  the   algebraic  sign  from  our  axis  selec1on   n

Fx = ∑ Fxi i =1 n

Fy = ∑ Fy i i =1

18

Cartesian Coordinates

31 August 2012

9

Problem   Determine the magnitude of the resultant force acting on the corbel and its direction θ measured counterclockwise from the x-axis.

19

Cartesian Coordinates

31 August 2012

Problem   If the magnitude of the resultant force acting on the eyebolt is 600 N and its direction measured counterclockwise from the positive x-axis is θ = 30°, determine the magnitude of F1 and the angle ϕ.

20

Cartesian Coordinates

31 August 2012

10

Homework   ¢  Remember  that  you  need  to  have  the  

“Clicker”  with  you  on  Wednesday   ¢  Problem  2-­‐35   ¢  Problem  2-­‐41   ¢  Problem  2-­‐50  

Cartesian Coordinates

31 August 2012

11