from Michal Dagan, Baptiste Gault, George Smith, Paul Bagot & Michael Moody. 3D FIM on tungsten. Page 26. 25. Find the nearest number of atoms for.
Correlative and simulation supported atomprobe tomography: advances and limitations D. Raabe, B. Gault, A. Breen, Y. Chang, M. Yao, D. Ponge, M. Herbig, C. Liebscher, S. Katnagallu, G. Dehm, C. Scheu, A. Stoffers, A. Nematollahi, J. Neugebauer
Düsseldorf, Germany
Physical Review Letters 112 (2014) pp. 126103
Science 349 (2015) 1080-1083
Dierk Raabe, Workshop on Possibilities and Limitations of Quantitative Materials Modeling and Characterization 2017,
Atom Probe Tomography (APT): directions for structure resolution Use evaporation anisotropy
See e.g. Gault, Breen, Cairney, Ringer, Miller
FIM++
See e.g. Dagan, Moody, Danoix
See e.g. Herbig, Seidman, Gorman
See e.g. Schmitz, Dunin-Borkowski, Larson
Combine APT with TEM / SEM / STEM
Image the tip and simulate field 1
Example Use evaporation anisotropy
APT crystallography
2
Atom Probe Tomography : APT crystallography
3
Atom Probe Tomography : APT crystallography
4
Atom Probe Tomography : APT crystallography
5
Atom Probe Tomography : APT crystallography
6
Atom Probe Tomography : APT crystallography
7
Combine APT with TEM / STEM: Probe tip before evaporation
APT & TEM / STEM / SEM (& DFT / MD)
S. Jiang et al. Nature (2017) M. Kuzmina et al Science (2015) Y. Li et al. phys rev let. (2014) M. Herbig et al., phys rev let. (2014) M. Koyama et al. Science (2017) M. Herbig et al. Ultramicroscopy (2015) 8
Experimental setup for correlative TEM–APT probing
Ga3+
Principle
Ions e-
sample modified singletilt TEM retainer
52°
FIB: Tip is cut parallel to holder axis.
TEM: During tilt around holder axis tip always stays in focus range, whole sample in focus (!).
APT: Defined sample orientation in all instruments makes it possible to merge information.
S. Jiang et al. Nature (2017) M. Kuzmina et al Science (2015) Y. Li et al. phys rev let. (2014) phys rev let. (2014) M. Koyama et al. Science (2017) M. Herbig et al. Ultramicroscopy (2015)
M. Herbig et al.,
Guo et al phys rev let. 2014, Duarte et al. Science 341, 372 (2013)
9
Experimental setup for correlative TEM–APT probing
Ga3+
Principle
Ions e-
sample modified singletilt TEM retainer
52°
FIB: Tip is cut parallel to holder axis.
TEM: During tilt around holder axis tip always stays in focus range, whole sample in focus (!).
APT: Defined sample orientation in all instruments makes it possible to merge information.
S. Jiang et al. Nature (2017) M. Kuzmina et al Science (2015) Y. Li et al. phys rev let. (2014) phys rev let. (2014) M. Koyama et al. Science (2017) M. Herbig et al. Ultramicroscopy (2015)
M. Herbig et al.,
Guo et al phys rev let. 2014, Duarte et al. Science 341, 372 (2013)
10
Fe-30%Mn-8%Al-1.2%C – 10-18% weight reduction
Nanostructured Fe-based superalloy
11
HRSTEM on Fe-Mn-Al-C /κ steel [001]/κ
HAADF-STEM
[010]/κ [100]/κ
APT C 9.0 at.% 20nm ABF-STEM
Yao, MJ; et al. Acta Materialia,106,,229-238,2016;
Al
Mn/Fe C
Nature 544, 460–464 (27 April 2017)
Collaboration with Lipinska-Chwalek, Liebscher, Mayer, Dehm, Scheu (TEM), Dey, Hickel, Neugebauer (DFT), Yao, Herbig, Gault (ATP)
12
HRSTEM on Fe-Mn-Al-C /κ steel [001]/κ
disordered- HAADF-STEM
ordered-k
[010]/κ
(002) planes
[100]/κ
APT C 9.0 at.% 20nm ABF-STEM
Al
Mn/Fe C
Collaboration with Lipinska-Chwalek, Liebscher, Mayer, Dehm, Scheu (TEM), Dey, Hickel, Neugebauer (DFT), Yao, Herbig, Gault (ATP)
13
Regular nanoparticle arrays by discontinuous precipitation
J.-B. Seol, S.-H. Na, B. Gault, J.-E. Kim, J.-C. Han, C.-G. Park & D. Raabe, Scientific Reports 7, Article number: 42547 (2017)
Fe with 0.2 C and a total of 0.3 at. % Ti, Mo, and V 14
Regular nanoparticle arrays by discontinuous precipitation Fe with 0.2 C and a total of 0.3 at. % Ti, Mo, and V
J.-B. Seol, S.-H. Na, B. Gault, J.-E. Kim, J.-C. Han, C.-G. Park & D. Raabe, Scientific Reports 7, Article number: 42547 (2017) 15
Regular nanoparticle arrays by discontinuous precipitation
J.-B. Seol et al., Scientific Reports 7, Article number: 42547 (2017)
5nm 16
Σ3 facets in HR-STEM
5 nm 17
APT reconstruction LEAP 5000
Si C
nm ongoing work
18
10^24 particle number density in maraging; strength by APB
NiAl B2 / cubic martensite matrix low lattice misfit (0.03 - 0.04 %)
Nature 544, 460–464 (27 April 2017)
19
10^24 particle number density in maraging; strength by APB
Nature 544, 460– 464 (27 April 2017) 20
Atom Probe Tomography (APT): directions for structure resolution FIM++
See e.g. Dagan, Moody, Danoix
21
Seeing atoms in 3D: A more holistic approach
Atom probe
TEM/STEM/ EELS
FIM Simulation
G. Larson
APT analysis directions
22
Use FIM atom coordinates for MD relaxation Collaboration with Oxford FIM / APT group: P. Baggot, M. Moody, D. Haley, A. London, M. Dagan
23
3D FIM on tungsten
from Michal Dagan, Baptiste Gault, George Smith, Paul Bagot & Michael Moody 24
Simulation, rescaling, towards automation Create a sphere out of the perfect lattice
Find the nearest number of atoms for each atom on the layers chosen
Remove the atom from the layer.
Randomly select among the atoms which have same probability of evaporation
Calculate the intensity based on nearest neighbors
Create a priority list for evaporation based on the intensities
de Castilho, Caio MC, and David R. Kingham. "Resolution of the field ion microscope." Journal of Physics D: Applied Physics 20.1 (1987): 116. Chen, Y. C., and D. N. Seidman. "On the atomic resolution of a field ion microscope." Surface Science 26.1 (1971): 61-84. Moore, A. J. W., and J. A. Spink. "Field evaporation from tungsten and the bonding of surface atoms." Surface Science 12.3 (1968): 479-496.
25
FIM Simulation
Using supervised machine learning to directly identify the coordinates of the atoms from experiments.
26
Molecular Relaxation
PyIron
APT, FIM, STEM / TEM, EBSD, TKD, EELS, VASP, kMC, LAMMPS 27
Use FIM atom coordinates for MD relaxation
28
Use FIM atom coordinates for MD relaxation
29
Relaxation by phase field crystal method
On FIM data-1
Simulations from Sai Tang 30
Possibilities and limitations
Driving force: want to image atoms, not atomic columns APT limits: local magnification, local field calculation, evaporation theory Multi-beam correlative probing: On a good way and giving results on complex multicomponent materials Specimen exchange among instruments: UHV, cryo, machine decoupling, on the way, summer 2017 Coupling with simulations and machine learning: APT+MD; FIM+MD, much to do Chemically sensitive FIM: need to do theory on imaging gas – tip
APT on organics: ill-defined chopping
31