20 Sep 2010 ... J. Von Delft: “Kondo effect in metals and quantum dots”, lecture notes from The
4th Windsor Summer School on Condensed Matter Theory,.
J. Paaske, NBI & NSC
Cotunneling and Kondo effect in quantum dots Part I/II
Jens Paaske The Niels Bohr Institute & Nano-Science Center Bad Honnef, September, 2010
20-09-2010 Dias 1
J. Paaske, NBI
Lecture plan Part I 1.
Basics of Coulomb blockade and quantum conductance - Quantum tunneling and classical charging
2.
From Anderson model to cotunneling - Schrieffer-Wolff transformation
3.
Elastic vs. inelastic cotunneling - Bias spectroscopy
4.
Exchange cotunneling and basic Kondo effect - Signatures of Kondo effect
5.
Tunneling renormalization of cotunneling thresholds - Ferromagnetic leads, quasi-degenerate systems
Part II 1.
The nonequilibrium Kondo problem - What’s the problem?
2.
Poor man’s scaling for nonequilibrium systems - Lineshapes for inelastic cotunneling?
3.
The effect spin-orbit coupling - Source of bias-asymmetry and angular dependence of B-field
20-09-2010 Dias 2
J. Paaske, NBI
Suggested literature 1.
H. Bruus & K. Flensberg, “Many-Body Quantum Theory in Condensed Matter Physics” Oxford University Press (2004).
2.
R. Hanson et al.: “Spins in few electron quantum dots”, Reviews of Modern Physics 79, 1217 (2007).
3.
E. L. Wolf, “Principles of Electron Tunneling Spectroscopy”, Oxford University Press (1985).
4.
J. Von Delft: “Kondo effect in metals and quantum dots”, lecture notes from The 4th Windsor Summer School on Condensed Matter Theory, Available at http://www.lancs.ac.uk/users/esqn/windsor07/programme.html
5.
Articles cited along the way.
20-09-2010 Dias 3
J. Paaske, NBI
20-09-2010 Dias 4
J. Paaske, NBI
Molecular Transistor Realizations … Bardeen, Brattain og Shockley, Bell Labs 1947
Present day Intel workhorse
In
100 nm
Carbon nanotube (Delft)
Single molecule (NBI/NSC)
E E
C B
B
C
10 nm 1000 nm
20-09-2010 Dias 5
J. Paaske, NBI
Basic
(field effect)
transistor setup
Vg
V
Field Effect Transistor
drain
gate
source
?
I
Current through the device (from source to drain) - turns on (Logical 1) - turns off (Logical 0) by adjusting electrical potential on the gate electrodes.
20-09-2010 Dias 6
J. Paaske, NBI
Bias-spectroscopy of nanostructures
s
Vg
drain
d gate
source
V
I
”Coulomb diamonds” 20-09-2010 Dias 7
J. Paaske, NBI
Typical nanostructures of interest and many more ...
Heterostructure quantum dot (GaAs/AlGaAs)
Carbon nanotube
Semiconductor Nano-wire
C60 Peapod Single cell …
20-09-2010 Dias 8
Organic molecule
Metal complex
J. Paaske, NBI
Contacts of current interest
MATERIALS
Normal metal (Au) Ferromagnetic metal (Ni) Superconducting metal (Ti/Al, Pd/Nb)
NANOGAPS
Various combinations: NDS, SDS, SDF, FDF, etc…
New design! NSC® 2 nm gap Electron Beam Lithography
20-09-2010 Dias 9
Electromigration
Mechanical break junctions
Au Nano-rods
J. Paaske, NBI & NSC
Charge conduction: Quantum tunneling + Classical charging
Elctrostatic-landscape: RS
RD
CG
CD
gate
source
CS
drain
Potential-landscape:
Drain
Source
Vg Filled states
20-09-2010 Dias 10
V
I
J. Paaske, NBI & NSC
The Harlequin diamond plot: Coulomb Blockade Chemical potential of dot or molecule: S D
Plotting conductance as a function of
and Current thresholds:
I≠0
N, N+1
N-1, N
gives the slopes:
I=0 N-1
0
N
N+1 for
C.B.
C.B.
C.B.
C.B.
C.B. Addition energy:
20-09-2010 Dias 11
.
J. Paaske, NBI
Steady state current
(sequential tunneling)
Consider a single quantum level of energy Occupations:
S D
Source: Drain: Dot:
Tunneling rates:
Steady state (nonequilibrium) occupation number of the level:
Source and drain currents: Steady state current:
20-09-2010 Dias 12
Current is flowing only when the level lies within the ”bias-window”
J. Paaske, NBI
Bias dependence & level broadening Steady state current: S
But where is the voltage in Ohm’s law,
D
?
Tunneling broadens the quantum level and smears energy conservation: ,
Heisenberg!
This changes the current to:
, Conductance through a single level cannot exceed the conductance quantum:
20-09-2010 Dias 13
J. Paaske, NBI
Summarizing: I.
Conductance through a single quantum level is limited by e2/h
II.
Current is blocked by Coulomb-repulsion except for special resonant values of V and Vg .
III. Varying V and Vg leads to characteristic ’Coulomb-diamonds’ for the conductance: ”Single-electron transistor”.
InAs-wire based Quantum Dot, T. Sand Jespersen, NBI
20-09-2010 Dias 14
J. Paaske, NBI
Taking a closer look inside the diamonds …
20-09-2010 Dias 15
J. Paaske, NBI
Cotunneling: Lifting Coulomb blockade by quantum fluctuations Cotunneling rate
(2.-order PT):
Finite current:
Spinful dot (odd occ.) ”Kondo-effect”:
Charging cost:
N-1 0
20-09-2010 Dias 16
(∞-order PT):
N
N+1
J. Paaske, NBI
Inelastic Cotunneling: Bias spectroscopy
Extra contribution to the current:
Excited state spectroscopy !! Specific signatures:
0
• spin-flip transitions (Kondo-sharpened!) • vibrationally assisted
transitions
(sidebands!)
20-09-2010 Dias 17
J. Paaske, NBI
Kondo effect
(
J. Kondo, Prog. Theor. Phys. 32, 37 (1964) L. Glazman, M. Raikh, JETP Lett. 47, 452 (1988) T. K. Ng, P. A. Lee, Phys. Rev. Lett. 61, 1768 (1988)
)
(exchange amplitude J)
Hamiltonian:
(conduction (lead) electron s)
(localized (dot) spin S)
Transition probability in 3rd order perturbation-theory:
Perturbative Renormalization Group
(Poor man’s scaling
[PWAnderson, ’64])
: Universal scaling curve:
Integrate down to relevant energy-scale:
( Van der Wiel, Science 2000)
Interaction induced 20-09-2010 energy-scale ! Dias 18
Strong coupling regime: Landau Fermi Liquid Fixed Point [K.G. Wilson, ’71; P. Nozières, ’74]
J. Paaske, NBI
Observing a Kondo peak ...
(Liang et al., Nature 2002)
”Nucleon”
”Quark” Weak coupling:
Strong coupling: - Singlet (S=0)
Binding energy TK ~4K
- Doublet (S=1/2)
Spin is screened when lowering temperature! 20-09-2010 Dias 19
J. Paaske, NBI
Dot/lead-Hamiltonian
(2nd quantized many-body Hamiltonian)
Single-orbital Anderson model S
Kondo-regime:
Charge fluctuations are strongly suppressed! (Considered as a weak perturbation to Coulomb blockade) 20-09-2010 Dias 20
D
J. Paaske, NBI
Projecting out charge-fluctuations
(
odd)
The Schrieffer-Wolff transformation
Perform unitary transformation perturbatively:
Construct
so as to cancel the tunneling term
Satisfied with
, where:
J. R. Schrieffer, P. A. Wolff, Phys. Rev. 149, 491 (1966). 20-09-2010 Dias 21
P.-O. Löwdin, J. Chem. Phys. 19, 1396 (1951).
:
J. Paaske, NBI
Effective exchange-cotunneling
(Kondo)
model
Finishing the Schrieffer-Wolff transformation:
With (exchange-)cotunneling amplitudes:
(AFM exchange coupling)
(Potential scattering)
J. Appelbaum, Phys. Rev. Lett. 17, 91 (1966). P. W. Anderson 20-09-2010 , Phys. Rev. Lett. 17, 95 (1966). Dias 22
J. Paaske, NBI
Cotunneling current
(2nd order PT, finite B-field)
for Cotunneling-rates:
Nonequilibrium spin-occupation numbers:
20-09-2010 Dias 23
J. Paaske, NBI
Cotunneling conductance
(2nd, and 3rd order order PT, finite B-field)
M. R. Wegewijs, Y. Nazarov, arXiv: cond-mat/0103579 J. Paaske, A.20-09-2010 Rosch, P. Wölfle, Phys. Rev. B 69, 155330 (2004). V. N. Golovach, D. Loss, Phys. Rev. B 69, 245327 (2004). Dias 24
J. Paaske, NBI & NSC
Inelastic cotunneling (typical experiments) Goldhaber-Gordon [GaAs/AlGaAs]
Zumbühl [GaAs/AlGaAs]
Ralph [Charge-trap]
Kogan [GaAs/AlGaAs]
Babic [CNT]
Nygård [CNT]
Cronenwet [GaAs/AlGaAs]
Schmid [GaAs/AlGaAs]
Osorio [OPV5]
…Zzz
Osorio [Mn2+]
20-09-2010 Dias 25
zz
zz
z ...
…z
zzz
zz
zZ…
J. Paaske, NBI
Contacting a single molecule
(Electromigration: gold wire)
and a bit of chemistry...
(Herre van der Zant et al., TU-Delft) 20-09-2010 Dias 26
J. Paaske, NBI
The completed single-molecule transistor ...
20-09-2010 Dias 27
J. Paaske, NBI
OligoPhenyleneVenylene5 • Chemical synthesis (Bjørnholm et al. NSC-Copenhagen)
• Low temperature bias-spectroscopy in electromigrated gold-junction (van der Zant et al., TU-Delft)
17_megah_lockin.dat
dI/dV (nS) 12000
80 10000 60 8000 40 6000 Vb (mV)
20 4000
0 -20
2000
-40
0
-60
-2000
-80
-4000 -2.5
-2
-1.5
20-09-2010 Dias 28
-1
-0.5
0 0.5 Vg (V)
1
1.5
2
2.5
The perfect void for inelastic cotunneling involving low-energy excitations! Compare: Molecule 100 meV
CNT-dot 5 meV
J. Paaske, NBI
[Mn(terpy-O-(CH ) -SAc) )]2+ 2 6
2
• Chemical synthesis (Bjørnholm et al. NSC-Copenhagen)
• Low temperature bias-spectroscopy in electromigrated gold-junction (van der Zant et al., TU-Delft) Al2O3 gate SiO2
AuPd Au
AuPd
S=5/2 High-Spin
20-09-2010 Dias 29
S=1/2 2 m
Low-Spin
Electrical Spin Control !
S=1/2
S=1
S=5/2
S=0
N=5
N=6
J. Paaske, NBI
Spectroscopic fine-structure in carbon nanotubes: Tunneling renormalization
20-09-2010 Dias 30
Maria-Alm, Austria, January 2008
CNT Coulomb-blockade diamonds
(bias-spectroscopy)
Adding 285 electrons, one by one...
88 odd-occupied charge states with zero-bias Kondo peak.
20-09-2010 Dias 31
Maria-Alm, Austria, January 2008
The standard diamond
Shell-filling
20-09-2010 Dias 32
H
He
Li
Be
B
C
N
O
F
Ne
Na
Mg
Maria-Alm, Austria, January 2008
The standard diamond Elastic cotunneling (Kondo-peak)
Inelastic cotunneling
20-09-2010 Dias 33
J. Paaske, NBI
20-09-2010 Dias 34
J. Paaske, NBI
Tunneling induced level-shifts in nanotube QD
[Ni leads]
Spin-polarized leads:
N=1
(tunneling out)
Gate-dependent spin-splitting:
(tunneling in)
(
)
N=0
N=2
(Bethe logarithms …)
N=1
20-09-2010 Dias 35
J. Martinek et al., Phys. Rev. Lett. 91, 127203 (2003). J. Martinek et al., Phys. Rev. Lett. 72, 121302(R) (2005). M. Sindel et al., Phys. Rev. B 76, 045321 (2007).
J. Paaske, NBI
20-09-2010 Dias 36
J. Paaske, NBI
Gate-dependent exchange-field
0
1
(tunneling induced ”Lamb-shift”)
2
Findings and prospects: • Electrical spin-control (not via induction fields!) Allows for much faster switching (Spintronics)
• Extremely localized ’magnetic field’ of order 1T Single electron spin control (Qubit initialization)
20-09-2010 Dias 37
(even 70 Tesla !!!)
J. Paaske, NBI
Tunneling induced level-shifts in nanotube QD Different tunneling-amplitudes to different orbitals:
N=1
N=1
N=0
N=2
N=1
20-09-2010 Dias 38
N=0
N=2
N=1
[Au leads]
Maria-Alm, Austria, January 2008
17
21
Gate-dependent excitation energy
7
20-09-2010 Dias 39
Maria-Alm, Austria, January 2008
Tunneling-induced level shifts
(2nd order PT)
tunneling out
tunneling in
Energy of dot-state with i electrons in orbital 1 and j in orbital 2: Tunneling rate for orbital i=1,2 to lead =source, drain:
Γ1 ¿ Γ2
20-09-2010 Dias 40
(∝
Vg )
J. Paaske, NBI
Gate-dependent excitation energies
Strong coupling sub-gap structure … Unresolved ?!
20-09-2010 Dias 41
J. Paaske, NBI
Inelastic cotunneling in quantum dots and molecules with weakly broken degeneracies G. Begemann et al., Phys. Rev. B 82, 045316 (2010)
Gate-dependent 20-09-2010 line-shapes Dias 42
J. Paaske, NBI
Lecture plan Part I 1.
Basics of Coulomb blockade and quantum conductance - Quantum tunneling and classical charging
2.
From Anderson model to cotunneling - Schrieffer-Wolff transformation
3.
Elastic vs. inelastic cotunneling - Bias spectroscopy
4.
Exchange cotunneling and basic Kondo effect - Signatures of Kondo effect
5.
Tunneling renormalization of cotunneling thresholds - Ferromagnetic leads, quasi-degenerate systems
Part II 1.
The nonequilibrium Kondo problem - What’s the problem?
2.
Poor man’s scaling for nonequilibrium systems - Lineshapes for inelastic cotunneling?
3.
The effect spin-orbit coupling - Source of bias-asymmetry and angular dependence of B-field
20-09-2010 Dias 43