Data for developing allometric models and ... - Semantic Scholar

11 downloads 0 Views 530KB Size Report
Feb 28, 2018 - a School of Natural Resources, The Copperbelt University, P.O. Box 21692, Kitwe, Zambia b Water Systems and Global Change Group, ...
Data in Brief 17 (2018) 1361–1373

Contents lists available at ScienceDirect

Data in Brief journal homepage: www.elsevier.com/locate/dib

Data Article

Data for developing allometric models and evaluating carbon stocks of the Zambezi Teak Forests in Zambia Justine Ngoma a,b,⁎, Eddy Moors d,g, Bart Kruijt b, James H. Speer c, Royd Vinya a, Emmanuel N. Chidumayo f, Rik Leemans e a

School of Natural Resources, The Copperbelt University, P.O. Box 21692, Kitwe, Zambia Water Systems and Global Change Group, Wageningen University and Research, P.O Box 47, 6700AA Wageningen, The Netherlands c Department of Earth and Environmental Systems, Indiana State University, Terre Haute, IN 47809, USA d VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands e Environmental Systems Analysis Group, Wageningen University and Research, P.O Box 47, 6700AA Wageningen, The Netherlands f Makeni Savanna Research Project, P.O Box 50323, Ridgeway, Lusaka, Zambia g IHE Delft Institute for Water Education, PO Box 3015, 2601 DA Delft, The Netherlands b

a r t i c l e i n f o

abstract

Article history: Received 8 February 2018 Received in revised form 22 February 2018 Accepted 22 February 2018 Available online 28 February 2018

This paper presents data on carbon stocks of tropical tree species along a rainfall gradient. The data was generated from the Sesheke, Namwala, and Kabompo sites in Zambia. Though above-ground data was generated for all these three sites, we uprooted trees to determine below-ground biomass from the Sesheke site only. The vegetation was assessed in all three sites. The data includes tree diameter at breast height (DBH), total tree height, wood density, wood dry weight and root dry weight for large ( Z 5 cm DBH) and small (o 5 cm DBH) trees. We further presented Root-to-Shoot Ratios of uprooted trees. Data on the importance-value indices of various species for large and small trees are also determined. Below and above-ground carbon stocks of the surveyed tree species are presented per site. This data were used by Ngoma et al. (2018) [1] to develop above and below-ground biomass models



DOI of original article: https://doi.org/10.1016/j.actao.2018.02.003 Corresponding author at: School of Natural Resources, The Copperbelt University, P.O. Box 21692, Kitwe, Zambia. E-mail address: [email protected] (J. Ngoma).

https://doi.org/10.1016/j.dib.2018.02.057 2352-3409/& 2018 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1362

J. Ngoma et al. / Data in Brief 17 (2018) 1361–1373

and the reader is referred to this study for additional information, interpretation, and reflection on applying this data. & 2018 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table Subject area

Ecology

More specific subject area Type of data How data was acquired

Carbon stocks of the Zambezi Teak Forests.

Data format Experimental factors

Experimental features Data source location Data accessibility

Tables and Figures. We generated data to develop above-ground and below-ground biomass models by respectively cutting down trees and uprooting trees. We assessed vegetation characteristics by generating data to determine carbon stocks. We determined the carbon fractions in leaves, branches, stems, and roots from all cut and uprooted trees. These carbon fractions were measured in the laboratory using a Fisons EA1108 CHN-0 elemental analyser (See Ngoma et al. [1] for details). Analyzed and Raw. Root and wood samples were immediately weighed whilst in the field. Samples taken to develop allometric models were then oven dried for 24 h at 105 °C to obtain their dry weight after determining their volume through the water-displacement approach in the ‘as received condition’ [1,2]. Stem, branches, roots, and leaves were ground into fine powder before analyzing them for their C fraction. Wood volume was not measured for the disk samples that were taken to determine their carbon fraction. Data were collected along a rainfall gradient covering high, intermediate and low rainfall areas (See Ngoma et al. [1] for details). We collected data from Kabompo (14°00.551S, 023°35.106E), Namwala (15° 50.732S, 026°28.927E), and Sesheke (17°21.278S, 24°22.560E) in Zambia. Data are provided in this paper to improve data accessibility and further data at the tree-level are available online in excel format (Supplementary information 1 and 2.

Value of the data

 The data can be used to understand carbon-stock distributions for a tropical precipitation gradient. This gives insights on how climate change likely affects these distributions.

 The data provide information on the carbon-storage potential of various species, thereby giving insight on the carbon-sequestration potential of individual species.

 The average root-to-shoot ratio presented can be applied in similar forests to determine the belowground biomass stocks from the above-ground biomass values; and

 The data can be used to develop allometric models of similar tropical forests types and species. 1. Data We present data on various tree parameters (e.g. diameter at breast height (DBH), total tree height, wood density, and dry weight). The data presented in Section 1.1 were used to determine carbon fraction in leaves, stem, branches, and roots, and to develop above and below-ground biomass

J. Ngoma et al. / Data in Brief 17 (2018) 1361–1373

1363

Table 1 Diameter (DBH), total tree height, wood density, and wood dry weight of sampled small trees ( o 5 cm DBH). Species

Diameter (DBH, cm)

Total tree height (m)

Wood density (g/m3)

Wood dry weight (kg)

Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Combretum celastroides Combretum celastroides Combretum celastroides Combretum celastroides Combretum celastroides Combretum celastroides Combretum celastroides Combretum celastroides Diplorhynchus candylocarpon Diplorhynchus candylocarpon Diplorhynchus candylocarpon Diplorhynchus candylocarpon Diplorhynchus candylocarpon Diplorhynchus candylocarpon Diplorhynchus candylocarpon Diplorhynchus candylocarpon Friesodielsia obovata Friesodielsia obovata Friesodielsia obovata Friesodielsia obovata Friesodielsia obovata Friesodielsia obovata Friesodielsia obovata Friesodielsia obovata Friesodielsia obovata Friesodielsia obovata Friesodielsia obovata Friesodielsia obovata Friesodielsia obovata Friesodielsia obovata Pteleopsis anisoptera Pteleopsis anisoptera

2.30 1.10 3.50 2.50 1.80 3.50 4.50 4.50 1.10 1.20 2.50 3.00 3.70 3.40 4.60 4.50 1.80 2.40 1.50 3.10 2.80 1.50 2.00 1.60 2.40 1.60 1.10 2.20 2.00 1.30 3.10 4.50 4.20 2.80 3.80 4.50 4.70 2.80 1.40 3.40 3.50 1.60 2.80 1.60 1.20 4.80 3.20 2.70 2.70 4.00 1.20 2.40 2.60 3.10 3.10 1.60 4.90 3.20 2.60

3.00 2.00 3.95 2.35 3.20 4.70 7.00 4.90 2.50 3.40 4.40 4.90 5.50 5.30 4.00 4.50 3.70 3.80 3.70 4.90 4.00 3.90 3.50 3.58 3.80 3.20 2.50 2.10 3.85 3.10 4.40 5.00 4.70 3.30 8.40 4.20 5.30 8.90 4.15 4.30 5.70 3.40 5.40 3.10 2.80 8.80 4.00 4.00 3.00 3.60 3.40 4.70 5.01 5.05 4.10 4.04 6.90 6.10 5.20

0.77 0.56 0.66 0.67 0.70 0.70 0.73 0.70 0.79 0.93 0.95 0.92 0.88 0.76 0.89 0.94 0.73 1.07 1.04 0.72 0.62 0.86 0.88 0.73 0.75 1.01 0.71 0.08 0.93 0.99 0.93 0.97 0.90 0.83 0.97 0.53 0.46 0.47 0.65 0.76 0.69 0.70 0.54 0.51 0.84 0.70 0.81 0.72 0.85 0.78 0.70 0.68 0.63 0.72 0.67 0.89 0.75 0.68 0.72

0.66 0.24 2.10 0.69 0.72 3.04 5.58 4.10 3.32 3.01 0.91 0.36 1.75 2.12 2.07 0.60 0.86 0.33 0.23 4.79 0.28 0.35 0.40 0.26 0.14 0.35 0.17 2.07 1.66 2.49 3.60 2.82 0.97 2.04 3.82 0.91 0.33 2.04 7.22 6.16 0.42 0.58 3.71 0.38 9.57 2.32 0.64 0.72 2.78 0.25 0.55 0.39 1.03 1.30 5.63 0.26 3.01 6.28 0.35

1364

J. Ngoma et al. / Data in Brief 17 (2018) 1361–1373

Table 1 (continued ) Species

Diameter (DBH, cm)

Total tree height (m)

Wood density (g/m3)

Wood dry weight (kg)

Pteleopsis anisoptera Pteleopsis anisoptera Pteleopsis anisoptera Pteleopsis anisoptera Pteleopsis anisoptera Pteleopsis anisoptera Pterocarpus antunesii Pterocarpus antunesii Pterocarpus antunesii Pterocarpus antunesii Pterocarpus antunesii Pterocarpus antunesii Pterocarpus antunesii Pterocarpus antunesii Pterocarpus antunesii

2.40 1.20 1.10 4.90 3.10 4.70 4.30 4.40 1.40 3.80 2.30 1.70 4.00 3.80 4.30

2.90 3.20 3.40 5.60 5.80 6.50 8.00 7.00 4.10 5.80 5.40 5.20 7.40 7.25 5.30

0.68 0.73 0.87 0.75 0.70 0.81 0.79 0.89 0.50 0.80 1.19 0.79 0.69 0.78 0.73

4.35 0.48 0.37 3.03 1.92 3.70 0.40 0.88 0.39 1.14 0.49 0.32 0.77 4.54 5.97

Table 2 Diameter (DBH), total tree height, wood density, and wood dry weight of sampled large trees ( Z 5 cm DBH). Species Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea Baikiaea

plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga plurijuga

Diameter (DBH, cm)

Total height (m)

Wood density (g/m3)

Wood dry weight (kg)

32.50 34.00 21.00 7.00 26.70 33.00 48.70 43.70 55.50 51.00 69.50 39.50 22.20 33.10 41.00 43.00 8.50 12.00 12.00 8.00 50.00 25.00 44.00 35.00 21.20 25.00 26.00 41.00 29.00 13.70 42.20 33.00 23.70 51.50 16.50 46.30 62.00

12.44 15.32 11.95 8.20 14.90 9.80 17.55 16.90 16.90 17.85 21.90 39.50 11.95 14.00 15.19 14.20 6.70 9.80 10.05 7.65 15.37 10.80 14.90 6.20 10.30 11.37 12.40 12.50 10.30 13.20 12.12 10.17 12.10 11.80 10.40 10.42 19.30

0.83 0.96 0.78 0.92 1.00 0.94 0.88 0.91 0.94 0.89 0.91 0.85 0.80 0.85 1.01 0.91 0.92 0.94 0.85 0.69 0.83 0.98 0.90 1.02 0.75 0.89 1.15 0.85 0.73 0.78 0.88 1.15 0.83 0.93 0.94 0.97 0.86

459.99 619.83 129.50 14.80 271.89 493.30 1031.10 944.59 2043.49 1020.93 2355.53 949.69 204.77 423.57 744.65 689.72 13.30 55.06 54.89 17.60 1321.92 310.46 1201.18 427.83 181.39 307.05 489.81 947.46 169.89 63.18 892.87 917.50 232.91 1294.72 29.27 961.39 2659.55

J. Ngoma et al. / Data in Brief 17 (2018) 1361–1373

1365

Table 2 (continued ) Species

Diameter (DBH, cm)

Total height (m)

Wood density (g/m3)

Wood dry weight (kg)

Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Baphia massaiensis Combretum hereroense Combretum hereroense Combretum hereroense Combretum hereroense Combretum hereroense Combretum hereroense Combretum hereroense Combretum hereroense Combretum hereroense Diplorhynchus candylocarpon Diplorhynchus candylocarpon Diplorhynchus candylocarpon Diplorhynchus candylocarpon Diplorhynchus candylocarpon Diplorhynchus candylocarpon Diplorhynchus candylocarpon Diplorhynchus candylocarpon Diplorhynchus candylocarpon Diplorhynchus candylocarpon Entandrophragma caudatum Entandrophragma caudatum Ficus sycomorus Ficus sycomorus Ficus sycomorus Ficus sycomorus Ficus sycomorus Lonchocarpus nelsii Lonchocarpus nelsii Lonchocarpus nelsii Lonchocarpus nelsii Pteleopsis anisoptera Pteleopsis anisoptera Pteleopsis anisoptera Pteleopsis anisoptera Pteleopsis anisoptera Pteleopsis anisoptera Pteleopsis anisoptera Pteleopsis anisoptera Pteleopsis anisoptera Pterocarpus angolensis Pterocarpus angolensis Pterocarpus angolensis Pterocarpus angolensis Pterocarpus angolensis Pterocarpus angolensis Pterocarpus angolensis Pterocarpus angolensis Pterocarpus angolensis Pterocarpus angolensis Pterocarpus angolensis Pterocarpus antunesii Pterocarpus antunesii Pterocarpus antunesii Pterocarpus antunesii

10.00 16.00 13.00 35.00 20.00 16.00 7.50 24.00 25.00 41.50 11.00 16.00 5.00 36.50 9.00 38.40 10.00 14.40 28.50 22.00 33.00 15.00 9.70 22.00 5.10 5.50 36.00 46.50 17.00 15.70 23.00 16.50 17.00 9.50 29.00 16.00 16.20 5.00 10.00 9.00 15.20 27.00 28.00 31.70 34.00 33.00 19.00 6.30 10.00 13.50 24.00 21.60 31.50 12.00 50.30 32.50 43.00 39.00 19.00 20.00 10.00

7.85 9.05 9.25 12.70 8.47 7.80 8.60 18.40 6.62 12.22 34.50 9.08 6.60 13.50 20.90 15.35 6.30 6.50 8.55 7.56 7.60 5.65 4.85 8.90 4.25 4.70 17.30 16.07 7.75 6.70 5.65 7.48 5.56 6.40 11.30 8.75 6.60 7.50 9.00 9.20 11.30 14.75 16.45 13.60 16.63 18.30 8.09 4.85 5.85 7.55 10.15 10.80 9.48 6.19 11.88 11.75 14.44 14.05 16.55 18.55 11.50

0.77 0.89 0.78 0.86 0.84 1.02 0.98 0.88 0.67 0.79 0.65 0.70 0.62 0.81 0.62 0.88 0.67 0.75 0.92 0.72 0.73 0.83 0.80 0.76 0.48 0.63 0.64 0.65 0.70 0.78 0.56 0.99 0.68 0.99 1.11 0.80 0.69 0.99 0.86 0.83 0.66 0.95 0.97 0.98 0.85 1.13 0.56 0.42 0.68 0.47 0.59 0.64 0.56 0.76 0.70 0.62 0.65 0.95 0.72 0.93 0.76

17.80 64.46 65.57 467.63 63.11 38.65 16.79 201.16 212.95 805.12 25.63 36.96 6.52 361.30 20.09 556.10 27.49 61.05 161.07 117.92 274.79 38.07 19.32 296.68 5.53 3.27 563.02 193.80 95.26 76.48 193.80 103.44 56.30 19.54 300.64 75.21 59.37 6.57 37.04 16.57 57.46 315.11 543.42 365.56 590.86 422.99 66.13 6.16 27.08 39.09 159.04 169.62 365.62 43.72 1488.17 199.30 803.22 895.36 182.70 160.68 28.62

1366

J. Ngoma et al. / Data in Brief 17 (2018) 1361–1373

Table 2 (continued ) Species Pterocarpus Pterocarpus Pterocarpus Pterocarpus Pterocarpus Pterocarpus

antunesii antunesii antunesii antunesii antunesii antunesii

Diameter (DBH, cm)

Total height (m)

Wood density (g/m3)

Wood dry weight (kg)

6.50 32.00 23.00 44.00 41.00 25.00

10.40 11.87 12.23 18.81 15.26 13.60

0.67 0.69 0.80 0.83 0.83 0.73

9.50 630.64 401.37 651.66 1170.64 205.56

Table 3 Diameter (DBH), total tree height, wood density, wood dry weight, and root dry weight of sampled uprooted trees. Species

DBH (cm)

Total tree height (m)

Above-ground biomass (Kg)

Root density (g/m3)

Root biomass (Kg)

Root-to-Shoot ratio

Baikiaea plurijuga Baikiaea plurijuga Baikiaea plurijuga Ficus sycomorus Lonchocarpus nelsii Lonchocarpus nelsii Ficus sycomorus Average

25 44 35 17 10 29 16

11 18 6 8 6 11 7

310 1201 428 95 20 301 76

0.89 0.85 0.67 0.53 0.76 0.80 0.48

56 295 151 27 9 199 35

0.18 0.25 0.35 0.28 0.47 0.66 0.46 0.38

models. Root-to-Shoot ratios of the uprooted trees were also calculated. Section 1.2 provides the species-importance-value (SIV) indices of all surveyed trees, which are categorized as large (Z 5 cm DBH) or small (o 5 cm DBH) trees. In Section 1.3, data on carbon stocks of various surveyed tree species per study site are presented. 1.1. Parameters of trees used to develop allometric models See Tables 1–3 here. 1.2. Species importance value indices of large ( Z 5 cm DBH) and small (o 5 cm DBH) trees This section provides the SIV indices of all surveyed trees and tree species [1] (see Tables 4 and 5). Indices were calculated following the Cottam and Curtis [3] method. Supplementary information 1 (small trees) and 2 (large trees) provide a list of all trees and tree species surveyed. The information are excel files and available in electronic format. 1.3. Carbon stock per species per site See Table 6 and Supplementary information 1 and 2.

2. Experimental design, materials and methods Our sampling strategy and methods are fully described in Ngoma et al. [1] and its cited references. This section only presents the pictorial processes that we followed to collect our samples to develop below-ground (Section 2.1) and above-ground biomass (Section 2.2) models.

J. Ngoma et al. / Data in Brief 17 (2018) 1361–1373

1367

Table 4 Species Importance Value (SIV) Indices of small trees ( o 5 cm DBH) per site. (Note: A dash means that a species was not found at the site). Species

Kabompo

Namwala

Sesheke

Language of the species name

Acacia ataxacantha Afzelia quanzensis Baikiaea plurijuga Baphia massaiensis Bauhinia petersiana Brachystegia speciformis Cassia abbreviata Combretum celastroides Combretum hereroense Combretum molle Combretum zeyheri Commiphora mollis Croton gratissimus Dichrostachys cinerea Diplorhynchus candylocarpon Eucalyptus (exotic species) Friesodielsia obovata Hippocratea africana Hymenocardia acida Ibu Kapasa ka lyongono Lonchocarpus nelsii Mang'omba Markhamia obtusifolia Markhamia zanzibarica Mbungeimo Mubangabanga Mubeba Mubwabwa Muhoho Muhuhu Mukube Mumbukushu Mumbumelenge Mutungambabala Mwingili Namulomo Pseudolachnostylis maprouneifolia Pteleopsis anisoptera Pterocarpus angolensis Pterocarpus angolensis Pterocarpus antunesii Rhus longipes Ricinodendron rautanenii Stantwasokwe Sterculia quinqueloba Strychnos innocua Terminalia sericea Uvariastrum hexaloboides Vangueriopsis lanciflora Ximenia americana Zanha africana ?1 (Not identified)

– 3.07 – 70.37 – 8.27 – – – – – – – – 49.44 – 3.01 – – – 1.54 – – 2.06 – – 6.64 1.65 – 1.35 12.67 5.56 10.84 – – – – – 22.28 – – – – 2.95 – 12.03 – – 1.71 2.14 – 10.75 –

– – 4.82 69.68 – – 4.90 30.96 – 9.07 1.37 3.57 – 1.35 26.78 – 45.03 – 1.37 1.32 – – 3.19 17.95 – – – – 2.77 – – – – – 1.70 1.34 – 3.22 – 1.34 40.17 – 5.84 1.55 5.32 – 2.79 2.05 – – 2.59 8.42 1.33

11.01 – – 27.08 0.00 – – 0.00 15.51 – – – 0.00 – 4.82 0.00 42.71 5.09 – – – 12.23 – – 12.47 0.00 – – – – – – – 0.00 – – 25.73 43.67 – – – 66.93 – – – – – 4.23 – – – – –

Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Ila Luvale Botanical Tonga Botanical Botanical Lozi Luvale Luvale Luvale Luvale Luvale Luvale Luvale Lozi Tonga Tonga Lozi Botanical Botanical Botanical Botanical Botanical Botanical Botanical Tonga Botanical Botanical Botanical Botanical Botanical Botanical Botanical Not identified

1368

J. Ngoma et al. / Data in Brief 17 (2018) 1361–1373

Table 5 Species importance value indices of large trees ( Z 5 cm DBH) per site. (Note: A dash means that a species was not found at the site.). Species

Kabompo

Namwala

Sesheke

Language of the species name

Acacia ataxacantha Acacia erioloba Afzelia quanzensis Albizia versicolor Amblygonocarpus andongensis Baikiaea plurijuga Baphia massaiensis Bauhinia petersiana Brachystegia boehmii Brachystegia longifolia Brachystegia speciformis Burkea africana Cassia abbreviata Combretum celastroides Combretum hereroense Combretum imberbe Combretum molle Commiphora mollis Dialium engleranum Dichrostachys cinerea Diospyros batocana Diplorhynchus candylocarpon Erythrophleum africanum Eucalyptus (Exotic species) Ficus sycomorus Guibourtia coleosperma Hymenocardia acida Khaya nyasica Lannea discolor Lannea stuhlmannii Leza Lonchocarpus nelsii Magwilinti Markhamia obtusifolia Markhamia obtusifolia Markhamia zanzibarica Matu Mubangabanga Mubeba Muhaswa Muhuhu Mukamba Mukenge Mukube Muleyambezo Mumbukushu Musenene Musungwa Nankhala Ochna pulchra Pseudolachnostylis maprouneifolia Pteleopsis anisoptera Pterocarpus angolensis Pterocarpus antunesii Ricinodendron rautanenii Sclerocarya caffra Securidaca longepedunculata Sterculia quinqueloba Strophanthus welwitschii

– – 1.97 0.89 4.17 48.39 33.09 – – 8.31 18.98 8.98 – – – – – – 2.94 – 3.99 14.09 – – – 3.00 0.63 – – – – – – 6.98 – – – – 1.72 4.46 24.65 – 12.80 2.12 – 1.05 0.70 0.83 – – 19.75 35.45 4.42 – 21.20 – 0.62 1.92 –

– – 1.00 1.00 – 163 16.00 – – – – – 6.19 13.00 – 1.07 6.54 7.63 – – – 27.00 – – – 2.00 2.00 1.65 – 6.26 0.91 – 1.99 – 4.36 – 2.21 2.22 – – – 4.19 – – 3.04 – – – – – 3.00 – 22.00 – 2.00 – – – –

– 5.30 – – – 149.33 – 2.30 – – – 2.00 – – 30.99 – – – – 2.55 – 8.00 10.95 – 8.14 – – – – – – 18.29 – – – – – – – – – – – – – – – – – 2.08 5.00 – 5.00 25.34 4.00 – – – 6.71

Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Tonga Botanical Chewa Botanical Botanical Botanical Tonga Tonga Luvale Luvale Luvale Tonga Luvale Luvale Tonga Luvale Luvale Luvale Tonga Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical

J. Ngoma et al. / Data in Brief 17 (2018) 1361–1373

1369

Table 5 (continued ) Species

Kabompo

Namwala

Sesheke

Language of the species name

Strychnos potatorum Strychnos pungens Terminalia sericea Uvariastrum hexaloboides Vangueriopsis lanciflora Ximenia americana Zanha africana ?1 (Not identified) ?2 (Not identified) ?3 (Not identified) ?4 (Not identified)

– 0.70 – 4.29 0.78 – 5.45 0.66 – – –

6.16 – – – – – 13.00 – 2.73 7.65 –

– – 8.42 – – – – – – – 5.34

Botanical Botanical Botanical Botanical Botanical Botanical Botanical Not identified Not identified Not identified Not identified

Table 6 Carbon stock (t C ha−1) per species per site. Site

Species name

Kabompo Afzelia quanzensis Kabompo Albizia verscolor Kabompo Amblygonocarpus andongensis Kabompo Baikiaea plurijuga Kabompo Baphia massaiensis Kabompo Brachystegia longifolia Kabompo Brachystegia speciformis Kabompo Burkea africana Kabompo Dialium engleranum Kabompo Diospyros batocana Kabompo Diplorhynchus candylocarpon Kabompo Friesodielsia obovata Kabompo Guibourtia coleosperma Kabompo Hymenocardia acida Kabompo Kabompo1? (Not identified) Kabompo Kapasa ka lyongono Kabompo Markhamia obtusifolia Kabompo Mubangabanga Kabompo Mubeba Kabompo Muhaswa Kabompo Muhoho Kabompo Muhuhu Kabompo Mukenge Kabompo Mukube Kabompo Mumbukushu Kabompo Musenene Kabompo Musungwa Kabompo Pseudolachnostylis maprouneifolia Kabompo Pteleopsis anisoptera Kabompo Pterocarpus angolensis Kabompo

Above-ground carbon stock of standing trees (dead and live)

Below-ground carbon stock of standing trees (dead and live) trees

Number of trees recorded (%)

Language of the species name

0.031 0.075 0.485

0.011 0.025 0.161

0.29 0.07 0.72

Botanical Botanical Botanical

7.928 0.923 0.865

2.637 0.344 0.291

10.96 21.27 1.59

Botanical Botanical Botanical

2.861

0.940

4.33

Botanical

0.751 0.203 0.185 0.195

0.254 0.072 0.066 0.075

1.59 0.94 1.37 6.85

Botanical Botanical Botanical Botanical

0.001 0.094

0.000 0.033

0.14 0.43

Botanical Botanical

0.003 0.010

0.001 0.004

0.07 0.07

Botanical Not identified

0.000 0.069

0.000 0.026

0.07 1.73

Luvale Botanical

0.001 0.052 0.062 0.000 1.832 0.558 0.019 0.013 0.018 0.032 1.783

0.000 0.019 0.023 0.000 0.641 0.201 0.007 0.005 0.007 0.011 0.618

0.36 0.43 0.87 0.07 9.08 4.83 0.43 0.65 0.07 0.14 5.62

Luvale Luvale Luvale Luvale Luvale Lunda Luvale Luvale Luvale Luvale Botanical

1.959 0.166

0.697 0.057

15.79 0.50

Botanical Botanical

2.654

0.893

5.55

Botanical

1370

J. Ngoma et al. / Data in Brief 17 (2018) 1361–1373

Table 6 (continued ) Site

Kabompo Kabompo Kabompo Kabompo Kabompo Kabompo Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala Namwala

Species name

Ricinodendron rautanenii Securidaca longepedunculata Sterculia quinqueloba Strychnos pungens Uvariastrum hexaloboides Vangueriopsis lanciflora Zanha africana Afzelia quanzensis Albizia verscolor Baikiaea plurijuga Baphia massaiensis Cassia abbreviata Combretum celastroides Combretum imberbe Combretum molle Combretum zeyheri Commiphora mollis Dichrostachys cinerea Diplorhynchus candylocarpon Friesodielsia obovata Guibourtia coleosperma Hymenocardia acida Ibu Lannea stuhlmannii Leza Mang'omba Markhamia obtusifolia Matu Moonze Mubangabanga Mugwirinti Mukamba Muleyambezo Mung'omba Mutungambabala Mutwamaila Mwingili Namwala1? (Not identified) Namwala2?(Not identified) Pericopsis angolensis Pseudolachnostylis maprouneifolia Pterocarpus angolensis Rhus longipes Ricinodendron rautanenii Stantwasokwe Strychnos innocua

Above-ground carbon stock of standing trees (dead and live)

Below-ground carbon stock of standing trees (dead and live) trees

Number of trees recorded (%)

Language of the species name

0.001

0.001

0.07

Botanical

0.024 0.003 0.029

0.009 0.001 0.011

0.58 0.14 0.94

Botanical Botanical Botanical

0.003

0.001

0.29

Botanical

0.038 0.000 0.019 12.835 0.203 0.055 0.236

0.014 0.000 0.007 4.421 0.074 0.020 0.084

1.08 0.07 0.07 32.60 13.55 0.86 6.77

Botanical Botanical Botanical Botanical Botanical Botanical Botanical

0.007 0.108 0.000 0.149 0.000 0.389

0.003 0.039 0.000 0.053 0.000 0.147

0.13 1.99 0.07 1.20 0.07 11.29

Botanical Botanical Botanical Botanical Botanical Botanical

0.032 0.067

0.011 0.024

9.16 0.40

Botanical Botanical

0.018 0.000 0.036 0.001 0.001 0.023

0.007 0.000 0.013 0.001 0.000 0.009

0.33 0.07 0.73 0.07 0.07 2.32

Botanical Ila Botanical Tonga Tonga Botanical

0.022 0.000 0.059 0.009 0.011 0.038 0.000 0.000 0.000 0.000 0.139

0.008 0.000 0.020 0.003 0.004 0.013 0.000 0.000 0.000 0.000 0.046

0.40 0.07 0.13 0.20 0.40 0.33 0.07 0.13 0.07 0.07 0.20

Tonga Tonga Tonga Tonga Tonga Tonga Tonga Tonga Tonga Tonga Not identified

0.009

0.003

0.13

Not identified

0.065 0.030

0.023 0.011

0.20 0.73

Botanical Botanical

0.429

0.155

9.63

Botanical

0.002 0.040

0.001 0.014

0.53 0.27

Botanical Botanical

0.003 0.002

0.001 0.001

0.86 0.13

Tonga Botanical

J. Ngoma et al. / Data in Brief 17 (2018) 1361–1373

1371

Table 6 (continued ) Site

Species name

Above-ground carbon stock of standing trees (dead and live)

Below-ground carbon stock of standing trees (dead and live) trees

Number of trees recorded (%)

Language of the species name

Namwala Namwala Namwala Namwala Sesheke Sesheke Sesheke Sesheke Sesheke Sesheke Sesheke

Strychnos potatorum Terminalia sericea Ximenia americana Zanha africana Acacia ataxacantha Acacia erioloba Baikiaea plurijuga Baphia massaiensis Bauhinia petersiana Burkea africana Combretum hereroense Dichrostachys cinerea Diplorhynchus candylocarpon Erythrophleum africanum Ficus sycomorus Friesodielsia obovata Hippocratea africana Lonchocarpus nelsii Markhamia zanzibarica Namulomo Ochna pulchra Pseudolachnostylis maprouneifolia Pterocarpus angolensis Pterocarpus antunesii Ricinodendron rautanenii Sesheke1?(Not identified) Strophanthus welwitschii Terminalia sericea

0.195 0.001 0.001 0.205 0.001 0.074 8.200 0.005 0.002 0.046 0.510

0.067 0.000 0.000 0.074 0.000 0.026 2.784 0.002 0.001 0.016 0.182

0.93 0.13 0.27 2.32 0.75 0.60 35.04 3.16 0.30 0.15 10.38

Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical Botanical

0.005 0.039

0.002 0.015

0.45 2.86

Botanical Botanical

0.316

0.112

2.71

Botanical

0.168 0.029 0.001 0.114 0.007

0.058 0.010 0.000 0.042 0.002

0.75 7.07 0.30 4.21 1.05

Botanical Botanical Botanical Botanical Botanical

0.010 0.003 0.048

0.003 0.001 0.017

2.71 0.15 6.47

Lozi Botanical Botanical

0.050

0.018

0.60

Botanical

0.303 0.076

0.112 0.027

15.34 0.75

Botanical Botanical

0.031

0.012

0.90

Not identified

0.016

0.006

0.45

Botanical

0.060

0.023

2.86

Botanical

Sesheke Sesheke Sesheke Sesheke Sesheke Sesheke Sesheke Sesheke Sesheke Sesheke Sesheke Sesheke Sesheke Sesheke Sesheke Sesheke Sesheke

Fig. 1. Below-ground sample collection process. Exposed roots are shown in (A) and (B), a taproot is followed in (C), the root's mid-diameter and length are measured in (D) and the root is weighed in (E).

1372

J. Ngoma et al. / Data in Brief 17 (2018) 1361–1373

Fig. 2. Above-ground sample collection process. Trees are felled (A), cross-cuts (B), and billets (C) are prepared and taken for weighing (D) but, first, the scale is calibrated (E). Large billets (F) and small billets ( o 10 cm mid-diameter) including twigs and leaves (G) are weighed.

2.1. Sample collection process for developing below-ground biomass models Before felling a tree, we first measured total tree height, bole height, DBH, and crown diameters. The uprooting process started by first exposing all roots connecting directly to the taproot (Fig. 1A and B). We followed both lateral and taproots till they tapered to r 5 mm in diameter (Fig. 1C). We recorded rooting distance and depth for each recorded root. Big root mid-diameters ( Z 5 cm diameter) and their lengths were also measured (Fig. 1D). All roots were weighed immediately after excavation to get their green weight (Fig. 1E).

2.2. Sample collection process for developing above-ground biomass models The felled tree was then cross cut (Fig. 2B) into small billets (Fig. 2C) to unable lifting (Fig. 2D) of the pieces for weighing. However, before weighing, the scale had to be calibrated (Fig. 2E). Large pieces ( Z 10 cm mid diameter) were weighed individually (Fig. 2F) while small pieces ( o 10 cm middiameter) were weighed as batches together with their twigs and leaves (Fig. 2G).

J. Ngoma et al. / Data in Brief 17 (2018) 1361–1373

1373

Acknowledgements We would like to thank the Copperbelt University, The HEART Project of the NUFFIC-NICHE Programme, The International Foundation for Science (IFS) (Grant no. D/5466-1) and the Schlumberger Foundation Faculty for the Future for funding this research. We are also thankful to the Forestry Department in Zambia for allowing us to sample and assess vegetation in the Zambian forest reserves. We further thank the staff members of the Forestry Department for their assistance. We highly appreciate all work done by the research assistants and some Sesheke, Namwala, and Kabompo community members to cut, uproot, and weigh the trees and to conduct vegetation assessments. The management and laboratory technicians at the Zambian Division of Forestry Research in Kitwe are greatly thanked for allowing us to use the facilities and assisting us in the analyses. Mr. Felix Chileshe at Copperbelt University and Mr. Jan van Walsen at Wageningen University and Research provided guidance in the laboratories at the respective institutions. We appreciate their support. Our work would have been impossible without Mr. Andrew Kamwi and Mr. Gershom Ndumba, who provided practical information on the study sites and how to get there.

Transparency document. Supplementary material Transparency document associated with this article can be found in the online version at doi:10. 1016/j.dib.2018.02.057.

Appendix A. Supplementary material Supplementary data associated with this article can be found in the online version at doi:10.1016/j. dib.2018.02.057.

References [1] J. Ngoma, E. Moors, B. Kruijt, J.H. Speer, R. Vinya, E.N. Chidumayo, R. Leemans, Below and above-ground carbon distribution along a rainfall gradient. A case of the Zambezi teak forests, Zamb. Acta Oecol. (2018) (in press). [2] ASTM, D2395-07, Standard Test Methods for Specific Gravity of Wood and Wood-Based Materials, ASTM International, West Conshohocken, PA, 2007 〈www.astm.org〉. [3] G. Cottam, J.T. Curtis, The use of distance measures in phytosociological sampling, Ecology 37 (1956) 451–460.

Suggest Documents