Published as: I. Kreja & Z. CywiÅski. Degenerated Isoparametric Finite Elements in Nonlinear Analysis of 2D-Problems. Computers & Structures, Vol. 41, No. 5 ...
Published as: I. Kreja & Z. Cywiński Degenerated Isoparametric Finite Elements in Nonlinear Analysis of 2D-Problems Computers & Structures, Vol. 41, No. 5, 1991, 1029 - 1040.
DEGENERATED ISOPARAMETRIC FINITE ELEMENTS IN NONLINEAR ANALYSIS OF 2D-PROBLEMS *
IRENEUSZ KREJA
and
ZBIGNIEW CYWINSKI
Faculty o'f Civil Engineering, Technical University o'f Gdansk ul_
Majakowskiego 11/12. 80-952 Gdansk. Poland
Abstract -
Geometrically nonlinear
elastic
astic
oblems of' structur-al mechanics, based on
o'f of'
the
application
ated i soparametri c 'fi ni te el ements. is bei ng
The i nvesti gati ons concentrate equilibrium equations
using
on the
Large rotation increments and a loading
are
taken
into
the
del" i vati on
Total
account.
rule and the von Mises
dependent
developing.
in
Prandtl-Reuss
astic yield criterion
Riks-Wempner constant arc length ion.
are
consequence.
are pr'esented and compar'ed with
with
numerical
analytical
matrix.
re'ference
The
Newton
incremental sample
For 'flow
adopted.
method.
Sever al
pressure
associated
iterations. are employed - to solve the linear equations ln
nonl i near
'formulation.
additional components o'f the corresponding sti'f'fness the elastic-plastic behaviour the
per'for-med.
of'
an
displacement
analysis
non
problems solutions.
The pr'oo'f on a good accur'acy of' the presented method is given,
*
This study represents. besides [lJ. another' compact
the PhD
Engng
dissertation
[2J
o'f
the
'first
portion
author.
par'tly
updated. seconded in 1989 at the Technical University o'f Gdatlsk.
t
o'f
INTRODUCTION
Since fini~e
of
work of Ahmad et al.
~he
elemen~
in~egra~ion
of
~his
In
isoparame~ric
~o
has been
~his
repor~
of
essen~ials
emphasis
~he
pu~
on
~he:
deriva~ion
of
~he
of
effec~s
au~hor's
nonlinear
Lagrangian CTL)
To~al
~o
large
i
of qualified sample problems and
problems where
~o
wi~h
~his
~he
plane
assump~ion ~he
arches),
or
applied:
plas~ic
~he
Kreja [2].
Brief
plane
presen~ed
accoun~
~he
and
of
a
~o
examine
arc
equa~ions,
on some
and of
~he
~he
~o
of
rule, me~hod
en~er
those
2
be
direc~ion
of
axial frames,
~he
hold
par~iculars ~he
in
numerical
~he
von
of
Mises
bodies,
~he
solving
~he
algori~hms
original work of
problems
Specifics of
associa~ed
by Kreja and Cywinski in [1].
can
(beams,
elas~ic-plas~ic
leng~h
~hose
cylinders).
observed
flow
and
i. e.
s~a~es
st~resses
~he
associa~ed
concerning
commen~s
comparison
~heir
occurring in one plane
(slender
reader is r-ecommended
~echnique
~he
perpendicular
from
announced by Kreja also in (5] and [6]. in~egra~ion
using
cons~ruc~ion
~he
resul~ing
cons~an~
nonlinear
developed.
along
s~rains
In order
anal
~he
revolu~ion),
cri~erion
Riks-Wempner-Ramm
par~icular
2D-problems,
~o
displacemen~s
~ha~
Prand~l-Reuss
yield
incremen~al
~he
rela~ions
plane
correspondingly.
limi~ed
behaviour of
(shells of
symme~ry
~he
paper is
~he
wi~h
cer~ain
solu~ions.
described by
sufficien~ly
only,
reference
~his
na~ure
pressure loading, and
presen~a~ion
The scope of
briefly
ncremen~s
dependen~
exis~ing
reduced
S~egmi.iller.
in~o
displacemen~
wi~h
~he
equa~ions
~aking
ro~a~ion
concep~
s~a~e-of-~he-ar~
[2].
equilibrium and
~he
The origin and
presen~
~hesis
formula~ion
incorpor-a~ed
by
differen~
a chance
~ake
firs~
s~ruc~ures,
suppor~ed
in
based
displacemen~
review [4) of Ramm and
~he
au~hors
~he
popular.
~ruly
pic~ured
only
men~ion
elemen~s,
became
~echnique,
concep~
records,
developed for shell
me~hod
degenera~ed
wi~hin
[3),
have ~he
been
reduced
locking phenomena were
INCREMENTAL EQUATIONS OF MOTION
Total Lagrangian f'ormulation
Consider the body motion referred to the global cartesian assuming the convenience,
existence
of
static
effects
only.
the time variable t is being used
system.
For
sake
that
of
describes
the situation of the body and the action of its loading (see Bathe [7J and Kleiber
[8J).
The equilibrium positions
certain time instants O.
of
the
body
are approached.
where
the time increment.
The solution is being attained by
help
recurrency process;
for this purpose.
there are
known
~t.
solutions
interval 0 and t,
2~t.
for
inclusively.
body for the instant
time
left
by repeating
0.1.
and
2.
of
within
that
the body's
Particular configurations
superscripts
instants
If specifying the position
the total range of the time variation can be obtained.
is
~t
a
the assumption is taken that
all
then -
t+~t,
at
Thus,
are the
the
of
the
process
for
complete
path
characterized coordinates
by
of
an
arbitrary point P within the initial configuration (instant 0) are Ox • Ox • Ox ; similar coordinates for the current (instant 1
2
the incremented (instant and
2
x.
t)
3
2
x.
2
x.
123
Assuming that
configurations are
t+~t)
1
X. :I.
:I.
X. 2
and :I.
X. 3
respectively. the
approached
current
represents the state of equilibrium.
the
configuration virtual
wor'k
at
t+~t
principle
can be formulated in the following manner:
where
2 15W
i.
is the internal.
(1)
eo
L
and
2 15W
-
eo
the external
virtual
work;
the former can be expressed by equation 2 T.
LJ
with
2
T .. '-.J
being the
cartesian
15 e 2
components 3
(2)
i.j
of
the
Cauchy
stress
and
2
t.he
e"1.)
component.s
of
i nf- i n1 t.esi mal
t.he
st.r-ai n
t.ensor.
Since t.he t+At configurat.ion is unknown. t.he equat.ion (1) can
not.
be solved st.raight. orl; wit.hin t.he Tot.al Lagr-arlgian formulat.ion t.he
approximat.e solut.ion can be found. t.o t.he init.ial configurat.ion.
by referring all t.he
As
t.he
st.ress
configurat.ion. relat.ed t.o that. for O. Piola-Kirchhoff.
2 .....
o
the
variables
quant.it.y
2nd
stress
for
t+At
tensor
can be applied; similar' consider'ations
.:::>. I.J
st,rains result in the Green-Lagrange strain tensor.
As
of for
shown
by
Bat.he in [7J. t.he following relation holds: 6 e"
i.j
2
I.J
2 dV
2
2.
g. F.Frey,
S.Cesco~~o.
Lagrangian
skonczonych
eLern..entow
PWN.
Some new
descrip~ion
ELern..ent
n i eLi n i
w
in
Method
0?J)€'
j
NonL inear
Warszawa-Poznan 1985. aspec~s
o:f
~he
in nonlinear anal
incremen~al
s,
To~al
Con:f.
In~.
on
"Finite El.ern..ents in NonLinear SOLid and Structural. Mechanics",
Geilo. Norway,
Vol.l,
10. K.Schweizerho:f and loads in nonlinear 18,
323-343 (1977).
E.Ramm, :fini~e
Displacemen~
elemen~
dependen~
analyses,
pressure
Corn..put.
Struc t.
1099-1114 (1984).
11. G.A.Cohen, on a shell.
Conserva~iveness
AIAA Journal. 4,
12. M.J.Sewell. On Mech.
Anal..
5truct.
31,
ac~ing
1886 (1966).
Con:figura~ion-dependen~
loading,
Arch.
Rational.
23. 327-351 (1967).
13. K.-M.Hsiao s~ruc~ures
o:f a normal pressure :field
and by
Y.-R.Chen,
degenera~ed
Nonlinear
isoparame~ric
427-438 (1989). 21
analysis shell
o:f
elemen~.
shell Corn..put.
14. J.T.Holden, On
~he
Solids & Struct.
15.
J.H.Argyris analysis or na~ural
Appl.
rini~e
elas~ic
Int.
beams,
J.
sys~ems
-
I.
under
rini~e
loading
nonconserva~ive
Quasis~a~ic
elemen~
problems.
Com.p-u.t.
Large
derlec~ions
l1eth.
Engrte 26, 75-123 (1981).
l1ech.
F.S.Manuel,
s~abili~y
~hin
Nonlinear
S.Symeonidis.
rormula~ion
16. S.L.Lee,
or
1051-1055 (1972).
8,
and
derlec~ions
or
and
E.C.Rossow,
rrames.
elas~ic
l1ech.
Div.
and
ASCE
94.
521-533 (1968). 17. ~ T.Ishizaki
and
displacemen~
and
K.
elas~ic-plas~ic
Com.put.
s~ruc~ur·es,
-J.Ba~he,
Struc t.
18. T.J.R.Hughes and W.K.Liu, shells. l1ech.
Par~
Ene.
II.
27,
12,
On
dynamic
167-181 (1981).
elemen~
analysis
or
large shell
309-318 (1980).
Nonlinear
Two-dimensional
rini~e
rini~e
shells.
elemen~
Com.p.
analysis or l1eth.
Appl.
FIGURE LEGENDS
Fig.
1. 3-node
elemen~
in
configura~ions
sys~em
of
~he
car~esian
coordina~es
Fig.
2.
Example 1 -
Displacemen~s
- five 4-node Fig.
3.
Example 1 -
~en
-
~he
can~ilever
~ip
. Model
I
of
~he
can~ilever
~ip
, Model II
elemen~s
Displacemen~s
3-node
of
elemen~s
Fig.
4. Example 1
Fig.
5.
Example 2 -
Displacemen~s
Fig.
6.
Example 2 -
Def-orma~ion
s~a~es
of
the
can~ilever
under
Deforma~ion
s~a~es
of
~he
can~ilever
under
Deforma~ion
s~a~es
of
of
~he
~he
can~ilever
can~ilever
~ip
"dead" load Fig.
7.
Example 2 -
follower load Fig.
8. Example 3 - Displacement..s at
Fig.
9. Example 3 - Frame
Fig.10. Example 4 _. Mid Fig.11. Example 5
deforma~ion
deflec~ion
Comple~e
load
~he
of
spherical
applica~ion
poin~
s~a~es
~he
cylindrical shell
shell
and
i~s
numer'ical
model Fig.12.
Example '3 -
Fig.13.
Example 5 - Influence of
Deflec~ions
of
~he
sphere pole
imperfec~ions
for spherical shell
Fig. 1. Three-node element configurations in system of the Cartesian coordinates
Fig. 2. Example 1 -Displacements of the cantilever tip;. Model I -five 4-node elements
Fig. 3. Example 1 Displacements of ~he cantilever tip;, Model II -ten 3-node elements
Fig. 4. Example 1 -Deformations states of the cantilever
Fig. 5. Example 2 -Displacements of the cantilever tip
Fig. 6. Example 2 -Deformation states of the cantilever under "dead" load
Fig. 7. Example 2 -Deformation states of the cantilever under follower load
Fig. 8. Example 3 -Displacement..s at the load application point
Fig. 9. Example 3 -Frame deformation states
Fig.10. Example 4 _. Mid deflection of the cylindrical shell
Fig.11. Example 5 Complete spherical shell and its numerical model
Fig.12. Example '3 -Deflections of the sphere pole
Fig.13. Example 5 -Influence of imperfections for spherical shell
! " " # . , 7 8#9 9 9 9 9 9 9 9 9 9 9 9 9 9 9:8 / ,@ A##1B@ . @ 1 H0
0 1
%$'&)( #*#+ ## # , 2 ;9 9 9 / < 1435#1= $ 0 >? 2 ( ?#1=
#0 > 6 C#A 1#@)D E, 1 F, 1G 1H0 $' 2 ( # IJ8 2 I C ,
7
0 8#9 9 9 9 9 ? 9 9 9 9 9 9 9:8 / 9 9 9 9 ? 9 9 9 1 9 9 9K0 1 # A 0 0 1H0 0
35#1= ;9 9 9 / 9 9 9 9 ? 9 9 14 9 99K $ 0 >? 2 ( ?#1=
#0 > 6 I C#A 1# D E0 1 F0 1G 1H0 0 $' C (
LL
+ M N 0 @0 1BP
8 #1B@ < 1 8 @ ?
M N 0 @0 /
8 0
A
1H0
1
#1 0
$' O)(
; M N 0 @ R 1
1BP ;9 9 9 C
I
-
I
/ A
1H0
1
#1=
$' Q)(
1
E0
$' S)(
T %$ 2 ) O ( .$'U%( 9 9 9 9 9 9 9 9 9 9 9 9 9 , 9 9 9 9 9 9:8 . @
U
,B@
8#7
# # #
XYZ
,@B >
UV >
I
$' W)(
[ ] ] ]
U ]
U ] ] ] ] ] ]a
]
]] ]] ]
]
]d ]
] ]]
^
-`
d] ]
]
8
]] ]d ]
]
]
d] ]
]
]
]
]
]
]
]a h
]
] ] ]
0B R ] ]
RB0
U ]
]
0B0
] ]
[
\
U
] 8#^ ]
RB R
]
U 9 9 9 9 ?9 9 9 09 9 0
]
-`
U&I
$' _)(
] ] b
] \
]] ]] 01 ]] c T < 1 #1B0 ] 00 ] ] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 e9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 e9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 f ] ] 01 ] c T < 1 ] ] ] #1B R 0#R 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 e] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 e] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 f ] c ] ] 0 ] T 1 < 1 R#0 ] #1B0 ] ] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 e9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 e9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 f ] ] 01 ] 1 c ] #1 B R ] T R##R< ] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 e] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 e] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 f ] 0 ] ] T 1 ] 1 1 ] c ] 9 9 9 ?9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 ?9 9 9 9 9 9 9 9 9 09 9 9 ] ] ] ] 0 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 i9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 j k?
] ] ]] ] ]] ]
] I
$' g)(
]] ] ] ] ] b
] ]
+ 0T 1 ,
35#1= 8? 9 2 9 9: C 1mD E,
#0 >
; #1= 1
F,
0 > 6 1G
8? 9 2 9 9 9: C n
0 = 1
F,
$' l)(
# # # #*o 8#t ,@ ,@ u
UV u
8
pq 0r q R r's t ;t ) UV vw,@ u , @ ux u
# # #
XY y
I
$' 2 c (
[ ] ]
#RR
]
]
00 ]
\ ] ] ] ]
] 8#^
] ] ; ] 0 R##R0 ] ] ]a
#LL
[ ]
]] ]] ]
]
]d ]]
]] ]
^
`
d ]
8
]
]] ] ]
d]
]
]
] ]a
] h
]
`
U
p v
^
`
;^
s
`0x
U&I
$' 22 (
b
] ]
]] ]] 0 c ] T 1 < 1 #1B0 ] 00 ] ] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 e9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 e9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 f ] ] ] 0 c T 1 < 1 ]] #1 B R ]] ]] R##R 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 e9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 e9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 f ] ] 01 ] T < 1 ; 0 T 1 < 1 ] ] ] #1B R #1B0 0#R R#0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 e] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 e] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 f ] 0 ] ] ] T 1 1 1 0 ] c ] ] 9 9 9 9 ?9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 ?9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 ] ] ] 0 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 i9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 j k?
[
\] ] ] ]] ]] ]]
]] I
$' 2 C (
] ] b
] ]
]] 0 ]] 0 ]] p 0 0T 1;0 0T 1s < 1 ] \ ]] 0#RB0 Rx0 ] ] ]d 0B0#1B0 ] #RB0#1B0 ] v50B0 ] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 e9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 e9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 f ]] ]] ]0 ]0 ]p 0 ] 0 1 0 0 1 s 1 T; T < ] ]] 0 ]] B R##1B R ]] #RB R##1B R ]] v50B R 0#RB R Rx#R ]] ] d 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 e9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 e9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 f ]] ] ]0 ]0 ]p 0 ] 0 1 0 0 1 s 1 ^ 8 ; ; T; T
± x
$' OO)(
6
1G
8; 2 ]] R
s ±
$' O C (
¨½¤ © ¢¡£¾ ¬
0 T ? 1 ' 6 8# 3 ) c c w , D 1 , G h 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 i9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 j k?
#0 >
I
Rx
k ¡© »¢#ª¢¼¼ ¢» ¡
.0T 1 35#1 8#9 9 9 9 9 9 9 9 9 9 , 9 9 :8#9 2 9 9 : = , C m 1 D F, . V 1
q ¶ ¿ r
° 8
RBP
$' O 2 (
]]
]
8? 2 0
$' OQ)(
$' OS)(
q'¿ r
° 8#Á
3 0 6 ] ?0 R ² w0 #³ m± 9 9 9 9 C 9 9 9 9 9 9 9 9 9 9 9 R B P 0 B % P ± ³ 9 9 9 9 9 9 9 9 9 9 9 9 e9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 K ± ?0 ± ] c D 0BP G
XY Â
$' OW)(