DELETION OF Mds1 GENE IN MOUSE RESULTS IN ...

7 downloads 0 Views 1MB Size Report
For some such syndromes, such as EDS kyphoscoliosis type and S?cklers, the underlying defects are understood, at least for some subsets of cases. For other ...
DELETION  OF  Mds1  GENE  IN  MOUSE  RESULTS  IN  DISK  DEGENRATION  AND  KYPHOSIS  THROUGH  MIS-­‐REGULATION  OF   MATRIX  PROTEIN  SYNTHESIS  BY  TENDON/LIGAMENT  CELLS    

Subhash  C.  Juneja1,  Lianping  Xing1,  C.    Zeiss2,  K.  Lezon-­‐Geyda2,  DG.  Reynolds1,  Z  Yao1,  S  Lin2,  G  Steele-­‐Perkins2,  T  Ardito2,  Jian-­‐ping.Zhang2,  W  Philbrick2,  Hani  A.  Awad1,  Brendan  F.  Boyce1,    Archibald  S.  Perkins1,    University  of  Rochester1,  Rochester,  NY  and  Yale  University2,  New  Haven,  CT  USA   INTRODUCTION            DATA  and  RESULTS   The   spine   experiences   mechanical   stress   constantly.   Ligaments   and   tendons,   composed   of   densely   packed   and  

crosslinked  type  I,  Collagen,  as  well  as  paraspinal  muscles,  provide  structural  stability  and  prevent  misalignment  of   vertebrae.   Inborn   errors   in   the   forma>on   of   these   structures   can   lead   to   spinal   deformi>es,   such   as   kyphosis,   lordosis,   and   scoliosis.   For   some   such   syndromes,   such   as   EDS   kyphoscoliosis   type   and   S>cklers,   the   underlying   defects   are   understood,   at   least   for   some   subsets   of   cases.   For   other   subtypes   and   for   other   congenital   spine   syndromes,  such  as  Scheuermann’s  juvenile  kyphosis,  the  underlying  cause  of  the  deformity  is  unknown.  The  genes   thus  far  found  to  be  mutated  in  syndromes  with  spinal  deformi>es  primarily  encode  for  collagens  (e.g.,  collagen  type   Iα  in  S>cklers   syndrome)   or   enzymes   involved   in   collagen   processing,   e.g.   LOH   in   EDS   VIA,   but   at   least   one   regulatory   protein  has  been  implicated  –  ZF  transcrip>on  factor  452  in  cases  of  EDS  VIB.       The  spine  is  formed  from  somi>c  structures  under  the  regulatory  influence  of  notochord-­‐  and  neural  tube-­‐secreted   factors.   Vertebrae   form   through   condensa>on   of   sclerotome-­‐derived   cells   the   forma>on   of   which   is   ini>ated   by   notochord-­‐derived   Shh,   with   Shh-­‐induced   Pax1   playing   a   cri>cal   role.   While   the   notochord   contributes   to   the   forma>on   of   the   nucleus   pulposus,   the  intervertebral   AF   is   thought   to   be   derived   from   the   ventromedial   sclerotome,   while   intervertebral   ligaments   and   tendons   are   derived   from   the   adjacent   syndetome.   Paraspinal   muscles   derive   from   the   myotome.   Recent   studies   have   shown   that   the   syndetome   forms   under   the   influence   of   adjacent   myotome   and  sclerotome  structures,  and  can  give  rise  to  both  bone  and  ligament/tendon  structures,  and  expresses  SCX  as  a   specific  marker  for  cells  in  this  lineage.       The   combined   Mds1-­‐Evi1   locus   is   a   large   (>500   kb)   locus   with   established   roles   in   myeloid   leukemogenesis   and   hematopoiesis.   The   locus   harbors   two   dis>nct   transcrip>on   start   sites   located   ~450   kb   apart.   Via   these   and   alterna>ve  splicing,  the  locus  produces  at  least  four  different  nuclear  proteins:  MDS1-­‐EVI1  and  three  EVI1  isoforms   (p135,   p123,   and   p103).   These   proteins   all   possess   C2H2-­‐type   ZFs   that   bind   DNA   in   a   sequence-­‐specific   manner.   Among   the   gene   products   of   Mds-­‐Evi1,   Mds1   is   dis>nct   in   that   it   has   an   N-­‐terminal   PR   domain   that   shares   homology   with  the  SET  domain,  which  is  known  in  some  proteins  to  have  histone  methyltransferase  ac>vity  and  to  play  a  role   in   the   establishment   and   maintenance   of   gene   expression   pajerns   during   development.   In   an   effort   to   define   the   role   of   MDS1-­‐EVI1   in   leukemogenesis   and   blood   cell   development,   we   created   a   targeted   muta>on   at   Mds1   in   mouse,  by  inser>ng  a  promoterless  lacZ  gene  into  the  first  exon  of  Mds1.       To  our  surprise,  the  major  phenotype  of   Mds1-­‐/-­‐  mice  is  kyphosis  at  young  age,  which  is  followed  by  spine  deformity,   revealing   an   unexpected   role   of   the   Mds1   transcrip>on   factor   in   regula>ng   the   forma>on   and   or   maintenance   of   the   spine   and   its   support   structures.   The   Mds1-­‐/-­‐   mouse   provides   an   instance   of   muta>on   in   a   regulatory   protein   leading   to   kyphoscoliosis.   As   such,   the   Mds1-­‐/-­‐   mouse   represents   a   unique   gene>c   model   of   congenital   kyphosis.   Mds1   is   expressed   in   early   stages   of   development   of   ligament   and   tendon   cells;   and   remarkably   reduced   expression   levels   of   SCX  and  extracellular  matrix  genes  in  Mds1-­‐/-­‐  tendon  cells  imply  a  defect  in  cells  of  this  lineage.  These  findings  predict   the   existence   of   muta>ons   in   the   Mds1   gene   that   are   causally   involved   in   human   congenital   spine   deformity   syndromes  

Figure   3.   Severe   spine   degenera>ve   changes   associated   with   kyphoscoliosis   in   Mds1-­‐/-­‐   mouse.   X-­‐ray   analysis   of   WT   and   Mds1-­‐/-­‐   mice   at   2,   3,   and   10   weeks   age   as  indicated.  Narrowing  of  joint  spaces  between  L4  and  L5  is  indicated  by  arrow   (anterior)   and   arrowhead   (posterior)   (A   and   B).   Blue   arrows   indicate   lumbar   lordosis,   white   arrows-­‐   thoracic   kyphosis,   and   red   arrow-­‐   indicate   a   dorsally-­‐   posi>oned  tail.  Beetle-­‐fed  cleared  skeleton  (g-­‐r).  At  7  weeks  (g-­‐j),  Mds1-­‐/-­‐  mice   display   narrowed   IVD   spaces,   rostrally   elongated   lateral   processes,   distorted   ar>cular  processes  and  short  fused  dorsal  vertebral  processes.  By  9  months  in   lumbar   (k-­‐n),   mutant   vertebrae   are   fused   with   prominent   epiphyses,   lateral   processes,  and  ar>cular  processes  and  dorsal  processes  are  fused  in   lordosis.  At   9   months   in   the   sacrum   (o-­‐r),   Mds1-­‐/-­‐   show   scoliosis   with   an   unstable   and   hypertrophic  lumbosacral  joint.  In  all  panels  (g-­‐r),  caudal  is  to  the  right.  

   

EXPERIMENTAL  DESIGN  

Figure   6.   Pajern   of   β-­‐gal   staining:   A.   Whole-­‐mount   staining   of   Mds1+/-­‐   embryos  with  X-­‐gal  at  e8.5  to  e14.5  days  as  indicated.  At  e8.5,  staining  is   primarily  is  in  the  anterior  heart  field;  at  e9.5,  in  the  anterior  heart  field,   sclerotome  and  forelimb  bud.  At  e11.5,  staining  is  primarily  in  the  skeletal   structures  and  the  mesenchyme  of  the  limb;  at  e12.5  and  e14.5,  staining   becomes  restricted  in  vertebral  bodies,  rib  and  limb  areas.  Note:  Degree   of   magnificaGon   is   arbitrary,   so   as   to   allow   visualizaGon   of   stained   structures.   B.   Sec>on   through   a   β-­‐gal-­‐stained   e12.5   Mds1+/-­‐   embryo   showing  staining  within  the  sclerotome;  right  panel  provides  a  schema>c   of  the  somite  anatomy  for  reference.  C.  β-­‐gal-­‐stained  spine  sec>on  from   e14   Mds1+/-­‐   embryo,   showing   staining   within   the   car>laginous   anlage   of   the  vertebral  bodies.  D.  Sec>ons  from  P1  pup,  showing  strong  staining  in   ligament   cells   linking   two   intervertebral   processes   (arrowheads)   and   tendon   like   cells   (arrows).   1=car>lage;   2=spinal   cord;   3=bone   marrow;   4=muscles.  

Figure 8. Examination of tendon phenotypes in Mds1-/- mice. A. Ultrastructural analysis of collagen fibrils in sacral ligament at 3 months; B. in tail tendons at 3 months; and in IVD at one week (C). Representative TEM show reduced diameter but increased number of collagen fibrils in Mds1-/- mouse. Three equal areas were scanned. pme   PCR   analysis.   Values   are   the   mean   ±SD  of  3-­‐4  mice.    

Abundance  and  modifica>on  of  collagen  in  tendons  appears  normal  in  Mutant  mouse.  The  decreased  strength  

and  abnormal  ultrastructure  of  Mds1-­‐/-­‐  tendons  suggested  a  primary  defect  in  collagen  or  their  post-­‐transla>onal  processing.  

Figure   1.   Len:   A   knockout   construct   was   generated   by   a   standard   molecular   cloning,   and   contains   lacZ   within  exon  1   of   the   Mds1   gene,   and   deletes   out   the   splice   donor.     Downstream   of   the   lacZ   is   a   human   growth   hormone   polyadenyla>on   site,   followed   by   a   PGKneo-­‐hGHpA   casseje.   Right:   A   representa>ve   adult   WT   (above)   and   its   lijermate  Mds1-­‐/-­‐  mouse,  as  indicated,  showing  lordosis  and  kyphosis,  note  also  dorsiflexed  tail  in  Mds1-­‐/-­‐    mouse.  

Figure  2.  Growth  curves  for  Mds1-­‐/-­‐  (n=7)  and  WT  mice  (n=20)  for  0-­‐30  days  (A)    and  0-­‐50  weeks  (B)  show  markedly   decreased  growth  and  smaller  adult  size  in  mutant  mice  (pnguishable   from  WT  mice.    

Thus,   protein   extracts   from   tendons   were   analyzed   by   SDS-­‐PAGE   and  coomassie   blue   staining,   which   revealed   no   difference   in   the  abundance  and  sizes  of  the  major  collagen  proteins  (Figure  A  below).  The  prominence  of  β  dimers  and  lack  of  any  mobility   shin   in   collagen   α   chains   indicates   there   is   no   obvious   post-­‐transla>onal   or   cross-­‐linking   differences   between   these   two   genotypes.  In  addi>on,  collagen  α1(I)  and  α2(I)  chains  from  tendon  and  bone  (and  α1(II)  from  car>lage)  were  gel  purified  and   submijed  for  mass  spectroscopy  to  screen  for  changes  in  3-­‐hydroxyproline  and  lysine  hydroxyla>on.  The  analyses  revealed  no   effect   on   these   post-­‐transla>onal   modifica>ons   by   the   muta>on   in  Mds1   (data   not   shown).   To   further   assess   the   modifica>on   of   collagen,   skin   collagen   samples   were   analyzed   for   evidence   of   LOH-­‐mediated   lysine   deamina>on,   the   first   step   in   lysine   modifica>on   that   leads   to   collagen   crosslinking.   The   product   of   lysine   deamina>on   is   allysine,   which   can   be   quan>tated   by   further   oxida>on   to   2-­‐aminoadipic   acid   or   reduc>on   to   norleucine;   crosslinked   lysine   residues   will   be   resistant   to   these   modifica>ons.   A   defect   in   lysyl   oxidase   would   result   in   lower   levels   of   allysine,   and   hence   lower   levels   of   6-­‐OH   norleucine   and   2-­‐aminoadipic   acid   per   mol   lysine.   As   shown   in   Figure   B,   the   levels   of   6-­‐OH   norleucine   and   2-­‐aminoadipic   acid   in   skin   collagen   were  no  different  between  wildtype  and  Mds1-­‐/-­‐  mice.    

Figure  4.  Histologic  analysis.  H&E-­‐stained  sec>ons  from  6-­‐week-­‐old  mice  show   the   range   of   spinal   abnormali>es   in   mutant   mice.   Low   mag   pictures   from   a   mutant   mouse   with   severe   spine   phenotype   show   marked   lordosis   of   the   lumbar   spine   (A)   and   kyphosis   of   the   thoracic   spine   (B).   Exostoses   with   compression   of   the   spinal   cord   are   noted   at   both   loca>ons   (arrows).   Bar=500μm;   High   mag   pictures   illustrate   various   severi>es   of   disc   changes   in   the  lumbar  spine.  Compared  to  WT  (C),  mutant  animals  show  a  progression  of   disc   abnormali>es   that   range   from   rela>vely   normal   disc   morphology   (D),   narrowed   intervertebral   space,   reduced   nucleus   pulposus   and   loss   of   car>lage   (arrow,  E),  and  fusion  of  vertebrae  (arrows,  F).  Bar  =  50  μm.  

Figure   5.   Caudal   vertebrae   (C2-­‐C3-­‐C4)   in   Mds1-­‐/-­‐   show   par>al   fusion   with   collapsing   IVDs   at   the   post-­‐sacral-­‐tail   angle   and   spine   show   scoliosis   at   lumbar-­‐sacral  region.  

Figure  7.  μCT  analysis  of  individual  vertebrae  (Above):  Individual   vertebral  bodies  (T10-­‐L5)    from  3  months  old  mice  were  subjected     to   μCT   analysis;   N=3;   ±SD;   Pes   progress  with  aging  and  by  8  weeks  to  10  weeks  (shown  here),   their   thoracic   column   becomes   severely   kypho>c,   which   is   associated   with   IVD   abnormali>es,   vertebral   fusion,   bone   loss   and   reduced   vertebral   biomechanical   strength.   Interes>ngly,   long  bones  of  Mds1-­‐/-­‐  mice  were  not  affected.  

 

Genera>on  Strategy  and  Genera>on  of  Mds1  mutant  mouse  

Figure   12.   Lack   of   endochondral   bone   defect:   Ihh   and   Pthrp   expression   remained   same   in   WT   and   KO   mouse.   Micrographs   of   darkfield   illumina>on   of   lumbar   spine   show   pajern   of   expression   of   Ihh   and   Pthrp   mRNA   by   ISH.   Sec>ons   were   hybridized   with   the   probe   indicated   to   the   right;   photographs   taken   at   the   magnifica>on   as   indicated;  genotype  is  indicated  at  top  

Figure   10B.   Analysis   of   skin   collagen   samples   for   allysine,   by   conversion   to   either   6-­‐OH   norleucine   via   reducTon   or   2-­‐ aminoadipic   acid   via   oxidaTon.   Samples   with   the   genotypes   indicated  were  analyzed.  

• LacZ   staining   of   >ssues   from   Mds1+/-­‐   mice   showed   the   expression   of   Mds1   gene   product   in   the   sclerotome   and   developing   limbs   at   e9.5   embryos   and   within   the   car>laginous   anlagen   of   developing   vertebral   bodies   and   their   processes   at   e14.5   embryos   in   newborns,  LacZ   expressing     cells   were   seen   in   the  tendinous  layer  surrounding  vertebral  bodies  and  anchoring   the   intercostal   muscles   to   the   ribs   and   in   ligaments   between   vertebral   processes.   Ultrastructural  analyses  of  sacral  ligament   and  tail  tendon  of  Mds1-­‐/-­‐  mice  showed  smaller  diameters  and   the   IVDs   of   Mds1-­‐/-­‐   mice   revealed   marked   disarray   of   the   collagen   fibrils   In   tail   tendon   cell   cultures   from   Mds1-­‐/-­‐,   there   was   a   reduced   expression   of   tendon   specific   and   ECM-­‐specifc   genes   as   compared   to   their   WT   counterparts,   i.e.,   Scx,   Tnmd,   Dcn,Comp,   Bgn   and   Fmod,   whereas   Timp3   and   Lox   were   not   affected  by  Mds1  null  muta>on     • In  Conclusion,  Mds1-­‐/-­‐  mice  develop  progressive  IVDD,  kyphosis   associated   with   dysfunc>onal   tendon   and   ligament   cells.   Thus   this  study  showed  that  the  transcrip>on  factor,  Mds1,  not  only   regulates   hematopoiesis   as   shown   earlier,   but   is   expressed   during   early   tendon   ligament   cells   and   its   homozygous   deficiency   causes   impairment   of   tendon   and   ligament   fucn>on   which,   in   turn,   causes   reduc>on   in   their   strength,   leading   to   destabiliza>on  of  the  spine.    

 

Suggest Documents