Operation reseach models and applications. T1,. R1,R2,R3 .... R1,R2,R3. TEXT
BOOKS : T1 - P.Sankara Iyer, "Operation Research" - Tata McGraw-Hills,2008.
Department of Computer Science & Engineering Name of the Subject: OR Faculty Name: S.V. Rama Krishna Branch: III CSE I Semester Lecture Duration : 45 Min. Lesson Plan Topics as per JNTU Suggested Teaching L.No. Topics to be covered Page No syllabus Book Methods UNIT - I R1,R2 Definion
Introduction ,Definition
L1 Development
Development ,Merits and Demerits
Characteristics and Phases , Types of Models Operation reseach models L2 and applications Linear ProgammingProblem L3 Formulation
Characteristics and Phases , Types of Models Operation reseach models and applications
L4, L5 Graphical solution L6, L7 Simplex Method Artificial variable L8 techniques L9 Two-phase method
Introduction ,Definition, mathematical problems formulations
T1, R1,R2,R3 T1, R1,R2,R3 T1, R1,R2,R3 T1, R1,R2,R3
Alogrithem,Related problems
Alogrithem,Related problems Artificial variable techniques Alogrithem,Related problems
L10 Big- M Method Alogrithem,Related problems Degenaracy and unbouded Degenaracy and unbounded solution related problems. L11,L12solutions. UNIT - II
L13 Formulation L14,L 15,L1 6,L17, L18 Basic feasible solutions Unblanced transportation L19 problem The stepping L20 stone method
T1, R1,R2,R3
Introduction, mathematical formulation Optimal solution :1) North - west Cornet Method 2) Least cost method 3)Vogel`s Approximation method Unblanced transportation problem Alogrithem,Related problems
T1, R1,R2,R3 T1, R1,R2,R3 T1, R1,R2,R3 T1, R1,R2,R3 T1, R1,R2,R3 T1, R1,R2,R3 T1, R1,R2,R3
3-5 , R2(1-2) 45-46
6-8,R2(4-6) 15-20
BB BB
BB BB
33-38, R2(912)
BB
98117,R2(2125)
BB
133-147, R2(25-30) 127-132, 148-152 R2(38-40) 153-161, R2(30-34) 189-197
317-320, R2(71-73) 320-327, R2(74-87)
BB BB BB
BB BB
BB
BB
T1, 244-255, R2(74-76) R1,R2,R3 BB T1, 332-333 R1,R2,R3 BB
L21 MODI method
L22 Assignment model
L23 Optimal solution Hungarian method for optimal solution L24,L25,L26 Travaling Salesman L27 Problem
Alogrithem,Related problems UNIT - III
Introduction , mathematical formulation
Balnced and unblance Assigment problems Alogrithem,Related problems Travaling Salesman Problem
T1, R1,R2,R3
332-333
T1, R1,R2,R3
276-278, 389-390 R2(127)
T1, R1,R2,R3
278-299, 393-398, 407-411 , R2(128-130)
Assignment Problems UNIT - IV
L29 Sequencing models Solution of sequencing L30 problem L31,L n-joba through two 32 machines L33,L n-joba through three 34 machines
Introduction , mathematical formulation
L35 L36,L 37 L38,L 39
job shop sequencing two jobs through m machines,related problems
job shop sequencing two jobs through m machines Processing n jobs through m mechines.
Introduction
Flow - Shop sequence n-joba through two machines, Related problems n-joba through three machines, Related problems
Processing n jobs through m mechines. UNIT - V Introduction , mathematical formulation,Characteristics.
L44
Shortest path problems
L45 Cargo Loading L46,L 47 Reliability
Bellman`s principal of optimality, related problems Application of dynamic programing , related problems Capital budgeting problems , related problems Algorithem , Related problems Algorithem , Related problems Algorithem , Related problems
278-299, 393-398, 407-411 , R2(128-130)
T1, 319-322,958-959 R1,R2,R3 T1, 959 R1,R2,R3 T1, 322-323, R1,R2,R3 959-962 T1, 325-327, R1,R2,R3 964-966 T1, R1,R2,R3 T1, 330-334, R1,R2,R3 971-973 T1, 968-971 R1,R2,R3
T1, R1,R2,R3
L40 Bellman`s principal of L41 optimality Application of dynamic L41 programing L42,L Capital budgeting 43 problems
BB
BB
T1, 403-407,R2(130-147) R1,R2,R3 BB T1, 422-425 R1,R2,R3 BB T1, R1,R2,R3
L28 Assignment Problems
BB
T1, R1,R2,R3 T1, R1,R2,R3 T1, R1,R2,R3 T1, R1,R2,R3 T1, R1,R2,R3 T1, R1,R2,R3
569-571, 893895,R2(275276)
BB
BB BB BB BB BB BB BB
BB BB
599-605 R2(276-278)
BB BB
896-899,R2(281-284) BB 922-924,R2(284-290) BB R2(278-281)
UNIT - VI Introduction
Introduction , mathematical formulation
T1, R1,R2,R3
L48
Minimax(maxmin) , Criterion and optimal L49 Stategy L50,L Solution of game with 51 saddle points Rectuangular game L52,L without sadle opints 53
Minimax(maxmin) , Criterion and optimal Stategy Alogrithem,Related problems
Alogrithem,Related problems
Alogrithem,Related problems UNIT - VII
L56 Introduction L57,L Replacement of items that 58 deteriorate with time When money value is not L59 counted and counted L60,L Replacement of items 61 that fail completely
Introduction , mathematical formulation Replacement of items that deteriorate with time When money value is not counted and counted Replacement of items that fail completely , related problems
Group raplacements
Group raplacements , related problems
L62,L63
L64
T1, R1,R2,R3
T1, R1,R2,R3
2x2 games L54,L 55
T1, R1,R2,R3 T1, R1,R2,R3
Introduction
Inventory cost L65 L66,L Models with deterministic 67 demand Demand rate uniform and L68,L69Production rate infinite Demand rate non-uniform and production rate L70,L71 infinite L72,L Demand rate uniform and 73 production rate finite.
UNIT - VIII Introduction , mathematical formulation Inventory cost Models with deterministic demand, related problems Demand rate uniform and Production rate infinite,related problem Demand rate non-uniform and production rate infiniterelated problems Demand rate uniform and production rate finite.Related problems.
379-381,484486,R2(424426) 382-384, 486-491 385-386, 497-505 387-393, 495,R2(428440) 393-394, 505-508, 508512,R2(453466)
342-343, T1, 782R1,R2,R3 783,R2(471491) T1, 343-348, R1,R2,R3 783-792 T1, 350-352, R1,R2,R3 792-800 T1, 352-356, R1,R2,R3 805-808 360-365, T1, 808R1,R2,R3 815,R2(485491) T1, R1,R2,R3 T1, R1,R2,R3 T1, R1,R2,R3 T1, R1,R2,R3 T1, R1,R2,R3 T1, R1,R2,R3
597-600, 603-605 606-622 628-636 638-650 654-660
TEXT BOOKS : T1 - P.Sankara Iyer, "Operation Research" - Tata McGraw-Hills,2008 T2 - A.M.Natarajan,P.Balasubramani,A.Tamilarasi,"Operation Research",Pearson Edition,2005 REFERENCES : R1 - Operation Research by - J.K Sharma - MacMilan R2 - Operation Research by - R. Pannerselvam , PHI Publications.
BB BB BB
BB
BB
BB BB BB BB
BB
BB BB BB BB BB BB