Design of a Road Simulator for Motorcycle Applications - MDPI

7 downloads 0 Views 5MB Size Report
Nov 25, 2017 - Department of Industrial and Mechanical Engineering, Automotive Group, University ... road simulator that excites an unrestrained road vehicle.
applied sciences Article

Design of a Road Simulator for Motorcycle Applications Daniel Chindamo 1, *, Marco Gadola 1 1 2

*

ID

, Dario Armellin 1

ID

and Felipe Marchesin 2

Department of Industrial and Mechanical Engineering, Automotive Group, University of Brescia, Brescia I-25123, Italy; [email protected] (M.G.); [email protected] (D.A.) Departamento de Engenharia Mecanica, Universidade de Sao Paulo, Sao Paulo 05508-010, Brasil; [email protected] Correspondence: [email protected]; Tel.: +39-030-371-5663

Received: 16 October 2017; Accepted: 23 November 2017; Published: 25 November 2017

Abstract: Four-wheeled vehicles are often tested on indoor, four-poster road simulator rigs. Road loads are simulated with the use of servo-hydraulic systems for suspension set-up optimisation, NVH analysis, and fatigue life cycles. The use of a road simulator is not such a common practice for two-wheeled vehicles despite problems to be faced being extremely similar. The paper presents a device for testing motorcycles on a Servotest® four-poster. A dedicated restraint system had to be devised in order to support the motorcycle without altering its inertial characteristics. Additional pneumatic actuators with a purposely developed instrumentation have been designed to reproduce braking and power thrusts. Keywords: motorcycles; road simulator; indoor testing; ride testing

1. Introduction Developments in mechanical engineering and design require increasingly more effort in terms of computing and modelling, especially in the automotive industry where advanced computer models can help to reduce expensive and time-consuming track/road tests, and save time and resources. In order to be successful, this approach should rely on validated models which are proven to be effective and reliable. A four-poster test rig is a servo-hydraulic road simulator that excites an unrestrained road vehicle through its tyres to determine some of the dynamic characteristics of the vehicle, with particular regard to the suspension system. The excitation can be:

• • •

Fed in terms of heave, roll, and pitch Aimed at resonance frequency tracking Aimed at reproducing an acceleration/load history vs. time as recorded in road testing.

The so-called four-poster can be used to validate models of a generic four-wheeled vehicle with regard to vertical dynamics, fatigue durability and suspension tuning [1–3]. Activities like NVH testing, comfort evaluation [4–6], and the search for natural frequencies and vibration modes can be carried out as well. Automotive engineers consider the four-poster a key device in developing their product and the same considerations can be made for the motorcycle industry [7–9]. Indoor suspension testing and development can be an effective support to either simulation or outdoor testing, thus reducing vehicle time-to-market. Test techniques give a valuable insight into a range of parameters that would normally take significant road testing effort to achieve. Very similar needs are in focus when it comes to motorcycles; in this case, the unrestrained condition is not so easily achievable since the vehicle is not self-supporting.

Appl. Sci. 2017, 7, 1220; doi:10.3390/app7121220

www.mdpi.com/journal/applsci

Appl. Sci. 2017, 7, 1220 

2 of 12 

Appl. Sci. 2017, 7, 1220

2 of 12

A survey showed that similar works in the literature present systems that are mainly focused  on  human‐machine  interfaces,  comfort  characterization,  and  riding  simulation  over  different  A survey showed that similar works in the literature present systems that are mainly focused on scenarios, with the aim of improving road safety [1,10–15]. They are conceived to evaluate the rider’s  human-machine interfaces, comfort characterization, and riding simulation over different subjective  feeling  or  to  train  riders  to  face  various  situations,  from  normal  riding  to scenarios, emergency  with the aim of improving road safety [1,10–15]. They are conceived to evaluate the rider’s subjective manoeuvres and, except for [1], they are not able to employ a real‐world motorbike. The proposed  feeling or to train riders to face various situations, from normal riding to emergency manoeuvres and, system has been conceived as an engineering tool and it is aimed at the evaluation of the motorcycle  except for [1], they are not able to employ a real-world motorbike. The proposed system has been vertical dynamic behaviour and its interaction with the road. It is, therefore, based on the use of a  conceived as an engineering it is aimed at the evaluation of the motorcycle dynamic real‐world  motorcycle,  so tool that and subjective  feedback  coming  from  the  rider  can  vertical be  integrated  with  behaviour and its interaction with theinvestigation  road. It is, therefore, based on the use wheel  of a real-world motorcycle, objective  data  coming  from  the  of  natural  frequencies,  hub  acceleration  and  so displacement,  that subjective chassis  feedback coming from the ridercharacterisation, and  can be integrated with objective data coming from movement,  suspension  fatigue  testing, and  from  NVH  theanalysis in general.  investigation of natural frequencies, wheel hub acceleration and displacement, chassis movement, suspension characterisation, and fatigue testing, and from NVH in  analysis in general. To  date  very  few  research  and  development  facilities  the  world  feature  a  system  able  to  To date very few research and development facilities in the world feature a system able to perform perform the above‐mentioned activities on a free‐standing motorcycle. A search for similar test rigs  thegave  above-mentioned a free-standing motorcycle. A search for similar test Department  rigs gave no of  no  results  in activities Southern onEurope,  hence,  the  University  of  Brescia,  and  the  results in Southern Europe, hence, the University of Brescia, and the Department of Mechanical and Mechanical and Industrial Engineering, in particular, decided to retrofit a four‐poster test rig with a  Industrial Engineering, in particular, decided to retrofit a four-poster test rig with a custom-designed custom‐designed fixture to perform tests on two‐wheeled vehicles as well. In this case the motorbike  fixture tois  perform on two-wheeled vehicles and  as well. In this case structure  the motorbike (bike) is resting (bike)  resting tests on  two  of  the  four  actuators  an  aluminium  in  such  a  way  that  the  ondynamic response is not affected.  two of the four actuators and an aluminium structure in such a way that the dynamic response is not affected. The motorcycle is restrained so that it is free to move around the centre of gravity, i.e., in pitch  The motorcycle is restrained so that it is free to move around the centre of gravity, i.e., in pitch as as well as along the vertical direction in order to enable interaction between longitudinal and vertical  dynamics, which is of particular interest on motorbikes. Two pneumatic actuators have been added  well as along the vertical direction in order to enable interaction between longitudinal and vertical with the specific intent to simulate longitudinal forces due to acceleration and braking and replicate  dynamics, which is of particular interest on motorbikes. Two pneumatic actuators have been added suspension, as well as fork/chassis, deflections.  with the specific intent to simulate longitudinal forces due to acceleration and braking and replicate The  as fixture  been  designed  with  a  modular  approach  using  extruded  aluminium  suspension, well ashas  fork/chassis, deflections. components so that it can be easily modified to accommodate vehicles with different geometry. The  The fixture has been designed with a modular approach using extruded aluminium components so bike is connected by means of a set of adjustable connecting rods (at least three per side) to a sledge  that it can be easily modified to accommodate vehicles with different geometry. The bike is connected byproviding both vertical and pitch degrees of freedom.  means of a set of adjustable connecting rods (at least three per side) to a sledge providing both vertical and pitch degrees of freedom. 2. Materials and Methods  2. Materials and Methods 2.1. Support System Requirements and Design  2.1. Support System Requirements and Design As stated in Section 1, the support system should leave the motorcycle unrestrained to simulate  As stated in Sectionthe  1, the support system should leave the motorcycle unrestrained to simulate riding  while leaving  vehicle/rider mass and  moment  of  inertia  unaltered as  much as  possible.  riding while leaving the vehicle/rider mass and moment of inertia unaltered as much as possible. Such Such an issue is critical since the rider mass is about 35% of the total vehicle system. Moreover, the  an rider bends forward to reduce drag along the straights, then raises himself while braking and leans  issue is critical since the rider mass is about 35% of the total vehicle system. Moreover, the rider bends forward to reduce drag along the straights, then raises himself while braking and leans into the corner, into the corner, thus moving the centre of mass and varying the moment of inertia. The location of  thus moving the centre of mass and varying the moment of inertia. The location of the centre of mass was the centre of mass was measured for the bike alone, as well as with rider in the straight and braking  measured for(see  the bike alone, as well as withof  rider in the straight and braking positions (see well‐known  Figure 1). positions  Figure  1).  The  moment  inertia  was  accurately  measured  with  the  The moment of inertia was accurately measured with the well-known pendulum system [16] and, pendulum system [16] and, consequently, an equivalent rider mass was devised to obtain a realistic  consequently, an equivalent rider mass was devised to obtain a realistic mass distribution. mass distribution. 

  Figure 1. 1.  Centre of of  mass location: motorbike only (Cm), with rider in in  straight (Cr), andand  braking Figure  Centre  mass  location:  motorbike  only  (Cm),  with  rider  straight  (Cr),  braking  position (Cb). position (Cb). 

Appl. Sci. 2017, 7, 1220  Appl. Sci. 2017, 7, 1220

33 of 12  of 12

Due  to  a  relatively  high  centre  of  mass  in  conjunction  with  a  short  wheelbase  and  high  Appl. Sci. 2017, 7, 1220  3 of 12  Due to a relatively high centre of mass in conjunction with a short wheelbase and high power‐to‐weight ratio, the interaction between the vertical and longitudinal dynamics is another key  power-to-weight the interaction between the and longitudinal dynamics is another key parameter to be taken into account. The chain tension in particular can heavily affect the response of  Due  to  a  ratio, relatively  high  centre  of  mass  in vertical conjunction  with  a  short  wheelbase  and  high  parameter to be taken into account. The chain tension in particular can heavily affect the response of the the rear suspension under power (see Figure 2) while the front fork can show a tendency to stick up  power‐to‐weight ratio, the interaction between the vertical and longitudinal dynamics is another key  rear suspension under power Figure 2) while the front fork can show a tendency to stick up in heavy in  parameter to be taken into account. The chain tension in particular can heavily affect the response of  heavy  braking  [17],  thus  (see jeopardising  the  ability  to  cope  with  small  amplitude,  high‐frequency  braking [17], thus jeopardising the ability to cope with small amplitude, high-frequency road bumps. road  bumps.  Therefore,  the  test  system  should  be  able  to  apply  power  or  braking  torque  while  the rear suspension under power (see Figure 2) while the front fork can show a tendency to stick up  Therefore, the test system should bethe  ableground  to apply power braking leaving thelongitudinal  tyres free to in  heavy  braking  [17], to  thus  jeopardising  the  ability  to orcope  with torque small  amplitude,  high‐frequency  leaving  the  tyres  free  leave  as  they  occasionally  do while under  heavy  leave thebumps.  groundTherefore,  as they occasionally do under heavy acceleration or on severe bumps. road  the  test  system  should  be longitudinal able  to  apply  power  or  braking  torque  while  acceleration or on severe bumps.  leaving  the  tyres  free  to  leave  the  ground  as  they  occasionally  do  under  heavy  longitudinal  acceleration or on severe bumps. 

    Figure 2. How chain force can affect the suspension ride response.  Figure 2. How chain force can affect the suspension ride response. Figure 2. How chain force can affect the suspension ride response. 

Again,  as  mentioned  in  Section  1,  a  standard  four‐poster  rig  has  been  retrofitted  with  a  Again, asas  mentioned inin Section aa  standard four-poster rig has  hasposition  beenretrofitted  retrofitted witha  a Again,  mentioned  Section  standard  four‐poster  rig  been  custom‐designed  fixture  able  to  hold 1,1,  the  motorcycle  in  the  upright  without with  adding  custom-designed fixture able to hold the motorcycle in the upright position without adding custom‐designed  fixture  able  to  hold  the  motorcycle  in  the  upright  position  without  adding  unnecessary restraints.  unnecessary restraints. unnecessary restraints.  Three different layouts were considered at first, as shown in Figure 3.  Three different layouts were considered at first, as shown in Figure 3. Three different layouts were considered at first, as shown in Figure 3. 

    Figure 3. The three considered layouts.  Figure 3. The three considered layouts.  Figure 3. The three considered layouts.

Layout 2 was discarded due to its asymmetric shape with the resulting lateral scrub between  Layout 2 was discarded due to its asymmetric shape with the resulting lateral scrub between  Layout 2 was discarded due to its asymmetric shape with the resulting lateral scrub between tires and actuator pads during system motion. Layout 3 was discarded for stiffness reasons and the  tires and actuator pads during system motion. Layout 3 was discarded for stiffness reasons and the  tires and actuator pads during system motion. Layout 3 was discarded for stiffness reasons and the resulting longitudinal movements during system operation. Furthermore, the two long connecting  resulting longitudinal movements during system operation. Furthermore, the two long connecting  resulting longitudinal movements during system operation. Furthermore, the two long connecting rods  can  affect  system  inertia hence  hence dynamics.  dynamics.  Therefore,  Therefore,  the  proposed  layout  is  the  first  one  in in  rods  can  affect  system  inertia  one  rods can affect system inertia hence dynamics. Therefore, the  the proposed  proposed layout  layout is  is the  the first  first one in Figure 3, since it is able to hold the motorcycle without affecting its dynamic response. Moreover, the  Figure 3, since it is able to hold the motorcycle without affecting its dynamic response. Moreover, the  Figure 3, since it is able to hold the motorcycle without affecting its dynamic response. Moreover, connecting rods are very short and stiffness and inertia issues can be avoided.  connecting rods are very short and stiffness and inertia issues can be avoided.  the connecting rods are very short and stiffness and inertia issues can be avoided.

Appl. Sci. 2017, 7, 1220 Appl. Sci. 2017, 7, 1220 

4 of 12 4 of 12 

Such a layout is based on two low‐friction, recirculating ball linear guides along the vertical axis.  Such a layout is based on two low-friction, recirculating ball linear guides along the vertical axis. These are off‐the‐shelf components deemed to reduce undesired side effects like slip‐stick friction,  These are off-the-shelf components deemed to reduce undesired side effects like slip-stick friction, resonances,  and  additional  inertia.  Their  mass  is  close  to  the  average  rider’s  weight  and  can  be  resonances, and additional inertia. Their mass is close to the average rider’s weight and can be adjusted adjusted by adding or removing ballast.  by adding or removing ballast. The  main  structure  supporting  the  twin‐sledge  system  was  then  designed  using  commercial  The main structure supporting the twin-sledge system was then designed using commercial extruded aluminium modular components instead of a more traditional welded steel structure. The  extruded aluminium modular components instead of a more traditional welded steel structure. advantage of this solution is that the structure is lighter and easier to build in‐house, and the need  The advantage of this solution is that the structure is lighter and easier to build in-house, and the need for machined components was almost completely avoided. FEM (Finite Element Method) analysis  for machined components was almost completely avoided. FEM (Finite Element Method) analysis was  employed  to  ensure  that  natural  frequencies  of  the  structure  are  well  beyond  the  typical  was employed to ensure that natural frequencies of the structure are well beyond the typical frequency frequency range of vehicle ride dynamics. Moreover, bolted junctions can help to dampen vibrations  range of vehicle ride dynamics. Moreover, bolted junctions can help to dampen vibrations more more efficiently due to friction in the contact area. The schematic picture reported in Figure 4 shows  efficiently due to friction in the contact area. The schematic picture reported in Figure 4 shows the the final layout of the road simulator.  final layout of the road simulator.

  Figure 4. Schematic picture of the restraint system.  Figure 4. Schematic picture of the restraint system.

A pivot mounted on low‐friction bushings is placed on the two previously‐mentioned sledges.  A pivot mounted on low-friction bushings is placed on the two previously-mentioned sledges. The pivot—whose axis requires careful alignment with the bike centre of gravity—is then connected  The pivot—whose axis requires careful alignment with the bike centre of gravity—is then connected to to the motorbike chassis via three conrods with ball‐joint ends to provide an isostatic restraint, so  the motorbike chassis via three conrods with ball-joint ends to provide an isostatic restraint, so that that pitch oscillation around the CG (Center of Gravity) is free (see Figures 4–6).  pitch oscillation around the CG (Center of Gravity) is free (see Figures 4–6). The  use  of  modular  aluminium  components  for  the  support  structure  makes  it  versatile  and  The use of modular aluminium components for the support structure makes it versatile and suitable for further developments. It can accommodate motorcycles of any size and geometry.  suitable for further developments. It can accommodate motorcycles of any size and geometry.

Appl. Sci. 2017, 7, 1220

5 of 12

Appl. Sci. 2017, 7, 1220 

5 of 12 

Appl. Sci. 2017, 7, 1220 

5 of 12 

  Figure 5. Three conrods connect the bike main frame to the pivot on each side, providing an isostatic    Figure 5. Three conrods connect the bike main frame to the pivot on each side, providing an isostatic restraint. The centre of gravity of the bike is aligned with the pivot.  Figure 5. Three conrods connect the bike main frame to the pivot on each side, providing an isostatic 

restraint. The centre of gravity of the bike is aligned with the pivot. restraint. The centre of gravity of the bike is aligned with the pivot. 

  Figure 6. The actual system with a test bike performing a frequency sweep test.    Figure 6. The actual system with a test bike performing a frequency sweep test. 

2.2. Power and Braking Torque Application  Figure 6. The actual system with a test bike performing a frequency sweep test. 2.2. Power and Braking Torque Application  As stated in Section 2.1 and in [17] the interaction between vertical and longitudinal dynamics 

2.2. Power and Braking Torque Application is not negligible, especially on sports and racing motorbikes. Since the target of the whole system is 

As stated in Section 2.1 and in [17] the interaction between vertical and longitudinal dynamics 

the simulation of ride characteristics when the vehicle is running in a straight line—from corner exit  is not negligible, especially on sports and racing motorbikes. Since the target of the whole system is  As stated in Section 2.1 and in [17] the interaction between vertical and longitudinal dynamics under  power,  to  the  following  braking—a  device  which  simulates  the  application  of  power  and  the simulation of ride characteristics when the vehicle is running in a straight line—from corner exit  is not negligible, especially on sports and racing motorbikes. Since the target of the whole system braking  torque is  required. Such a system  should  not  provide  any additional  unsprung  mass and  under  power,  the  following  braking—a  which  simulates  of  power  and  is theshould also leave the vertical wheel motion unaffected.  simulation ofto ride characteristics whendevice  the vehicle is runningthe  in application  a straight line—from corner braking  torque is  required. Such a system  should  not  provide  any additional  unsprung  mass and  exit underA cable system was purposely conceived (see Figures 4 and 7) which is compatible with small  power, to the following braking—a device which simulates the application of power and should also leave the vertical wheel motion unaffected.  braking torque is required. Such a system should not provide any additional unsprung mass and wheel displacements; the cable is tensioned by a pneumatic actuator controlled in closed‐loop force  A cable system was purposely conceived (see Figures 4 and 7) which is compatible with small  should also leave the vertical wheel motion unaffected. mode. A fast response of the pneumatic actuators is not required since the rider input commands in  wheel displacements; the cable is tensioned by a pneumatic actuator controlled in closed‐loop force  acceleration and braking can be assumed as low‐frequency signals. This force (F1 in Figure 7) is then  A cable system was purposely conceived (see Figures 4 and 7) which is compatible with small mode. A fast response of the pneumatic actuators is not required since the rider input commands in  through  pulley isto  a  belt  made  Mylar®,  a  composite  commonly  used  for force wheeltransmitted  displacements; thea cable tensioned byof  a pneumatic actuator material  controlled in closed-loop acceleration and braking can be assumed as low‐frequency signals. This force (F1 in Figure 7) is then  manufacturing high‐performance sails. The belt is bonded to the tyre tread as shown in Figures 8  ®,  a  composite  material  commonly  used  for  transmitted  through of a  pulley  to  a  belt  made  of  Mylar mode. A fast response the pneumatic actuators is not required since the rider input commands ® test  and 9. The results of a shear force test, performed on the bonded components using an Instron manufacturing high‐performance sails. The belt is bonded to the tyre tread as shown in Figures 8  in acceleration and braking can be assumed as low-frequency signals. This force (F1 in Figure 7) is ® and 9. The results of a shear force test, performed on the bonded components using an Instron then transmitted through a pulley to a belt made of Mylar® , a composite material commonly  test  used for manufacturing high-performance sails. The belt is bonded to the tyre tread as shown in Figures 8 and 9. The results of a shear force test, performed on the bonded components using an Instron® test rig

Appl. Sci. 2017, 7, 1220 Appl. Sci. 2017, 7, 1220 

6 of 12 6 of 12 

Appl. Sci. 2017, 7, 1220 

6 of 12 

rig (Instron Engineering Corp., Norwood, MA, USA), are shown in Figure 10. They show that all the  (Instron Engineering Corp., Norwood, MA, USA), are shown in Figure 10. They show that all the Appl. Sci. 2017, 7, 1220  6 of 12  components (bonding included) can cope with this kind of stress.  components (bonding included) can cope with this kind of stress. rig (Instron Engineering Corp., Norwood, MA, USA), are shown in Figure 10. They show that all the  The  chain (on (on  wheel,  for  power  simulation)  or  the  braking  rig (Instron Engineering Corp., Norwood, MA, USA), are shown in Figure 10. They show that all the  The chain thethe  rearrear  wheel, for power simulation) or the front discfront  brakedisc  (for brake  braking(for  simulation) components (bonding included) can cope with this kind of stress.  simulation) must be locked to provide adequate torque transmission to the bike chassis. With regard  components (bonding included) can cope with this kind of stress.  chain  the  rear  wheel,  for  power  simulation)  or bike the  chassis. front  disc  brake  (for tobraking  must beThe  locked to (on  provide adequate torque transmission to the With regard Figure 7, The  chain  (on  the  wheel,  for  power by simulation)  or  the  front  disc  (for  braking  to Figure 7, the belt system transmits the force F1 (generated by the pneumatic actuator) to the wheel  simulation) must be locked to provide adequate torque transmission to the bike chassis. With regard  the belt system transmits therear  force F1 (generated the pneumatic actuator) to brake  the wheel as a tractive simulation) must be locked to provide adequate torque transmission to the bike chassis. With regard  as a tractive force. The wheel is locked and reacts with force F2. The vertical component on the wheel  to Figure 7, the belt system transmits the force F1 (generated by the pneumatic actuator) to the wheel  force. The wheel is locked and reacts with force F2. The vertical component on the wheel is negligible to Figure 7, the belt system transmits the force F1 (generated by the pneumatic actuator) to the wheel  is negligible for small displacements of Z, hence, the small α angles.  as a tractive force. The wheel is locked and reacts with force F2. The vertical component on the wheel  for small displacements of Z, hence, the small α angles. as a tractive force. The wheel is locked and reacts with force F2. The vertical component on the wheel  is negligible for small displacements of Z, hence, the small α angles.  is negligible for small displacements of Z, hence, the small α angles. 

  

 

Figure 7. The steel cable/fabric belt system kinematics. F1 is the pneumatic actuator force and F2 is  Figure 7. The steel cable/fabric belt system kinematics. F1 is the pneumatic actuator force and F2 is the Figure 7. The steel cable/fabric belt system kinematics. F1 is the pneumatic actuator force and F2 is  Figure 7. The steel cable/fabric belt system kinematics. F1 is the pneumatic actuator force and F2 is  chain/front wheel hub reaction. the chain/front wheel hub reaction.  the chain/front wheel hub reaction.  the chain/front wheel hub reaction. 

 

 

  Figure 8. Two separate Mylar belts are used to apply tractive and braking forces. 

Figure 8. Two separate Mylar belts are used to apply tractive and braking forces. Figure 8. Two separate Mylar belts are used to apply tractive and braking forces.  Figure 8. Two separate Mylar belts are used to apply tractive and braking forces. 

  Figure 9. The actual setup of the Mylar belt as bonded to one tyre. 

 

  Figure 9. The actual setup of the Mylar belt as bonded to one tyre.  Figure 9. The actual setup of the Mylar belt as bonded to one tyre. Figure 9. The actual setup of the Mylar belt as bonded to one tyre. 

Appl. Sci. 2017, 7, 1220  Appl. Sci. 2017, 7, 1220 

7 of 12  7 of 12 

Appl. Sci. 2017, 7, 1220

7 of 12

Appl. Sci. 2017, 7, 1220 

7 of 12 

   

Figure 10. Shear force vs. elongation of a 41 mm Mylar belt bonded to the tyre tread. The test was  Figure 10. Shear force vs. elongation of a 41 mm Mylar belt bonded to the tyre tread. The test was  performed on an Instron machine.  performed on an Instron machine.    Figure 10. Shear force vs. elongation of a 41 mm Mylar belt bonded to the tyre tread. The test was  2.3. Power and Braking Torque Control; Data Acquisition  Figure 10. Shear force vs. elongation of a 41 mm Mylar belt bonded to the tyre tread. The test was 2.3. Power and Braking Torque Control; Data Acquisition  performed on an Instron machine.  In addition to the four‐poster controller, a separate control system was deemed necessary. The  performed on an Instron machine. In addition to the four‐poster controller, a separate control system was deemed necessary. The  ®  pneumatic actuators applying power and braking torques are controlled by a dedicated Labview 2.3. Power and Braking Torque Control; Data Acquisition  pneumatic actuators applying power and braking torques are controlled by a dedicated Labview®  application via a CAN (Controller Area Network) line. Actuators, valves and pressure regulators are  2.3. Power and Braking Torque Control; Data Acquisition application via a CAN (Controller Area Network) line. Actuators, valves and pressure regulators are  In addition to the four‐poster controller, a separate control system was deemed necessary. The  off‐the‐shelf  components  while  the  force  is  measured  through  a  purposely  developed  load  cell  as  ®  off‐the‐shelf  while  the  force  is  measured  through  a  purposely  developed  load  cell  as  pneumatic actuators applying power and braking torques are controlled by a dedicated Labview In addition components  to the four-poster controller, a separate control system was deemed necessary. shown in Figure 11. The force is controlled in a closed‐loop and Figure 12 shows the tractive force vs.  shown in Figure 11. The force is controlled in a closed‐loop and Figure 12 shows the tractive force vs.  application via a CAN (Controller Area Network) line. Actuators, valves and pressure regulators are  speed as computed starting from the engine torque and transmission characteristics. The closed loop  The pneumatic actuators applying power and braking torques are controlled by a dedicated Labview® speed as computed starting from the engine torque and transmission characteristics. The closed loop  off‐the‐shelf  components  while  the  force  is  measured  through  a  purposely  developed  load  cell  as  control system enables the simulation of a complete corner exit/straight line/braking cycle as well.  application via a CAN (Controller Area Network) line. Actuators, valves and pressure regulators control system enables the simulation of a complete corner exit/straight line/braking cycle as well.  shown in Figure 11. The force is controlled in a closed‐loop and Figure 12 shows the tractive force vs.  ® software (National Instruments, Austin, TX, USA) has been used in conjunction  The Labview are off-the-shelf components while the force is measured through a purposely developed load cell as ® software (National Instruments, Austin, TX, USA) has been used in conjunction  The Labview speed as computed starting from the engine torque and transmission characteristics. The closed loop  with  a  National  Instruments  acquisition  card  for  data  logging.  Unsprung  mass  acceleration,  shown in Figure 11. The force is controlled in card  a closed-loop and Figure 12 shows the acceleration,  tractive force vs. with  a  National  Instruments  acquisition  for  data  logging.  Unsprung  mass  control system enables the simulation of a complete corner exit/straight line/braking cycle as well.  suspension  displacements,  and  vertical  road  loads  are  measured  on  both  front  and  rear  ends.  In  speedsuspension  as computed starting from engine torque characteristics. Theends.  closed ® software (National Instruments, Austin, TX, USA) has been used in conjunction  displacements,  and the vertical  road  loads and are transmission measured  on  both  front  and  rear  In loop The Labview addition, two linear potentiometers control the roll angle in the case a structural failure eventually  addition, two linear potentiometers control the roll angle in the case a structural failure eventually  control system enables the simulation of a complete corner exit/straight line/braking cycle as well. with  a  National  Instruments  acquisition  card  for  data  logging.  Unsprung  mass  acceleration,  occurs on the motorcycle restraint system.  occurs on the motorcycle restraint system.  suspension  displacements,  and  vertical  road  loads  are  measured  on  both  front  and  rear  ends.  In  addition, two linear potentiometers control the roll angle in the case a structural failure eventually  occurs on the motorcycle restraint system. 

   

Figure 11. A load cell was purposely designed to measure simulated braking and tractive forces. 

Figure 11. A load cell was purposely designed to measure simulated braking and tractive forces. Figure 11. A load cell was purposely designed to measure simulated braking and tractive forces. 

  Figure 11. A load cell was purposely designed to measure simulated braking and tractive forces. 

    Figure 12. Power torque curves and transmission characteristics used to simulate the acceleration phase.

 

The Labview® software (National Instruments, Austin, TX, USA) has been used in conjunction with a National Instruments acquisition card for data logging. Unsprung mass acceleration, suspension displacements, and vertical road loads are measured on both front and rear ends. In addition, two

Appl. Sci. 2017, 7, 1220 Appl. Sci. 2017, 7, 1220  Appl. Sci. 2017, 7, 1220 

8 of 12 8 of 12  8 of 12 

12.  Power  torque  curves  and angle transmission  characteristics  used  to  simulate  the  acceleration  linearFigure  potentiometers control the roll in the case a structural failure eventually occurs on the Figure  Power  torque  curves  and  transmission  characteristics  used  to  simulate  the  acceleration  phase.  12.  motorcycle restraint system. phase. 

3. Results 3. Results  3. Results  3.1. Sweep Test 3.1. Sweep Test  3.1. Sweep Test  First in order First  of of  all, all,  two two  tests tests  have have  been been  performed performed  in  order  to to  verify verify  the the  proper proper  functionality functionality  of of  the the  First  of  all,  two  tests  have  been  performed  in  order  to  verify  the  proper  functionality  of  the  designed ride simulator. The frequency response has been evaluated for both front and rear unsprung designed  ride  simulator.  The  frequency  response  has  been  evaluated  for  both  front  and  rear  designed  frequency  has  been  evaluated  for  both  front  and  masses as ride  well simulator.  as as  forwell  the The  sprung mass ofresponse  a test motorbike. Figure 13 shows the rear unsprung unsprung  masses  as  for  the  sprung  mass  of  a  test  motorbike.  Figure  13  shows  the  rear  rear  unsprung  masses  as  well  as  for  the  sprung  mass  of  a  test  motorbike.  Figure  13  shows  the  rear  mass frequency response obtained with a frequency sweep at constant vertical acceleration while unsprung  mass  frequency  response  obtained  with  a  frequency  sweep  at  constant  vertical  unsprung  mass the frequency  response  obtained  with  at same constant  vertical  Figure 14 shows sprung mass frequency response fora a frequency  front wheelsweep  with the kind of input acceleration while Figure 14 shows the sprung mass frequency response for a front wheel with the  acceleration while Figure 14 shows the sprung mass frequency response for a front wheel with the  (no quantitative results or comments are issued for confidentiality). same kind of input (no quantitative results or comments are issued for confidentiality).  same kind of input (no quantitative results or comments are issued for confidentiality). 

   

Figure 13. Rear unsprung mass frequency response. A piezometric accelerometer is fitted on the rear  Figure 13. Rear unsprung mass frequency response. A piezometric accelerometer is fitted on the Figure 13. Rear unsprung mass frequency response. A piezometric accelerometer is fitted on the rear  wheel  hub.  “A”  is  the  sprung  mass  frequency  contribution,  “B”  and  “C”  are  the  front  and  rear  rear wheel hub. is the sprung mass frequency contribution, “B” and “C”are  arethe  thefront  front and  and rear  rear wheel  hub.  “A” “A” is  the  sprung  mass  frequency  contribution,  “B”  unsprung  mass  frequency  contributions  respectively  while  “D”  is and  the “C”  contribution  of  the  sprung  unsprung mass frequency contributions respectively while “D” is the contribution of the sprung mass unsprung  mass  frequency  contributions  respectively  while  “D”  is  the  contribution  of  the  sprung  mass pitch movement.  pitch movement. mass pitch movement. 

    Figure 14. Sprung mass frequency response due to the front wheel frequency sweep. A piezometric  Figure 14. Sprung mass frequency response due to the front wheel frequency sweep. A piezometric  accelerometer is located at the centre of gravity.  Figure 14. Sprung mass frequency response due to the front wheel frequency sweep. A piezometric accelerometer is located at the centre of gravity.  accelerometer is located at the centre of gravity.

3.2. Road Surface Reproduction  3.2. Road Surface Reproduction  The road surface reproduction control system has been used in order to test the system further.  The road surface reproduction control system has been used in order to test the system further.  The four‐poster itself features the possibility to reproduce any road surface accurately, starting from  The four‐poster itself features the possibility to reproduce any road surface accurately, starting from  a  real‐world  acquisition,  and  then  using  a  complex  iterative  deconvolution  process  [18–21].  This  a  real‐world  acquisition,  and  then  using  a  complex  iterative  deconvolution  process  [18–21].  This 

Appl. Sci. 2017, 7, 1220

9 of 12

3.2. Road Surface Reproduction The road surface reproduction control system has been used in order to test the system further. The four-poster itself features the possibility to reproduce any road surface accurately, starting Appl. Sci. 2017, 7, 1220  9 of 12  from a real-world acquisition, and then using a complex iterative deconvolution process [18–21]. This controller is separate from the one employed to “play” standard waveforms and used controller is separate from the one employed to “play” standard waveforms and used to perform  to perform standard tests as reported in Section 3.1. Each actuator (i.e., each wheel) can be standard  tests  as  reported  in  Section  3.1.  Each  actuator  (i.e.,  each  wheel)  can  be  controlled  controlled independently. independently.  Two different tests at constant speed are shown here. The first one corresponds to a paved road at Two different tests at constant speed are shown here. The first one corresponds to a paved road  100 km/h, while the second one corresponds to a speed hump taken at 30 km/h. Results are shown in at 100 km/h, while the second one corresponds to a speed hump taken at 30 km/h. Results are shown  Figures 15 and 16. It is worth highlighting that the difference between time histories of road and rig in Figures 15 and 16. It is worth highlighting that the difference between time histories of road and  profiles is not visible when overlapping the two data streams because the system performance is very rig profiles is not visible when overlapping the two data streams because the system performance is  good. Therefore, the absolute error has been reported for each sensor as well. very good. Therefore, the absolute error has been reported for each sensor as well. 

  Figure 15. Test performed on smooth paved road at 100 km/h.  Figure 15. Test performed on smooth paved road at 100 km/h.

Appl. Sci. 2017, 7, 1220

10 of 12

Appl. Sci. 2017, 7, 1220 

10 of 12 

  Figure 16. Test performed on a speed hump at 30 km/h.  Figure 16. Test performed on a speed hump at 30 km/h.

4. Discussion  4. Discussion Figures 13 and 14 report the frequency responses of the rear wheel and the sprung mass under  Figures 13 and 14 report the frequency responses of the rear wheel and the sprung mass under different constant acceleration frequency sweeps.  different constant acceleration frequency sweeps. Figure  13  shows  the  influence  of  unsprung  mass,  front  wheel,  and  pitch  movement  natural  Figure 13 shows the influence of unsprung mass, front wheel, and pitch movement natural frequencies on the rear wheel frequency response. The low‐frequency contribution to the response  frequencies on the rear wheel frequency response. The low-frequency contribution to the response comes from the unsprung mass (A) with the highest module, as expected. Respectively, (B) and (C)  comes from the unsprung mass (A) with the highest module, as expected. Respectively, (B) and (C) are are the frequency contribution due to front wheel and rear wheel natural frequencies while (D) is the  the frequency contribution due to front wheel and rear wheel natural frequencies while (D) is the pitch pitch movement natural frequency.  movement natural frequency. In Figure 14 the sprung mass natural frequency is clearly visible at the same frequency of the  In Figure 14 the sprung mass natural frequency is clearly visible at the same frequency of the one one reported in Figure 13 (again, A). In this case, the frequency contribution coming from the front  reported in Figure 13 (again, A). In this case, the frequency contribution coming from the front wheel wheel and rear wheel natural frequencies are much less visible due to the filtering action achieved  and rear wheel natural frequencies are much less visible due to the filtering action achieved by the by the respective suspension systems.  respective suspension systems. All these results are in line with the expected frequency response characteristics computed with  All these results are in line with the expected frequency response characteristics computed with vehicle  mass,  inertia,  and  wheel  rate  data  as  input.  They  are  also  congruent  with  the  theory  of  vehicle mass, inertia, and wheel rate data as input. They are also congruent with the theory of motorcycle vertical dynamics as outlined in [17], chapter 5 (In‐Plane Dynamics), proving the ability  motorcycle vertical dynamics as outlined in [17], chapter 5 (In-Plane Dynamics), proving the ability of of  the  system  to  reproduce  the  vertical  response  of  an  unrestrained  bike  during  its  straight‐line  the system to reproduce the vertical response of an unrestrained bike during its straight-line motion. motion. Similar considerations are also reported in [22].  Similar considerations are also reported in [22]. Figures 15 and 16 report comparisons between real‐world and rig‐generated road profiles. It is  Figures 15 and 16 report comparisons between real-world and rig-generated road profiles. It is worth worth highlighting that the difference between time histories of real‐world road and rig‐generated  highlighting that the difference between time histories of real-world road and rig-generated profiles is not profiles is not visible when overlapping the two data streams since it is very small. Therefore, the  visible when overlapping the two data streams since it is very small. Therefore, the absolute error has been absolute error  has  been  reported  for each  sensor  as well.  This  is an indication  of  the  effectiveness  reported for each sensor as well. This is an indication of the effectiveness achieved with the system. achieved with the system.  A test performed on good quality, smooth road pavement at 100 km/h is reported in Figure 15. A test performed on good quality, smooth road pavement at 100 km/h is reported in Figure 15.  It shows very low acceleration and wheel displacement levels. Under these conditions the system It shows very low acceleration and wheel displacement levels. Under these conditions the system  can replicate real-world road data very well, with a maximum absolute error value (MAE) of 0.32% for can replicate real‐world road data very well, with a maximum absolute error value (MAE) of 0.32%  unsprung mass acceleration and 0.25% for suspension displacement. The RMS error is 0.20% in both cases. for unsprung mass acceleration and 0.25% for suspension displacement. The RMS error is 0.20% in  both cases. 

Appl. Sci. 2017, 7, 1220

11 of 12

Results of a test performed on a speed hump are shown in Figure 16. The road input is akin to an impulse. Under this condition the system is still able to simulate motorcycle dynamics accurately since the acceleration MAE is 0.95%, the suspension displacement MAE is 0.98%, the pitch angle MAE is 0.98% while the RMS error is 0.45%. It is worth noticing that the pitch angle does not return to zero after the speed hump because the motorcycle is accelerating. 5. Conclusions A road simulator rig for motorcycles has been designed and built by the Vehicle Dynamics group of the University of Brescia. It is based on a dedicated restraint system conceived to support a real-world bike on a Servotest® four-poster without affecting its peculiar dynamics, since the bike mass and inertia properties have not been altered, together with the related dynamic response. In addition to the vertical action of the servo-hydraulic actuators a unique device for application of the braking and tractive forces has been added. The longitudinal force reproduction device is powered by two independent pneumatic actuators. The system has been successfully tested by performing some frequency sweep tests (among others) that provided a realistic dynamic response, as proven by the FFT plots reported in Section 3. As a further proof of the ability of the proposed system to accurately reproduce motorcycle dynamics during straight running, it has been tested on different road surfaces, using road reproduction control as featured by the original four-poster rig system. A comparison of real-world data with results obtained with the simulator showed negligible errors, as reported in Section 4. The proposed motorcycle road simulator can be considered capable of providing reliable and effective reproduction of the actual motorbike behaviour in terms of vertical dynamics. Author Contributions: M. Gadola and D. Armellin conceived and designed the experiment, F. Marchesin performed tests and experiments, D. Chindamo analysed data and wrote the paper. Conflicts of Interest: The authors declare no conflict of interest.

References 1.

2. 3.

4.

5. 6. 7. 8. 9.

Spickenreuther, M.; Bersiner, F.; Fricke, E. Realistic driving experience of new vehicle concepts on the bmw ride simulator. In Proceedings of the 7th International Styrian Noise, Vibration and Harshness Congress: The European Automotive Noise Conference (SNVH 2012), Graz, Austria, 13–15 June 2012. [CrossRef] Wang, B.; Guo, X.; Li, M.; Yang, B.; Xu, Z. Road simulation algorithm based on iterative learning control. Quiche Gongcheng/Autom. Eng. 2010, 32, 686–689. Marchesin, F.P.; Barbosa, R.S.; Alves, M.A.L.; Gadola, M.; Chindamo, D.; Benini, C. Upright mounted pushrod: The effects on racecar handling dynamics, The Dynamics of Vehicles on Roads and Track. In Proceedings of the 24th Symposium of the International Association for Vehicle System Dynamics(IAVSD 2015), Graz, Austria, 17–21 August 2015; pp. 543–552. Jayasurya, H.P.W.; Sangpradit, K. Dynamic performance and ride comfort evaluation of the seat suspension system in a small agricultural tractor to attenuate low-frequency vibration transmission. Agric. Eng. Int. CIGR J. 2014, 16, 207–216. Uberti, S.; Gadola, M.; Chindamo, D.; Romano, M.; Galli, F. Design of a double wishbone front suspension for an orchard-vineyard tractor: Kinematic analysis. J. Terramech. 2015, 57, 23–39. [CrossRef] Kharul, R.; Balakrishnan, S.; Karedla, D.; You, S.S. Virtual testing and correlation for a motorcycle design. SAE Int. J. Mater. Manuf. 2010, 3, 541–549. [CrossRef] Benini, C.; Gadola, M.; Chindamo, D.; Uberti, S.; Marchesin, F.P.; Barbosa, R.S. The influence of suspension components friction on race car vertical dynamics. Veh. Syst. Dyn. 2017, 55, 338–350. [CrossRef] Uberti, S.; Gadola, M. Design of a new high-end street bike. In Proceedings of the 11th International Design Conference (DESIGN 2010), Dubrovnik, Croatia, 17–20 May 2010; pp. 1741–1752. Tuluie, R.; Ericksen, G.S. Racing motorcycle design process using physical and virtual testing methods. In Proceedings of the Motorsports Engineering Conference and Exposition, Dearborn, MI, USA, 13–16 November 2000.

Appl. Sci. 2017, 7, 1220

10.

11. 12. 13. 14. 15.

16. 17. 18. 19. 20. 21. 22.

12 of 12

Nehaoua, L.; Hima, S.; Arioui, H.; Seguy, N.; Espié, S. Design and modeling of a new motorcycle riding simulator. In Proceedings of the IEEE American Control Conference, New York, NY, USA, 11–13 July 2007; pp. 176–181. Cossalter, V.; Lot, R.; Maso, M.; Massaro, M.; Sartori, R. A Motorcycle Riding Simulator for the Improvement of the Rider Safety; Proc. of FISITA World Automotive Congress: Munich, Germany, 2008. Cossalter, V.; Doria, A.; Lot, R. Development and Validation of a Motorcycle Riding Simulator. In Proceedings of the FISITA, Barcellona, Spain, 8–24 May 2004. Cossalter, V.; Lot, R.; Massaro, M.; Sartori, R. Development and validation of an advanced motorcycle riding simulator. J. Automob. Eng. 2011, 225, 705–720. [CrossRef] Cossalter, V.; Lot, R.; Rota, S. Objective and subjective evaluation of an advanced motorcycle riding simulator. Eur. Transp. Res. Rev. 2010, 2, 223–233. [CrossRef] Cossalter, V.; Lot, R.; Massaro, M.; Sartori, R. Development and Testing of Assistant Rider Systems with the UNIPD Motorcycle Riding Simulator; 19th Congress of Theoretical and Applied Mechanics: Ancona, Italy, 2009; ISBN 9788896378083. Previati, G.; Gobbi, M.; Mastinu, G. Measurement of the inertia tensor-A review. In Proceedings of the 73rd Annual Conference of the Society of Allied Weight Engineers, Inc., Long Beach, CL, USA, 17–24 May 2014. Cossalter, V. Cinematica e Dinamica Della Motocicletta; Edizioni Progetto: Padova, Italy, 1997. Chindamo, D.; Gadola, M. Reproduction of real-world road profiles on a four-poster rig for indoor vehicle chassis and suspension durability testing. Adv. Mechan. Eng. 2017, in press. [CrossRef] Plummer, A.R. Control techniques for structural testing: A review. J. Syst. Control Eng. 2007, 221, 139–169. [CrossRef] Hay, N.C.; Roberts, D.E. Iterative control in automotive testing. J. Syst. Control Eng. 2007, 221, 223. Dodds, C.; Plummer, A. Laboratory Road Simulation for Full Vehicle Testing: A Review. SAE Tech. Paper 2001. [CrossRef] Cossalter, V.; Doria, A.; Formentini, M.; Peretto, M. Experimental and numerical analysis of the influence of tyres properties on the straight running stability of a sport-touring motorcycle. Veh. Syst. Dyn. 2012, 50, 357–375. [CrossRef] © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).