Determining the gaussian distribution width of Curie ...

7 downloads 0 Views 814KB Size Report
I t is re l a t ed w it h t he depe n de n ce o f re l axa tion ti me on t empera tu re. F o r t he maj o r ity o f t he ma t er i a ls t h is depe n de n c y is o f Arrhe nius ty pe.
Condensed Matter Physics, 1999, Vol. 2, No. 4(20), pp. 661–670

Determining the gaussian distribution width of Curie-Weiss temperatures and relaxation times R.Skulski University of Silesia, Chair of Materials Science, 2 Snie˙zna Str., 41–200 Sosnowiec, Poland

Received September 9, 1998, in final form December 14, 1999 Some new possibilities of determining the gaussian distribution of CurieWeiss temperatures and relaxation times in relaxors and in ferroelectrics with a diffused phase transition are presented in this paper. The method of determining the width of gaussian distribution of Curie-Weiss temperatures with the use of the reciprocal of dielectric permittivity on normalized plots is applied to solid solution Ba(Ti  Sn  )O  . The method of estimating the gauss-logarithmic distribution of relaxation times based on normalized plots is proposed for relaxors. It is shown that the Vogel-Fulcher behaviour of real and imaginary parts of the dielectric permittivity in PMN is caused by gauss-logarithmic distribution of relaxation times and by its temperature dependence. Key words: ferroelectrics, relaxors, diffused phase transition, relaxation time PACS: 77.80

1. Introduction      "!  #$ % $&  &('*),+.-0/12 3  54  6&7&&  & 89  3:=@?BADCB-3 3EFG# $H$ I6#J  KL$& M 9  !LNIOB P$QFJ H$! %  # # R  K 2H$STUV #J &W &V I6#J B! $CX-3YIO$&Z# #J K  9  P\[@  $ ]$

9  5 ^ "!  V$&Z #J  4]#$ ] $&  &a`

_

_cb ! >Rde  3PHf3& $

rq

9      

9 ! 8  ($FJ 54g-%h`

_

I6H$&Z iT!$ g 9 #J P$ jHB &O3& $ iT!$1 Nj  6!#Z Ok$ll5=@?llmn$FJ 54g-%h` _

 I6#J B!   9  $&  &( KIOB ZFoUp4$$  !3I6 $ ]"  &oHC

R.Skulski

661

R.Skulski

Figure 1.

sMt5uKv]w5xzy}Y~ x€™TxÓ Ùe« ¦ª ª ¿ ՑÓÙfÂ%°« º6­J« ±¯B°©± « ª ¿*å Â>ÃX꛲V­±¯$¾°¦¾ «$¶À2«gÀ%¯$²o°°³6¬«°« ± º6¦²«]°®«]À¦¬@°®V³$·Ô°®« Ü ¿ Ð0ÂO¬¯B°L¯@Ã%ë« ¾ « ²o°»ÁÌÅÆ³± « ¦±¯ìÉ Ê$˧®¯$ªZ­± « ª « ²o°« ¬ °®«Yº6«°®³ ¬ˆ³$·M¬«°« ± º6¦²¦²½O°®«YÀ¦¬@°®ˆ³$·‘°®«6é]¯$©ª ª,¾ ©±Kµ«N©ª ¦²½Z¯pª ­J« ¾ ¦P¯$»E½±¯$­®¦¾H¯$» é]¯$©ª ª(¾ ©±Kµ«Í®¯Hµ ¦²½«>¹@­J« ± ¦º6« ²o°L¯$»

­± « ª « ²o°L¯B°¦³²aÃ푯$± »¦« ± ¶@Õ2»P¯$± î$«NÉ ï\Ëa½« ²« ±¯$»¦Ö « ¬O°®«§ª ³¾H¯$»»« ¬pðT©¯$¬±¯B°¦¾,Õ2©± ¦«>ÓÙe« ¦ª ª%»P¯HÀ ·¸³±%°®«]¾H¯$ª «

çgñóòˆñÎô Û ç Ü

ç Þ Ü

¿ÒÝc÷øÝ ‰

›ù ä

¿Dô Â

‰QŠD‹]õÇö èOºO¯\¹@¦ºY©ºúµ$¯$»©«§³$·¬¦« »« ¾°± ¦¾­J« ± º6¦° °¦µ ¦°›Á¶ Ý è6°« º6­J« ±¯B°©± «§¦²OÀ®¦¾L® Ü ‰QŠD‹ ‰ ç èZՑÓÙ °®«,ºO¯\¹@¦ºY©ºû³$·Ô¬¦« »« ¾°± ¦¾§­J« ± º6¦° °¦µ ¦°›Á6¦ª3³´ª « ±Kµ« ¬a¶ Ú èp¾ ³²ªK°L¯$²o° ¿ ·¸³± ò Þ À®« ± «

¾ ³²ªK°L¯$²o°>Â>¶ ò ·¸± ³º

662

ò Þ

ô

舫>¹@­J³²« ²o° °³

ò Þ

ç

¿ ·¸± ³ºü±¯$²½«

ç Ó ô Â>Ã1ij±,¬¦¨"« ± « ²o°gµ$¯$»©« ª]³$·%ýE¶a°®«°±¯$²ª ¦°¦³²

°L¯$î$« ª­»P¯$¾ «g¯B°0µ$¯$± ¦³©ª3°« º6­J« ±¯B°©± « ª%è

ÝJþ Ã"ÅÆ³± « ¦±¯NªK°L¯B°« ¬V°®¯B°

Determining the gaussian distribution width . . . ÿ3ÿ 

  "!#%$#& ')(*$,+-/.0'.%& '12(ÿ+ $3-4+!,3ÿ  5!#76 !#%$#%8(*%9øÿ := `  ÿ a6ÿ'1!b.0'.%& '12(ÿ+ $cad9 fe8gh(*  &i(* +!j-4+!bkle 3ÿ  c!#%'12(ÿ)m%')g

; +‚+‚9

 ; !#%%a"%8(¦nÿ)(*(* §Eƒi6%! ÿa"%8(C' 9(* ¦6 

Suggest Documents