Development and Evaluation of Light-Weight Active Noise ... - MDPI

8 downloads 0 Views 2MB Size Report
Jul 19, 2018 - Abstract: This paper presents the development of active noise control (ANC) for light-weight earphones, and proposes using music or natural ...
applied sciences Article

Development and Evaluation of Light-Weight Active Noise Cancellation Earphones Sen M. Kuo 1 , Yi-Rou Chen 1 , Cheng-Yuan Chang 1, * and Chien-Wen Lai 2 1 2

*

Department of Electrical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan; [email protected] (S.M.K.); [email protected] (Y.-R.C.) Changhua Christian Hospital, Changhua 500, Taiwan; [email protected] Correspondence: [email protected]; Tel.: +886-3-265-4838

Received: 26 May 2018; Accepted: 17 July 2018; Published: 19 July 2018

 

Abstract: This paper presents the development of active noise control (ANC) for light-weight earphones, and proposes using music or natural sound to estimate the critical secondary path model instead of extra random noise. Three types of light-weight ANC earphones including in-ear, earbud, and clip phones are developed. Real-time experiments are conducted to evaluate their performance using the built-in microphone inside KEMAR’s ear and to compare with commercially-available ANC headphones and earphones. Experimental results show that the developed light-weight ANC earphones achieve higher noise reduction than the commercial ANC headphones and earphones, and the in-ear ANC earphone has the best noise reduction performance. Keywords: active noise control; light-weight earphone; natural sound; secondary path model

1. Introduction Portable devices like smart phones and MP3 players with wearable headphones or earphones are widely used by every age group from youth to the elderly. These portable devices bring convenience to people for communication and entertainment in any environment, for example in public buildings and on transportation [1]. Unfortunately, the performance of these devices will be degraded by annoying environmental noise. The acoustic noise problem has become more serious as increased numbers of equipment such as engines, blowers, fans, air-conditioners, and compressors are used in many installations, air planes, automobiles, etc. [2]. In general, there are two ways to reduce the environmental noise for portable devices: passive and active. The passive method uses thick acoustic earmuffs to cover the ear completely to block the environmental noise. However, they are relatively large, bulky, costly, and ineffective at low frequency range. The active method uses the ANC system to cancel the unwanted noise based on the principle of superposition [3]. Specifically, an anti-noise of equal amplitude and opposite phase is generated and actively combined with the primary noise, thus resulting in the cancellation of both noises. Several studies were published on the application of ANC headphones [4–11]. In addition, several ANC headphones are commercially available and have been carefully evaluated [12]. Basically, there are three types of ANC headphones on the market. The first type of headphone (type A) has earmuffs that sit on top of the ears. The second type (type B) completely encloses the ears. These two types of ANC headphones are over-ear headphones and rely on large and bulky passive earmuffs clamping on the ears to reduce high frequency noise, thus they are not portable while performing outdoor activities. Furthermore, these passive headphones are not comfortable to wear due to the pressure experienced on the side of the head restricting blood flow and hence producing discomfort over time [13]. Users experience mild headaches, feel headphones pushing the ears against the head (benign paroxysmal positional vertigo [14]), and feel clamping pressure Appl. Sci. 2018, 8, 1178; doi:10.3390/app8071178

www.mdpi.com/journal/applsci

Appl. Sci. 2018, 8, x FOR PEER REVIEW    Appl. Sci. 2018, 8, 1178

2 of 11  2 of 11

against  the  head  (benign  paroxysmal  positional  vertigo  [14]),  and  feel  clamping  pressure  on  their  on their eardrum. The last type is an in-ear ANC earphone (type C) which was developed recently. eardrum. The last type is an in‐ear ANC earphone (type C) which was developed recently. Therefore,  Therefore, light-weight ANC earphones are the future trend; they are more comfortable and they are light‐weight ANC earphones are the future trend; they are more comfortable and they are efficient  efficient for users to reduce environmental noise. for users to reduce environmental noise.  As shown in Figure 1, this paper develops three different light-weight ANC earphones: in-ear, As shown in Figure 1, this paper develops three different light‐weight ANC earphones: in‐ear,  earbud, and clip  clip phones,  phones, and  and compares  compares their  their noise  noise reduction  reduction with  with commercially  commercially available  available ANC  ANC earbud,  and  headphones (types A, B and C) of a leading brand company. The rest of the paper is organized as headphones (types A, B and C) of a leading brand company. The rest of the paper is organized as  follows. Section II introduces the ANC algorithms used for the earphones and proposes using natural follows. Section II introduces the ANC algorithms used for the earphones and proposes using natural  sound for modeling the required secondary path. Section III presents real-time experimental results sound for modeling the required secondary path. Section III presents real‐time experimental results  and compares and analyzes their performance. and compares and analyzes their performance. 

Figure  1.  Three  types  of  earphones:  clip  earphone  (left),  earbud  earphone  (middle),  and  in‐ear  Figure 1. Three types of earphones: clip earphone (left), earbud earphone (middle), and in-ear earphone (right).  earphone (right).

2. ANC Algorithms for Earphones  2. ANC Algorithms for Earphones This section introduces the single‐channel adaptive feedback ANC algorithm, which requires  This section introduces the single-channel adaptive feedback ANC algorithm, which requires only one error sensor for each side of the earphone.    only one error sensor for each side of the earphone. 2.1. Adaptive Feedback ANC Algorithm  2.1. Adaptive Feedback ANC Algorithm The basic principle of the adaptive feedback ANC is to estimate the primary noise to be canceled  The basic principle of the adaptive feedback ANC is to estimate the primary noise to be canceled n ) the W (shown z) .  As inshown  to  use  the  reference  signal    for adaptive the  adaptive  filter  2,  the  to use itit asas the reference signal x (n)x(for filter W (z). As Figurein  2, Figure  the secondary ( z)   y (n )  by secondary signal  generated by the adaptive filter is filtered by the secondary path model  signal y(n) generated the adaptive filter is filtered by the secondary path model Sˆ (z) and Sˆthen added with e(n) measured the error sensor to synthesize the reference signal x (n). The secondary e(n)  from x(n ) .  and then added with  measured from the error sensor to synthesize the reference signal  signal y ( n ) is generated as The secondary signal  y (n )   is generated as    L −1

y(n) = ∑ L 1 wl ( n ) x ( n − l ) y ( n ) l = 0 wl ( n ) x ( n  l )   l 0

(1) (1) 

where wl (n), (l = 0, 1, · · · , L − 1) are the coefficients of W (z) at time n, and L is the filter length. wl (n),coefficients (l  0, 1,L , Lare  1)updated W ( zleast-mean-square )   at time n, and L is the filter length. These  where    are the coefficients of  These filter by the filtered-X (FXLMS) algorithm [3] filter coefficients are updated by the filtered‐X least‐mean‐square (FXLMS) algorithm [3] expressed  expressed as as  wl (n + 1) = wl (n) + µx 0 (n − l )e(n) (2)

 wl (n)   x(n  l )e(n)   where µ is the step size. The filteredwsignal l ( n  1)is where     is the step size. The filtered signal is  M −1 x 0 (n) ≡ ∑ sˆm (n) x (n − m) M 1

 sˆ

m =0

x ( n ) 

(n) x(n  m)  

(2)  (3)

(3)  ˆ ˆ where sm (n), (m = 0, 1, · · · , M − 1) are the coefficients of the FIR filter S(z) (with length M) that is ( z )   (with length M) that is the  (m  0, 1,L , M Figure 1)   are the coefficients of the FIR filter  sˆm (n), path where  the secondary estimate. 2 clearly shows that the referenceSˆ signal x (n) equals the primary ∼ ˆ noise d ( n ) if the perfect secondary model is available, i.e., S ( z ) S ( z ) . The method of modeling the = secondary path estimate. Figure 2 clearly shows that the reference signal  x(n )   equals the primary  secondary path is presented in the following subsection. noise  d (n )   if the perfect secondary model is available, i.e.,  Sˆ ( z )  S ( z ) . The method of modeling the  m 0

m

secondary path is presented in the following subsection. 

Appl. Sci. 2018, 8, 1178 Appl. Sci. 2018, 8, x FOR PEER REVIEW    Appl. Sci. 2018, 8, x FOR PEER REVIEW   

3 of 11 3 of 11  3 of 11 

e( n ) e( n )

d (n) d (n)

x(n ) x(n )

y(n) y(n)

W ( z) W ( z)

Sˆ ( z ) Sˆ ( z )

S ( z) S ( z)

Sˆ ( z ) Sˆ ( z )

x( n ) x( n )

  Figure 2. Feedback ANC algorithm.  Figure 2. Feedback ANC algorithm.  Figure 2. Feedback ANC algorithm.

 

2.2. Natural Sound for Secondary Path Modeling  2.2. Natural Sound for Secondary Path Modeling  2.2. Natural Sound for Secondary Path Modeling As shown in Figure 2, the adaptive feedback ANC algorithm requires the secondary path model  As shown in Figure 2, the adaptive feedback ANC algorithm requires the secondary path model  ˆ As synthesizing  shown in Figure the adaptive feedback ANC algorithm requires the secondary path path  model x(n ) ,  and  S ( z )   for  the 2, reference  signal  compensating  the  effects  of  secondary  ˆˆ( z )   for  synthesizing  the  reference  signal  x(n ) ,  and  compensating  the  effects  of  secondary  path  SS ( z ) for synthesizing the reference signal x ( n ) , and compensating the effects of secondary path S(z) S ( z )   for updating  W ( z) . The most popular method for estimating the secondary path is adaptive  Sfor ( z )updating ( z) most   for updating  . The most popular method for estimating the secondary path is adaptive  W ( z ). W The popular method for estimating the secondary path is adaptive system system identification using a white noise as the excitation signal. Unfortunately, extra random noise  identification using a white noise as the excitation signal. Unfortunately, extra random noise is is system identification using a white noise as the excitation signal. Unfortunately, extra random noise  undesired  for  consumer  electronics  such  as  earphones.  Therefore,  this  paper  proposes  to  use  undesired forfor  consumer electronics suchsuch  as earphones. Therefore, this paper proposes to use natural is  undesired  consumer  electronics  as  earphones.  Therefore,  natural sound instead of white noise for the secondary path modeling.    this  paper  proposes  to  use  sound instead of white noise for the secondary path modeling. natural sound instead of white noise for the secondary path modeling.    Figure 3 shows the block diagram of using audio signal for the secondary path modeling. The  Figure 3 shows the block diagram of using audio signal for the secondary path modeling. Figure 3 shows the block diagram of using audio signal for the secondary path modeling. The  natural sound signal  a (n )   stored in memory is used as the excitation signal to drive the loudspeaker,  The natural sound signal ) stored in memory is used as the excitation signal to drive the loudspeaker, a (n )a(  nstored in memory is used as the excitation signal to drive the loudspeaker,  natural sound signal  ˆ and it also served as the input signal for the adaptive filter  and it also served as the input signal for the adaptive filterSS(ˆz()z). The desired signal  . The desired signal bb((n n))  isis received  received by and it also served as the input signal for the adaptive filter  Sˆ ( z ) . The desired signal  b(n)   is received  by the error sensor.    the error sensor. by the error sensor.    Error Microphone Error Microphone

Loudspeaker Loudspeaker Power Amplifier Power Amplifier

PreAmplifier PreAmplifier AntiAliasing AntiFilter Aliasing Filter

Reconstruction

Filter Reconstruction Filter D/A D/A

S ( z) S ( z)

A/D A/D

b (n) b (n) Audio Audio

+ a(n) a(n)

Sˆ ( z ) Sˆ ( z )

+ Σ

c(n) c(n) -

Σ

ea(n) ea(n)

LMS LMS

Figure 3. Block diagram of using natural sound for secondary path modeling.  Figure 3. Block diagram of using natural sound for secondary path modeling. Figure 3. Block diagram of using natural sound for secondary path modeling. 

The modeling error signal is computed as    The modeling error signal is computed as   

Appl. Sci. 2018, 8, 1178

4 of 11

The modeling error signal is computed as Appl. Sci. 2018, 8, x FOR PEER REVIEW   

where c(n) is computed as where  c(n)   is computed as 

ea (n) = b(n) − c(n)

4 of 11 

ea (M n)−1 b(n)  c(n)  

c(n) =



(4)

(4) 

sˆm (n) a(n − m)

(5)

m =0

M 1 In (5), sˆ m (n) is the m-th coefficient of the filter Sˆ (z) at time n. The adaptive )  c ( n )secondary   sˆm ( n )a (path n  mestimation (5)  m  0square (LMS) algorithm, filter is updated using the traditional least mean

In (5),  sˆm (n)   is the m‐th coefficient of the secondary path estimation filter  Sˆ ( z )   at time n. The 

sˆ (n + 1) = sˆ (n) + µa(n − m)e (n), m = 0, 1, · · · , M − 1

m m a adaptive filter is updated using the traditional least mean square (LMS) algorithm, 

(6)

(n  1) (n), lowpass , M 1    sˆm (n)   a(nfilters  m)ea are m  0, 1,Lfilters. (6)  Both the reconstructionsˆmand anti-aliasing It is Both the reconstruction and anti‐aliasing filters are lowpass filters.  important to note that Figures 2 and 3 can be combined to form the audio integrated ANC algorithm for on-line modeling of secondary path using the audio signal played by the ANC It is important to note that Figures 2 and 3 can be combined to form the audio integrated ANC  algorithm  earphones [15].for  on‐line  modeling  of  secondary  path  using  the  audio  signal  played  by  the  ANC  earphones [15]. 

3. Real-Time Experiments 3. Real‐Time Experiments 

This section presents real-time experimental results showing noise reduction achieved by the This section presents real‐time experimental results showing noise reduction achieved by the  ANC earphones and compares them with commercial-available ANC earphones and headphones. ANC earphones and compares them with commercial‐available ANC earphones and headphones. 

3.1. Experimental Setups

3.1. Experimental Setups 

At first, we attached an error microphone each to our in-ear, earbud and clip earphones. Figure 4a At first, we attached an error microphone each to our in‐ear, earbud and clip ea rphones. Figure  shows the example of the clip earphone with the attached microphone. For the testing setup shown 4a shows the example of the clip earphone with the attached microphone. For the testing setup shown  in Figure 4b, a loudspeaker is used as a noise source to generate the primary noise. The speaker is in Figure 4b, a loudspeaker is used as a noise source to generate the primary noise. The speaker is  located 20 cm away from the KEMAR’s right ear. The loudspeaker inside the light‐weight earphone  located 20 cm away from the KEMAR’s right ear. The loudspeaker inside the light-weight earphone is used is used as the secondary loudspeaker to generate the anti‐noise, and a MEMS microphone serving as  as the secondary loudspeaker to generate the anti-noise, and a MEMS microphone serving as the error microphone is attached on a suitable location of the earphone that is close to the ear canal.  the error microphone is attached on a suitable location of the earphone that is close to the ear canal. A digital signal processing (DSP) development platform (Texas Instrument, TMS320C6713 DSK) is  A digital signal processing (DSP) development platform (Texas Instrument, TMS320C6713 DSK) is used for implementing the adaptive feedback ANC algorithm. The ADC and DAC card (Heg Co. Ltd.,  used 6713IFB, Mandideep, India) is used to do the signal conversion. The sampling rate is 8 kHz, and the  for implementing the adaptive feedback ANC algorithm. The ADC and DAC card (Heg Co. Ltd., 6713IFB, Mandideep, India) is used to do the signal conversion. The sampling rate is 8 kHz, and the cutoff frequency of both the lowpass filters (the reconstruction and anti‐aliasing filters) is 3.2 kHz.  cutoffThe experimental results are measured by the built‐in microphone inside the KEMAR’s ear, which  frequency of both the lowpass filters (the reconstruction and anti-aliasing filters) is 3.2 kHz. has input impedance closely resembling that of an average human ear.  The experimental results are measured by the built-in microphone inside the KEMAR’s ear, which has input impedance closely resembling that of an average human ear.

  (a) 

Figure 4. Cont.

Appl. Sci. 2018, 8, 1178 Appl. Sci. 2018, 8, x FOR PEER REVIEW   

5 of 11 5 of 11 

  (b)  Figure 4. Experimental setup (a) for the clip earphone with attached error microphone (b) for testing  Figure 4. Experimental setup (a) for the clip earphone with attached error microphone (b) for testing ANC earphones and headphones.  ANC earphones and headphones.

The  pinna  of  KEMAR’s  ear  is  a  soft  rubber  like  a  real  human  ear,  as  shown  Figure  4.  In  the  The pinna of KEMAR’s ear is a soft rubber like a real human ear, as shown Figure 4. In the experiments, the clip phone covers the KEMAR’s pinna, and the error microphone is located inside  experiments, the clip phone covers the KEMAR’s pinna, and the error microphone is located inside the clip phone ear pad. The earbud earphone is placed on the outer ear, and the error microphone is  the clip phone ear pad. The earbud earphone is placed on the outer ear, and the error microphone is attached on the earphone close to the ear canal. The in‐ear earphone’s plastic cap is inserted inside  attached on the earphone close to the ear canal. The in-ear earphone’s plastic cap is inserted inside the KEMAR’s ear canal. For comparison, we also place the commercial headsets—type A to cover the  the KEMAR’s ear canal. For comparison, we also place the commercial headsets—type A to cover KEMAR’s  ear,  type  B  to  enclose  the  KEMAR’s  ear,  and  the  plastic  cap  of  the  type  C  earphone  is  the KEMAR’s ear, type B to enclose the KEMAR’s ear, and the plastic cap of the type C earphone is inserted inside the KEMAR’s ear for measuring their performance. All the experiments are performed  inserted inside the KEMAR’s ear for measuring their performance. All the experiments are performed in a quiet room, and the primary noise is played at the same level for all experiments.  in a quiet room, and the primary noise is played at the same level for all experiments. 3.2. Secondary Path Modeling Using Natural Sound  3.2. Secondary Path Modeling Using Natural Sound We placed the light‐weight ANC earphones on the KEMAR’s ear to perform the secondary path  We placed the light-weight ANC earphones on the KEMAR’s ear to perform the secondary path modeling. We evaluated different natural sounds and decided to use a rain sound as the excitation  modeling. We evaluated different natural sounds and decided to use a rain sound as the excitation signal  for  all  earphones.  Both  white  noise  and  natural  sound  used  as  the  excitation  signal  were  signal for all earphones. Both white noise and natural sound used as the excitation signal were compared  for  estimating  the  secondary  path  S ( z ) .  Only  those  music  segments  which  have  flat  compared for estimating the secondary path S(z). Only those music segments which have flat magnitude  applicable  to  identify  the the  secondary secondary  path. path.  In  have  tested tested  magnitude responses  responses are  are applicable to identify In this  this paper,  paper, we  we have several natural sounds such as wave, water fall, the rain sound, etc. Among them, the rain sound has  several natural sounds such as wave, water fall, the rain sound, etc. Among them, the rain sound has the similar spectrum with the white noise, shown in Figure 5a. So, we used the rain sound to identify  the similar spectrum with the white noise, shown in Figure 5a. So, we used the rain sound to identify the secondary path. Figure 5b shows magnitude responses of the estimated secondary paths using  the secondary path. Figure 5b shows magnitude responses of the estimated secondary paths using the traditional white noise as the excitation signal (solid lines), and the results obtained using the rain  the traditional white noise as the excitation signal (solid lines), and the results obtained using the rain natural sound (dotted line). Comparing the solid lines with the same color dotted lines, the results  natural sound (dotted line). Comparing the solid lines with the same color dotted lines, the results show the secondary path modeling using white noise and natural sound obtained similar magnitude  show the secondary path modeling using white noise and natural sound obtained similar magnitude responses,  natural  sound sound  can can  be be  used used  for for modeling. modeling.  These  in‐ear  responses, thus  thus natural These results  results also  also show  show that  that the  the in-ear earphone has the best response in a low frequency range to achieve better noise reduction, which will  earphone has the best response in a low frequency range to achieve better noise reduction, which will be shown in the following subsection.  be shown in the following subsection.

Appl. Sci. 2018, 8, 1178 Appl. Sci. 2018, 8, x FOR PEER REVIEW   

66 of 11  of 11

-30

Magnitude (dB)

-35

-40

-45

-50

-55

0

500

1000

1500 2000 Frequency (Hz)

2500

3000

 

(a)  20 10

Magnitude (dB)

0 -10 -20 -30 -40 -50 -60 0

500

1000

1500 2000 Frequency (Hz)

2500

3000

(b)  Figure 5. Magnitude responses, (a) the recorded rain sound (red line) and white noise (blue line), (b)  Figure 5. Magnitude responses, (a) the recorded rain sound (red line) and white noise (blue line); ˆ using white white noise noise  (solid)  natural  sound  (dotted)  for  the  in‐ear  (red),  earbud  results  (b) resultsof of SSˆ((zz))  using (solid) andand  natural sound (dotted) for the in-ear (red), earbud (blue), (blue), and clip earphones (green).  and clip earphones (green).

3.3. Real‐Time Noise Reductions Results  3.3. Real-Time Noise Reductions Results In the first set of experiments, we use stationary primary noise for evaluating noise reduction at  In the first set of experiments, we use stationary primary noise for evaluating noise reduction different frequencies. As shown in Figure 4, the primary loudspeaker is used to generate single tone  at different frequencies. As shown in Figure 4, the primary loudspeaker is used to generate single primary noise with frequency increasing from 100 Hz to 3000 Hz with the step of 100 Hz. The light‐ tone primary noise with frequency increasing from 100 Hz to 3000 Hz with the step of 100 Hz. weight ANC earphones are placed on the KEMAR’s ear for experiment, and the identical experiments  The light-weight ANC earphones are placed on the KEMAR’s ear for experiment, and the identical for the commercial ANC headphones and earphone (types A, B and C) were also repeated using the  experiments for the commercial ANC headphones and earphone (types A, B and C) were also repeated same noise level for comparison. The signal sensed by the KEMAR’s microphone resembles the noise  using the same noise level for comparison. The signal sensed by the KEMAR’s microphone resembles that will be perceived by the ANC earphones (or headphones) users. The power difference between  the noise that will be perceived by the ANC earphones (or headphones) users. The power difference the  ANC  and  ON  is  ON computed  to  obtain  the  noise  reduction  achieved  by  the  The  between theOFF  ANC OFF and is computed to obtain the noise reduction achieved by ANC.  the ANC. satisfactory  performance  can can be  be achieved  by by using  step  size  The satisfactory performance achieved using step size0.0041,  0.0041,filter  filterlength  length100  100for  for Sˆˆ(( z))  toto  model the secondary path, and the ANC filter WW (z()zuses step size 0.0081 and filter length 450. )   uses step size 0.0081 and filter length 450.  model the secondary path, and the ANC filter  Figure 6 summarizes the noise reduction achieved by six ANC earphones and headphones from Figure 6 summarizes the noise reduction achieved by six ANC earphones and headphones from  100 Hz to 3000 Hz with step of 100 Hz. This clearly demonstrates that the developed light-weight 100 Hz to 3000 Hz with step of 100 Hz. This clearly demonstrates that the developed light‐weight  ANC headphones achieved better noise reduction than the commercially available ANC headphones. ANC headphones achieved better noise reduction than the commercially available ANC headphones.  Especially, the in-ear earphone obtained the best performance of noise reduction. The average noise Especially, the in‐ear earphone obtained the best performance of noise reduction. The average noise  reductions for the clip phones is 29 dB, the earbud earphone is 35 dB, and the in-ear earphone is 50 dB. reductions for the clip phones is 29 dB, the earbud earphone is 35 dB, and the in‐ear earphone is 50  These three ANC earphones are effective over the wide frequency range from 100 Hz to 3000 Hz. dB. These three ANC earphones are effective over the wide frequency range from 100 Hz to 3000 Hz.  As a comparison, the commercial type A headphone failed to reduce noise for frequency above As a comparison, the commercial type A headphone failed to reduce noise for frequency above 1000 

Hz, the commercial type B headphone failed to reduce noise for frequency over 1500 Hz, and the  commercial type C earphone failed to reduce noise for frequency over 2200 Hz. 

Appl. Sci. 2018, 8, 1178

7 of 11

1000 Hz, the commercial type B headphone failed to reduce noise for frequency over 1500 Hz, and the commercial type C earphone failed to reduce noise for frequency over 2200 Hz. Appl. Sci. 2018, 8, x FOR PEER REVIEW    7 of 11 

Noise Reductions (dB)

60 50 40 30 20 10 0

500

1000

1500 Frequency (Hz)

2000

2500

3000  

Figure 6. Reduction of tonal noise: clip (green), earbud (blue), and in‐ear (red); the commercial type  Figure 6. Reduction of tonal noise: clip (green), earbud (blue), and in-ear (red); the commercial type A A (brown), type B (black), and type C (pink) earphones.  (brown), type B (black), and type C (pink) earphones.

In the second set of experiments, the recorded MRI noise is used as the primary noise [16]. First,  In the second set of experiments, the recorded MRI noise is used as the primary noise [16]. we measure the MRI noise at the KEMAR’s ear without placing the earphone or headphone on it.  First, we measure the MRI noise at the KEMAR’s ear without placing the earphone or headphone After  that,  the  developed  light‐weight  ANC  earphones  and  commercial  ANC  earphones  and  on it. After that, the developed light-weight ANC earphones and commercial ANC earphones headphones  are  placed  on  the  KEMAR  to  measure  the  MRI  noise  sensed  by  the  KEMAR’s  and headphones are placed on the KEMAR to measure the MRI noise sensed by the KEMAR’s microphone without turning on the ANC. This stage evaluates the passive noise reduction achieved  microphone without turning on the ANC. This stage evaluates the passive noise reduction achieved by the earphones and headphones. Finally, we turn on the ANC and measure the residual noise for  by the earphones and headphones. Finally, we turn on the ANC and measure the residual noise for every ANC earphone and headphone.    every ANC earphone and headphone. Figure 7a shows the measured noise at the KEMAR’s ear for the ANC clip earphones. It shows  Figure 7a shows the measured noise at the KEMAR’s ear for the ANC clip earphones. It shows that  the  ANC  clip  earphone  cannot  passively  attenuate  the  MRI  noise,  but  there  is  20  dB  noise  that the ANC clip earphone cannot passively attenuate the MRI noise, but there is 20 dB noise reduction reduction from 1100 Hz to 3200 Hz after ANC is turned on. However, there is no noise reduction  from 1100 Hz to 3200 Hz after ANC is turned on. However, there is no noise reduction below 500 Hz below 500 Hz due to the poor loudspeaker response at low frequency range as shown in Figure 5 of  due to the poor loudspeaker response at low frequency range as shown in Figure 5 of the clip earphone. the  clip  earphone.  Figure  7b  shows  the  measured  noise  at  the  KEMAR’s  ear  for  the  earbud  ANC  Figure 7b shows the measured noise at the KEMAR’s ear for the earbud ANC earphone. This shows earphone. This shows the earbud earphone cannot passively attenuate the MRI noise neither, since  the earbud earphone cannot passively attenuate the MRI noise neither, since the spectrum without the spectrum without placing the earphone is similar to the spectrum with earphone. After ANC is  placing the earphone is similar to the spectrum with earphone. After ANC is turned on, there is almost turned on, there is almost 20 dB noise reduction from 1000 Hz to 3200 Hz. However, there is also no  20 dB noise reduction from 1000 Hz to 3200 Hz. However, there is also no noise reduction below noise reduction below 500 Hz due to the poor loudspeaker response at low frequency range as shown  500 Hz due to the poor loudspeaker response at low frequency range as shown in the blue lines of in  the  blue  lines  of  Figure  5  for  the  earbud  ANC  earphone.  Figure  7c  shows  the  measured  noise  Figure 5 for the earbud ANC earphone. Figure 7c shows the measured noise spectra of the in-ear spectra of the in‐ear ANC earphone from these three steps. Comparing the black line and blue lines,  ANC earphone from these three steps. Comparing the black line and blue lines, we show that the we show that the in‐ear earphone can attenuate high frequency MRI noise from 500 Hz to 2500 Hz  in-ear earphone can attenuate high frequency MRI noise from 500 Hz to 2500 Hz by its plastic earpad by its plastic earpad without using ANC. In addition, comparing the blue line (ANC OFF) and the  without using ANC. In addition, comparing the blue line (ANC OFF) and the red line (ANC ON), red line (ANC ON), there is about 15 dB noise reduction for frequency range up to 2400 Hz, which is  there is about 15 dB noise reduction for frequency range up to 2400 Hz, which is achieved by ANC. achieved by ANC. Since the in‐ear ANC earphone’s error microphone is inside the ear canal and its  Since the in-ear ANC earphone’s error microphone is inside the ear canal and its loudspeaker has good loudspeaker has good frequency response as shown in Figure 5 (red lines), it can reduce broadband  frequency response as shown in Figure 5 (red lines), it can reduce broadband noise efficiently. noise efficiently. 

Appl. Sci. 2018, 8, 1178 Appl. Sci. 2018, 8, x FOR PEER REVIEW   

8 8 of 11  of 11

-10

Magnitude (dB)

-20 -30 -40 -50 -60 -70 0

500

1000

1500 2000 Frequency (Hz)

2500

3000

 

(a)  -10 -20

Magnitude (dB)

-30 -40 -50 -60 -70 -80 0

500

1000

1500 2000 Frequency (Hz)

2500

3000

2500

3000

(b)  -10 -20

Magnitude (dB)

-30 -40 -50 -60 -70 -80 -90 -100 0

500

1000

1500 2000 Frequency (Hz)

 

(c)  Figure  Spectra  of  noise  measured  the  KEMAR’s  ear  without  on  with it  (black),  with  Figure 7. 7.  Spectra of noise measured at theat  KEMAR’s ear without earphoneearphone  on it (black), earphone earphone but without ANC (blue), and after ANC is turned on (red). (a) Clip earphone; (b) earbud  but without ANC (blue), and after ANC is turned on (red). (a) Clip earphone; (b) earbud earphone; (c)earphone; (c) in‐ear earphone.  in-ear earphone.

Figure 8a shows the measured noise at the KEMAR’s ear for the commercial type A headphone.  Figure 8a shows the measured noise at the KEMAR’s ear for the commercial type A headphone. It shows that the type A headphone cannot passively attenuate the MRI noise by its ear caps. After  It shows that the type A headphone cannot passively attenuate the MRI noise by its ear caps. After ANC ANC is turned on, there is 10 dB noise reduction from 100 Hz to 500 Hz. However, there is no noise  is turned on, there is 10 dB noise reduction from 100 Hz to 500 Hz. However, there is no noise reduction reduction from 600 Hz to 3200 Hz. The commercial type A headphone even amplifies 5 dB of MRI  from 600 Hz to 3200 Hz. The commercial type A headphone even amplifies 5 dB of MRI noise for high noise  for  high  frequency  from  1800  Hz  to  2900  Hz.  Figure  8b  shows  the  measured  noise  at  the  frequency from 1800 Hz to 2900 Hz. Figure 8b shows the measured noise at the KEMAR’s ear for the KEMAR’s ear for the commercial type B headphone. It shows that the commercial type B headphone  commercial type B headphone. It shows that the commercial type B headphone can passively attenuate can passively attenuate the MRI noise about 10 dB to 20 dB passively by its earmuffs from 300 Hz to  3200 Hz. After ANC is turned on, there is 15 dB noise reduction from 100 Hz to 900 Hz. However, 

(Figure  7b)  with  the  commercial  type  B  headphone  (Figure  8b),  both  the  earphones  speakers  are  outside the ear canal. However, after ANC is turned on, the commercial type B headphone amplifies  the noise from 900 Hz to 3200 Hz, but the developed earbud earphone still performs well to cancel  noise.  Comparing  the  similar  style  of  the  developed  in‐ear  ANC  earphone  (Figure  7c)  with  the  Appl. Sci. 2018, 8, 1178 9 of 11 commercial type C earphone (Figure 8c), both are in‐ear earphones and can passively attenuate high  frequency  MRI  noise.  However,  the  developed  in‐ear  ANC  earphone  has  better  average  noise  reduction than the commercial type C earphone.  the MRI noise about 10 dB to 20 dB passively by its earmuffs from 300 Hz to 3200 Hz. After ANC is In summary, the ANC earphones developed by this paper are more efficient for noise reduction,  turned on, there is 15 dB noise reduction from 100 Hz to 900 Hz. However, the commercial type B and  more  portable  and  comfortable  to  wear  than  the  ANC  headphones,  especially  for  outdoor  headphone amplifies 2 dB to 5 dB of MRI noise from 900 Hz to 3200 Hz. Figure 8c shows the measured activities. Besides, the developed light‐weight ANC earphones only integrate error microphone and  noise at the KEMAR’s ear for the commercial type C in-ear earphone. It shows the type C earphone ANC  filter,  which  is  the  same  setup  as  commercial  headsets.  Thus,  the  price  of  the  developed  can passively attenuate about 15 dB to 25 dB by its ear caps from 500 Hz to 3200 Hz. After ANC is earphones in this paper should be acceptable as a consumer electronic device. The stability of the  turned on, there is about 5 dB to 10 dB noise reduction from 100 Hz to 1000 Hz, and 2 dB to 5 dB noise adaptive feedback ANC system can be assured by properly choosing the step size [17].  reduction from 1100 Hz to 3000 Hz. -10

Magnitude (dB)

-20 -30 -40 -50 -60 -70 0

500

1000

1500 2000 Frequency (Hz)

2500

3000

 

(a)  -10 -20

Magnitude (dB)

-30 -40 -50 -60 -70 -80 0

500

Appl. Sci. 2018, 8, x FOR PEER REVIEW   

1000

1500 2000 Frequency (Hz)

2500

3000

 

10 of 11 

(b)  -20 -30

Magnitude (dB)

-40 -50 -60 -70 -80 -90 -100 0

500

1000

1500 2000 Frequency (Hz)

2500

3000

 

(c)  Figure 8. Spectra of noise measured at the KEMAR’s ear without earphone on it (black), with earphone  Figure 8. Spectra of noise measured at the KEMAR’s ear without earphone on it (black), with earphone but without ANC (blue), and after ANC is turned on (red). (a) Type A; (b) type B; (c) type C.  but without ANC (blue), and after ANC is turned on (red). (a) Type A; (b) type B; (c) type C.

4. Conclusions  This paper developed three light‐weight earphones with integration of DSP based ANC systems  and  compared  their  performance  with  three  commercial  ANC  headphones  and  earphone.  Experimental setup was carefully addressed for fair comparison. We also proposed using pleasant  audio  signals  for  modeling  secondary  path  instead  of  annoying  white  noise,  and  evaluated  its 

Appl. Sci. 2018, 8, 1178

10 of 11

Comparing the similar ANC clip earphone (Figure 7a) with the type A headphone (Figure 8a), we found that neither can passively attenuate high frequency noise. However, when ANC is turned on, there is no noise reduction of the type A headphone beyond 500 Hz, but there is 20 dB noise reduction of the developed ANC clip earphone. Therefore, the developed ANC clip earphone has better performance than the type A headphone. Besides, comparing the earbud ANC earphone (Figure 7b) with the commercial type B headphone (Figure 8b), both the earphones speakers are outside the ear canal. However, after ANC is turned on, the commercial type B headphone amplifies the noise from 900 Hz to 3200 Hz, but the developed earbud earphone still performs well to cancel noise. Comparing the similar style of the developed in-ear ANC earphone (Figure 7c) with the commercial type C earphone (Figure 8c), both are in-ear earphones and can passively attenuate high frequency MRI noise. However, the developed in-ear ANC earphone has better average noise reduction than the commercial type C earphone. In summary, the ANC earphones developed by this paper are more efficient for noise reduction, and more portable and comfortable to wear than the ANC headphones, especially for outdoor activities. Besides, the developed light-weight ANC earphones only integrate error microphone and ANC filter, which is the same setup as commercial headsets. Thus, the price of the developed earphones in this paper should be acceptable as a consumer electronic device. The stability of the adaptive feedback ANC system can be assured by properly choosing the step size [17]. 4. Conclusions This paper developed three light-weight earphones with integration of DSP based ANC systems and compared their performance with three commercial ANC headphones and earphone. Experimental setup was carefully addressed for fair comparison. We also proposed using pleasant audio signals for modeling secondary path instead of annoying white noise, and evaluated its effectiveness. The light-weight ANC earphones developed by this paper are more comfortable to wear and achieved better noise reduction than the commercially available ANC headphones and earphone. Author Contributions: Conceptualization and Writing—Review & Editing, S.M.K.; Investigation, and Writing— Original Draft Preparation, Y.-R.C.; Methodology, C.-Y.C.; Funding Acquisition, C.-W.L. Conflicts of Interest: The authors declare no conflict of interest.

References 1.

2. 3. 4. 5. 6. 7. 8. 9.

Fligor, B.J.; Levey, S.; Levey, T. Cultural and demographic factors influencing noise exposure estimates from use of portable listening devices in an urban environment. J. Speech Lang. Hear. Res. 2014, 57, 1535–1547. [CrossRef] [PubMed] Hansen, C.H.; Snyder, S.D. Active Control of Noise and Vibration; E&FN Spon: London, UK, 1997. Kuo, S.M.; Morgan, D.R. Active Noise Control Systems: Algorithms and DSP Implementations; Wiley: New York, NY, USA, 1996. Gan, W.S.; Kuo, S.M. An integrated audio and active noise control headset. IEEE Trans. Consum. Electron. 2002, 48, 242–247. [CrossRef] Gan, W.S.; Mitra, S.; Kuo, S.M. Adaptive feedback active noise control headset: Implementation, evaluation and its extensions. IEEE Trans. Consum. Electron. 2005, 51, 975–982. [CrossRef] Vu, H.S.; Chen, K.H. A low-power broad-bandwidth noise cancellation VLSI circuit design for in-ear headphones. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2016, 24, 2013–2025. [CrossRef] Guldenschuh, M.; de Callafon, R. Detection of secondary-path irregularities in active noise control headphones. IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 1148–1157. [CrossRef] Chang, C.Y.; Li, S.T. Active noise control in headsets by using a low-cost microcontroller. IEEE Trans. Ind. Electron. 2011, 58, 1936–1942. [CrossRef] Lim, D.H.; Kim, M.; Park, H.M. Active noise canceling for headphones using a hybrid structure with wind detection and flexible independent component analysis. IEICE Trans. Inf. Syst. 2015, E98D, 2043–2046. [CrossRef]

Appl. Sci. 2018, 8, 1178

10. 11. 12. 13. 14. 15. 16.

17.

11 of 11

Kuo, S.M.; Mitra, S.; Gan, W.S. Active noise control system for headphone applications. IEEE Trans. Control Syst. Technol. 2006, 14, 331–335. [CrossRef] Song, Y.; Gong, Y.; Kuo, S.M. A robust hybrid feedback active noise cancellation headset. IEEE Trans. Speech Audio Process. 2005, 13, 607–617. [CrossRef] HEADPHONES REVIEWS. Available online: https://www.rtings.com/headphones (accessed on 1 July 2018). Williams, W. Clamping pressure and circum-aural earmuffs. J. Noise Health 2007, 35, 45–50. [CrossRef] Dan-Goor, E.; Samra, M. Benign paroxysmal positional vertigo after use of noise-canceling headphones. Am. J. Otolaryngol. 2012, 33, 364–366. [CrossRef] [PubMed] Kuo, S.M.; Chuang, H.; Mallela, P. Integrated automotive signal processing and audio system. IEEE Trans. Consum. Electron. 1993, 39, 522–532. [CrossRef] Kajikawa, Y. Feedback active noise control system and its application to MRI noise. In Proceedings of the 2011 8th International Conference on Information, Communications & Signal Processing, Singapore, 13–16 December 2011; pp. 1–5. Widrow, B.; Stearns, S.D. Adaptive Signal Processing; Prentice-Hall: Englewood Cliffs, NJ, USA, 1985. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).