Development of Dual-Axis MEMS Accelerometers for Machine Tools ...

10 downloads 38273 Views 5MB Size Report
Jul 12, 2016 - scale range of ˘50 g for measuring machine tool vibration. In addition, a platform .... Calibration Methods and Performance Testing. 3.1. ... The voltage output signals are recorded in LABVIEW auto-sweep programs by using a ...
applied sciences Article

Development of Dual-Axis MEMS Accelerometers for Machine Tools Vibration Monitoring Chih-Yung Huang * and Jian-Hao Chen Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-4-2392-4505 (ext. 6703); Fax: +886-4-2393-0681 Academic Editor: César M. A. Vasques Received: 30 April 2016; Accepted: 27 June 2016; Published: 12 July 2016

Abstract: With the development of intelligent machine tools, monitoring the vibration by the accelerometer is an important issue. Accelerometers used for measuring vibration signals during milling processes require the characteristics of high sensitivity, high resolution, and high bandwidth. A commonly used accelerometer is the lead zirconate titanate (PZT) type; however, integrating it into intelligent modules is excessively expensive and difficult. Therefore, the micro electro mechanical systems (MEMS) accelerometer is an alternative with the advantages of lower price and superior integration. In the present study, we integrated two MEMS accelerometer chips into a low-pass filter and housing to develop a low-cost dual-axis accelerometer with a bandwidth of 5 kHz and a full scale range of ˘50 g for measuring machine tool vibration. In addition, a platform for measuring the linearity, cross-axis sensitivity and frequency response of the MEMS accelerometer by using the back-to-back calibration method was also developed. Finally, cutting experiments with steady and chatter cutting were performed to verify the results of comparing the MEMS accelerometer with the PZT accelerometer in the time and frequency domains. The results demonstrated that the dual-axis MEMS accelerometer is suitable for monitoring the vibration of machine tools at low cost. Keywords: Dual-Axis micro electro mechanical systems (MEMS) accelerometer; low cost; vibration of machine tool

1. Introduction With the trend of industry 4.0 and intelligent production, many experts have devoted efforts to incorporate intelligent technology into machine tools [1–8]. The core technology of intelligent machine tools can detect temperature, vibration, and displacement, and can be controlled and compensated through algorithms for enhancing the processing performance [9,10]. Therefore, numerous additional sensors are necessary to provide real-time measurement while minimally increasing costs [11–14]. In particular, lead zirconate titanate (PZT)-type accelerometers are regularly used to monitor the vibration and chatter during cutting processes, thereby satisfying the specifications of a 5 kHz bandwidth and a full-scale range of ˘40 g. However, such accelerometers are too expensive ($500–$1000) to integrate into intelligent modules. By contrast, micro electro mechanical systems (MEMS)-type accelerometers are less expensive but typically exhibit the disadvantages of high noise and a low bandwidth [15]. With the upgrading of MEMS technology, the aforementioned disadvantages can be improved through advanced design and process methods. In this study, a differential capacitance ADXL001 MEMS accelerometer (Analog Devices, Inc., Norwood, MA, USA) was used. This accelerometer has a bandwidth of 22 kHz, a full-scale range of ˘70 g, and a sensitivity of 24.2 mV/g, thereby providing a fully differential sensor structure and circuit path for excellent resistance to electromagnetic interference (EMI) and radio frequency interference (RFI). The performance and frequency response are shown in Appl. Sci. 2016, 6, 201; doi:10.3390/app6070201

www.mdpi.com/journal/applsci

Appl. Sci. 2016, 6, 201   

2 of 9 

interference (EMI) and radio frequency interference (RFI). The performance and frequency response  are  shown  in  Figure 1  [16].  Measuring  the  vibration of  machine  tools  generally  requires dual‐axis  Appl. Sci. 2016, 6, 201 2 of 9 accelerometers,  sufficient  rigidity  housing,  and  close  adhesion  with  the  machine.  Otherwise,  the  accuracy and effective frequency range of measurement can be compromised. Because an ADXL001  Figure 1is  [16]. the vibration of machine tools generally dual-axis accelerometers, accelerometer  a  Measuring chip  form  of  a  uniaxial  accelerometer,  we requires combined  two  accelerometers  and  sufficient rigidity housing, and close adhesion with the machine. Otherwise, the accuracy and effective designed  a  filter  circuit  with  housing  and  a  fixed  magnetic  structure  to  satisfy  the  measurement  frequency range of measurement can be compromised. Because an ADXL001 accelerometer is a requirements. In addition, we also developed a platform for evaluating the sensitivity of the MEMS  chip form of a uniaxial accelerometer, we combined two accelerometers and designed a filter circuit accelerometer based on the ISO‐16063‐21 back‐to‐back calibration method [17,18]. After testing the  with housing and a fixed magnetic structure to satisfy the measurement requirements. In addition, we also developed a platform for evaluating the sensitivity of the MEMS accelerometer based on sensitivity of the MEMS accelerometer, we designed the package of the MEMS accelerometer and  the ISO-16063-21 back-to-back calibration method [17,18]. After testing the sensitivity of the MEMS analyzed the heat and resonance frequency. Finally, a milling experiment was performed to verify  accelerometer, we designed the package of the MEMS accelerometer and analyzed the heat and the  results  of  comparing  the  MEMS  accelerometer  with  the  PZT  accelerometer  in  the  time  and  resonance frequency. Finally, a milling experiment was performed to verify the results of comparing frequency domains.  the MEMS accelerometer with the PZT accelerometer in the time and frequency domains.

  Figure 1. The frequency response of the ADXL001 sensor [16].  Figure 1. The frequency response of the ADXL001 sensor [16]. 2. Development of Dual-Axis Micro Electro Mechanical Systems (MEMS) Accelerometers 2. Development of Dual‐Axis Micro Electro Mechanical Systems (MEMS) Accelerometers  2.1. Low-Pass Filter Circuit

2.1. Low‐Pass Filter Circuit 

Vibration signals greater than 5 kHz are regarded as noise during the cutting processes of machine

Vibration  signals  than  kHz  are  regarded  as  noise  during  the  cutting  processes  of  tools. Because thegreater  bandwidth of 5  the ADXL001 accelerometer is 22 kHz, we designed a passive low-pass resistor–capacitor (RC) obtain an effective measurement signal. Thewe  values machine first-order tools.  Because  the  bandwidth  of  filter the  to ADXL001  accelerometer  is  22  kHz,  designed  a  of R and C are evaluated using Equation (1): passive first‐order low‐pass resistor–capacitor (RC) filter to obtain an effective measurement signal.  The values of R and C are evaluated using Equation (1):  2π f 0 “ 1{RC (1) 2π

1⁄

 

(1) 

where f 0 : cut-off frequency = 5 kHz; in this case, C = 20 nF, R = 1.6 kΩ. The design of the circuit layout the related components were mounted on a printed circuit board (PCB) (15 mm ˆ 15 mm), as where f0and : cut‐off frequency = 5 kHz; in this case, C = 20 nF, R = 1.6 kΩ. The design of the circuit layout  shown in Figure 2.

and the related components were mounted on a printed circuit board (PCB) (15 mm × 15 mm), as  shown in Figure 2. 

Appl. Sci. 2016, 6, 201

3 of 9

Appl. Sci. 2016, 6, 201   

3 of 9 

Appl. Sci. 2016, 6, 201   

3 of 9 

  Figure 2. The circuit layout of the low‐pass filter. DNC: Do Not Connect; ST: Self Test.  Figure 2. The circuit layout of the low-pass filter. DNC: Do Not Connect; ST: Self Test.

  2.2. Housing and Fixed Magnetic Structure  2.2. Housing and Fixed Magnetic Structure Figure 2. The circuit layout of the low‐pass filter. DNC: Do Not Connect; ST: Self Test.  The housing design should be small, lightweight, and structurally rigid. Moreover, the sensitive  The2.2. Housing and Fixed Magnetic Structure  housing design should be small, lightweight, and structurally rigid. Moreover, the sensitive axis  of  the  ADXL001  accelerometer  is  perpendicular  to  the  surface  of  the  spindle.  Therefore,  we  axis of the ADXL001 accelerometer is perpendicular to the surface of the spindle. Therefore, we utilized AL7075 materials to design housing that was internally rectangular but externally cylindrical  The housing design should be small, lightweight, and structurally rigid. Moreover, the sensitive  utilizedaxis  AL7075 materials to design housing that was internally rectangular but externally cylindrical of  the  ADXL001  accelerometer  is  perpendicular  to  the  surface  of  the  spindle.  Therefore,  we  (φ20 mm × H30 mm). The geometric design and dimension of the accelerometer housing are shown  (ϕ20 mm ˆ H30 mm). The geometric design and dimension of the accelerometer housing are shown utilized AL7075 materials to design housing that was internally rectangular but externally cylindrical  in Figure 3a. In the process of assembly, the ADXL001 was attached on each side of the rectangular  in Figure 3a. In the process of assembly, the ADXL001 was attached on each side of the rectangular (φ20 mm × H30 mm). The geometric design and dimension of the accelerometer housing are shown  structure, which is sensitive to vibration on both the x‐ and y‐axes, as shown in Figure 3b.  in Figure 3a. In the process of assembly, the ADXL001 was attached on each side of the rectangular  structure, which is sensitive to vibration on both the x- and y-axes, as shown in Figure 3b. The fixed condition between the accelerometer and the machine affects the effective frequency  structure, which is sensitive to vibration on both the x‐ and y‐axes, as shown in Figure 3b.  The fixed condition between the accelerometer and the machine affects the effective frequency range of measurement. For close adhesion with the machine, we utilized a magnetic structure on the  The fixed condition between the accelerometer and the machine affects the effective frequency  range of measurement. For close adhesion with the machine, we utilized a magnetic structure on the bottom of the housing, as shown in Figure 3c.  range of measurement. For close adhesion with the machine, we utilized a magnetic structure on the  bottom bottom of the housing, as shown in Figure 3c.  of the housing, as shown in Figure 3c.

  Figure 3. (a) The geometric design and dimension of the accelerometer housing; (b)The assembly of 

Figure 3. (a) The geometric design and dimension of the accelerometer housing; (b) The assembly of the housing and micro electro mechanical systems (MEMS) accelerometer; (c) The structure of fixed  the housing and micro electro mechanical systems (MEMS) accelerometer; (c) The structure of fixed magnetic base.  Figure 3. (a) The geometric design and dimension of the accelerometer housing; (b)The assembly of  magnetic base. the housing and micro electro mechanical systems (MEMS) accelerometer; (c) The structure of fixed  2.3. The Modal Analysis of Housing  magnetic base. 

 

The Analysis bottom  of  housing  is  set  and  fixed  to  disregard  the  external  load.  The  SolidWorks  2.3. The Modal of the  Housing

simulation software (SolidWorks Inc., SolidWorks 2014 SP0, Waltham, MA, USA, 2014) was utilized 

2.3. The Modal Analysis of Housing  The bottom of the housing is set and fixed to disregard the external load. The SolidWorks to perform the finite element method (FEM) analysis and determine the natural mode shapes and  simulation software (SolidWorks Inc., 2014 SP0, MA, USA, 2014) frequencies.  results  of  is  model  analysis  the Waltham, minimum  natural  frequency  was utilized The  bottom  of The  the  housing  set SolidWorks and  fixed revealed  to  disregard  the  external  load.  The  was SolidWorks  approximately 12.31 kHz, which had a mode shape as shown in Figure 4. An effective vibration signal  to perform the finite element method (FEM) analysis and determine the natural mode shapes and simulation software (SolidWorks Inc., SolidWorks 2014 SP0, Waltham, MA, USA, 2014) was utilized  of approximately 5 kHz does not disturb the resonance of the housing during the cutting process.  frequencies. The results of model analysis revealed the minimum natural frequency was approximately to perform the finite element method (FEM) analysis and determine the natural mode shapes and  12.31 kHz, which a mode as shown in Figure 4. Anthe  effective vibration signal of approximately frequencies.  The had results  of shape model  analysis  revealed  minimum  natural  frequency  was  5 kHz does not disturb the resonance of the housing during the cutting process. approximately 12.31 kHz, which had a mode shape as shown in Figure 4. An effective vibration signal  of approximately 5 kHz does not disturb the resonance of the housing during the cutting process. 

Appl. Sci. 2016, 6, 201 Appl. Sci. 2016, 6, 201   

4 of 9 4 of 9 

Appl. Sci. 2016, 6, 201

4 of 9

  Figure 4. The first resonant frequency is 12.31 kHz and the related mode shape.  Figure 4. The first resonant frequency is 12.31 kHz and the related mode shape.

3. Calibration Methods and Performance Testing  3. Calibration Methods and Performance Testing 3.1. Back‐to‐Back Calibration Method  3.1. Back-to-Back Calibration Method Figure 4. The first resonant frequency is 12.31 kHz and the related mode shape.

According to ISO‐16063‐21 [17], comparison methods typically entail performing back‐to‐back  According to ISO-16063-21 [17], comparison methods typically entail performing back-to-back 3. Calibration Methods and Performance Testing measurements according to a reference standard for determining sensitivity, linearity, and frequency  measurements according to a reference standard for determining sensitivity, linearity, and frequency Back-to-Back Calibration Method response.  MEMS  sensor  is  in  response. The  The testing  testing 3.1. MEMS sensor is mounted  mounted in a  a back‐to‐back  back-to-back arrangement  arrangement with  with a  a standard  standard According to ISO-16063-21 [17], comparison methods typically entail performing back-to-back reference PZT accelerometer, as shown in Figure 5. Because the motion inputs are the same for both  reference PZT accelerometer, as shown in Figure 5. Because the motion inputs are the same for both measurements according to a reference standard for determining sensitivity, linearity, and frequency devices,  the ratio ratio ofof  their  outputs  is  also  of  their  sensitivities;  the  sensitivity  of  the  devices, the their outputs is also thethe  ratioratio  of their sensitivities; thus, thus,  the sensitivity of the MEMS response. The testing MEMS sensor is mounted in a back-to-back arrangement with a standard MEMS accelerometer can be calculated. Both sensors can be mounted on an electrodynamic shaker  reference PZT accelerometer, as shown 5. Because thean motion inputs are the sameshaker for both driven accelerometer can be calculated. Both sensors can inbeFigure mounted on electrodynamic devices, the ratio of their outputs is alsothe  the ratio of theirrange  sensitivities; thus, the sensitivity the driven  by  sinusoidal  vibration  sweeping  through  desired  of  frequencies,  to aofgenerate  a  by sinusoidal vibration sweeping through the desired range of frequencies, to generate frequency MEMS accelerometer can be calculated. Both sensors can be mounted on an electrodynamic shaker frequency response curve for the MEMS accelerometer.  response curve for the MEMS accelerometer. driven by sinusoidal vibration sweeping through the desired range of frequencies, to generate a frequency response curve for the MEMS accelerometer.

Figure 5. The back-to-back calibration method. PZT: lead zirconate titanate; VMEMS: the output voltage

Figure 5. The back-to-back calibration method. zirconate VMEMS : the output voltage of MEMS accelerometer; Vref: the PZT: outputlead voltage of referencetitanate; PZT accelerometer. of MEMS accelerometer; Vref : the output voltage of reference PZT accelerometer. 3.2. Testing of Linearity and Frequency Response

As mentioned in the previous section, the PCB Model 353B15 was used as a standard reference

3.2. Testing of Linearity and Frequency Response PZT accelerometer. The test platform was fixed on the shaker (PCB type: 4810, New York, NY,   USA),

which is driven by a function generator (INSTEK AFG-2105, Taipei, Taiwan) and power amplifier

As mentioned in the section, the PCB 353B15 was as standard reference PZT Figure 5. The back‐to‐back calibration method. PZT: lead zirconate titanate; V MEMS : the output voltage  (HPprevious MT-1000, Palo Alto, CA, USA). TheModel voltage output signals areused recorded inaLABVIEW auto-sweep programs bywas usingfixed a dataon acquisition card (NI 9234). The linearity and frequency response of thewhich is accelerometer. The test platform the shaker (PCB type: 4810, New York, NY, USA), of MEMS accelerometer; V ref: the output voltage of reference PZT accelerometer.  packaged MEMS accelerometer can be measured using the back-to-back calibration system. The

driven by a function generator (INSTEK AFG-2105, Taipei, Taiwan) and power amplifier (HP MT-1000, linearity and cross-axis sensitivity characteristics of the MEMS accelerometer at 500 Hz are shown in 3.2. Testing of Linearity and Frequency Response  Palo Alto, CA, USA). The voltage output signals are recorded in LABVIEW auto-sweep programs by usingAs mentioned in the previous section, the PCB Model 353B15 was used as a standard reference  a data acquisition card (NI 9234). The linearity and frequency response of the packaged MEMS accelerometer can be measured using the back-to-back calibration system. The linearity and cross-axis PZT accelerometer. The test platform was fixed on the shaker (PCB type: 4810, New York, NY, USA),  sensitivity characteristics of the MEMS accelerometer at 500 Hz are shown in Figure 6, where the slope which is driven by a function generator (INSTEK AFG‐2105, Taipei, Taiwan) and power amplifier  denotes the measured sensitivity. As shown in Figure 6, the slope is 24.7 mV/g, which is close to the (HP MT‐1000, Palo Alto, CA, USA). The voltage output signals are recorded in LABVIEW auto‐sweep 

programs  by using  a  data acquisition  card  (NI  9234).  The  linearity  and  frequency  response  of  the  packaged  MEMS  accelerometer  can  be  measured  using  the  back‐to‐back  calibration  system.  The 

Appl. Sci. 2016, 6, 201    Appl. Sci. 2016, 6, 201    Appl. Sci. 2016, 6, 201

5 of 9  5 of 9  5 of 9

Vout(V) Vout(V)

linearity and cross‐axis sensitivity characteristics of the MEMS accelerometer at 500 Hz are shown in  linearity and cross‐axis sensitivity characteristics of the MEMS accelerometer at 500 Hz are shown in  Figure 6, where the slope denotes the measured sensitivity. As shown in Figure 6, the slope is 24.7  Figure 6, where the slope denotes the measured sensitivity. As shown in Figure 6, the slope is 24.7  sensitivity of the ADXL001 accelerometer, 24.5 mV/g, listed in the data sheet [16], with the maximum mV/g, which is close to the sensitivity of the ADXL001 accelerometer, 24.5 mV/g, listed in the data  mV/g, which is close to the sensitivity of the ADXL001 accelerometer, 24.5 mV/g, listed in the data  deviation of 0.003. The result of the frequency response is shown in Figure 7. Compared with that in sheet [16], with the maximum deviation of 0.003. The result of the frequency response is shown in  sheet [16], with the maximum deviation of 0.003. The result of the frequency response is shown in  Figure 1, the frequency response ranging from 10 Hz to 10 kHz is flatter because of the addition of a Figure 7. Compared with that in Figure 1, the frequency response ranging from 10 Hz to 10 kHz is  Figure 7. Compared with that in Figure 1, the frequency response ranging from 10 Hz to 10 kHz is  low-pass RC filter. flatter because of the addition of a low‐pass RC filter.  flatter because of the addition of a low‐pass RC filter.  Cross-Axis Sensitivity(500Hz) Cross-Axis Sensitivity(500Hz)

0.26 0.26 0.24 0.24 0.22 0.22 0.2 0.2 0.18 0.18 0.16 0.16 0.14 0.14 0.12 0.12 0.1 0.1 0.08 0.08 0.06 0.06 0.04 0.04 0.02 0.02 0 00 0

2 2

4 4

6 6 Acceleration(g) Acceleration(g)

8 8

10 10

12 12

  

Figure 6. The linearity character and cross‐axis sensitivity of MEMS accelerometers at 500 Hz.  Figure 6. The linearity character and cross-axis sensitivity of MEMS accelerometers at 500 Hz. Figure 6. The linearity character and cross‐axis sensitivity of MEMS accelerometers at 500 Hz. 

RESPONSE(dB) (dB) RESPONSE

15 15 12 12 9 9 6 6 3 3 0 0 -3 -3 -6 -6 -9 -9 -12 -12 -15 0 -15 10 0 10

1

10 1 10

2

10 2 10 FREQUENCY (Hz) FREQUENCY (Hz)

3

10 3 10

4

10 4 10

  

Figure 7. The frequency response of the MEMS accelerometer.  Figure 7. The frequency response of the MEMS accelerometer.  Figure 7. The frequency response of the MEMS accelerometer.

4. Results and Discussion of the Cutting Experiment  4. Results and Discussion of the Cutting Experiment  4. Results and Discussion of the Cutting Experiment To verify the performance of the MEMS accelerometers, in addition to calibration methods, a  To verify the performance of the MEMS accelerometers, in addition to calibration methods, a  To verify the performance of the MEMS accelerometers, in addition to calibration methods, a three‐axis milling machine was used to perform the cutting experiment for comparing the differences  three‐axis milling machine was used to perform the cutting experiment for comparing the differences  three-axis milling machine was used to perform the cutting experiment for comparing the differences between the MEMS‐ and PZT‐type accelerometers. The cutting tool was a four‐flute tungsten steel  between the MEMS‐ and PZT‐type accelerometers. The cutting tool was a four‐flute tungsten steel  between the MEMSand PZT-type accelerometers. Thewas  cutting tool wasof  a four-flute tungsten steel end end  mill  with  diameter  of  16  mm.  The  workpiece  comprised  aluminum  alloy  6061.  The  end  mill  with  diameter  of  16  mm.  The  workpiece  was  comprised  of  aluminum  alloy  6061.  The  mill with diameter of 16PZT  mm.(PCB  The workpiece was comprised of aluminum 6061. The packaged packaged  MEMS  and  353B15)  accelerometers  were  pasted  to alloy the  spindle.  The  output  packaged  MEMS  and  PZT  (PCB  353B15)  accelerometers  were  pasted  to  the  spindle.  The  output  MEMS and PZT (PCB 353B15) accelerometers were pasted to the spindle. The output signals were signals were recorded in the time and frequency domains by using LABVIEW programs and a data  signals were recorded in the time and frequency domains by using LABVIEW programs and a data  recorded in the time and frequency domains by using LABVIEW programs and a data acquisition card acquisition card (NI 9234) with a sample rate of 20 kHz. The arrangement of the cutting experiment  acquisition card (NI 9234) with a sample rate of 20 kHz. The arrangement of the cutting experiment  (NI 9234) a sample ratethe  of cutting  20 kHz. experiment,  The arrangement the cutting experiment is shown in Figure 8. is  shown with in  Figure  8.  In  two  of conditions  were  tested:  steady  cutting,  and  is  shown  in  Figure  8.  In  the  cutting  experiment,  two  conditions  were  tested:  steady  cutting,  and  In the cutting experiment, two conditions were tested: steady cutting, and chatter-generated cutting. chatter‐generated cutting.  chatter‐generated cutting. 

Appl. Sci. 2016, 6, 201 Appl. Sci. 2016, 6, 201   

6 of 9 6 of 9 

Appl. Sci. 2016, 6, 201   

6 of 9 

  Figure 8. The arrangement of cutting experiment, including the dual‐axis MEMS accelerometer, two  Figure 8. The arrangement of cutting experiment, including the dual-axis MEMS accelerometer, two   PZT (PCB 353B15) accelerometers, the data acquisition card (NI 9234) and the Labview programs for  PZT (PCB 353B15) accelerometers, the data acquisition card (NI 9234) and the Labview programs for signal process.  signal process. Figure 8. The arrangement of cutting experiment, including the dual‐axis MEMS accelerometer, two  PZT (PCB 353B15) accelerometers, the data acquisition card (NI 9234) and the Labview programs for  signal process.  The conditions of steady cutting were as follows: rotational speed of 6100 rpm, feed rate of 2400  The conditions of steady cutting were as follows: rotational speed of 6100 rpm, feed rate of mm/min,  cutting  depth  of  10  and  tooth‐passing  frequency  (TPF)  of  The conditions of steady cutting were as follows: rotational speed of 6100 rpm, feed rate of 2400  2400 mm/min, cutting depth ofmm  10 mm and tooth-passing frequency (TPF)of of406.67  406.67Hz.  Hz. The  The result  result of steady cutting is shown in Figure 9. In the time domain, the real cutting processes started with 5.1 s  mm/min,  cutting  depth  of  10  mm  and  tooth‐passing  frequency  (TPF)  of  406.67  Hz.  The  result  of  steady cutting is shown in Figure 9. In the time domain, the real cutting processes started with 5.1 s and steady cutting is shown in Figure 9. In the time domain, the real cutting processes started with 5.1 s  and stopped with 11.2 s. The acceleration of the PZT and MEMS accelerometers were shown in Figure  stopped with 11.2 s. The acceleration of the PZT and MEMS accelerometers were shown in Figure 9a,b, and stopped with 11.2 s. The acceleration of the PZT and MEMS accelerometers were shown in Figure  9a,b,  the  average  amplitudes  of  acceleration  were  approximately  8  g.  The  results  of  the  and  the average amplitudes acceleration were approximately 8 g.8 The results thePZT  PZT andPZT  MEMS 9a,b,  the  average  of amplitudes  of  acceleration  were  approximately  g.  The  results of of  the  and  MEMS  accelerometers  in  the  frequency  domain  were  shown  in  Figure  9c,d.  In  order  to  facilitate  MEMS in accelerometers  in  the  frequency  domain  were in shown  in  Figure  In  order  facilitate  observed accelerometers the frequency domain were shown Figure 9c,d. 9c,d.  In order to to  facilitate observed  characteristics,  the  X‐axes  tickets  were  presented  with  tooth‐pass  frequencies.  observed  characteristics,  the  X‐axes  tickets and  and  grids  grids  were  presented  with  tooth‐pass  frequencies.  characteristics, the X-axes tickets and grids were presented with tooth-pass frequencies. The PZT and The PZT and MEMS accelerometers produced the same peak values with matching the tooth‐pass  The PZT and MEMS accelerometers produced the same peak values with matching the tooth‐pass  MEMS accelerometers produced the same peak values with matching the tooth-pass frequencies. frequencies.  frequencies. 

  Figure 9. The results of steady cutting process by using PZT and MEMS accelerometers. (a) Time domain response of PZT type; (b) Time domain response of MEMS type; (c) Frequency response of PZT type; (d) Frequency response of MEMS type.

 

Appl. Sci. 2016, 6, 201 Appl. Sci. 2016, 6, 201   

7 of 9 7 of 9 

Figure  9.  The  results  of  steady  cutting  process  by  using  PZT  and  MEMS  accelerometers.  (a)  Time 

The conditions of chatter-generated cutting were as followed: rotational speed of 5700 rpm, feed domain response of PZT type; (b) Time domain response of MEMS type; (c) Frequency response of  rate of 2280 mm/min, cutting depth of 10 mm and tooth passing frequency of 380 Hz. The result PZT type; (d) Frequency response of MEMS type.  of chatter-generated cutting is shown in Figure 10. In the time domain, the real cutting processes The conditions of chatter‐generated cutting were as followed: rotational speed of 5700 rpm, feed  started with 8 s, the chatter-generated with 8.2 s, and finished with 14.3 s. The acceleration of the rate of 2280 mm/min, cutting depth of 10 mm and tooth passing frequency of 380 Hz. The result of  PZT and MEMS accelerometers was shown in Figure 10a,b. The average amplitudes of acceleration chatter‐generated cutting is shown in Figure 10. In the time domain, the real cutting processes started  with 8 s, the chatter‐generated with 8.2 s, and finished with 14.3 s. The acceleration of the PZT and  during chatter processes were approximately 19 g, higher than that of the steady cutting. The results was  shown  Figure 10a,b.  The  average amplitudes  of acceleration during  of the PZTMEMS accelerometers  and MEMS accelerometers inin the frequency domain were shown in Figure 10c,d; the X-axes chatter processes were approximately 19 g, higher than that of the steady cutting. The results of the  tickets and grids were also presented with tooth-pass frequencies. In the frequency domain, the PZT  and  MEMS  accelerometers  in  the  frequency  domain  were  shown  in  Figure  10c,d;  the  X‐axes  MEMS and PZT accelerometers produced the same peakfrequencies. frequencies. Besides tooth-pass frequencies, tickets  and  grids  were  also  presented  with  tooth‐pass    In  the  frequency  domain,  the  MEMS and PZT accelerometers produced the same peak frequencies. Besides tooth‐pass frequencies,  chatter frequencies were also monitored. Notably, in the process of chatter-generated cutting, chatter chatter frequencies were also monitored. Notably, in the process of chatter‐generated cutting, chatter  frequencies increased as the vibration was raised, not the tooth-pass frequencies. In addition, in this frequencies increased as the vibration was raised, not the tooth‐pass frequencies. In addition, in this  case, the detected major frequency of chatter was approximately 2890 Hz. case, the detected major frequency of chatter was approximately 2890 Hz. 

  Figure 10. The results of chatter cutting process by using PZT and MEMS accelerometers. (a) Time  Figure 10.domain response of PZT type; (b) Time domain response of MEMS type; (c) Frequency response of  The results of chatter cutting process by using PZT and MEMS accelerometers. (a) Time PZT type (■: the main chatter frequency); (d) Frequency response of MEMS type (■: the main chatter  domain response of PZT type; (b) Time domain response of MEMS type; (c) Frequency response frequency). 

of PZT type (: the main chatter frequency); (d) Frequency response of MEMS type (: the main chatter frequency). Table 1 is shown to compare the measurements of the cutting experiment according to time and 

frequency  domain  between  the  PTZ  and  MEMS  accelerometers.  As  shown  in  Table  1,  the  Tablemeasurement values in the time domain of the MEMS accelerometers are larger than those of PZT  1 is shown to compare the measurements of the cutting experiment according to time and accelerometers  with  a  variation  of  less  than  6%.  This  variation  may  result  from  the  different  frequency attachment location of the spindle. Nonetheless, the peak values in the frequency domain of these  domain between the PTZ and MEMS accelerometers. As shown in Table 1, the measurement values in the time domain of the MEMS accelerometers are larger than those of PZT accelerometers two accelerometers are the same. 

with a variation of less than 6%. This variation may result from the different attachment location of the spindle. Nonetheless, the peak values in the frequency domain of these two accelerometers are the same. In the above cutting experiment, the performance levels of the MEMS and PZT (PCB 353B15) accelerometers were highly similar in time and frequency response, under steady cutting or chatter. The PCB 353B15 is a uniaxial accelerometer with a bandwidth of 10 kHz, a full-scale range of ˘500 g, a sensitivity of 10.83 mV/g, and a cost of about $800. In general, accelerometers are regularly used to monitor the vibration and chatter during cutting processes, thereby satisfying the specifications of a 5 kHz bandwidth and a full-scale range of ˘40 g. In this study, we developed a dual-axis accelerometer

Appl. Sci. 2016, 6, 201

8 of 9

with a bandwidth of 5 kHz, a full-scale range of ˘50 g, a sensitivity of 24.8 mV/g, and a cost of only about $80. Table 1. The comparison of measurements in time and frequency domain between piezoelectric and MEMS accelerometers in cutting experiment. PZT: lead zirconate titanate; MEMS: micro electro mechanical systems; TPF: tooth-passing frequency. Accelerometers Types and Error

PZT Accelerometers

MEMS Accelerometers

Error

Cutting condition

Steady cutting

Chatter cutting

Steady cutting

Chatter cutting

Steady cutting

Chatter cutting

The root mean square (RMS) of acceleration in Time Domain

2.68 g

9.38 g

2.71 g

9.89 g

1.12%

5.44%

The first four peak values in frequency domain (Hz)

406.6 (TPF) 813.3 (2 ˆ TPF) 1220 (3 ˆ TPF) 2033 (5 ˆ TPF)

380 (TPF) 1140 (3 ˆ TPF) 2890 (chatter) 3270 (chatter)

406.6 (TPF) 813.3 (2 ˆ TPF) 1220 (3 ˆ TPF) 2033 (5 ˆ TPF)

380 (TPF) 1140 (3 ˆ TPF) 2890 (chatter) 3270 (chatter)

0% 0% 0% 0%

0% 0% 0% 0%

5. Conclusions Dual-axis MEMS accelerometers were successfully developed by considering low-pass filter circuits and housing design. The feasibility was validated using calibration and cutting experiments. In the calibration test, the characteristics of linearity, cross-axis sensitivity and frequency response of the MEMS accelerometer were proved to be excellent. In the process of the cutting experiment, the performance levels of the MEMS- and PZT-type accelerometers were highly similar in time and frequency response, under steady cutting or chatter. The advantage of the newly designed dual-axis MEMS accelerometer is the low cost, which is approximately one-tenth of that of the PZT-type accelerometer. In the future, we can integrate MEMS accelerometers and embed a system for implementing a module of online intelligent vibration detection. Acknowledgments: The authors would like to acknowledge the support of FAIR FRIEND ENTERPRISE GROUP, Taiwan. Author Contributions: Chih-Yung Huang contributed to the organization of the research work, including the experimental configuration, compensation module and manuscript preparation. Jian-Hao Chen contributed to the experiment measurements and data analysis. Conflicts of Interest: The authors declare no conflict of interest.

References 1. 2. 3. 4. 5. 6. 7.

Sarhan, A.A.D.; Matsubara, A. Investigation about the characterization of machine tool spindle stiffness for intelligent CNC end milling. Robot. Comput.-Integr. Manuf. 2015, 34, 133–139. [CrossRef] Du, Z.C.; Zhang, S.J.; Hong, M.S. Development of a multi-step measuring method for motion accuracy of NC machine tools based on cross grid encoder. Int. J. Mach. Tools Manuf. 2009, 49, 99–108. [CrossRef] Chen, J.-S. Intelligent machine tool technology. ROC Autom. Technol. Soc. J. 2008, 34, 66–72. Gao, R.; Zhang, L. Micromachined microsensors for manufacturing. IEEE Instrum. Meas. Mag. 2004, 7, 20–26. [CrossRef] Mitsuishi, M.; Warisawa, S.; Hanayama, R. Development of an intelligent high-speed machining center. Ann. CIRP 2001, 50, 275–280. [CrossRef] Vijayaraghavan, A.; Dornfeld, D. Automated energy monitoring of machine tools. CIRP Ann. Manuf. Technol. 2010, 59, 21–24. [CrossRef] Bhattacharyya, K.; Pal, S.K.; Patra, K. Artificial neural network based prediction of drill flank wear from motor current signals. Appl. Soft Comput. 2007, 7, 929–935.

Appl. Sci. 2016, 6, 201

8.

9. 10.

11. 12. 13. 14. 15. 16. 17.

18.

9 of 9

Bhattacharyya, P.; Mukhopadhyay, S.; Sengupta, D. Cutting force-based real-time estimation of tool wear in face milling using a combination of signal processing techniques. Mech. Syst. Signal Process. 2007, 21, 2665–2683. [CrossRef] Ramesh, R.; Mannan, M.A.; Poo, A.N. Error compensation in machine tools—A review part I: Geometric, cutting-force induced and fixture dependent errors. Int. J. Mach. Tools Manuf. 2000, 40, 1235–1256. [CrossRef] Jerard, R.B.; Xu, M.; Fussell, B.K. Cutting Power Model-Sensor Integration for Tool Condition Monitoring. In Proceedings of the International Conference on Smart Machining Systems, NIST, Gaithersburg, MD, USA, 13–15 March 2007. Teti, R.; Jemielniak, K.; O’Donnell, G.; Dornfeld, D. Advanced monitoring of machine operations. CIRP Ann. Manuf. Technol. 2010, 50, 717–739. [CrossRef] Dimla, E.; Dimla, S. Sensor signals for tool-wear monitoring in metal cutting operations—A review of methods. Int. J. Mach.Tools Manuf. 2000, 40, 1073–1098. [CrossRef] Kuljanic, E.; Sortino, M.; Totis, G. Development of an intelligent multisensory chatter detection system in milling. Mech. Syst. Signal Process. 2009, 2, 1704–1718. [CrossRef] Cus, F.; Zuperl, U. Tool cutting force modelling in ball-end milling using multilevel perceptron. J. Mater. Process. Technol. 2004, 153–154, 268–275. Yao, Z.; Mei, D.; Chen, Z. On-line chatter detection and identification based on wavelet and support vector machine. J. Mater. Process. Technol. 2010, 210, 713–719. [CrossRef] Analog Devices. ADXL001 Data Sheet; Analog Devices Inc.: Norwood, MA, USA, 2008. ISO 16063-21, Methods for the Calibration of Vibration and Shock Transducers-Part 21: Vibration Calibration by Comparison to a Reference Transducer. Available online: http://www.iso.org/iso/iso_catalogue/ catalogue_tc/catalogue_detail.htm?csnumber=27053 (accessed on 7 July 2016). ISO 16063-1, Methods for the Calibration of Vibration and Shock Transducers, Part 1: Basic Concepts. Available online: http://www.iso.org/iso/catalogue_detail.htm?csnumber=25043 (accessed on 7 July 2016). © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Suggest Documents