Hindawi Publishing Corporation Journal of Complex Analysis Volume 2016, Article ID 8097095, 8 pages http://dx.doi.org/10.1155/2016/8097095
Research Article Dirichlet Problem for Complex Poisson Equation in a Half Hexagon Domain Bibinur Shupeyeva Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan Correspondence should be addressed to Bibinur Shupeyeva;
[email protected] Received 21 October 2015; Revised 15 December 2015; Accepted 10 January 2016 Academic Editor: Vladislav Kravchenko Copyright Β© 2016 Bibinur Shupeyeva. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The parqueting-reflection method is applied to a nonregular domain and the harmonic Green function for the half hexagon is constructed. The related Dirichlet problem for the Poisson equation is solved explicitly.
1. Introduction The basic boundary value problems for the second-order complex partial differential equations are the harmonic Dirichlet and Neumann problems for the Laplace and Poisson equations. In order to find the solution in explicit or closed form diverse methods have been applied. In case a given domain π· is simply connected and has a piecewise smooth boundary ππ· the tools of complex analysis such as Schwarz reflection principle and conformal mapping serve perfectly. When a given domain π· is piecewise smooth polygonal and has corners the Schwarz-Christoffel formula can be used. Difficulties arise since the elliptic integrals appearing in the formula imply complicated computations and need to be solved numerically. As analogue to this formula, another method can be applied which gives the covering of the entire complex plane C by reflection of the given domain π· at its boundary. The method is fully described in numerous papers of Begehr and other authors; see, for example [1β12]. Our aim is to find the solution of the Dirichlet boundary value problem for the Poisson equation through the Poisson integral formula. It is known that the Poisson kernel function is an analogue of the Cauchy kernel for the analytic functions and the Poisson integral formula solves the Dirichlet problem for the inhomogeneous Laplace equation. One way to obtain the Poisson kernel leads to the harmonic Green function which is to be constructed by use of the parqueting-reflection method.
In this paper we first consider the half hexagon domain and implement the parqueting-reflection method. The reflection points treated in a proper way help to construct the certain meromorphic functions needed to find the harmonic Green function and representation formula. The later one provides the solution to the harmonic Dirichlet problem which is shown in the last part.
2. Half Hexagon Domain and Poisson Kernel We consider a polygonal domain with corner points. The half hexagon denoted as π+ with four corner points at 2, 1 + πβ3, β1 + πβ3, and β2 lies in the upper half plane. A point π§ β π+ will later serve as a pole of the Green function. Its complex conjugate π§ does not lie in π+ . π+ is reflected at the real axis so that the entire hexagon π (Figure 1) is obtained. The pole π§ is reflected onto π§ which will later become a zero of a certain meromorphic function related to the Green function. The points π§ and π§ from π are reflected again through all the sides of the hexagon, starting with the right upper side and continuing in a positive direction. The successive reflections of π§ give the points, which will later become zeros of the meromorphic function mentioned above. They are 1 β (1 + πβ3) π§ + 3 + πβ3, 2 π§ + 2πβ3,
2
Journal of Complex Analysis
P2 β1 + iβ3
P3
1 + iβ3
P+
Z P
β2
P1
2 Z
P4
P6
P5
Figure 1: Hexagons.
1 β (1 β πβ3) π§ β 3 + πβ3, 2
which are connected by the relations π§Μ 2 = π§1 β 6 β 2πβ3 and π§Μ 1 = π§2 β 6 β 2πβ3. In general, all reflection points are either given by
1 β (1 + πβ3) π§ β 3 β πβ3, 2
π§ + πππ ,
π§ β 2πβ3,
π§1 + πππ ,
1 β (1 β πβ3) π§ + 3 β πβ3. 2
π§2 + πππ , (1)
π§ + πππ ,
Reflection of the point π§ β π defines the poles of the meromorphic function in the hexagons π1 , . . . , π6 . These points in turn are reflected through the sides of the new hexagons, except for reflecting to the original hexagon π. Hence each hexagon includes now 3 poles and 3 zeros. Continuation of these operations reveals that all the points have the same coefficients of rotation: 1, β(1/2)(1 + πβ3), β(1/2)(1 β πβ3), and displacement 3π + πβ3π, π + π β 2Z. Note that reflection includes rotation and shifting and the points from one hexagon can be expressed through the points of another one. In general the points from the hexagons differ by displacements 6π in the direction of the real and 2πβ3π in the direction of the imaginary axes. Thus the main period is πππ = 6π + 2πβ3π. Obviously, the repeated reflections of the point π§ β π+ are representable in different ways, using either of the points
π§1 + πππ ,
1 π§1 = β (1 + πβ3) π§ + 3 + πβ3, 2 1 π§2 = β (1 + πβ3) π§ + 3 + πβ3 or 2 1 π§Μ 1 = β (1 β πβ3) π§ β 3 + πβ3, 2 1 π§Μ 2 = β (1 β πβ3) π§ β 3 + πβ3, 2
(2)
(3)
π§2 + πππ or by π§ + πππ , π§Μ 1 + πππ , π§Μ 2 + πππ , π§ + πππ ,
(4)
π§Μ 1 + πππ , π§Μ 2 + πππ , where πππ = 3π + πβ3π such that π + π β 2Z. We choose zeros as direct reflection of poles and poles as direct reflection of zeros. Then having a set of zeros and a set of poles, one can construct the Schwarz kernel for π+ and treat the related Schwarz problem [9] and Riemann-Hilbert-type boundary value problem. The half hexagon can be viewed as the complement of the intersection of four half planes. We define them by π»1β being the right-hand half plane which has the boundary line passing through the points 2 and 1 + πβ3, π»2β being the upper half
Journal of Complex Analysis
3
plane with the border line through the points Β±1 + πβ3, π»3β being the left-hand half plane with the border line passing through the points β1 + πβ3 and β2, and π»4β being the half plane which is below the real axis. Let then π»1+ , π»2+ , π»3+ , π»4+ be the complementary half planes of those listed above. The Green functions of these half planes are, in fact, the Green functions for the complementary half planes π»1β , . . . , π»4β . The outward normal derivatives of the Green function on the boundary is the Poisson kernel. The kernel provides the boundary condition π€ = πΎ in the Dirichlet problem. The Poisson kernels can be found from the respective Green functions πΊ1 (π§, π), π§ = π₯ + ππ¦, π = π + ππ as described below. For the half plane π»1+ with the boundary described by the relation π β 2 = β(1/2)(1 + πβ3)(π β 2) we have σ΅¨2 σ΅¨σ΅¨ σ΅¨σ΅¨ (1/2) (1 + πβ3) (π β 2) + π§ β 2 σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ , σ΅¨ σ΅¨ πΊ1 (π§, π) = log σ΅¨σ΅¨ σ΅¨σ΅¨ πβπ§ σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨ σ΅¨
Finally, for the half plane π»4+ with the boundary described by π = π, we have σ΅¨2 σ΅¨σ΅¨ σ΅¨σ΅¨ π β π§ σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ , πΊ1 (π§, π) = log σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ π β π§ σ΅¨σ΅¨σ΅¨ σ΅¨ σ΅¨
π§, π β π»4+ ,
1 1 π§βπ§ , π β ππ»4+ , π§ β π»4+ . β π]π πΊ1 (π§, π) = σ΅¨ 2 π σ΅¨σ΅¨π β π§σ΅¨σ΅¨σ΅¨2 σ΅¨ σ΅¨
(8)
3. Green Representation Formula The method of reflections helps to find the harmonic Green function; see [3β5]. The reflection points given in (3) or (4) are used to construct a meromorphic function: π΅1 (π§, π) (π β π§ β πππ ) (π β π§1 β πππ ) (π β π§2 β πππ ) π+πβ2Z (π β π§ β πππ ) (π β π§1 β πππ ) (π β π§2 β πππ ) (9)
= β
π§, π β π»1+ , (β3 β π) π§ β π§1 1 β π]π πΊ1 (π§, π) = β σ΅¨2 , σ΅¨σ΅¨ 2 4 σ΅¨σ΅¨π β π§σ΅¨σ΅¨σ΅¨
3
(5)
where π§1 = β(1/2)(1 + πβ3)π§ + 3 + πβ3, π§1 β For the half plane π»2+ the relation on the boundary is given as π = π + 2πβ3; then
(6)
here π§2 = π§ + 2πβ3, π§ β π»2+ . The boundary of the half plane π»3+ is described by π + 2 = β(1/2)(1 β πβ3)(π + 2) and σ΅¨2 σ΅¨σ΅¨ σ΅¨σ΅¨ (1/2) (1 β πβ3) (π + 2) + π§ + 2 σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ , σ΅¨ πΊ1 (π§, π) = log σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ πβπ§ σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨ σ΅¨ β3 + π π§ β π§1Μ 1 β π]π πΊ1 (π§, π) = β , 2 4 σ΅¨σ΅¨σ΅¨π β π§σ΅¨σ΅¨σ΅¨2 σ΅¨ σ΅¨
π+πβ2Z (π
3
β πππ β 2) β (π§ β 2)3
,
3
π»1+ .
π§, π β π»3+ ,
(π β πππ β 2) β (π§ β 2)3
where π§1 = β(1/2)(1+πβ3)π§+3+πβ3, π§2 = β(1/2)(1+πβ3)π§+ 3 + πβ3, or a function
π β ππ»1+ , π§ β π»1+ ,
σ΅¨σ΅¨ σ΅¨2 σ΅¨σ΅¨ π β π§ + 2πβ3 σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ , π§, π β π»+ , πΊ1 (π§, π) = log σ΅¨σ΅¨σ΅¨ 2 σ΅¨σ΅¨ σ΅¨σ΅¨ π β π§ σ΅¨σ΅¨ σ΅¨ 1 π§ β π§2 1 , π β ππ»2+ , π§ β π»2+ ; β π]π πΊ1 (π§, π) = β σ΅¨ 2 π σ΅¨σ΅¨π β π§σ΅¨σ΅¨σ΅¨2 σ΅¨ σ΅¨
= β
(7)
π΅2 (π§, π) = β
(π β πππ + 2) β (π§ + 2)3
π+πβ2Z (π
3
β πππ + 2) β (π§ + 2)3
,
(10)
where π§1Μ = β(1/2)(1βπβ3)π§β3+πβ3, π§2Μ = β(1/2)(1βπβ3)π§β 3 + πβ3. Here π§ is considered as a parameter and π β C is the variable. For the boundary part π2 π, the line from 1 + πβ3 to β1 + πβ3, a meromorphic function π΅3 (π§, π), is deduced from π΅1 (π§, π) by rotating the variable π and the parameter π§ about the angle π/3: 1 1 π΅1 (β (1 + πβ3) π§, β (1 + πβ3) π) 2 2 = β
3
3
3
3
(π β πππ + 1 β πβ3) β (π§ + 1 + πβ3)
π+πβ2Z (π
β πππ + 1 β πβ3) β (π§ + 1 β πβ3)
(11) ,
which becomes 1 on the boundary π2 π, where π β πβ3 = π + πβ3. The following lemmas will be needed to prove the Green representation formula below. The complete proofs of these lemmas are given in [9]. Lemma 1. The infinite product 3
πβ
ππ»3+ ,
π§β
where π§1Μ = β(1/2)(1 β πβ3)π§ β 3 + πβ3, π§ β π»3+ .
π»3+ ,
β
(π β πππ β 2) β (π§ β 2)3
π+πβ2Z (π
3
β πππ β 2) β (π§ β 2)3
converges, where πππ = 3π + πβ3π, π + π β 2Z.
(12)
4
Journal of Complex Analysis
Lemma 2. The equalities π΅1 (π§, π) = π΅2 (π§, π) = π΅3 (π§, π) hold for (π§, π) β π+ Γ ππ+ . The proof of this equality is based on the fact that the functions π΅1 (π§, β
), π΅2 (π§, β
), since π΅3 (π§, β
) can be obtained from π΅1 (π§, β
), have the same poles and zeros; see [9]. The Green function must satisfy the following conditions; see [13]: (10 ) πΊ1 (π§, π) is harmonic in π+ \ {π§}; (20 ) πΊ1 (π§, π) + log |π β π§|2 is harmonic in π β π+ for any π§ β π+ ; 0 (3 ) lim πβππ+ πΊ(π§, π) = 0 for any π§ β π+ ; and the additional properties: (40 ) πΊ1 (π§, π) = πΊ1 (π, π§), π§ and π in π+ , π§ =ΜΈ π; (50 ) πΊ1 (π§, π) > 0, π§ and π in π+ , π§ =ΜΈ π.
We consider now the different forms of the Green function and take the derivatives ππ πΊ1 (π§, π), ππ πΊ1 (π§, π). For the right-hand side, a boundary π1 π+ , we choose the form (14) for π β ππ+ , π§ β π+ . Here the outward normal derivative is π]π = (β3/2 + π/2)ππ + (β3/2 β π/2)ππ ; then π]π πΊ1 (π§, π) = β3 (β3 + π) (π β 2)2
σ΅¨σ΅¨ 3 σ΅¨2 3 σ΅¨σ΅¨ (π§ β πππ β 2) β (π β 2) σ΅¨σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ , πΊ1 (π§, π) = log σ΅¨σ΅¨ β σ΅¨σ΅¨π+πβ2Z (π§ β π β 2)3 β (π β 2)3 σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ ππ
(14)
σ΅¨σ΅¨ 3 σ΅¨2 3 σ΅¨σ΅¨ (π§ β πππ + 2) β (π + 2) σ΅¨σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ , πΊ1 (π§, π) = log σ΅¨σ΅¨ β σ΅¨σ΅¨π+πβ2Z (π§ β π + 2)3 β (π + 2)3 σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ ππ
(15)
since π β 2 = β(1/2)(1 + πβ3)(π β 2), (π β 2)3 = (π β 2)3 . For the boundary part π4 π+ , a line between (β2, 0), (2, 0) on a real axis, the outward normal derivative is π]π = βπ(ππ β π]π πΊ1 (π§, π) = 6π (π β 2)2 3 3 (20) (π§ β πππ β 2) β (π§ β πππ β 2) β
β . σ΅¨σ΅¨ σ΅¨2 σ΅¨σ΅¨(π§ β πππ β 2)3 β (π β 2)3 σ΅¨σ΅¨σ΅¨ π+πβ2Z σ΅¨ σ΅¨ For the boundary part π3 π+ on the left-hand side of π+ , we take form (15). The outward normal derivative is π]π = (β3/2 β π/2)π + (β3/2 + π/2)π also here π = π Μ = β(1/2)(1 β π
π
πβ3)π β 3 + πβ3 and (π + 2)3 = (π + 2)3 ; then π]π πΊ1 (π§, π) = β3 (β3 β π) (π + 2)2
3 3 (21) (π§ β πππ + 2) β (π§ β πππ + 2) β
β . σ΅¨σ΅¨ σ΅¨2 σ΅¨σ΅¨(π§ β πππ + 2)3 β (π + 2)3 σ΅¨σ΅¨σ΅¨ π+πβ2Z σ΅¨ σ΅¨ + For the upper boundary part π2 π , a line joining the points Β±1+πβ3, form (16) is valid. Here π]π = π(ππ βππ ) and πβπβ3 = π + πβ3; then π] πΊ1 (π§, π) is
β 6π (π + 1 β πβ3)
σ΅¨σ΅¨ 3 σ΅¨2 3 (16) σ΅¨σ΅¨ (π§ β πππ + 1 β πβ3) β (π + 1 + πβ3) σ΅¨σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ . = log σ΅¨σ΅¨ β σ΅¨ 3 3 σ΅¨σ΅¨π+πβ2Z (π§ β π + 1 β πβ3) β (π + 1 β πβ3) σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ ππ
Lemma 3. The function πΊ1 (π§, π) has vanishing boundary values on ππ+ ; that is, (17)
Theorem 4 (see [13]). Any π€ β πΆ2 (π+ ; C) β© πΆ1 (π+ ; C) can be represented as π€ (π§) = β
1 β« π€ (π) π]π πΊ1 (π§, π) ππ π 4π ππ+
β
1 β« π€ (π) πΊ1 (π§, π) ππ ππ, π π+ ππ
1
π
πΊ1 (π§, π)
lim πΊ1 (π§, π) = 0.
(19)
ππ ), π = π; then
By the properties (10 )β(30 ) the Green function πΊ1 (π§, π) is uniquely defined. Obviously, πΊ1 (π§, π) as defined above is harmonic in π β π+ \ {π§} as π΅1 (π§, π) is analytic in π+ up to a single pole at π§. Adding log |π β π§|2 gives a harmonic function of π β π+ . The symmetry property (40 ) is a consequence from the properties (10 )β(30 ). The harmonic Green function for the half hexagon π+ is σ΅¨ σ΅¨2 σ΅¨2 σ΅¨ πΊ1 (π§, π) = log σ΅¨σ΅¨σ΅¨π΅1 (π§, π)σ΅¨σ΅¨σ΅¨ = log σ΅¨σ΅¨σ΅¨π΅2 (π§, π)σ΅¨σ΅¨σ΅¨ (13) σ΅¨2 σ΅¨ = log σ΅¨σ΅¨σ΅¨π΅3 (π§, π)σ΅¨σ΅¨σ΅¨ or, by the symmetry property,
πβπ0 βππ+
3
3
(π§ β πππ β 2) β (π§ β πππ β 2) β
β , σ΅¨σ΅¨σ΅¨(π§ β π β 2)3 β (π β 2)3 σ΅¨σ΅¨σ΅¨2 π+πβ2Z σ΅¨σ΅¨ σ΅¨σ΅¨ ππ
3
3 (π§ β πππ + 1 β πβ3) β (π§ β πππ + 1 β πβ3) (22) β
β . 3 3 σ΅¨σ΅¨2 σ΅¨σ΅¨σ΅¨ π+πβ2Z σ΅¨σ΅¨(π§ β πππ + 1 β πβ3) β (π + 1 β πβ3) σ΅¨σ΅¨σ΅¨ σ΅¨ σ΅¨
4. Harmonic Dirichlet Problem The representation formula in Theorem 4 provides the solution to the Dirichlet problem for the Poisson equation. At first the boundary behavior of the integral is to be studied. Let for πΎ β πΆ(ππ+ ; R) π (π§) = β
(18)
where π π is the arc length parameter on ππ+ with respect to the variable π = π + ππ and πΊ1 (π§, π) = 2πΊ(π§, π) is the harmonic Green function for π+ .
2
1 β« πΎ (π) π]π πΊ (π§, π) ππ π , π§ β π+ . 4π ππ+
(23)
Lemma 5. For πΎ β πΆ(ππ+ ; R) the function presented in (23) satisfies the relation lim π (π§) = πΎ (π0 ) ,
π§βπ0
where π0 is any fixed point on ππ+ \ {Β±2, Β±1 + πβ3}.
(24)
Journal of Complex Analysis
5
Proof. Let π0 be defined on different boundary parts and consider the boundary behavior when π§ β π0 . +
Case 1. If π0 is taken on π1 π so that π0 = β(1/2)(1 + πβ3)π0 + 3 + πβ3 then 1 2 (π0 β 2) = β (1 β πβ3) (π0 β 2) , 2
For π = π = 0 formula (19) gives (π§ β 2)3 β (π§ β 2)3 β 3 (β3 + π) (π β 2)2 σ΅¨ σ΅¨σ΅¨(π§ β 2)3 β (π β 2)3 σ΅¨σ΅¨σ΅¨2 σ΅¨σ΅¨ σ΅¨σ΅¨ = β3 (β3 + π) (π β 2)2
2
3
3
(26) 2
(25)
β
(π0 β 2) = (π0 β 2) . On π1 π where π = π1 = β(1/2)(1 + πβ3)π + 3 + πβ3, (π β 2)3 = (π β 2)3 . +
(π§ β π§) [(π§ β 2)2 + (π§ β 2) (π§1 β 2) + (π§1 β 2) ] . σ΅¨σ΅¨σ΅¨π§ β πσ΅¨σ΅¨σ΅¨2 σ΅¨σ΅¨σ΅¨σ΅¨(π§ β 2)2 + (π§ β 2) (π β 2) + (π β 2)2 σ΅¨σ΅¨σ΅¨σ΅¨2 σ΅¨ σ΅¨ σ΅¨ σ΅¨
Because π§1 = β(1/2)(1 + πβ3)π§ + 3 + πβ3, then (π§1 β 2)3 = (π§ β 2)3 . The limit in the following ratio as π§ β π0 and π = π0 gives 2
4
2 2 { β3 (β3 + π) (π β 2) [(π§ β 2) + (π§ β 2) (π§1 β 2) + (π§1 β 2) ] } β (β3 + π) (π0 β 2) lim { = (β3 β π) , }= σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨4 2 σ΅¨σ΅¨2 2 π§βπ0 π0 β 2σ΅¨σ΅¨σ΅¨ σ΅¨ σ΅¨ σ΅¨ β 2) + β 2) β 2) + β 2) (π§ (π§ (π (π σ΅¨ σ΅¨ σ΅¨ { } σ΅¨ σ΅¨
(28)
3
= (π§1 β πππ β 2) ,
3
(π§ β πππ β 2)
π+πβ2Z, π2 +π2 >0
σ΅¨σ΅¨ σ΅¨2 σ΅¨σ΅¨(π§ β πππ β 2)3 β (π β 2)3 σ΅¨σ΅¨σ΅¨ σ΅¨ σ΅¨ (29)
3
=
β π+πβ2Z, π2 +π2 >0
3
β σ΅¨ σ΅¨σ΅¨
(π§ β πππ + 1 β πβ3)
π+πβ2Z σ΅¨σ΅¨σ΅¨(π§
which follows from the rearrangement of the indices in πππ for certain π + π β 2Z. Thus β
(π§1 β πππ β 2)
σ΅¨σ΅¨ σ΅¨2 . σ΅¨σ΅¨(π§1 β πππ β 2)3 β (π β 2)3 σ΅¨σ΅¨σ΅¨ σ΅¨ σ΅¨
3 3 σ΅¨σ΅¨2 β πππ + 1 β πβ3) β (π + 1 β πβ3) σ΅¨σ΅¨σ΅¨ σ΅¨
(32) 3 σ΅¨σ΅¨2 σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ β (π§ β π + 1 β π 3) σ΅¨σ΅¨ σ΅¨σ΅¨ 1 ππ σ΅¨σ΅¨ . = β σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ 3 σ΅¨ σ΅¨ β β π+πβ2Z σ΅¨ (π§ β πππ + 1 β π 3) β (π + 1 β π 3) σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ + Letting π§ β π0 , π§1 β π0 β π1 π the sum (22) tends to 0. Similarly, for the rest parts of the boundary π3 π+ , π4 π+ one can get that the sums in (21) and (20) tend to zero as we let π§ β π0 β π1 π. As a result for the case π0 β π1 π+ lim [β
π§βπ0
1 β« πΎ (π) π]π πΊ1 (π§, π) ππ π ] 4π ππ+
= lim [β
Hence for π§ β π0 on π1 π+
(β3 β π)
π§βπ0
(β3 β π) (π§ β π§1 ) π]π πΊ1 (π§, π) = (1 + π (1)) . σ΅¨2 σ΅¨σ΅¨ σ΅¨σ΅¨π§ β πσ΅¨σ΅¨σ΅¨
(30)
2
β 6π (π + 1 β πβ3)
3
4π
β«
β
σ΅¨ . 3 3 σ΅¨σ΅¨2 σ΅¨σ΅¨ σ΅¨σ΅¨(π§ + 1 β πβ3) β (π + 1 β πβ3) σ΅¨σ΅¨σ΅¨ σ΅¨ σ΅¨
π§ β π§1 πΎ (π) σ΅¨ ππ ] σ΅¨σ΅¨π§ β πσ΅¨σ΅¨σ΅¨2 π σ΅¨ σ΅¨
(33)
on the boundary π1 π. Case 2. Let π0 be from π2 π+ , where π0 = π0 + 2πβ3, π0 β πβ3 = π0 + πβ3. On π2 π+ , π = π + 2πβ3, π β πβ3 = π + πβ3. For π = π = 0 the term in (22) is β 6π (π + 1 β πβ3)
3
π1
π+
= πΎ (π0 )
On π2 π+ π = π2 = π+2πβ3 and πβπβ3 = π+πβ3, for π = π = 0 in (22), the formula becomes
(π§ + 1 β πβ3) β (π§ + 1 β πβ3)
(27)
This term is not singular for π§ =ΜΈ π and the terms of the sum can be in general rewritten as (π§ β πππ + 1 β πβ3)3 = (π§1 β πππ + 1 + πβ3)3 for certain π + π β 2Z. Therefore
For the other terms of the sum, 3 1 3 (π§ β πππ β 2) = [β (1 β πβ3) (π§ β πππ β 2)] 2
π0 =ΜΈ 2.
(31)
2
3
(π§ + 1 β πβ3) β (π§ + 1 β πβ3)
3
β
σ΅¨ . 3 3 σ΅¨σ΅¨2 σ΅¨σ΅¨ σ΅¨σ΅¨(π§ + 1 β πβ3) β (π + 1 β πβ3) σ΅¨σ΅¨σ΅¨ σ΅¨ σ΅¨
(34)
6
Journal of Complex Analysis + (π§ + 1 β πβ3) (π§2 + 1 β πβ3)
On this boundary π§ = π§2 = π§ + 2πβ3 and π§ β πβ3 = π§ + πβ3 or π§2 β πβ3 = π§ + πβ3; therefore 3
3
(π§ + 1 β πβ3) β (π§ + 1 β πβ3) = (π§ + 1 β πβ3) 3
β (π§2 + 1 β πβ3) = (π§ β π§2 ) [(π§ + 1 β πβ3)
2
+ (π§2 + 1 β πβ3) ] .
3
(35) Substituting the latter into (34) and considering π§ β π0 β π2 π+ , π0 =ΜΈ 1 + πβ3, π = π0
2
2
2
2
{ { β6π (π + 1 β πβ3) [(π§ + 1 β πβ3) + (π§ + 1 β πβ3) (π§2 + 1 β πβ3) + (π§2 + 1 β πβ3) lim { σ΅¨σ΅¨ σ΅¨2 π§βπ0 { σ΅¨σ΅¨(π§ + 1 β πβ3)2 + (π§ + 1 β πβ3) (π + 1 β πβ3) + (π + 1 β πβ3)2 σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ { σ΅¨σ΅¨
4
(37)
=
3
σ΅¨σ΅¨ σ΅¨2 σ΅¨σ΅¨(π§ β πππ + 1 β πβ3)3 β (π + 1 β β3)3 σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨ (π§2 β πππ + 1 + πβ3)
β π+πβ2Z, π2 +π2 >0
1 β« πΎ (π) π]π πΊ1 (π§, π) ππ π ] 4π ππ+
π§ β π§2 1 = lim [β ππ ] = πΎ (π0 ) . β« πΎ (π) σ΅¨ + π§βπ0 σ΅¨σ΅¨π§ β πσ΅¨σ΅¨σ΅¨2 π 2ππ π2 π σ΅¨ σ΅¨
(π§ β πππ + 1 β πβ3)
β
lim [β
π§βπ0
For π =ΜΈ 0, π =ΜΈ 0 by
π+πβ2Z, π2 +π2 >0
(36)
on π2 π+ . Similar computations on the boundary parts π1 π+ , π3 π+ , π4 π+ give that the sums (21) and (20) tend to zero as π§ β π0 . Therefore, on the boundary part π2 π+ for π0 β π2 π+
gives (π0 + 1 β πβ3) β2π σ΅¨ = β2π, π0 =ΜΈ β1 + πβ3. σ΅¨σ΅¨π + 1 β πβ3σ΅¨σ΅¨σ΅¨4 σ΅¨σ΅¨ σ΅¨σ΅¨
]} } } } }
3
(38)
σ΅¨σ΅¨ σ΅¨2 . σ΅¨σ΅¨(π§2 β πππ + 1 β πβ3)3 β (π + 1 β πβ3)3 σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨ σ΅¨σ΅¨
Letting π§ β π0 β π2 π+ and since π§2 β π0 , the sum tends to 0. Then π§ β π§2 π]π πΊ1 (π§, π) = β2π σ΅¨ (1 + π (1)) σ΅¨σ΅¨π§ β πσ΅¨σ΅¨σ΅¨2 σ΅¨ σ΅¨
Case 3. Let π0 be defined on π3 π+ by π0 = β(1/2)(1 β πβ3)π0 β 3 + πβ3. On π3 π+ with π = π1Μ = β(1/2)(1βπβ3)πβ3+πβ3, (π+2)3 = (π + 2)3 . For π = π = 0 in (21) the formula becomes (π§ + 2)3 β (π§ + 2)3 . β3 (ββ3 + π) (π + 2)2 σ΅¨ σ΅¨σ΅¨(π§ + 2)3 β (π + 2)3 σ΅¨σ΅¨σ΅¨2 σ΅¨σ΅¨ σ΅¨σ΅¨ Since (π§1Μ + 2)3 = (π§ + 2)3 , then (π§ + 2)3 β (π§ + 2)3 = (π§ + 2)3 β (π§1Μ + 2)
2
(42)
Letting π§ β π0 , π§1Μ β π0 , and π = π0 for the fraction 2
4
3 (ββ3 + π) (π + 2)2 [(π§ + 2)2 + (π§ + 2) (π§1Μ + 2) + (π§1Μ + 2) ] (ββ3 + π) (π0 + 2) lim = = (β3 + π) . σ΅¨σ΅¨ σ΅¨2 σ΅¨σ΅¨ σ΅¨4 π§βπ0 σ΅¨σ΅¨(π§ + 2)2 + (π§ + 2) (π + 2) + (π + 2)2 σ΅¨σ΅¨σ΅¨ σ΅¨σ΅¨π0 + 2σ΅¨σ΅¨σ΅¨ σ΅¨ σ΅¨ For the other terms of (21) (π§ β πππ + 2)3 = (π§1Μ β πππ + 2)3 and
(41)
3
= (π§ β π§1Μ ) [(π§ + 2)2 + (π§ + 2) (π§1Μ + 2) + (π§1Μ + 2) ] . (39)
(40)
(43)
Therefore
3
(π§ β πππ + 2)
β π+πβ2Z, π2 +π2 >0
σ΅¨σ΅¨ σ΅¨2 σ΅¨σ΅¨(π§ β πππ + 2)3 β (π + 2)3 σ΅¨σ΅¨σ΅¨ σ΅¨ σ΅¨ 3
=
β π+πβ2Z, π2 +π2 >0
(π§1Μ β πππ + 2)
σ΅¨σ΅¨ σ΅¨2 . σ΅¨σ΅¨(π§1Μ β πππ + 2)3 β (π + 2)3 σ΅¨σ΅¨σ΅¨ σ΅¨ σ΅¨
(44)
π§ β π§3 π]π πΊ1 (π§, π) = (ββ3 β π) σ΅¨ (1 + π (1)) σ΅¨σ΅¨π§ β πσ΅¨σ΅¨σ΅¨2 σ΅¨ σ΅¨
(45)
for π§ β π0 β π3 π+ . On the boundary parts π1 π+ , π2 π+ , π4 π+ in the same manner we can prove that the sums (19), (22), and
Journal of Complex Analysis
7
(20) tend to zero as π§ β π0 β π3 π+ . Thus for this Case 3 is as follows: lim [β
π§βπ0
π§ β π§4 π]π πΊ1 (π§, π) = 2π σ΅¨ (1 + π (1)) , σ΅¨σ΅¨π§ β πσ΅¨σ΅¨σ΅¨2 σ΅¨ σ΅¨
1 β« πΎ (π) π]π πΊ1 (π§, π) ππ π ] 4π ππ+
= lim [β
(β3 + π)
π§βπ0
4π
If π§ β π0 , π§4 β π0 β π4 π+ , this sum (20) tends to 0 for π β π4 π+ . Thus on this boundary part
π§ β π§1Μ πΎ (π) σ΅¨ σ΅¨2 ππ π ] + σ΅¨ π3 π σ΅¨σ΅¨π§ β πσ΅¨σ΅¨σ΅¨
(46)
β«
lim [β
π§βπ0
= πΎ (π0 )
= lim
Case 4. Let π0 be from π4 π+ , where π0 = π4 = π. Obviously, similar calculations on the boundary parts imply the related sums to be convergent to zero, except for the boundary part π4 π+ , where the boundary behavior is to be observed carefully. On π4 π+ with π = π for π = π = 0 in formula (20) we have
(47)
π§βπ§ πΎ (π) σ΅¨ ππ = πΎ (π0 ) σ΅¨σ΅¨π§ β πσ΅¨σ΅¨σ΅¨2 π σ΅¨ σ΅¨
In the next lemma the boundary behavior of the function π(π) in the corner points Β±2, Β±1 + πβ3, is observed. It is shown that the continuity of the function is preserved at all the corner points which are treated as an intersection of two lines through the boundary parts.
lim
= 0,
{β
1 β« [πΎ (π) β πΎ (π0 )] π]π πΊ1 (π§, π) ππ π } 4π ππ+
(52)
π0 β {Β±2, Β±1 + πβ3} , π§ β π+ .
The proof of this lemma is given in detail in [9]. We consider now the main theorem of this paper.
(π§ β π§4 ) 6π (π β 2)2 σ΅¨ σ΅¨σ΅¨π§ β πσ΅¨σ΅¨σ΅¨2 σ΅¨ σ΅¨
(48)
2
(π§ β 2)2 + (π§ β 2) (π§4 β 2) + (π§4 β 2) β
σ΅¨ σ΅¨σ΅¨(π§ β 2)2 + (π§ β 2) (π β 2) + (π β 2)2 σ΅¨σ΅¨σ΅¨2 σ΅¨σ΅¨ σ΅¨σ΅¨
+
4
(49)
(π β 2) = 2π σ΅¨ 0 σ΅¨4 = 2π. σ΅¨σ΅¨σ΅¨π0 β 2σ΅¨σ΅¨σ΅¨ Again, the terms of the sum (20) are rewritten and it follows that 3
(π§ β πππ β 2)
σ΅¨σ΅¨ σ΅¨2 σ΅¨σ΅¨(π§ β πππ β 2)3 β (π β 2)3 σ΅¨σ΅¨σ΅¨ σ΅¨ σ΅¨ 3
(π§4 β πππ β 2)
. σ΅¨ 3 3 σ΅¨2 π+πβ2Z, σ΅¨σ΅¨σ΅¨(π§4 β πππ β 2) β (π β 2) σ΅¨σ΅¨σ΅¨ σ΅¨ π2 +π2 >0 σ΅¨
π€ = πΎ ππ ππ+
(53)
πππ π β πΏ π (π+ ; C) , 2 < π, πΎ β πΆ (ππ+ ; C) is uniquely solvable in the Sobolev space π2,π (π+ ; C) β© πΆ(π+ ; C) by
2
(π§ β 2)2 + (π§ β 2) (π§4 β 2) + (π§4 β 2) lim 6π (π β 2) σ΅¨ σ΅¨2 π§βπ0 σ΅¨σ΅¨σ΅¨(π§ β 2)2 + (π§ β 2) (π β 2) + (π β 2)2 σ΅¨σ΅¨σ΅¨ σ΅¨ σ΅¨ 2
Theorem 7. The Dirichlet problem fo the Poisson equation π€π§π§ = π ππ π+ ,
and taking the limit in the second fraction for π§ β π0 β π4 π and since π = π0
β
π4
π+
on the boundary π4 π+ . Thus, equality (24) for the function π(π§) is valid.
π§βπ0 βππ+
Here π§ = π§4 = π§; then term (47) is
=
β«
(51)
Lemma 6. If πΎ β πΆ(ππ+ ; C), then
(π§ β 2)3 β (π§ β 2)3 6π (π β 2)2 σ΅¨ . σ΅¨σ΅¨(π§ β 2)3 β (π β 2)3 σ΅¨σ΅¨σ΅¨2 σ΅¨σ΅¨ σ΅¨σ΅¨
π+πβ2Z, π2 +π2 >0
1
π§βπ0 2ππ
on the boundary part π3 π.
β
1 β« πΎ (π) π]π πΊ1 (π§, π) ππ π ] 4π ππ+
(50)
π€ (π§) = β
1 β« πΎ (π) π]π πΊ1 (π§, π) ππ π 4π ππ+
1 β β« π (π) πΊ1 (π§, π) ππ ππ, π π+
(54)
where π = π + ππ. Proof. We need to prove that (54) is a solution of the Poisson equation in problem (53). The property of the Pompeiu operator ππ(π§) = β(1/π) β«π·(π(π)/(π β π§))ππ ππ, described in [13, 14] as ππ§ ππ(π§) = π(π§), provides a weak solution of π€π§π§ σ΅¨σ΅¨ σ΅¨2 3 σ΅¨σ΅¨ (π β πππ β 2) β (π§ β 2)3 σ΅¨σ΅¨σ΅¨σ΅¨ σ΅¨ πΊ1 (π§, π) = log σ΅¨σ΅¨ β σ΅¨ σ΅¨σ΅¨π+πβ2Z (π β π β 2)3 β (π§ β 2)3 σ΅¨σ΅¨σ΅¨ σ΅¨ σ΅¨ ππ
(55)
8
Journal of Complex Analysis
References
and the derivative 3 (π§ β 2)
ππ§ πΊ1 (π§, π) = β
3
(π β 2) β (π§ β 2)
3
3 (π§ β 2)2 3
(π β 2) β (π§ β 2)3 β
[
π+πβ2Z, π2 +π2 >0
[
+
β
2
3 (π§ β 2)2
(56)
3
(π β πππ β 2) β (π§ β 2)3
3 (π§ β 2)2 3
3
].
(π β πππ β 2) β (π§ β 2) ]
In order to construct the Pompeiu-type operator we consider the following term: 3 (π§ β 2)2
3 (π β 2) β (π§ β 2)3
1 2 (3 β π§) β π = . + π β π§ (π β 2)2 + (π β 2) (π§ β 2) + (π§ β 2)2
(57)
Define a function Μ (π, π§) = π β
+
(π β 2) + (π β 2) (π§ β 2) + (π§ β 2)2 3 (π§ β 2)2 3
(π β 2) β (π§ β 2)3 β π+πβ2Z, π2 +π2 >0
β
2 (3 β π§) β π
2
(
3 (π§ β 2)2
(58)
3
(π β πππ β 2) β (π§ β 2)3
3 (π§ β 2)2 3
(π β πππ β 2) β (π§ β 2)3
)
which is analytic with respect to π§ β π+ ; then ππ§ πΊ1 π§, π§ππ‘π = Μ (π, π§). Then, the equation π€π§π is rewritten as 1/(π β π§) + π 1 ππ§π§ {β β« π (π) πΊ1 (π§, π) ππ ππ} π π+ 1 1 Μ (π, π§)] ππ ππ} = ππ§ {β β« π (π) [ +π + π π πβπ§
(59)
= π (π§) . This provides the solution to the differential equation in problem (53) in a weak sense. The boundary condition π€ = πΎ on the boundary ππ+ holds because of Lemmas 5 and 6.
Conflict of Interests The author declares that there is no conflict of interests regarding the publication of this paper.
[1] H. Begehr and T. Vaitekhovich, βHarmonic Dirichlet problem for some equilateral triangle,β Complex Variables and Elliptic Equations, vol. 57, no. 2β4, pp. 185β196, 2012. [2] H. Begehr and T. Vaitekhovich, βHow to find harmonic green functions in the plane,β Complex Variables and Elliptic Equations, vol. 56, no. 12, pp. 1169β1181, 2011. [3] H. Begehr and T. Vaitekhovich, βGreen functions, reections and plane parqueting,β Eurasian Mathematical Journal (EMJ), vol. 1, no. 1, pp. 17β31, 2010. [4] H. Begehr and T. Vaitekhovich, βThe parqueting-reection principle for constructing Green functions,β in Proceedings of the 7th International Workshop βAnalytical Methods of Analysis and Differential Equationsβ (AMADE β12), pp. 11β20, Cambridge Scientific Publishers, Minsk, Belarus, September 2012. [5] H. Begehr and T. Vaitekhovich, βSchwarz problem in lens and lune,β Complex Variables and Elliptic Equations, vol. 59, no. 1, pp. 76β84, 2014. [6] S. Burgumbayeva, Boundary value problems for tri-harmonic functions in the unit disc [Ph.D. thesis], Free University of Berlin, Berlin, Germany, 2009, http://www.diss.fu-berlin.de/diss/ receive/FUDISSthesis000000012636. [7] E. Gartner, Basic complex boundary value problems in the upper half plane [Ph.D. thesis], Free University of Berlin, Berlin, Germany, 2006, http://www.diss.fu-berlin.de/diss/receive/ FUDISSthesis000000002129. [8] B. Shupeyeva, Some basic boundary value problems for complex partial differentialequations in quarter ring and half hexagon [Ph.D. thesis], Free University of Berlin, Berlin, Germany, 2013, http://www.diss.fu-berlin.de/diss/receive/ FUDISSthesis000000094596. [9] B. Shupeyeva, βHarmonic boundary value problems in a quarter ring domain,β Advances in Pure and Applied Mathematics, vol. 3, no. 4, pp. 393β419, 2012. [10] T. Vaitsiakhovich, Boundary value problems for complex partial differential equations in a ring domain [Ph.D. thesis], Free University of Berlin, Berlin, Germany, 2008, http://www.diss .fu-berlin.de/diss/receive/FUDISSthesis000000003859. [11] I. N. Vekua, Generalized Analytic Functions, International Series of Monographs in Pure and Applied Mathematics, Pergamon Press, Oxford, UK, 1962. [12] Y. F. Wang and Y. J. Wang, βSchwarz-type problem of nonhomogeneous Cauchy-Riemann equation on a triangle,β Journal of Mathematical Analysis and Applications, vol. 377, no. 2, pp. 557β570, 2011. [13] H. Begehr and T. Vaitekhovich, βHarmonic boundary value problems in half disc and half ring,β Functiones et Approximatio Commentarii Mathematici, vol. 40, no. 2, pp. 251β282, 2009. [14] Y. Wang, Boundary value problems for complex partial differential equations in fan shaped domains [Ph.D. thesis], Free University of Berlin, Berlin, Germany, 2011, http://www.diss .fu-berlin.de/diss/receive/FUDISSthesis000000021359.
Advances in
Operations Research Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics Volume 2014
The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at http://www.hindawi.com International Journal of
Advances in
Combinatorics Hindawi Publishing Corporation http://www.hindawi.com
Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of Mathematics and Mathematical Sciences
Mathematical Problems in Engineering
Journal of
Mathematics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Discrete Dynamics in Nature and Society
Journal of
Function Spaces Hindawi Publishing Corporation http://www.hindawi.com
Abstract and Applied Analysis
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014