Distance Pell Numbers in 3-Edge-Coloured Graphs - Downloads

4 downloads 0 Views 2MB Size Report
Jul 19, 2014 - Among sequences of the Fibonacci type there is the Pell sequence ...... [1] The On-Line Encyclopedia of Integer Sequences. [2] E. Kilic, Γ’Β€ΒœOn theΒ ...
Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2014, Article ID 428020, 6 pages http://dx.doi.org/10.1155/2014/428020

Research Article On π‘˜-Distance Pell Numbers in 3-Edge-Coloured Graphs Krzysztof Piejko and Iwona WBoch Faculty of Mathematics and Applied Physics, Rzeszow University of Technology, Aleja PowstaΒ΄ncΒ΄ow Warszawy 12, 35-959 RzeszΒ΄ow, Poland Correspondence should be addressed to Iwona WΕ‚och; [email protected] Received 27 May 2014; Revised 17 July 2014; Accepted 19 July 2014; Published 5 August 2014 Academic Editor: Song Cen Copyright Β© 2014 K. Piejko and I. WΕ‚och. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We define in this paper new distance generalizations of the Pell numbers and the companion Pell numbers. We give a graph interpretation of these numbers with respect to a special 3-edge colouring of the graph.

1. Introduction The Fibonacci sequence is defined by the following recurrence relation 𝐹𝑛 = πΉπ‘›βˆ’1 + πΉπ‘›βˆ’2 for 𝑛 β‰₯ 2 with 𝐹0 = 𝐹1 = 1. Among sequences of the Fibonacci type there is the Pell sequence defined by 𝑃𝑛 = 2π‘ƒπ‘›βˆ’1 +π‘ƒπ‘›βˆ’2 for 𝑛 β‰₯ 2 with the initial conditions 𝑃0 = 0 and 𝑃1 = 1. The companion Pell sequence is closely related to the Pell sequence and is given by formula 𝑄0 = 𝑄1 = 2 and 𝑄𝑛 = 2π‘„π‘›βˆ’1 + π‘„π‘›βˆ’2 for 𝑛 β‰₯ 2. The Pell sequences play an important role in the number theory and they have many interesting interpretations. We recall some of them. (i) The number of lattice paths from the point 𝑂(0, 0) to the line π‘₯ = 𝑛 consisting of π‘Ž = [1, 1], 𝑏 = [1, βˆ’1], and 𝑐 = [2, 0] steps is equal to 𝑃𝑛+1 ; see [1]. (ii) The number of compositions (i.e., ordered partitions) of a number 𝑛 into two sorts of of 1’s and one sort of 2’s is equal to 𝑃𝑛+1 , see [1]. (iii) The number of 𝑛-step non-self-intersecting paths starting at the point 𝑂(0, 0) with steps of types 𝑝 = [1, 0], π‘ž = [βˆ’1, 0], or π‘Ÿ = [0, 1] is equal to (1/2)𝑄𝑛+1 , see [1]. Interesting generalizations of the numbers of the Fibonacci type (also generalizations of the Pell sequences) are studied, for instance, by Kilic in [2–4]. Among others Kilic in [4] introduced the generalization of the Pell numbers. He defined the generalized Pell (𝑝, 𝑖)-numbers for any given 𝑝, where 𝑝 β‰₯ 1 and for 𝑛 > 𝑝 + 1 and 0 ≀ 𝑖 ≀ 𝑝 in the following

way 𝑃𝑝(𝑖) (𝑛) = 2𝑃𝑝(𝑖) (𝑛 βˆ’ 1) + 𝑃𝑝(𝑖) (𝑛 βˆ’ 𝑝 βˆ’ 1) with initial

conditions and 𝑃𝑝(𝑖) (1) = β‹… β‹… β‹… = 𝑃𝑝(𝑖) (𝑖) = 0, 𝑃𝑝(𝑖) (𝑖 + 1) = β‹… β‹… β‹… =

𝑃𝑝(𝑖) (𝑝 + 1) = 1. If 𝑖 = 0 then 𝑃𝑝(𝑖) (1) = β‹… β‹… β‹… = 𝑃𝑝(𝑖) (𝑝 + 1) = 1. In this paper we describe new kinds of generalized Pell sequence and the companion Pell sequence. Our generalization is closely related to the recurrence given in [4] by Kilic. By other initial conditions we obtain other generalized Pell sequences. We give their graph interpretations which are closely related to a concept of edge colouring in graphs. Graph interpretations of the Fibonacci numbers and the like are study intensively; see, for example, [5–9].

2. π‘˜-Distance Pell Sequences π‘ƒπ‘˜ (𝑛) and π‘„π‘˜ (𝑛) Let π‘˜ β‰₯ 2, 𝑛 β‰₯ 0 be integers. The π‘˜-distance Pell sequence π‘ƒπ‘˜ (𝑛) is defined by the π‘˜th order linear recurrence relation: π‘ƒπ‘˜ (𝑛) = 2π‘ƒπ‘˜ (𝑛 βˆ’ 1) + π‘ƒπ‘˜ (𝑛 βˆ’ π‘˜)

for 𝑛 β‰₯ π‘˜,

(1)

with the following initial conditions: 0 π‘ƒπ‘˜ (𝑛) = { π‘›βˆ’1 2

if 𝑛 = 0, if 𝑛 = 1, 2, 3, . . . , π‘˜ βˆ’ 1.

(2)

If π‘˜ = 2, then this definition reduces to the classical Pell numbers; that is, 𝑃2 (𝑛) = 𝑃𝑛 . Table 1 includes a few first words of the π‘ƒπ‘˜ (𝑛) for special values of π‘˜. Firstly we give an interpretation of the π‘˜-distance Pell sequence, which generalizes result given in (i).

2

Journal of Applied Mathematics Table 1: The π‘˜-distance Pell sequence π‘ƒπ‘˜ (𝑛).

𝑛 𝑃𝑛 𝑃3 (𝑛) 𝑃4 (𝑛) 𝑃5 (𝑛) 𝑃6 (𝑛)

0 0 0 0 0 0

1 1 1 1 1 1

2 2 2 2 2 2

3 5 4 4 4 4

4 12 9 8 8 8

5 29 20 17 16 16

6 70 44 36 33 32

7 169 97 76 68 65

8 408 214 160 140 132

9 985 472 337 288 268

10 2378 1041 710 592 514

11 5741 2296 1496 1217 1104

12 13860 5064 3152 2502 2240

13 33461 11169 6641 5144 4545

10 6726 2724 1724 1349 1184

11 16238 6008 3632 2774 2400

Table 2: The π‘˜-distance companion Pell sequence π‘„π‘˜ (𝑛). 𝑛 𝑄𝑛 𝑄3 (𝑛) 𝑄4 (𝑛) 𝑄5 (𝑛) 𝑄6 (𝑛)

0 2 3 4 3 6

1 2 2 2 2 2

2 6 4 4 4 4

3 14 11 8 8 8

4 34 24 20 16 16

5 82 52 42 37 32

6 198 115 88 76 70

7 478 254 184 156 142

8 1154 560 388 320 288

9 2786 1235 818 656 584

Theorem 1. Let π‘˜ β‰₯ 2 and 𝑛 β‰₯ 1 be integers. Then the number of lattice paths from the point 𝑂(0, 0) to the line π‘₯ = 𝑛 consisting of π‘Ž = [1, 1], 𝑏 = [1, βˆ’1], and 𝑐 = [π‘˜, 0] steps is equal to π‘ƒπ‘˜ (𝑛 + 1).

Table 2 includes a few first words of the π‘„π‘˜ (𝑛) for special values of π‘˜. The following theorem gives the basic relation between π‘ƒπ‘˜ (𝑛) and π‘„π‘˜ (𝑛).

Proof. Let 𝑠(π‘˜, 𝑛) be the number of paths from the point 𝑂(0, 0) to the line π‘₯ = 𝑛. It is easy to notice that 𝑠(π‘˜, 𝑛) = π‘ƒπ‘˜ (𝑛 + 1) for 𝑛 = 1, 2, . . . , π‘˜. Let 𝑛 β‰₯ π‘˜ + 1 and let π‘ π‘Ž (π‘˜, 𝑛), 𝑠𝑏 (π‘˜, 𝑛), and 𝑠𝑐 (π‘˜, 𝑛) denote the number of such paths from the point 𝑂(0, 0) to the line π‘₯ = 𝑛, for which the last step is of the form π‘Ž = [1, 1], 𝑏 = [1, βˆ’1], and 𝑐 = [π‘˜, 0], respectively. It can be easily seen that π‘ π‘Ž (π‘˜, 𝑛) = 𝑠(π‘˜, 𝑛 βˆ’ 1), 𝑠𝑏 (π‘˜, 𝑛) = 𝑠(π‘˜, 𝑛 βˆ’ 1), and 𝑠𝑐 (π‘˜, 𝑛) = 𝑠(π‘˜, 𝑛 βˆ’ π‘˜). Since 𝑠(π‘˜, 𝑛) = π‘ π‘Ž (π‘˜, 𝑛) + 𝑠𝑏 (π‘˜, 𝑛)+𝑠𝑐 (π‘˜, 𝑛) then we have 𝑠(π‘˜, 𝑛) = 2𝑠(π‘˜, π‘›βˆ’1)+𝑠(π‘˜, π‘›βˆ’π‘˜) and consequently 𝑠(π‘˜, 𝑛) = π‘ƒπ‘˜ (𝑛 + 1), for all 𝑛 β‰₯ 1.

Theorem 3. Let π‘˜ β‰₯ 2 and 𝑛 β‰₯ π‘˜ βˆ’ 1 be integers. Then

In the same way we can prove the generalization of the result (ii).

= 2 [2π‘ƒπ‘˜ (𝑛) + π‘ƒπ‘˜ (𝑛 βˆ’ π‘˜ + 1)]

Theorem 2. Let π‘˜ β‰₯ 2 and 𝑛 β‰₯ 1 be integers. Then the number of all compositions of the number 𝑛 into two sorts of 1’s and one sort of π‘˜β€™s is equal to π‘ƒπ‘˜ (𝑛 + 1). By analogy to the Pell sequence we introduce a generalization of the companion Pell sequence which generalizes the classical companion Pell sequence in the distance sense. Let π‘˜ β‰₯ 2, 𝑛 β‰₯ 0 be integers. The π‘˜-distance companion Pell sequence π‘„π‘˜ (𝑛) is defined by the π‘˜th order linear recurrence relation: π‘„π‘˜ (𝑛) = 2π‘„π‘˜ (𝑛 βˆ’ 1) + π‘„π‘˜ (𝑛 βˆ’ π‘˜)

for 𝑛 β‰₯ π‘˜,

(3)

(5)

Proof (by induction on 𝑛). For 𝑛 = π‘˜ βˆ’ 1 the result follows immediately by the definitions of π‘ƒπ‘˜ (𝑛) and π‘„π‘˜ (𝑛). Let 𝑛 β‰₯ π‘˜. Assume that formula (5) is true for 𝑑 = π‘˜, π‘˜ + 1, . . . , 𝑛. We will prove that π‘„π‘˜ (𝑛 + 1) = 2π‘ƒπ‘˜ (𝑛 + 1) + π‘˜π‘ƒπ‘˜ (𝑛 βˆ’ π‘˜ + 2). By the induction hypothesis and the definitions of π‘ƒπ‘˜ (𝑛) and π‘„π‘˜ (𝑛), we have that 2π‘ƒπ‘˜ (𝑛 + 1) + π‘˜π‘ƒπ‘˜ (𝑛 βˆ’ π‘˜ + 2)

+ π‘˜ [2π‘ƒπ‘˜ (𝑛 βˆ’ π‘˜ + 1) + π‘ƒπ‘˜ (𝑛 βˆ’ 2π‘˜ + 2)] = 2 [2π‘ƒπ‘˜ (𝑛) + π‘˜π‘ƒπ‘˜ (𝑛 βˆ’ π‘˜ + 1)]

(6)

+ 2π‘ƒπ‘˜ (𝑛 βˆ’ π‘˜ + 1) + π‘˜π‘ƒπ‘˜ (𝑛 βˆ’ 2π‘˜ + 2) = 2π‘„π‘˜ (𝑛) + π‘„π‘˜ (𝑛 βˆ’ π‘˜ + 1) = π‘„π‘˜ (𝑛 + 1) , which ends the proof. For π‘˜ = 2 Theorem 3 gives the well-known relation between the classical Pell numbers and the companion Pell numbers; namely, 𝑄𝑛 = 2(𝑃𝑛 + π‘ƒπ‘›βˆ’1 ). Theorem 4. Let π‘˜ β‰₯ 2, π‘š β‰₯ 1, and 𝑛 β‰₯ 0 be integers. Then

with the initial conditions π‘˜ π‘„π‘˜ (𝑛) = { 𝑛 2

π‘„π‘˜ (𝑛) = 2π‘ƒπ‘˜ (𝑛) + π‘˜π‘ƒπ‘˜ (𝑛 βˆ’ π‘˜ + 1) .

if 𝑛 = 0, if 𝑛 = 1, 2, 3, . . . , π‘˜ βˆ’ 1.

π‘š

(4)

If π‘˜ = 2 then 𝑄2 (𝑛) gives the classical companion Pell numbers 𝑄𝑛 ; that is, 𝑄2 (𝑛) = 𝑄𝑛 .

π‘ƒπ‘˜ (𝑛) + 2βˆ‘π‘ƒπ‘˜ (𝑛 + π‘˜π‘– βˆ’ 1) = π‘ƒπ‘˜ (𝑛 + π‘˜π‘š) ,

(7)

𝑖=1 π‘š

π‘„π‘˜ (𝑛) + 2βˆ‘π‘„π‘˜ (𝑛 + π‘˜π‘– βˆ’ 1) = π‘„π‘˜ (𝑛 + π‘˜π‘š) . 𝑖=1

(8)

Journal of Applied Mathematics

3

Proof of (7) (by induction on π‘š). If π‘š = 1 then the equation is obvious. Let π‘š β‰₯ 2. Assume that formula (7) is true for an arbitrary π‘š. We will prove that π‘ƒπ‘˜ (𝑛) + 2 βˆ‘π‘š+1 𝑖=1 π‘ƒπ‘˜ (𝑛 + π‘–π‘˜ βˆ’ 1) = π‘ƒπ‘˜ (𝑛 + (π‘š + 1)π‘˜). By the induction hypothesis and the definition of π‘ƒπ‘˜ (𝑛) we have

Proof of (12) (by induction on π‘š). If π‘š = 0 then the result is obvious. Assume that π‘ƒπ‘˜ (π‘˜ + π‘š) = 2π‘˜+π‘šβˆ’1 + π‘š2π‘šβˆ’1 for an arbitrary π‘š, such that 1 ≀ π‘š ≀ π‘˜ βˆ’ 1. We will prove that π‘ƒπ‘˜ (π‘˜ + π‘š + 1) = 2π‘˜+π‘š + (π‘š + 1)2π‘š . By the induction hypothesis and the definition of π‘ƒπ‘˜ (𝑛), we have

π‘š+1

π‘ƒπ‘˜ (𝑛) + 2 βˆ‘ π‘ƒπ‘˜ (𝑛 + π‘–π‘˜ βˆ’ 1)

π‘ƒπ‘˜ (π‘˜ + π‘š + 1) = 2π‘ƒπ‘˜ (π‘˜ + π‘š) + π‘ƒπ‘˜ (π‘š + 1)

𝑖=1

= 2 [2π‘˜+π‘šβˆ’1 + π‘š2π‘šβˆ’1 ] + 2π‘š

π‘š

= π‘ƒπ‘˜ (𝑛) + 2βˆ‘π‘ƒπ‘˜ (𝑛 + π‘–π‘˜ βˆ’ 1) 𝑖=1

(9)

(14)

= 2π‘˜+π‘š + (π‘š + 1) 2π‘š ,

+ 2π‘ƒπ‘˜ (𝑛 + (π‘š + 1) π‘˜ βˆ’ 1) which ends the proof. In the same way we can prove the equality (13).

= π‘ƒπ‘˜ (𝑛 + π‘šπ‘˜) + 2π‘ƒπ‘˜ (𝑛 + (π‘š + 1) π‘˜ βˆ’ 1) = π‘ƒπ‘˜ (𝑛 + (π‘š + 1) π‘˜) , which ends the proof of (7). In the same way we can prove the equality (8), so we omit the proof.

If π‘š = 0, π‘š = 1, or π‘š = π‘˜ βˆ’ 1, respectively, then from Theorem 6 we obtain the following corollary.

If 𝑛 = 0 or 𝑛 = 1, respectively, then from Theorem 4 the following follows.

Corollary 7. Let π‘˜ β‰₯ 2. Then π‘ƒπ‘˜ (π‘˜) = 2π‘˜βˆ’1 ,

Corollary 5. Let π‘˜ β‰₯ 2 and π‘š β‰₯ 1 be integers. Then π‘š

π‘ƒπ‘˜ (π‘˜ + 1) = 2π‘˜ + 1,

2βˆ‘π‘ƒπ‘˜ (π‘˜π‘– βˆ’ 1) = π‘ƒπ‘˜ (π‘šπ‘˜) , 𝑖=1

π‘ƒπ‘˜ (2π‘˜ βˆ’ 1) = 2π‘˜βˆ’2 (2π‘˜ + π‘˜ βˆ’ 1) ,

π‘š

2βˆ‘π‘ƒπ‘˜ (π‘˜π‘–) = π‘ƒπ‘˜ (π‘šπ‘˜ + 1) βˆ’ 1, 𝑖=1

π‘„π‘˜ (π‘˜) = 2π‘˜+1 + π‘˜, (10)

π‘š

2βˆ‘π‘„π‘˜ (π‘˜π‘– βˆ’ 1) = π‘„π‘˜ (π‘šπ‘˜) βˆ’ π‘˜, π‘š

2βˆ‘π‘„π‘˜ (π‘˜π‘–) = π‘„π‘˜ (π‘šπ‘˜ + 1) βˆ’ 2.

Theorem 8. Let π‘˜ β‰₯ 2 and 𝑛 β‰₯ 2π‘˜ βˆ’ 1 be integers. Then

𝑖=1

For π‘˜ = 2 we obtain the well-known identities for the classical Pell numbers and the companion Pell numbers; namely, π‘š

π‘˜βˆ’1

π‘ƒπ‘˜ (𝑛) = (2π‘˜ + 1) π‘ƒπ‘˜ (𝑛 βˆ’ π‘˜) + βˆ‘ 2𝑖 π‘ƒπ‘˜ (𝑛 βˆ’ π‘˜ βˆ’ 𝑖) ,

(16)

𝑖=1

π‘˜βˆ’1

2βˆ‘π‘ƒ2π‘–βˆ’1 = 𝑃2π‘š ,

π‘„π‘˜ (𝑛) = (2π‘˜ + 1) π‘„π‘˜ (𝑛 βˆ’ π‘˜) + βˆ‘ 2𝑖 π‘„π‘˜ (𝑛 βˆ’ π‘˜ βˆ’ 𝑖) .

𝑖=1

(17)

𝑖=1

π‘š

2βˆ‘π‘ƒ2𝑖 = 𝑃2π‘š+1 βˆ’ 1, π‘š

π‘„π‘˜ (π‘˜ + 1) = 2π‘˜+2 + 2π‘˜ + 2, π‘„π‘˜ (2π‘˜ βˆ’ 1) = 22π‘˜ + 2π‘˜βˆ’1 (2π‘˜ βˆ’ 1) .

𝑖=1

𝑖=1

(15)

(11)

2βˆ‘π‘„2π‘–βˆ’1 = 𝑄2π‘š βˆ’ 2,

Proof of (16) (by induction on 𝑛). For 𝑛 = 2π‘˜ βˆ’ 1 we have the equation π‘˜βˆ’1

𝑖=1

π‘ƒπ‘˜ (2π‘˜ βˆ’ 1) = (2π‘˜ + 1) π‘ƒπ‘˜ (π‘˜ βˆ’ 1) + βˆ‘ 2𝑖 π‘ƒπ‘˜ (π‘˜ βˆ’ 1 βˆ’ 𝑖) . (18)

π‘š

𝑖=1

2βˆ‘π‘„2𝑖 = 𝑄2π‘š+1 βˆ’ 2. 𝑖=1

Theorem 6. Let π‘˜ β‰₯ 2 and π‘š = 0, 1, 2, . . . , π‘˜. Then π‘ƒπ‘˜ (π‘˜ + π‘š) = 2π‘˜+π‘šβˆ’1 + π‘š2π‘šβˆ’1 ,

(12)

π‘„π‘˜ (π‘˜ + π‘š) = 2π‘˜+π‘š+1 + π‘˜2π‘š + π‘š2π‘š .

(13)

By the initial conditions of the sequence π‘ƒπ‘˜ (𝑛) and Theorem 6 we can see that this equation is an identity (because it is equivalent to third identity from Corollary 7). Let 𝑛 β‰₯ 2π‘˜. Assume that formula (16) is true for an arbitrary 𝑑 where 2π‘˜ ≀ 𝑑 ≀ 𝑛. We will prove that

4

Journal of Applied Mathematics

𝑖 π‘ƒπ‘˜ (𝑛 + 1) = (2π‘˜ + 1)π‘ƒπ‘˜ (𝑛 + 1 βˆ’ π‘˜) + βˆ‘π‘˜βˆ’1 𝑖=1 2 π‘ƒπ‘˜ (𝑛 + 1 βˆ’ π‘˜ βˆ’ 𝑖). By the induction hypothesis and the definition of π‘ƒπ‘˜ (𝑛), we have π‘˜βˆ’1

(2π‘˜ + 1) π‘ƒπ‘˜ (𝑛 + 1 βˆ’ π‘˜) + βˆ‘ 2𝑖 π‘ƒπ‘˜ (𝑛 + 1 βˆ’ π‘˜ βˆ’ 𝑖) 𝑖=1

Theorem 9. Let π‘˜ β‰₯ 2 and 𝑛 β‰₯ 2 be integers. The number of all (𝐴, 𝐡, π‘˜πΆ)-edge colouring of the graph P𝑛 is equal to π‘ƒπ‘˜ (𝑛).

π‘˜

= (2 + 1) [2π‘ƒπ‘˜ (𝑛 βˆ’ π‘˜) + π‘ƒπ‘˜ (𝑛 + 1 βˆ’ 2π‘˜)] π‘˜βˆ’1

+ βˆ‘ 2𝑖 [2π‘ƒπ‘˜ (𝑛 βˆ’ π‘˜ βˆ’ 𝑖) + π‘ƒπ‘˜ (𝑛 + 1 βˆ’ 2π‘˜ βˆ’ 𝑖)] 𝑖=1

π‘˜βˆ’1

= 2 [(2π‘˜ + 1) π‘ƒπ‘˜ (𝑛 βˆ’ π‘˜) + βˆ‘ 2𝑖 π‘ƒπ‘˜ (𝑛 βˆ’ π‘˜ βˆ’ 𝑖)]

(19)

𝑖=1

+ (2π‘˜ + 1) π‘ƒπ‘˜ (𝑛 βˆ’ 2π‘˜ + 1) π‘˜βˆ’1

+ βˆ‘ 2𝑖 π‘ƒπ‘˜ (𝑛 + 1 βˆ’ 2π‘˜ βˆ’ 𝑖) 𝑖=1

= 2π‘ƒπ‘˜ (𝑛) + π‘ƒπ‘˜ (𝑛 + 1 βˆ’ π‘˜) = π‘ƒπ‘˜ (𝑛 + 1) , which ends the proof of (16). In the same way we can prove (17) which completes the proof of the theorem. If π‘˜ = 2 then from Theorem 8 we obtain the following formula for the classical Pell numbers and companion Pell numbers: 𝑃𝑛 = 5π‘ƒπ‘›βˆ’2 + 2π‘ƒπ‘›βˆ’3 , 𝑄𝑛 = 5π‘„π‘›βˆ’2 + 2π‘„π‘›βˆ’3 ,

𝑛 β‰₯ 3.

path. For π‘₯𝑦 ∈ 𝐸(𝐺) notation 𝑀(π‘₯𝑦) means that the edge π‘₯𝑦 has the colour 𝑀. Let π‘˜ β‰₯ 1 be an integer. In the graph 𝐺 we define a (𝐴, 𝐡, π‘˜πΆ)-edge colouring, such that 𝑙(𝐴) β‰₯ 0, 𝑙(𝐡) β‰₯ 0, and 𝑙(𝐢) = π‘žπ‘˜, where π‘ž β‰₯ 0 is an integer.

(20)

3. (𝐴, 𝐡, π‘˜πΆ)-Coloured Graphs For concepts not defined here see [10]. The numbers of the Fibonacci type have many applications in distinct areas of mathematics. There is a large interest of modern science in the applications of the numbers of the Fibonacci type. These numbers are studied intensively in a wide sense also in graphs and combinatorials problem. In graphs Prodinger and Tichy initiated studying the Fibonacci numbers and the like. In [11] they showed the relations between the number of independent sets in P𝑛 and C𝑛 with the Fibonacci numbers and the Lucas numbers, where P𝑛 and C𝑛 denote an 𝑛-vertex path and an 𝑛-vertex cycle, respectively. This short paper gave an impetus for counting problems related to the numbers of the Fibonacci type. Many of these problems and results are closely related with the Merrifield-Simmons index 𝜎(𝐺) and the Hosoya index 𝑍(𝐺) in graphs; see [6, 12]. The Pell numbers also have a graph interpretation. It is well-known that 𝑍(P𝑛 ∘ 𝐾1 ) = 𝑃𝑛+1 , where 𝐺 ∘ 𝐻 denotes the corona of two graphs. In this section we give a graph interpretation of the π‘˜distance Pell numbers with respect to special edge colouring of a graph. Let 𝐺 be a 3-edge coloured graph with the set of colours {𝐴, 𝐡, 𝐢}. Let 𝑀 ∈ {𝐴, 𝐡, 𝐢}. We say that a path is 𝑀monochromatic if all its edges are coloured alike by colour 𝑀. By 𝑙(𝑀) we denote the length of the 𝑀-monochromatic

Proof. Let 𝑉(P𝑛 ) = {π‘₯1 , π‘₯2 , . . . , π‘₯𝑛 } be the set of vertices of a graph P𝑛 with the numbering in the natural fashion. Then 𝐸(P𝑛 ) = {π‘₯1 π‘₯2 , π‘₯2 π‘₯3 , . . . , π‘₯π‘›βˆ’1 π‘₯𝑛 }. Let 𝜎(π‘˜, 𝑛) be the number of all (𝐴, 𝐡, π‘˜πΆ)-edge colouring of the graph P𝑛 . By inspection we obtain that 𝜎(π‘˜, 𝑛) = π‘ƒπ‘˜ (𝑛) for 𝑛 = 2, . . . , π‘˜ + 1. Let 𝑛 β‰₯ π‘˜+2 and let 𝜎𝐴 (π‘˜, 𝑛), 𝜎𝐡 (π‘˜, 𝑛), and 𝜎𝐢(π‘˜, 𝑛) denote the number of (𝐴, 𝐡, π‘˜πΆ)-edge colouring of the graph P𝑛 , with 𝐴(π‘₯π‘›βˆ’1 π‘₯𝑛 ), 𝐡(π‘₯π‘›βˆ’1 π‘₯𝑛 ), and 𝐢(π‘₯π‘›βˆ’1 π‘₯𝑛 ), respectively. It is obvious that 𝜎𝐴 (π‘˜, 𝑛) = 𝜎𝐡 (π‘˜, 𝑛). Clearly 𝜎𝐴 (π‘˜, 𝑛) and 𝜎𝐡 (π‘˜, 𝑛) are equal to the number of all (𝐴, 𝐡, π‘˜πΆ)-edge colouring of the graph Pπ‘›βˆ’1 and 𝜎𝐢(π‘˜, 𝑛) is equal to the number of all (𝐴, 𝐡, π‘˜πΆ)-edge colouring of the graph Pπ‘›βˆ’π‘˜ . In the other words 𝜎𝐴 (π‘˜, 𝑛) = 𝜎(π‘˜, 𝑛 βˆ’ 1), 𝜎𝐡 (π‘˜, 𝑛) = 𝜎(π‘˜, 𝑛 βˆ’ 1), and 𝜎𝐢(π‘˜, 𝑛) = 𝜎(π‘˜, 𝑛 βˆ’ π‘˜). Since 𝜎 (π‘˜, 𝑛) = 𝜎𝐴 (π‘˜, 𝑛) + 𝜎𝐡 (π‘˜, 𝑛) + 𝜎𝐢 (π‘˜, 𝑛) ,

(21)

then we have 𝜎(π‘˜, 𝑛) = 2𝜎(π‘˜, 𝑛 βˆ’ 1) + 𝜎(π‘˜, 𝑛 βˆ’ π‘˜). By the initial conditions we have that 𝜎(π‘˜, 𝑛) = π‘ƒπ‘˜ (𝑛), for all 𝑛 β‰₯ 2, which ends the proof. Corollary 10. Let 𝑛 β‰₯ 2 be integer. The number of all (𝐴, 𝐡, 2𝐢)-edge colouring of the graph P𝑛 is equal to 𝑃𝑛 . Using the concept of (𝐴, 𝐡, π‘˜πΆ)-edge colouring of the graph P𝑛 we can obtain the direct formula for the numbers π‘ƒπ‘˜ (𝑛) and π‘„π‘˜ (𝑛). Let π‘˜ β‰₯ 1, 𝑛 β‰₯ 2, and 0 ≀ 𝑑 ≀ [(𝑛 βˆ’ 1)/π‘˜] be integers and let π‘π‘˜ (𝑛, 𝑑) be the number of (𝐴, 𝐡, π‘˜πΆ)-edge colouring of graph P𝑛 , such that 𝐢-monochromatic path appears in this colouring exactly 𝑑 times. In the other words π‘‘π‘˜ edges of P𝑛 have colour 𝐢. Theorem 11. Let 𝑛 β‰₯ 2 and 0 ≀ 𝑑 ≀ 𝑛 βˆ’ 1 be integers. Then π‘›βˆ’1βˆ’π‘‘ 𝑝1 (𝑛, 𝑑) = ( π‘›βˆ’1 . 𝑑 )2 Proof. Since P𝑛 has 𝑛 βˆ’ 1 edges, then for 𝑑 = 0, 1, 2, . . . we obtain that 𝑝1 (𝑛, 0) = 2π‘›βˆ’1 , 𝑝1 (𝑛, 1) = (

𝑛 βˆ’ 1 π‘›βˆ’2 )2 , 1

𝑝1 (𝑛, 2) = (

𝑛 βˆ’ 1 π‘›βˆ’3 )2 ,..., 2

(22)

π‘›βˆ’1βˆ’π‘‘ and so 𝑝1 (𝑛, 𝑑) = ( π‘›βˆ’1 . 𝑑 )2

Theorem 12. Let π‘˜ β‰₯ 1, 𝑛 β‰₯ 2, and 0 ≀ 𝑑 ≀ [(𝑛 βˆ’ 1)/π‘˜] be integers. Then for all 𝑠 = 0, 1, 2, . . . , π‘˜ βˆ’ 1 holds π‘π‘˜ (𝑛, 𝑑) = π‘π‘˜βˆ’π‘  (𝑛 βˆ’ 𝑑𝑠, 𝑑).

Journal of Applied Mathematics

5

Proof. Consider the graph P𝑛 with the (𝐴, 𝐡, π‘˜πΆ)-edge colouring. By contracting the 𝐢-monochromatic paths of length π‘˜ to the 𝐢-monochromatic paths of length π‘˜ βˆ’ 𝑠 we can see that the number of (𝐴, 𝐡, π‘˜πΆ)-edge colouring of graph P𝑛 , such that 𝐢-monochromatic path appears in this colouring exactly 𝑑 times is equal to the number of (𝐴, 𝐡, (π‘˜ βˆ’ 𝑠)𝐢)-edge colouring of graph Pπ‘›βˆ’π‘‘π‘  , such that 𝐢-monochromatic path appears in this colouring exactly 𝑑 times and the Theorem follows. If 𝑠 = π‘˜βˆ’1 or 𝑠 = π‘˜βˆ’2 then Theorem 12 gives the following result. Corollary 13. Let π‘˜ β‰₯ 1, 𝑛 β‰₯ 2, and 0 ≀ 𝑑 ≀ [(𝑛 βˆ’ 1)/π‘˜] be integers. Then π‘π‘˜ (𝑛, 𝑑) = 𝑝1 (𝑛 βˆ’ 𝑑 (π‘˜ βˆ’ 1) , 𝑑) ,

(23)

π‘π‘˜ (𝑛, 𝑑) = 𝑝2 (𝑛 βˆ’ 𝑑 (π‘˜ βˆ’ 2) , 𝑑) .

(24)

By (23) and Theorem 11 we obtain the direct formula for π‘π‘˜ (𝑛, 𝑑). Corollary 14. Let π‘˜ β‰₯ 1, 𝑛 β‰₯ 2, 0 ≀ 𝑑 ≀ [(𝑛 βˆ’ 1)/π‘˜] be integers. Then 𝑛 βˆ’ 1 βˆ’ (π‘˜ βˆ’ 1) 𝑑 π‘›βˆ’1βˆ’π‘˜π‘‘ . π‘π‘˜ (𝑛, 𝑑) = ( )2 𝑑

(25)

Moreover Theorem 9 immediately gives that βˆ‘π‘π‘˜ (𝑛, 𝑑) = 𝜎 (π‘˜, 𝑛) = π‘ƒπ‘˜ (𝑛) .

𝑑β‰₯0

(26)

Using (26) and Corollary 14 we can give the direct formula for the number π‘ƒπ‘˜ (𝑛). Theorem 15. Let π‘˜ β‰₯ 2 and 𝑛 β‰₯ 1 be integers. Then π‘ƒπ‘˜ (𝑛) =

[(π‘›βˆ’1)/π‘˜]

βˆ‘ 𝑖=0

𝑛 βˆ’ 1 βˆ’ (π‘˜ βˆ’ 1) 𝑖 π‘›βˆ’1βˆ’π‘˜π‘– ( . )2 𝑖

[(π‘›βˆ’1)/2]

βˆ‘ 𝑖=0

𝑛 βˆ’ 1 βˆ’ 𝑖 π‘›βˆ’1βˆ’2𝑖 = ( )2 𝑖

[(π‘›βˆ’1)/2]

βˆ‘ 𝑖=0

(

(27)

𝑛 ) 2𝑖 . (28) 2𝑖 + 1

From Theorems 3 and 15 follows the direct formula for the sequence π‘„π‘˜ (𝑛).

[(π‘›βˆ’1)/π‘˜] 𝑖=0

𝑖=0

(29) 𝑛 βˆ’ π‘˜ βˆ’ (π‘˜ βˆ’ 1) 𝑖 π‘›βˆ’π‘˜βˆ’π‘˜π‘– ( . )2 𝑖

𝑛 βˆ’ 1 βˆ’ 𝑖 π‘›βˆ’1βˆ’2𝑖 ( )2 𝑖

[(π‘›βˆ’2)/2]

+ βˆ‘ 𝑖=0

(30) 𝑛 βˆ’ 2 βˆ’ 𝑖 π‘›βˆ’2βˆ’2𝑖 ( ). )2 𝑖

Now we give the recurrence relation for the number π‘π‘˜ (𝑛, π‘˜). Theorem 17. Let π‘˜ β‰₯ 1, 𝑛 β‰₯ π‘˜ + 2, and 0 ≀ 𝑑 ≀ [(𝑛 βˆ’ 1)/π‘˜] be integers. Then π‘π‘˜ (𝑛, 𝑑) = 2π‘π‘˜ (𝑛 βˆ’ 1, 𝑑) + π‘π‘˜ (𝑛 βˆ’ π‘˜, 𝑑 βˆ’ 1) .

(31)

Proof. Let 𝑉(P𝑛 ) = {π‘₯1 , π‘₯2 , . . . , π‘₯𝑛 } be the set of vertices of a graph P𝑛 with the numbering in the natural fashion. Then 𝐸(P𝑛 ) = {π‘₯1 π‘₯2 , π‘₯2 π‘₯3 , . . . , π‘₯π‘›βˆ’1 π‘₯𝑛 }. Let π‘π‘˜π΄ (𝑛, 𝑑), π‘π‘˜π΅ (𝑛, 𝑑), and π‘π‘˜πΆ(𝑛, 𝑑) denote the number of (𝐴, 𝐡, π‘˜πΆ)-edge colouring of the graph P𝑛 , such that 𝐢monochromatic path appears in this colouring exactly 𝑑 times with 𝐴(π‘₯π‘›βˆ’1 π‘₯𝑛 ), 𝐡(π‘₯π‘›βˆ’1 π‘₯𝑛 ), and 𝐢(π‘₯π‘›βˆ’1 π‘₯𝑛 ), respectively. It can be easily seen that both π‘π‘˜π΄ (𝑛, 𝑑) and π‘π‘˜π΅ (𝑛, 𝑑) are equal to the number of all (𝐴, 𝐡, π‘˜πΆ)-edge colouring of the graph Pπ‘›βˆ’1 , such that 𝐢-monochromatic path appears in this colouring exactly 𝑑 times and π‘π‘˜πΆ(𝑛, 𝑑) is equal to the number of all (𝐴, 𝐡, π‘˜πΆ)-edge colouring of the graph Pπ‘›βˆ’π‘˜ , such that 𝐢-monochromatic path appears in this colouring exactly π‘‘βˆ’1 times. In the other words π‘π‘˜π΄ (𝑛, 𝑑) = π‘π‘˜ (𝑛 βˆ’ 1, 𝑑), π‘π‘˜π΅ (𝑛, 𝑑) = π‘π‘˜ (𝑛 βˆ’ 1, 𝑑), and π‘π‘˜πΆ(π‘˜, 𝑛) = π‘π‘˜ (𝑛 βˆ’ π‘˜, 𝑑 βˆ’ 1). Since π‘π‘˜ (𝑛, 𝑑) = π‘π‘˜π΄ (𝑛, 𝑑) + π‘π‘˜π΅ (𝑛, 𝑑) + π‘π‘˜πΆ (𝑛, 𝑑) ,

(32)

so the result immediately follows.

Corollary 18. Let π‘˜ β‰₯ 1, 𝑛 β‰₯ π‘˜ + 2, and 0 ≀ 𝑑 ≀ [(𝑛 βˆ’ 1)/π‘˜] be integers. Then π‘π‘˜ (𝑛, 𝑑) = 2𝑝2 (𝑛 βˆ’ 𝑑 (π‘˜ βˆ’ 2) βˆ’ 1, 𝑑) + 𝑝2 (𝑛 βˆ’ 𝑑 (π‘˜ βˆ’ 2) βˆ’ π‘˜, 𝑑 βˆ’ 1) .

(33)

Using (26) and Corollary 18 we have the following. Corollary 19. Let π‘˜ β‰₯ 2, 𝑛 β‰₯ π‘˜ + 2, and 0 ≀ 𝑑 ≀ [(𝑛 βˆ’ 1)/π‘˜] be integers. Then [(π‘›βˆ’1)/π‘˜]

βˆ‘

𝑑=0

(2𝑝2 (𝑛 βˆ’ 𝑑 (π‘˜ βˆ’ 2) βˆ’ 1, 𝑑)

(34)

+ 𝑝2 (𝑛 βˆ’ 𝑑 (π‘˜ βˆ’ 2) βˆ’ π‘˜, 𝑑 βˆ’ 1)) .

𝑛 βˆ’ 1 βˆ’ (π‘˜ βˆ’ 1) 𝑖 π‘›βˆ’1βˆ’π‘˜π‘– ( )2 𝑖

[(π‘›βˆ’π‘˜)/π‘˜]

+π‘˜ βˆ‘

𝑖=0

π‘ƒπ‘˜ (𝑛) =

Theorem 16. Let π‘˜ β‰₯ 2 and 𝑛 β‰₯ 1 be integers. Then π‘„π‘˜ (𝑛) = 2 βˆ‘

[(π‘›βˆ’1)/2]

𝑄𝑛 = 2 ( βˆ‘

By (24) and by Theorem 17 we obtain the following.

If π‘˜ = 2 then we obtain the direct formula for the classical Pell numbers of the form 𝑃𝑛 =

If π‘˜ = 2 then using the above theorem and after some calculations we obtain that

Now we consider the (𝐴, 𝐡, π‘˜πΆ)-edge colouring of the cycle C𝑛 with the numbering of edges in the natural fashion. For explanation for cycle C4 with 𝐸(C4 ) = {𝑒1 , 𝑒2 , 𝑒3 , 𝑒4 } there are two distinct (𝐴, 𝐡, 2𝐢)-edge colouring using only

6

Journal of Applied Mathematics

colour 𝐢. The first (𝐴, 𝐡, 2𝐢)-edge colouring gives a partition of the set 𝐸(C4 ) = {𝑒1 , 𝑒2 }βˆͺ{𝑒3 , 𝑒4 } and the second (𝐴, 𝐡, 2𝐢)edge colouring gives a partition 𝐸(C4 ) = {𝑒2 , 𝑒3 } βˆͺ {𝑒4 , 𝑒1 }. Let 𝜌(π‘˜, 𝑛) be the number of all (𝐴, 𝐡, 2𝐢)-edge colouring of the cycle C𝑛 . Theorem 20. Let π‘˜ β‰₯ 2 and 𝑛 β‰₯ 3 be integers. The number of all (𝐴, 𝐡, π‘˜πΆ)-edge colouring of the cycle C𝑛 is equal to π‘„π‘˜ (𝑛). Proof. Let 𝑉(C𝑛 ) = {π‘₯1 , π‘₯2 , . . . , π‘₯𝑛 } be the set of vertices of a graph C𝑛 with the numbering in the natural fashion. Then 𝐸(C𝑛 ) = {π‘₯1 π‘₯2 , π‘₯2 π‘₯3 , . . . , π‘₯π‘›βˆ’1 π‘₯𝑛 , π‘₯𝑛 π‘₯1 }. It is easy to check that 𝜌(π‘˜, 𝑛) = π‘„π‘˜ (𝑛) for 𝑛 = 3, . . . , π‘˜. Let 𝑛 β‰₯ π‘˜ + 1 and let 𝜌𝐴(π‘˜, 𝑛), 𝜌𝐡 (π‘˜, 𝑛), and 𝜌𝐢(π‘˜, 𝑛) denote the number of (𝐴, 𝐡, π‘˜πΆ)-edge colouring of the cycle C𝑛 with 𝐴(π‘₯𝑛 π‘₯1 ), 𝐡(π‘₯𝑛 π‘₯1 ), and 𝐢(π‘₯𝑛 π‘₯1 ), respectively. It can be easily seen that 𝜌𝐴(π‘˜, 𝑛) and 𝜌𝐡 (π‘˜, 𝑛) are equal to the number of all (𝐴, 𝐡, π‘˜πΆ)-edge colouring of the graph P𝑛 and 𝜌𝐢(π‘˜, 𝑛) is equal to the number of all (𝐴, 𝐡, π‘˜πΆ)-edge colouring of the graph Pπ‘›βˆ’π‘˜+1 multiplied by π‘˜. By Theorem 9 we have 𝜌𝐴(π‘˜, 𝑛) = π‘ƒπ‘˜ (𝑛), 𝜌𝐡 (π‘˜, 𝑛) = π‘ƒπ‘˜ (𝑛), and 𝜌𝐢(π‘˜, 𝑛) = π‘˜π‘ƒπ‘˜ (𝑛 βˆ’ π‘˜ + 1). Since 𝜌 (π‘˜, 𝑛) = 𝜌𝐴 (π‘˜, 𝑛) + 𝜌𝐡 (π‘˜, 𝑛) + 𝜌𝐢 (π‘˜, 𝑛) ,

(35)

then we have 𝜌(π‘˜, 𝑛) = 2π‘ƒπ‘˜ (𝑛) + π‘˜π‘ƒπ‘˜ (𝑛 βˆ’ π‘˜ + 1) and so by Theorem 3 we have 𝜌(π‘˜, 𝑛) = π‘„π‘˜ (𝑛) for all 𝑛 β‰₯ 3. Corollary 21. Let 𝑛 β‰₯ 3 be an integer. Then the number of all (𝐴, 𝐡, 2𝐢)-edge colouring of the cycle C𝑛 is equal to 𝑄𝑛 , 𝑛 β‰₯ 3.

4. Concluding Remarks The interpretation of the generalized Pell numbers with respect to (𝐴, 𝐡, π‘˜πΆ)-colouring of a 3-edge coloured graph gives a motivation for studying this type of colouring in graphs. For an arbitrary π‘˜ β‰₯ 2 this problem seems to be difficult and more interesting results can be obtained for special value of π‘˜ (e.g., if we study (𝐴, 𝐡, 2𝐢)-colouring in graphs). In the class of trees some interesting results can be obtained.

Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment The authors would like to thank the referee for helpful valuable suggestions which resulted in improvements to this paper.

References [1] The On-Line Encyclopedia of Integer Sequences. [2] E. Kilic, β€œOn the usual Fibonacci and generalized order-π‘˜ Pell numbers,” Ars Combinatoria, vol. 88, pp. 33–45, 2008.

[3] E. Kilic and D. Tasci, β€œOn the generalized Fibonacci and Pell sequences by Hessenberg matrices,” Ars Combinatoria, vol. 94, pp. 161–174, 2010. [4] E. Kilic, β€œThe generalized Pell (𝑝, 𝑖)-numbers and their Binet formulas, combinatorial representations, sums,” Chaos, Solitons & Fractals, vol. 40, no. 4, pp. 2047–2063, 2009. [5] D. BrΒ΄od, K. Piejko, and I. WΕ‚och, β€œDistance Fibonacci numbers, distance Lucas numbers and their applications,” Ars Combinatoria, vol. 112, pp. 397–409, 2013. [6] H. Hosoya, β€œTopological index. A nawly proposed quantity chracterizing the topological nature of structural isomers of saturated hydrocarbons,” Bulletin of the Chemical Society of Japan, vol. 44, no. 9, pp. 2332–2339, 1971. [7] I. WΕ‚och and A. WΕ‚och, β€œGeneralized sequences and π‘˜independent sets in graphs,” Discrete Applied Mathematics, vol. 158, no. 17, pp. 1966–1970, 2010. [8] A. WΕ‚och and M. WoΕ‚owiec-MusiaΕ‚, β€œGeneralized Pell numbers and some relations with Fibonacci numbers,” Ars Combinatoria, vol. 109, pp. 391–403, 2013. [9] A. Wloch and I. Wloch, β€œOn generalized pell numbers and their graph representations,” Commentationes Mathematicae, vol. 48, no. 2, pp. 169–175, 2008. [10] R. Diestel, Graph Theory, Springer, New York, NY, USA, 2005. [11] H. Prodinger and R. F. Tichy, β€œFibonacci numbers of graphs,” The Fibonacci Quarterly, vol. 20, no. 1, pp. 16–21, 1982. [12] S. Wagner and I. Gutman, β€œMaxima and minima of the Hosoya index and the Merrifield-Simmons index: a survey of results and techniques,” Acta Applicandae Mathematicae, vol. 112, no. 3, pp. 323–346, 2010.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014