3. Lesson Outline. ▫Introduction: Data Flood. ▫Data Mining Application Examples.
▫Data Mining & Knowledge Discovery. ▫Data Mining Tasks ...
Machine Learning, Data Mining, and Knowledge Discovery: An Introduction Gregory Piatetsky-Shapiro
KDnuggets
Course Outline Machine Learning input, representation, decision trees
Weka machine learning workbench
Data Mining associations, deviation detection, clustering, visualization
Case Studies targeted marketing, genomic microarrays Data Mining, Privacy and Security
Final Project: Microarray Data Mining Competition
2
Lesson Outline Introduction: Data Flood Data Mining Application Examples Data Mining & Knowledge Discovery Data Mining Tasks
3
Trends leading to Data Flood More data is generated: Bank, telecom, other business transactions ... Scientific data: astronomy, biology, etc
Web, text, and e-commerce
4
Big Data Examples Europe's Very Long Baseline Interferometry (VLBI) has 16 telescopes, each of which produces 1 Gigabit/second of astronomical data over a 25-day observation session storage and analysis a big problem
AT&T handles billions of calls per day so much data, it cannot be all stored -- analysis has to be done “on the fly”, on streaming data
5
Largest databases in 2003 Commercial databases: Winter Corp. 2003 Survey: France Telecom has largest decision-support DB, ~30TB; AT&T ~ 26 TB
Web Alexa internet archive: 7 years of data, 500 TB Google searches 4+ Billion pages, many hundreds TB IBM WebFountain, 160 TB (2003)
Internet Archive (www.archive.org),~ 300 TB
6
From terabytes to exabytes to … UC Berkeley 2003 estimate: 5 exabytes (5 million terabytes) of new data was created in 2002. www.sims.berkeley.edu/research/projects/how-much-info-2003/
US produces ~40% of new stored data worldwide
2006 estimate: 161 exabytes (IDC study) www.usatoday.com/tech/news/2007-03-05-data_N.htm
2010 projection: 988 exabytes
7
Largest Databases in 2005 Winter Corp. 2005 Commercial Database Survey: 1. Max Planck Inst. for Meteorology , 222 TB 2. Yahoo ~ 100 TB (Largest Data Warehouse) 3. AT&T ~ 94 TB www.wintercorp.com/VLDB/2005_TopTen_Survey/TopTenWinners_2005.asp
8
Data Growth
In 2 years, the size of the largest database TRIPLED!
9
Data Growth Rate Twice as much information was created in 2002 as in 1999 (~30% growth rate) Other growth rate estimates even higher Very little data will ever be looked at by a human Knowledge Discovery is NEEDED to make sense and use of data.
10
Lesson Outline Introduction: Data Flood Data Mining Application Examples Data Mining & Knowledge Discovery Data Mining Tasks
11
Machine Learning / Data Mining Application areas Science astronomy, bioinformatics, drug discovery, …
Business CRM (Customer Relationship management), fraud detection, ecommerce, manufacturing, sports/entertainment, telecom, targeted marketing, health care, …
Web: search engines, advertising, web and text mining, …
Government surveillance (?|), crime detection, profiling tax cheaters, … 12
Application Areas What do you think are some of the most important and widespread business applications of Data Mining?
13
Data Mining for Customer Modeling Customer Tasks: attrition prediction targeted marketing: cross-sell, customer acquisition
credit-risk fraud detection
Industries banking, telecom, retail sales, … 14
Customer Attrition: Case Study Situation: Attrition rate at for mobile phone customers is around 25-30% a year! With this in mind, what is our task? Assume we have customer information for the past N months.
15
Customer Attrition: Case Study Task:
Predict who is likely to attrite next month. Estimate customer value and what is the cost-effective offer to be made to this customer.
16
Customer Attrition Results Verizon Wireless built a customer data warehouse
Identified potential attriters Developed multiple, regional models Targeted customers with high propensity to accept the offer Reduced attrition rate from over 2%/month to under 1.5%/month (huge impact, with >30 M subscribers) (Reported in 2003) 17
Assessing Credit Risk: Case Study Situation: Person applies for a loan
Task: Should a bank approve the loan? Note: People who have the best credit don’t need the loans, and people with worst credit are not likely to repay. Bank’s best customers are in the middle
18
Credit Risk - Results Banks develop credit models using variety of machine learning methods. Mortgage and credit card proliferation are the results of being able to successfully predict if a person is likely to default on a loan Widely deployed in many countries
19
e-commerce A person buys a book (product) at Amazon.com
What is the task?
20
Successful e-commerce – Case Study Task: Recommend other books (products) this person is likely to buy Amazon does clustering based on books bought: customers who bought “Advances in Knowledge Discovery and Data Mining”, also bought “Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations”
Recommendation program is quite successful
21
Unsuccessful e-commerce case study (KDD-Cup 2000) Data: clickstream and purchase data from Gazelle.com, legwear and legcare e-tailer Q: Characterize visitors who spend more than $12 on an average order at the site Dataset of 3,465 purchases, 1,831 customers Very interesting analysis by Cup participants thousands of hours - $X,000,000 (Millions) of consulting
Total sales -- $Y,000 Obituary: Gazelle.com out of business, Aug 2000 22
Genomic Microarrays – Case Study Given microarray data for a number of samples (patients), can we Accurately diagnose the disease? Predict outcome for given treatment?
Recommend best treatment?
23
Example: ALL/AML data 38 training cases, 34 test, ~ 7,000 genes 2 Classes: Acute Lymphoblastic Leukemia (ALL) vs Acute Myeloid Leukemia (AML) Use train data to build diagnostic model ALL
AML
Results on test data: 33/34 correct, 1 error may be mislabeled 24
Security and Fraud Detection Case Study Credit Card Fraud Detection Detection of Money laundering FAIS (US Treasury)
Securities Fraud NASDAQ KDD system
Phone fraud AT&T, Bell Atlantic, British Telecom/MCI
Bio-terrorism detection at Salt Lake Olympics 2002 25
Data Mining and Privacy in 2006, NSA (National Security Agency) was reported to be mining years of call info, to identify terrorism networks Social network analysis has a potential to find networks Invasion of privacy – do you mind if your call information is in a gov database?
What if NSA program finds one real suspect for 1,000 false leads ? 1,000,000 false leads? 26
Lesson Outline Introduction: Data Flood Data Mining Application Examples Data Mining & Knowledge Discovery Data Mining Tasks
28
Knowledge Discovery Definition Knowledge Discovery in Data is the
non-trivial process of identifying valid novel
potentially useful and ultimately understandable patterns in data. from Advances in Knowledge Discovery and Data Mining, Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy, (Chapter 1), AAAI/MIT Press 1996
29
Related Fields Machine Learning
Visualization
Data Mining and Knowledge Discovery
Statistics
Databases
30
Statistics, Machine Learning and Data Mining
Statistics:
more theory-based
more focused on testing hypotheses
Machine learning
more heuristic
focused on improving performance of a learning agent
also looks at real-time learning and robotics – areas not part of data mining
Data Mining and Knowledge Discovery
integrates theory and heuristics
focus on the entire process of knowledge discovery, including data cleaning, learning, and integration and visualization of results
Distinctions are fuzzy
witten&eibe
31
Knowledge Discovery Process flow, according to CRISP-DM
see www.crisp-dm.org for more information
Monitoring
32
Historical Note: Many Names of Data Mining Data Fishing, Data Dredging: 1960 used by Statistician (as bad name)
Data Mining :1990 - used DB, business in 2003 – bad image because of TIA
Knowledge Discovery in Databases (1989-) used by AI, Machine Learning Community also Data Archaeology, Information Harvesting, Information Discovery, Knowledge Extraction, ... Currently: Data Mining and Knowledge Discovery are used interchangeably 33
Lesson Outline Introduction: Data Flood Data Mining Application Examples Data Mining & Knowledge Discovery Data Mining Tasks
34
Major Data Mining Tasks Classification: predicting an item class Clustering: finding clusters in data Associations: e.g. A & B & C occur frequently Visualization: to facilitate human discovery
Summarization: describing a group Deviation Detection: finding changes
Estimation: predicting a continuous value Link Analysis: finding relationships …
35
Data Mining Tasks: Classification Learn a method for predicting the instance class from pre-labeled (classified) instances Many approaches: Statistics, Decision Trees, Neural Networks, ...
36
Data Mining Tasks: Clustering Find “natural” grouping of instances given un-labeled data
37
Summary: Technology trends lead to data flood data mining is needed to make sense of data
Data Mining has many applications, successful and not
Knowledge Discovery Process Data Mining Tasks classification, clustering, …
38
More on Data Mining and Knowledge Discovery KDnuggets.com News, Publications Software, Solutions
Courses, Meetings, Education Publications, Websites, Datasets Companies, Jobs … 39
Data Mining Jobs in KDnuggets KDnuggets Job Ads 180 160 140 120 100
Industry Academic
80 60 40 20
40
2005
2004
2003
2002
2001
2000
1999
1998
1997
0