Supporting Information for
Does Long-term Irrigation with Untreated Wastewater Accelerate the Dissipation of Pharmaceuticals in Soil? Philipp Dalkmann†, Christina Siebe§, Wulf Amelung†, Michael Schloter#, Jan Siemens†* †
Institute of Crop Science and Resource Conservation – Soil Science and Soil Ecology, University of Bonn, Bonn, Germany
§
Instituto de Geología, Universidad Nacional Autónoma de México, México D.F., México #
Research Unit for Environmental Genomics, Helmholtz Zentrum München, Oberschleissheim, Germany
* Corresponding author, Phone: +49 228 73 2965, Fax: +49 228 732782, e-mail:
[email protected]
The SI section contains thirteen pages including two text paragraphs, six tables, and one figure.
S1
Text S1. Extraction of pharmaceuticals For the determination of the pharmaceutical concentrations in fractions of different sorption strength, freeze-dried soil samples were extracted sequentially. Therefore, at each of the extraction days soil samples were transferred to borosilicate centrifuge glasses and extracted with 25 mL of a 0.01 M CaCl2 solution to determine the easy extractable or “bioaccessible” compound fraction (e.g., [1]). Afterwards, centrifuge glasses were shaken end-over-end in an overhead shaker for 24 h followed by centrifugation at 2500 × g for 20 min. Supernatants were decanted and acidified to a pH of 2.4 with 12 M hydrochloric acid (HCl). Afterwards, an aliquot of 950 µL of each sample was transferred to HPLC vials. Subsequently, 50 µL of the internal standard solution were added as a cocktail with a concentration of 1 µg mL-1 of each isotope-labeled pharmaceutical. HPLC vials were stored at -21°C until measurement. This first CaCl2 extraction step was followed by a second one with 0.01 M CaCl2 to determine the easily desorbable compound fraction by repeating the procedure mentioned above. To assess the strongly bound, sequestered fraction of pharmaceuticals in soil, the CaCl2extracted soil samples were freeze-dried again and extracted via accelerated solvent extraction (ASE). We combined two different solvents for the extraction to account for the different physico-chemical properties of the pharmaceuticals (Table 2 in the main article). Following Dalkmann et al. [2] we used an aqueous 50 mM phosphoric acid:acetonitrile solution (50:50, v/v; according to Golet et al. [3] and a methanol:water solution (50:50, v/v; according to Göbel et al. [4]). Details on the ASE-extraction procedure are given in Table S3. Aliquots of 950 µL were transferred to HPLC vials and spiked with the internal standard solution as already described for the CaCl2 samples. Extraction recoveries of the extraction method varied between 54-95%. Recovery rates for the individual compounds are presented in Table S2. All chemicals were of HPLC gradient grade quality. Text S2. LC-MS/MS analysis The analysis of pharmaceutical concentrations in soil extracts was performed with liquid chromatography tandem mass spectrometry (LC-MS/MS). A ThermoFinnigan system was used that was composed of a Surveyor autosampler plus, a Surveyor MS pump plus, and a TSQ Quantum Ultra tandem mass spectrometer equipped with an heated electrospray ionization ion source (HESI) operating in positive mode (Thermo Finnigan, Dreieich, Germany). The separation of pharmaceuticals was achieved with an XBridge C18 3.5 µm, S2
2.1x150 mm (Waters, Milford, MA, USA) HPLC column with guard column (Sentry 2.1x10 mm, Waters, Milford, MA, USA). All pharmaceuticals were analyzed in the same run. Eluents were methanol (A) and Millipore water (B) both acidified with 0.1% formic acid. The flow rate was 300 µL min-1. The gradient elution started with 5% A, increasing after 5 min to 60%, raising from 60 to 80% after 15 min, further raising from 80 to 95% after 16 min, maintaining 95% for 0.5 min, and then back to initial conditions in 0.5 min. These initial conditions were kept until method end after 25 min. For CaCl2- and ASE- extracts, 10 µL of sample were injected into the system using partial loop injection. Ionization parameters were: discharge current 4.0 kV, vaporizer temperature 390°C, and capillary temperature 217°C. Nitrogen served as sheath and auxiliary gas and helium was used as collision gas at a pressure of 1.5 mTorr. The MS was operated in selected reaction monitoring (SRM) mode with at least two transitions being measured for each compound.
S3
Table S1. Consumption data, excretion rate, Predicted Environmental Concentrations (PEC), and measured wastewater concentrations of the target pharmaceuticals.
Compound
Consumptiona
Excreted fractionb
min. PECc
max. PECd
Concentrations of pharmaceuticals measured in wastewater Gibson et al. [6]
Siemens et al. [7]
Chávez et al. [8]
2011-2012e
[kg yr-1]
[%]
trimethoprim
14,115
80
0.17
1.13
carbamazepine
9,395
3
0.01
0.04
sulfamethoxazole
70,164
30
0.42
2.82
naproxen
84,752
70
1.19
7.94
bezafibrate
2,138
70
0.02
0.14
diclofenac
11,033
37
0.08
0.55
ciprofloxacin
16,045
20
0.06
0.43
0.47 ± 0.30
enrofloxacin
n.a.f
n.a.
-
-
0.04 ± 0.03
clarithromycin
4,082
25
0.07
0.46
a
b
[µg L-1] 0.28-0.32
0.13 ± 0.11 0.20-0.28
0.26 ± 0.14 1.21 ± 0.76
15.22-16.65
2.84-5.60
1.61-16.34
0.07-0.1 1.72-6.36
14.02 ± 15.87 3.64 ± 2.54
0.42-0.55
1.22-3.77
0.40-1.40
1.45 ± 0.87
0.02 ± 0.03 c
average consumption in 2003 and 2004 in Mexico [5]; parent compound including conjugates, data are from Siemens et al. [7] and Verlicchi et al. [9]; minimum Predicted Environmental Concentration (considering a wastewater volume of 25.9x109 L/day for the Mexico City Metropolitan area); d maximum PEC considering a wastewater volume of 3.89x109 L/day) e Measured wastewater concentrations at La Licuadora (wastewater channel; mean of three sampling campaigns: 03/2011, 09/2011, 05/2012 ± STDDEV); f not available
S4
Table S2: General chemical characteristics of untreated Mexico City wastewater used for irrigation in the Mezquital Valley. Parameter pH -1
el. cond. [µS cm ]
SARH 1985 [10, 11]a
CNA et al. [12]b
Jiménez and Landa [13]
Chávez et al. [8]
2011-2012c
7.2-7.4
6.97-7.64
7.33-7.84
-
7.26-8.07
605-1483
1114-1673
830-2110
734-3000
1013-1559
-1
-
78-131
-
-
-
-1
-
294-315
262-358
113-577
-
682-1488
-
95-185
49-383
-
18-29
23-23
31-40
-
-
NH4-N [mg L ]
7.51-17.5
8.5-18.5
18-29
-
3.6-4.0
NO3-N [mg L-1]
0.02-0.03
0.2-0.3
-
0.02-0.2
0
Total P [mg L-1]
2.5-3.7
1.9-2.1
8-11
-
-
Ortho-P [mg L-1]
-
1.6-1.7
1.5-1.9
-
-
Ca2+ [mg L-1]
38-53
-
-
36-52
33-47
Mg2+ [mg L-1]
18-25
-
-
-
15-30
K+ [mg L-1]
16-43
18-37
-
-
21-37
Na+ [mg L-1]
59-205
78-337
-
-
101-203
Cl- [mg L-1]
66-225
77-243
-
70-176
81-162
HCO3- [mg L-1]
189-295
233-597
-
270-504
400-720
SO42- [mg L-1]
40-43
187-346
-
53-2492
31-103
BOD [mg L ] COD [mg L ] -1
TSS [mg L ] -1
Total N [mg L ] -1
a
b
data from Officinas Centrales del Distrito de Riego 03, Mixquiahuala, Hidalgo, Mexico for 1985; samples from 1993; Measured wastewater concentrations at La Licuadora (wastewater channel; three sampling campaigns: 03/2011, 09/2011, 05/2012).
S5
Table S3. Recoveries of ASE-extractions Ciprofloxacin Enrofloxacin Sulfamethoxazole Trimethoprim Clarithromycin Carbamazepine Naproxen Diclofenac Bezafibrate [%] [%] [%] [%] [%] [%] [%] [%] [%] 89
78
54
83
93
77
95
85
96
Table S4. Extraction parameters of the Accelerated Solvent Extraction (ASE) Method 1 (after Göbel et al.a) methanol : Millipore-water (1:1) (v/v) 100
Method 2 (after Golet et al.b) 50 mM aqueous H3PO4 : acetonitrile (1:1) (v/v) 100
Temperature [°C]
100
100
Heating time [min] Static extraction [min] Extraction cycles
5
5
5
10
2
3
Flush volume [%]
60
90
Flush with N2 [sec]
60
180
Parameter Solvent Pressure [bar]
a
[3]; b [4]
S6
Table S5. Total extracted soil concentrations of the unspiked control samples incubated for 0.1 and 150 days, respectively (means, standard deviation in brackets) Irrigation time
Nonsterile/ sterilea
TRI
CAR
SMX
NAP
BEZ
DIC
CIP
ENR
CLA
day 0.1
day 150
day 0.1
day 150
day 0.1
day 150
day 0.1
day 150
day 0.1
day 150
day 0.1
day 150
day 0.1
day 150
day 0.1
day 150
day 0.1
day 150
[µg kg-1]
[µg kg-1]
[µg kg-1]
[µg kg-1]
[µg kg-1]
[µg kg-1]
[µg kg-1]
[µg kg-1]
[µg kg-1]
[µg kg-1]
[µg kg-1]
[µg kg-1]
[µg kg-1]
[µg kg-1]
[µg kg-1]
[µg kg-1]
[µg kg-1]
[µg kg-1]
0 years
n
0.16
0.03 (0.05)
< RLOQb
0.01 (0.02)
0.26
< RLOQ
0.16
< RLOQ
< RLOQ
< RLOQ
< RLOQ
< RLOQ
< RLOQ
< RLOQ
< RLOQ
< RLOQ
< RLOQ
< RLOQ
14 years
n
0.44 (0.07)
0.49 (0.19)
4.87 (1.16)
5.33 (0.55)
3.64 (1.37)
2.15 (0.22)
2.74 1.07
0.49 (0.45)
< RLOQ
< RLOQ
0.02 0.03
< RLOQ
1.99 (0.40)
1.38 (0.11)
0.79 0.13
0.42 (0.18)
0.80 (0.51)
0.17 (0.12)
100 years
n
1.75
3.19 (0.56)
7.02
8.75 (1.35)
3.91
4.03 (0.93)
2.97
1.02 (1.02)
< RLOQ
< RLOQ
< RLOQ
< RLOQ
2.22
1.46 (0.11)
1.90
0.76 (0.28)
1.80
1.36 (1.55)
100 years
s
3.35 (0.81)
3.62 (0.65)
8.69 (1.78)
9.16 (0.69)
6.44 (1.48)
4.56 (0.29)
< RLOQ
0.11 (0.20)
0.89 (0.50)
0.60 (0.13)
0.33 (0.13)
0.29 (0.18)
5.34 (0.36)
n.m.c
n.m.
n.m.
1.66 (1.36)
1.65 (1.28)
TRI = trimethoprim; CAR = carbamazepine; SMX = sulfamethoxazole; NAP = naproxen; BEZ = bezafibrate; DIC = diclofenac; CIP = ciprofloxacin; ENR = enrofloxacin; CLA = clarithromycin a n = non-sterile, s = sterile incubation; b Routine Limit Of Quantification; c not measured
S7
Table S6. Estimated initial values of the easily extractable (EAS) fraction (C0(EAS)) and the residual (RES) fraction (C0(RES)), as well as rate coefficients kEAS (transfer rate of pharmaceuticals from the EAS fraction into the RES fraction), kRES (transfer rate of pharmaceuticals from the RES fraction into the EAS fraction), and qEAS (pooled rate of dissipation due to mineralization, transformation, and formation of non-extractable residues); n.c. = not calculated. compound
soil
C0(EAS)
C0(RES)
[µg kg-1]
[µg kg-1]
kEAS
kRES
qEAS
kEAS/kRES
R2
trimethoprim
Santiago Tezontlale El Tigre 1 El Tigre 2 Casco de Hacienda 1 Casco de Hacienda 2 Tlaxcoapan Ulapa 1 Ulapa 2 Juandhó 1 Ulapa 1 (sterile) Ulapa 2 (sterile) Juandhó 1 (sterile)
40.5 15.3 23.2 42.2 26.1 16.9 27.5 51.3 0.0 0.0 31.5 23.0
964.1 723.8 750.6 955.8 688.8 964.0 852.6 824.5 941.2 874.9 1123.5 1026.2
0.741 0.676 0.199 0.161 0.103 0.714 0.751 0.383 0.511 0.194 0.488 0.565
0.057 0.092 0.026 0.024 0.021 0.067 0.022 0.022 0.033 0.005 0.020 0.019
0.072 0.193 0.451 0.336 0.544 0.559 0.261 0.261 0.256 0.020 0.044 0.035
13.04 7.33 7.73 6.74 4.87 10.62 34.79 17.75 15.49 40.73 24.25 29.02
0.98 0.85 0.95 0.98 0.98 0.99 0.94 0.99 0.98 0.97 0.99 0.99
carbamazepine
Santiago Tezontlale El Tigre 1 El Tigre 2 Casco de Hacienda 1 Casco de Hacienda 2 Tlaxcoapan Ulapa 1
768.5 676.5 565.2 562.4 522.7 604.4 462.6
299.0 366.8 461.9 486.7 499.5 445.7 600.7
0.027 0.020 0.033 0.030 0.036 0.029 0.188
0.030 0.016 0.021 0.014 0.020 0.022 0.082
0.001 0.002 0.005 0.001 0.002 0.002 0.003
0.92 1.21 1.59 2.17 1.83 1.34 2.28
0.93 0.94 0.95 0.91 0.96 0.94 0.84
S8
Table S6 (continued). compound
soil
C0(EAS)
C0(RES)
[µg kg-1]
[µg kg-1]
kEAS
kRES
qEAS
kEAS/kRES
R2
carbamazepine
Ulapa 2 Juandhó 1 Ulapa 1 (sterile) Ulapa 2 (sterile) Juandhó 1 (sterile)
474.7 431.2 435.8 523.7 450.8
527.4 576.9 594.2 532.3 603.4
0.017 0.014 0.027 0.072 0.026
0.008 0.006 0.013 0.043 0.012
0.000 0.001 0.002 0.002 0.002
2.04 2.32 2.18 1.67 2.12
0.96 0.97 0.97 0.92 0.98
sulfamethoxazole
Santiago Tezontlale El Tigre 1 El Tigre 2 Casco de Hacienda 1 Casco de Hacienda 2 Tlaxcoapan Ulapa 1 Ulapa 2 Juandhó 1 Ulapa 1 (sterile) Ulapa 2 (sterile) Juandhó 1 (sterile)
6483.5 6180.5 4883.7 5301.8 5548.2 5982.8 4260.9 4999.4 5005.2 4177.0 5176.5 4674.8
-133.9 105.1 454.3 337.8 309.5 208.7 789.3 401.4 475.6 609.8 299.9 560.5
0.014 0.015 0.033 0.031 0.028 0.025 0.030 0.028 0.034 0.032 0.040 0.033
0.040 0.010 0.011 0.010 0.013 0.011 0.013 0.010 0.009 0.014 0.008 0.008
0.020 0.070 0.188 0.104 0.114 0.093 0.072 0.109 0.145 0.055 0.155 0.179
0.35 1.48 3.10 3.28 2.15 2.23 2.32 2.85 3.88 2.25 5.16 4.43
0.99 0.99 0.98 0.99 1.00 1.00 0.95 0.96 0.98 0.96 0.98 0.96
naproxen
Santiago Tezontlale El Tigre 1 El Tigre 2 Casco de Hacienda 1 Casco de Hacienda 2 Tlaxcoapan
8715.6 8208.8 6968.4 7478.1 6852.1 8103.0
1109.2 1225.8 1831.2 1390.3 1502.6 1309.7
0.007 0.001 0.009 0.003 0.015 0.000
0.034 0.017 0.057 0.014 0.139 0.025
0.031 0.042 0.078 0.044 0.104 0.053
0.22 0.09 0.16 0.21 0.11 0.00
1.00 0.99 0.99 1.00 0.99 0.99
S9
Table S6 (continued). compound
soil
C0(EAS)
C0(RES)
[µg kg-1]
[µg kg-1]
kEAS
kRES
qEAS
kEAS/kRES
R2
naproxen
Ulapa 1 Ulapa 2 Juandhó 1 Ulapa 1 (sterile) Ulapa 2 (sterile) Juandhó 1 (sterile)
6373.7 7003.8 6614.4 6500.2 7692.5 7101.2
2157.0 1535.3 1752.4 1177.2 726.2 1144.9
0.041 0.000 0.002 0.096 0.070 0.051
0.101 0.014 0.012 0.190 0.183 0.111
0.068 0.040 0.033 0.002 0.003 0.003
0.41 0.01 0.14 0.50 0.38 0.46
0.98 0.99 0.99 0.93 0.96 0.95
bezafibrate
Santiago Tezontlale El Tigre 1 El Tigre 2 Casco de Hacienda 1 Casco de Hacienda 2 Tlaxcoapan Ulapa 1 Ulapa 2 Juandhó 1 Ulapa 1 (sterile) Ulapa 2 (sterile) Juandhó 1 (sterile)
215.4 167.7 142.7 139.7 114.4 157.0 109.0 127.5 116.3 175.2 191.5 170.9
42.8 29.8 53.1 51.6 25.4 36.0 46.3 24.9 55.9 75.0 56.6 82.6
0.032 0.044 0.015 0.018 0.024 0.040 0.149 0.224 -0.004 0.121 0.110 0.043
0.041 0.036 0.034 0.021 0.037 0.062 0.097 0.271 0.012 0.106 0.105 0.036
0.133 0.367 0.373 0.164 0.546 0.240 0.125 0.106 0.110 0.014 0.037 0.017
0.78 1.22 0.43 0.86 0.65 0.64 1.54 0.83 n.c. 1.14 1.04 1.21
0.98 0.99 0.99 0.98 0.99 0.99 0.94 0.93 0.96 0.88 0.94 0.88
diclofenac
Santiago Tezontlale El Tigre 1 El Tigre 2 Casco de Hacienda 1 Casco de Hacienda 2
925.9 656.6 371.2 277.3 283.3
50.9 82.1 88.4 101.3 59.5
0.001 -0.006 0.111 -0.086 0.193
0.055 0.074 0.438 0.062 0.792
0.339 0.426 0.848 0.765 1.256
0.02 n.c. 0.25 n.c. 0.24
0.99 0.99 0.99 0.98 1.00
S10
Table S6 (continued). compound
soil
C0(EAS)
C0(RES)
[µg kg-1]
[µg kg-1]
kEAS
kRES
qEAS
kEAS/kRES
R2
diclofenac
Tlaxcoapan Ulapa 1 Ulapa 2 Juandhó 1 Ulapa 1 (sterile) Ulapa 2 (sterile) Juandhó 1 (sterile)
386.6 198.3 189.9 191.8 462.6 511.6 361.2
93.0 35.8 53.1 135.4 229.9 167.1 223.5
-0.034 0.297 -0.261 -0.414 -0.311 -0.166 -0.959
0.144 0.341 0.033 0.012 0.004 0.006 0.006
0.803 0.503 1.807 1.188 1.251 0.978 2.929
n.c. 0.87 n.c. n.c. n.c. n.c. n.c.
1.00 0.98 0.99 0.98 0.82 0.95 0.96
ciprofloxacin
Santiago Tezontlale El Tigre 1 El Tigre 2 Casco de Hacienda 1 Casco de Hacienda 2 Tlaxcoapan Ulapa 1 Ulapa 2 Juandhó 1 Ulapa 1 (sterile) Ulapa 2 (sterile) Juandhó 1 (sterile)
8.7 0.7 1.6 1.5 1.2 0.4 1.9 3.0 1.3 n.c. n.c. n.c.
61.9 38.3 58.4 59.1 27.6 44.2 68.8 43.8 59.1 n.c. n.c. n.c.
0.437 0.009 0.033 0.057 0.202 0.023 0.289 0.019 0.074 n.c. n.c. n.c.
0.097 0.025 0.034 0.019 0.046 0.032 0.034 0.018 0.019 n.c. n.c. n.c.
0.147 0.069 0.529 0.340 0.448 0.564 0.554 0.444 0.290 n.c. n.c. n.c.
4.49 0.36 0.96 2.98 4.43 0.73 8.43 1.08 3.81 n.c. n.c. n.c.
0.90 0.92 0.97 0.98 0.95 0.97 0.90 0.94 0.98 n.c. n.c. n.c.
S11
-1
extracted concentration of CAR [µg kg ]
800
1st CaCl2 extraction 2nd CaCl2 extraction
700
ASE extraction
600 500 400 300 200 100 0 0
20
40
60
80
100
120
140
160
days of incubation
Figure S1. Soil concentrations of carbamazepine (CAR) extracted with 0.01 M CaCl2 solution (1st and 2nd step) followed by Accelerated Solvent Extraction (ASE). REFERENCES 1. Rosendahl, I.; Siemens, J.; Groeneweg, J.; Linzbach, E.; Laabs, V.; Herrmann, C.; Vereecken, H.; Amelung, W. Dissipation and sequestration of the veterinary antibiotic sulfadiazine and its metabolites under field conditions. Environ. Sci. Technol. 2011, 45 (12), 5216–5222. 2. Dalkmann, P.; Broszat, M.; Siebe, C.; Willaschek, E.; Sakinc, T.; Huebner, J.; Amelung, W.; Grohmann, E.; Siemens, J. Accumulation of pharmaceuticals, Enterococcus, and resistance genes in soils irrigated with wastewater for zero to 100 years in Central Mexico. PLoS ONE 2012, 7 (9), e45397. 3. Golet, E. M.; Strehler, A.; Alder, A. C.; Giger, W. Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Anal. Chem. 2002, 74 (21), 5455–5462. 4. Göbel, A.; Thomsen, A.; McArdell, C. S.; Alder, A. C.; Giger, W.; Theiss, N.; Löffler, D.; Ternes, T. A. Extraction and determination of sulfonamides, macrolides, and trimethoprim in sewage sludge. J. Chromatogr. A 2005, 1085 (2), 179–189. 5. IMS IMS chemical country profile Mexico; IMS Health Incorporated: London, 2008. S12
6. Gibson, R.; Becerril-Bravo, E.; Silva-Castro, V.; Jiménez, B., Determination of acidic pharmaceuticals and potential endocrine, disrupting compounds in wastewaters and spring waters by selective elution and analysis by gas chromatography-mass spectrometry. J. Chromatogr. A 2007, 1169, 31–39. 7. Siemens, J.; Huschek, G.; Siebe, C.; Kaupenjohann, M., Concentrations and mobility of human pharmaceuticals in the world’s largest wastewater irrigation system, Mexico City– Mezquital Valley. Water Res. 2008, 42, 2124–2134. 8. Chávez, A.; Maya, C.; Gibson, G.; Jiménez, B, The removal of microorganisms and organic micropollutants from wastewater during infiltration to aquifers after irrigation of farmland in the Tula Valley, Mexico. Environ. Pollut. 2011, 159, 1354–1362. 9. Verlicchi, P.; Galletti, A.; Petrovic, M.; Barcelo, D., Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options. J. Hydrol. 2010, 389 (3-4), 416–428. 10. Siebe, C. Akkumulation, Mobilität und Verfügbarkeit von Schwermetallen in langjährig mit städtischen Abwässern bewässerten Böden in Zentralmexiko. Hohenheimer Bodenkundliche Hefte 1994, 17, p. 19. 11. Gutiérez-Ruiz, M. E.; Siebe, Ch.; Sommer, I. Effects of land application of wate water from Mexico city on soil fertility and heavy metal accumulation: a bibliographical review. Environ. Rev. 1995, 3, 318–330. 12. Comisión Nacional del Agua, British Geological Survey, London School of Hygiene and Tropical Medicine and University of Birmingham, Effects of wastewater reuse on groundwater in the Mezquital Valley, Hidalgo State, Mexico- Final Report November 1998, BGS Technical Report WC/98/42 p. 76. 13. Jiménez, C. B.; Landa, V. H. Physico-chemical and bacteriological characterization of wastewater from Mexico City. Water Sci. Technol. 1998, 37 (1), 1–8.
S13