D = D [ min{Angle(CBq ,Ci,CEp1) | i 2 [[Bp1. ,Eq]]} q = p. 1 p1. Ci i 2 [[Bp1. ,Eq]]. Angle p 1 q. C. C. D. C. MBS1.4(C). 12 s0 s11. â¤. C14. C15 C22. C26 C49. C52.
⌫
(DP )
C C
C
D(a, b, µ, !)
gcd(a, b) = 1 Sf
a b µ (x, y)
Sf
! µ ax
Sf
D
by < µ + ! D(a, b, µ, !)
! 1 max(|a|,|b|)
Sf
y vertical distance
convex hull
10 7
1.42
D(2, 7,
x
8, 11)
Sf
⌫ ⌫ C
! 1 max(|a|,|b|)
Ci,j
⌫
C Ci,j
⌫
BS(i, j, ⌫) Ci,j M BS(i, j, ⌫)
⌫ BS(i, j, ⌫) ¬BS(i, j + 1, ⌫) ⌫
¬BS(i
1, j, ⌫)
C
M BS⌫ (C) ⌫ C M BS⌫ (C) = {M BS(B0 , E0 , ⌫) M BS(B1 , E1 , ⌫) M BS(Bm 1 , Em B 0 < B 1 < . . . < Bm 1 E0 < E1 < . . . < Em
1 , ⌫)} 1
1.4 1.4 Bi B0 = 0
Ei E0 = 15 B1 = 5
E1 = 17
⌫
C C
C
C C = (Ci )i=1..n ⌫
⌫ C C C
M BS⌫ (C)
⌫
⌫
k ⌫
k
q
1.4
C D
n
⌫
1 M BS⌫ = {M BS(Bi , Ei , ⌫)}m i=0 n = |C| m = |M BS⌫ | q=0 p=1 D=; p Bp p++ D = D [ min{Angle(CBq , Ci , CEp 1 ) | i 2 [[Bp q=p 1
p 1 i 2 [[Bp
Ci
p
1 , Eq ]]}
1 , Eq ]]
Angle
1
q
C
C D C
M BS1.4 (C)
12
s0
s11 ⇤ C14
C15 C22
C26 C49
C52
C59
C62
n O(n log n)
BS0
ES3
BS3
ES5
BS5
ES9
BS9
ES11
⌫ ⌫ ⌫
⌫
⌫
C14 C15 C22 C23 C24 C25 C26 C49 C50 C51 C52 C59 C60 C61 C62
CR =
n #DP
n X
ISSE =
d2i
i=1
ith
di L1
L1 L1 = max{di }ni=1
F OM =
⌫ = 1.5
CR ISSE
L1 n n n n
Di vi+1 Di
vi C
Di+1
1
Di vi+1
ISSEi = ISSE(Di ) =
X
j=vi
d(P, AB)
d2 (Cj , Di
1 Di+1 ),
1
P
AB
weighti = ISSEi /anglei
•
m
1
m •
2
2
2
D b D
2
b =D D F = F OM2 (D) Fb = F b =D b \ {min b weight(p)} D p2D b F = F OM2 (D) F < Fb • F OM2 (D) • weight(p)
F OM2 = CR2 /ISSE
D
weight = ISSE/angle
p F OM2 F OM2
weigth weigth
b |D| b m D
B
(ISSE=2.59,angle=3.02)
A
(ISSE=2,angle=1.57)
ISSE angle
AP S F DP
F DP AP S
F OM
F OM2 F OM2
AP S AP S
F OM2
20% F DP AP S
L1 n
2
AP S F DP
n
AP S F DP
n
AP S F DP
n
AP S F DP
F DP AP S
•
•
F DP F DP
L1
F DP
⌫
F DP
⌫
F DP
⌫
s
L1 F DP
⌫
F DP
⌫
F DP
⌫
n
n
n
AP S
⌫ = 1.9
2
e
e
s
#DP ASP
AP S
⌫ =
1.7
ASP
F OM2
F OM
L1 L1
ASP
L1 L1 AP S
⌫
n
AP S
⌫
n
AP S
2
s
AP S AP S
AP S
AP S
S DP (S) area(DP (S))
per(DP (S)) DP (S) ch(DP (S))
DP (S) S per(DP (S))2 area(DP (S)) per(ch(DP (S)))2 area(ch(DP (S))) area(ch(DP (S))) area(DP (S))
S
DP (S) S S DP (S)
n
Xi i = 1...n
k cj j = 1...k
%
precisioni = recalli = F measurei = 2 ⇤
precisioni
precisioni ⇤recalli precisioni +recalli
recalli
F OM2