Some decomposition formulas of generalized hypergeometric ...

3 downloads 0 Views 113KB Size Report
Oct 15, 2008 - Key Words and Phrases: Generalized hypergeometric series; Inverse pairs of ..... with (4.5), (4.6) which are disguised forms of Taylor's series.
Some decomposition formulas of generalized hypergeometric functions and formulas of an analytic continuation of the Clausen function A. Hasanov Institute of Mathematics, Uzbek Academy of Sciences,

arXiv:0810.2636v1 [math-ph] 15 Oct 2008

29, F. Hodjaev street, Tashkent 100125, Uzbekistan E-mail: [email protected]

Abstract In this paper, using similar symbolical method of Burchnall and Chaundy formulas of expansion for the generalized hypergeometric function were constructed. By means of the found formulas of expansion the formulas of an analytic continuation for hypergeometric function of Clausen is defined. The obtained formulas of an analytic continuation express known hypergeometric Appell function F2 (a; b1 , b2 ; c1 , c2 ; x, y) which theory is well studied. MSC: primary 33C20; secondary 44A45. Key Words and Phrases: Generalized hypergeometric series; Inverse pairs of symbolic; Decomposition formulas; Gauss function; Clausen function; formulas Analytic continuations.

1

Introduction and definitions

Hardly there is a necessity to speak about importance of properties of hypergeometric functions for any scientist and the engineer dealing with practical application of differential equations. The solution of various problems concerning a thermal conduction and dynamics, electromagnetic oscillations and aerodynamics, a quantum mechanics and the theory of potentials, leads to hypergeometric functions. More often they appear at solving of partial differential equations by the method of a separation of variables. A variety of the problems leading hypergeometric functions, has called fast growth of number of the functions, applied in applications (for example, in the monography [3] 205 hypergeometric functions are studied). There were monographies and papers on the theory of special functions. But in these monographs there is no formula of expansion and an analytic continuation of the generalized hypergeometric function. In this paper, using similar symbolical method Burchnall and Chaundy, we shall construct formulas of expansion for the generalized hypergeometric function. By means of the obtained formulas of expansion we find the formulas of an analytic continuation of hypergeometric function of Clausen. The found formulas of an analytic continuation express known hypergeometric Appell function ([1], p. 14, (12), p.28, (2) and [2]) F2 (a; b1 , b2 ; c1 , c2 ; x, y) =

∞ X (a)i+j (b1 )i (b2 )j

i,j=0

(b1 )i (b2 )j i!j!

1

xi y j , |x| + |y| < 1,

Γ (c1 ) Γ (c2 ) × Γ (b1 ) Γ (c1 − b1 ) Γ (b2 ) Γ (c2 − b1 )

F2 (a; b1 , b2 ; c1 , c2 ; x, y) = ×

Z1 Z1 0

c1 −b1 −1

ξ b1 −1 η b2 −1 (1 − ξ)

(1 − η)

c2 −b2 −1

(1 − xξ − yη)

−a

dξdη, Reci > Rebi > 0, i = 1, 2.,

0

which theory is well studied. In the Gaussian [1, 2], hypergeometric series 2 F1 (a, b; c; x) there are two numeration parameters a, b and one denominator parameter c. A natural generalization of this series is accomplished by introducing any arbitrary number of numerator and denominator parameters. The resulting series [1-3]   ∞ X α1 , α1 , ..., αp ; (α1 )m (α2 )m ... (αp )m m  z = z , p Fq (β1 )m (β2 )m ... (βq )m m! β1 , β1 , ..., βq ; m=0

(1.1)

where (λ)n is the Pochhammer symbol defined (λ)n =

Γ (λ + n) , λ 6= 0, −1, −2, ..., Γ (λ)

(1.2)

is known as the generalized Gauss series, or simply, the generalized hypergeometric series. Here p and q are positive integers or zero (interpreting an empty product as 1), and we assume that the variable z, the numerator parameters α1 , ..., αp , and the denominator parameters β1 , ..., βq take on complex values, provided that βi 6= 0, −1, −2, ...; j = 1, ..., q.

(1.3)

Supposing that none of the numerator parameters is zero or a negative integer, and with the usual restriction (1.3), the series in (1.1) (I) converges for |z| < ∞ if p ≤ q, (II) converges for |z| < ∞ if p = q + 1, and (III) diverges for all z , , if p > q + 1. Furthermore, if we set ω=

q X

βi −

p X

αi ,

(1.4)

i=1

i=1

it is known that the p Fq series, with p = q + 1, is (IV) absolutely converges for if Re (ω) > 0, (V) conditionally convergent for, z 6= 1, if −1 < Re (ω) ≤ 0, and (VI) divergent for |z| = 1 if Re (ω) ≤ −1. The formula of an analytic continuation of hypergeometric functions have important value in the theory hypergeometric functions. The formula of an analytic continuation for hypergeometric function of Gauss 2 F1

(a, b; c; x) can be found in the monography [1, 2]. In the paper ([4], p. 704, (3)), for hypergeometric

function of Clausen (1.1) in the case of p = 3, q = 2 the formulas of an analytic continuation were found by the author. One of the found formulas has a form of       a1 , a2 , a3 a1 , a2 , a3 a1 , a2 , a3  x = FR  x + ξ  x , 3 F2 b1 , b2 b1 , b2 b1 , b2 2

(1.5)

where



FR 

a1 , a2 , a3



x =

Γ (b1 ) Γ (b2 ) Γ (b1 + b2 − a1 − a2 − a3 ) Γ (a1 ) Γ (b1 + b2 − a1 − a2 ) Γ (b1 + b2 − a1 − a3 )

b1 , b2 ∞ X (b1 − a1 )n (b2 − a1 )n (b1 + b2 − a1 − a2 − a3 )n × (b1 + b2 − a1 − a2 )n (b1 + b2 − a1 − a3 )n n! n=0 ×2 F1 (a2 , a3 ; a1 + a2 + a3 − b1 − b2 − n + 1; 1 − x) ,  a1 , a2 , a3 Γ (b1 ) Γ (b2 ) Γ (a1 + a2 + a3 − b1 − b2 ) ξ x = Γ (a1 ) Γ (a2 ) Γ (a3 ) b1 , b2

(1.6)



a1 −b1 −b2 +1

×x

b1 +b2 −a1 −a2 −a3

(1 − x)

∞ X

(b1 − a1 )n (b2 − a1 )n (b + b2 − a1 − a2 − a3 + 1)n n! 1 n=0



x−1 x

n

(1.7)

×2 F1 (1 − a2 , 1 − a3 ; b1 + b2 − a1 − a2 − a3 + n + 1; 1 − x) . From identity (1.5) follows that the obtained formula of an analytic continuation for hypergeometric function of Clausen 3 F2 is very bulky and not convenient in applications, and does not express through known hypergeometric functions.

2

Preliminaries

Burchnall and Chaundy ([5] and [6]) and (Chaundy [7]) systematically presented a number of expansion and decomposition formulas for double hypergeometric functions in series of simpler hypergeometric functions. Their method is based upon the following inverse pairs of symbolic operators: ∞

∇x,y (h) :=

Γ (h) Γ (δ + δ ′ + h) X (−δ)i (−δ ′ )i = , Γ (δ + h) Γ (δ ′ + h) (h)i i! i=0

∞ (−δ)i (−δ ′ )i Γ (δ + h) Γ (δ ′ + h) X = Γ (h) Γ (δ + δ ′ + h) (1 − h − δ − δ ′ )i i! i=0   ∞ i ′ X (−1) (h)2i (−δ)i (−δ )i ∂ ∂ ′ . , δ := x ; δ := y = (h + i − 1)i (δ + h)i (δ ′ + h)i i! ∂x ∂y i=0

(2.1)

∆x,y (h) :=

(2.2)

Indeed, as already observed by Srivastava and Karlsson ([3], pp. 332-333), the aforementioned method of Burchnall and Chaundy (cf. [5] and [6]) was subsequently applied by Pandey [8] and Srivastava [9] in order to derive the corresponding expansion and decomposition formulas for the triple hypergeometric functions (3)

FA , FE , FK , FM , FP and FT , HA , HC , respectively (see, for definitions, [3, Section 1.5] and [10], p. 66 et seq.), by Singhal and Bhati [11], Hasanov and Srivastava [14, 15] for deriving analogous multiple-series expansions associated with several multivariable hypergeometric functions. We now introduce here the following analogues of Burchnall-Chaundy symbolic operators ∇x,y and ∆x,y defined by (2.1) and (2.2), respectively: Hx1 ,...,xl (α, β) :=

Γ (β) Γ (α + δ1 + · · · + δl ) = Γ (α) Γ (β + δ1 + · · · + δl )

∞ X

k1 ,···,kl =0

(β − α)k1 +···+kl (−δ1 )k1 · · · (−δl )kl (β)k1 +···+kl k1 ! · · · kl !

(2.3)

and ¯ x1 ,...,x (α, β) := Γ (α) Γ (β + δ1 + · · · + δl ) = H l Γ (β) Γ (α + δ1 + · · · + δl )

∞ X

k1 ,...kl =0

3

(β − α)k1 +···+kl (−δ1 )k1 · · · (−δl )kl (2.4) (1 − α − δ1 − · · · − δl )k1 +···+kl k1 ! · · · kl !

  ∂ , j = 1, ..., l; l ∈ N := {1, 2, 3, ...} . δj := xj ∂xj By means of operators (2.3) - (2.4) we shall construct functional identities for the generalized hypergeometric function (1.1).

3

Functional identities

Similarly just as in the papers [5, 6], the following functional identities     α , α , ..., αp ; α1 , α2 , ..., αp−1 ;  1 2 x = Hx (αp , βq ) p−1 Fq−1  x , p ≥ 3, q ≥ 2, p Fq β1 , β2 , ..., βp ; β1 , β2 , ..., βq−1 ; 

α1 , α2 , ..., αp−1 ;





α1 , α2 , ..., αp ;

(3.1)



¯ x (αp , βq ) p Fq  x = H x , p ≥ 3, q ≥ 2, (3.2) β1 , β2 , ..., βq−1 ; β1 , β2 , ..., βp ;     α1 , α2 , ..., αp−2 ; α1 , α2 , ..., αp ; x , p ≥ 4, q ≥ 3, x = Hx (αp , βq ) Hx (αp−1 , βq−1 ) p−2 Fq−2  p Fq  β1 , β2 , ..., βq−2 ; β1 , β2 , ..., βq ; (3.3)     p−1 Fq−1

p−2 Fq−2



α1 , α2 , ..., αp−2 ;



β1 , β2 , ..., βq−2 ;

¯ x (αp , βq ) H ¯ x (αp−1 , βq−1 ) p Fq  x = H

α1 , α2 , ..., αp ; β1 , β2 , ..., βp ;

x , p ≥ 4, q ≥ 3

(3.4)

are true. Validity of functional identities (3.1) - (3.4) can be proved by means of transformation Mellin (for example see [12]).

4

Formulas of expansion for the generalized hypergeometric function

Applying operators (2.3) - (2.3), from functional identities we define the following expansions for the generalized hypergeometric function (1.1)   α1 , α2 , ..., αp ; x p Fq  β1 , β2 , ..., βp ;

  ∞ i X α1 + i, α2 + i, ..., αp−1 + i; (−1) (α1 )i (α2 )i ... (αp−1 )i (βq − αp )i i x , p ≥ 3, q ≥ 2, x p−1 Fq−1  = (β ) (β ) ... (β ) (β ) i! 1 2 q−1 q i i β + i, β + i, ..., β + i; i i 1 2 q−1 i=0 (4.1)   p−1 Fq−1

α1 , α2 , ..., αp−1 ;



β1 , β2 , ..., βq−1 ;

x

  ∞ X α1 + i, α2 + i, ..., αp−1 + i, αp ; (α1 )i (α2 )i ... (αp−1 )i (βq − αp )i i x , p ≥ 3, q ≥ 2, x p Fq  = (β ) (β ) ... (β ) i! 1 2 p i i β + i, β + i, ..., β + i; i 1 2 q i=0 (4.2)

4

p Fq

 

α1 , α2 , ..., αp ; β1 , β2 , ..., βq ;



x

i+j ∞ X (−1) (α1 )i+j (α2 )i+j ... (αp−2 )i+j (αp−1 )i (βq−1 − αp−1 )j (βq − αp )i

xi+j (β ) (β ) ... (β ) (β ) (β ) i!j! 1 2 q−2 q−1 q i+j i+j i+j i i,j=0  i+j α1 + i, α2 + i, ..., αp−2 + i; x , p ≥ 4, q ≥ 3, ×p−2 Fq−2  β1 + i, β2 + i, ..., βq−2 + i;   α1 , α2 , ..., αp−2 ; x p−2 Fq−2  β1 , β2 , ..., βq−2 ; ∞ X (α1 )i+j (α2 )i+j ... (αp−2 )i+j (αp )j (βq−1 )i (βq−1 − αp−1 )i+j (βq − αp )i i+j = x (β1 )i+j (β2 )i+j ... (βq )i+j (βq−1 − αp−1 )i i!j! i,j=0   α1 + i + j, α2 + i + j, ..., αp−2 + i + j, αp−1 , αp + j; ×p Fq  x , p ≥ 4, q ≥ 3, β1 + i + j, β2 + i + j, ..., βq + i + j;   α1 , α2 , ..., αp ;  x + y − xy  p Fq β1 , β2 , ..., βq ;   ∞ i X α1 + i, α2 + i, ..., αp + i; (−1) (α1 )i (α2 )i ... (αp )i i i x + y , x y p Fq  = (β ) (β ) ... (β ) i! 1 2 q i i β + i, β + i, ..., β + i; i 1 2 q i=0 =

p Fq

 

α1 , α2 , ..., αp ; β1 , β2 , ..., βq ;

(4.3)

(4.4)

(4.5)



x + y

  ∞ X α + i, α + i, ..., α + i; (α1 )i (α2 )i ... (αp )i i i 1 2 p x + y − xy  . x y p Fq  = (β ) (β ) ... (β ) i! 1 2 q i i β1 + i, β2 + i, ..., βq + i; i i=0

(4.6)

Let prove the expansion (4.1) for the generalized hypergeometric function. From functional identity (3.1) considering an operator (2.3), we define   ∞ X α1 , α2 , ..., αp ; (βq − αp )i (−δ)i x = p Fq  (βq )i i! β1 , β2 , ..., βp ; i=0

p−1 Fq−1

 

α1 , α2 , ..., αp−1 ; β1 , β2 , ..., βq−1 ;



x .

(4.7)

In the ([13], p. 93) it is proved that for any analytical function f (z) takes place identities i

(−δ)i f (z) = (−δ) (1 − δ) · · · (i − 1 − δ) f (z) = (−1) z i

di f (z) . dz i

(4.8)

Then on the basis of identity (4.8) and by virtue of the differentiation formula for the generalized hypergeometric function ([1], p. 153, (31))     α1 , α2 , ..., αp ; α1 + i, α2 + i, ..., αp + i; (α1 )i (α2 )i ... (αp )i di x = x , p Fq  p Fq  dxi (β1 )i (β2 )i ... (βp )i β1 , β2 , ..., βp ; β1 + i, β2 + i, ..., βp + i; we find (−δ)i

p−1 Fq−1

 

α1 , α2 , ..., αp−1 ; β1 , β2 , ..., βq−1 ;

(4.9)



x

  i α + i, α + i, ..., α + i; (−1) (α ) (α ) ... (α ) 1 2 p−1 1 2 p−1 i i i x . = xi p−1 Fq−1  (β1 )i (β2 )i ... (βp−1 )i β1 + i, β2 + i, ..., βp−1 + i; 5

(4.10)

Substituting identities (4.10) into equalities (4.7), we get the expansion (4.1). To prove these we begin with (4.5), (4.6) which are disguised forms of Taylor’s series. For we can write Taylor’s series in the form     ∞ i X α , α , ..., α ; α1 , α2 , ..., αp ; h −i 1 2 p x x (−δ)i p Fq  x − h = p Fq  i! β1 , β2 , ..., βq ; β1 , β2 , ..., βq ; i=0   ∞ i X α + i, α + i, ..., α + i; (−1) (α1 )i (α2 )i ... (αp )i i 1 2 p = x . h p Fq  (β ) (β ) ... (β ) i! 1 i 2 i q i β1 + i, β2 + i, ..., βq + i; i=0 Replacing the arguments x, h by (i) x + y, xy and (ii) x + y − xy, −xy , we get (4.5), (4.6). Validity of expansion (4.1) - (4.4) can be proved similarly. In the specific case from formulas of expansion (4.1) (4.4) the following outcomes follow   α1 , α2 , ..., αp ;  x p Fq β1 , β2 , ..., βq ; =

∞ X (α1 )j (α2 )j ... (αp−1 )j j=0

(β1 )j (β2 )j ... (βq−1 )j j! 

α1 , α2 , ..., αp ;





j

x p Fq 

α1 + j, α2 + j, ..., αp−1 + j, βq − αp ; β1 + j, β2 + j, ..., βq + j, βq ;

p−1,1,0 Fq−1,1,0



α1 , α2 , ..., αp−1 ; βq − αp ;

(4.11)



− x , 

−;

 − x, x , x = β1 , β2 , ..., βq−1 ; βq ; −; β1 , β2 , ..., βq ;     α ; α , β − α ; β − α ; α1 , α2 , α3 x x 1 2 2 3 1 2 −α 1,2,1   , x = (1 − x) 1 F1,1,0 , 3 F2 β1 ; β2 ; −; x − 1 x − 1 β1 , β2 p Fq



(4.12)

(4.13)

where ([1], p. 150, (29))

p;q;k Fl;i;j

 

(ap ) ;

(bq ) ;

(ck ) ;

(αl ) ;

(βm ) ; (γn ) ;



x, y  =

∞ X

r,s=0

p Q

j=1 l Q

j=1

(aj )r+s

(αj )r+s

q Q

j=1

m Q

j=1

(bj )r

(βj )r

k Q

j=1

n Q

j=1

(cj )s xr y s .

(4.14)

(γj )s r!s!

Formulas (4.11) - (4.12) are remarkable that at particular values of argument and parameters of Clausen function, we find the sums from some series. For example, using outcome Saalschutz [2]   a, b, −n; (c − a)n (c − b)n 1 = , n ∈ N = {1, 2, ...} , 3 F2  (c) n (c − a − b)n c, 1 + a + b − c − n; from (4.11) we determine value   ∞ X (a)j (b)j a + j, b + j, 1 + a + b − c; (c − a)n (c − b)n  − 1 = , n ∈ N, 3 F2 (c) j! (c) j n (c − a − b)n c + j, 1 + a + b − c − n; j=0 Also it is not difficult to define integral representations of Clausen function     Z∞ α , α ; α1 , α2 , α3 ; 1 2 3  e−ξ ξ α1 −1 2 F2  xξ  dξ, Re α1 > 0, x = 3 F2 Γ (α ) 1 β , β ; β1 , β2 ; 1 2 0 3 F2

 

α1 , α2 , α3 ; β1 , β2 ;



x =

Re α1 > 0, Re α2 > 0,

1 Γ (α1 ) Γ (α2 )

Z∞ Z∞ 0

0



e−ξ e−η ξ α1 −1 η α2 −1 1 F2 

6

α3 ; β1 , β2 ;



xξη  dξdη,

(4.15)

(4.16)

(4.17)

(4.18)

3 F2

 

α1 , α2 , α3 ; β1 , β2 ;



x

1 = Γ (α1 ) Γ (α2 ) Γ (α3 )

Z∞ Z∞ Z∞ 0

0

0

Re αi > 0, i = 1, 2, 3.

5



e−ξ−η−ζ ξ α1 −1 η α2 −1 ζ α3 −1 0 F2 

−; β1 , β2 ;



xξηζ  dξdηdζ,

(4.19)

Formulas of an analytic continuation for Clausen function

As it was marked in the paper [4] to find the formula of an analytic continuation it is necessary to reduce the order of hypergeometric function. For this purpose we use expansion (4.1) at values p = 3, q = 2. Then the generalized hypergeometric function (1.1) looks like, which refers to as Clausen function ([1], p. 141) 3 F2



α1 , α2 , α3 ;



β1 , β2 ;



z =

∞ X (α1 )m (α2 )m (α3 )m m z . (β1 )m (β2 )m m! m=0

(5.1)

Theorem. If for parameters of Clausen function (5.1) it is satisfied a condition β1 , β2 , α2 − α1 , β1 − α1 − α2 6= 0, ±1, ±2, ..., then the following formulas of an analytic continuation are fair

3 F2



α1 , α2 , α3 ;



β1 , β2 ;



x

  1 = B1 (−x)−α1 F2 α1 ; β2 − α3 , 1 − β1 + α1 ; β2 , 1 − α2 + α1 ; 1, x  1 −α2 +B2 (−x) , F2 α2 ; β2 − α3 , 1 − β1 + α2 ; β2 , 1 − α1 + α2 ; 1, x   α1 , α2 , α3 ;  x 3 F2 β1 , β2 ;   x 1 −α1 = B1 (1 − x) F2 α1 ; β2 − α3 , β1 − α2 ; β2 , 1 − α1 − α2 ; , x − 1 1 − x  x 1 −α , , +B2 (1 − x) 2 F2 α2 ; β2 − α3 , β1 − α1 ; β2 , 1 − α2 − α1 ; x−1 1−x   α1 , α2 , α3 ; x = B1 F2 (α1 ; α3 , β1 − α2 ; β2 , 1 − α2 + α1 ; x, 1) 3 F2  β1 , β2 ;

+B2 F2 (α2 ; α3 , β1 − α1 ; β2 , 1 − α1 + α2 ; x, 1) ,   α1 , α2 , α3 ; α , α ; β − α ; −; 1 2 2 3 2,1,0;   x = A1 F1,1,0; x, 1 − x 3 F2 β1 , β2 ; 1 + α1 + α2 − β1 ; β2 ; −;   x β1 −α1 −α2 +A2 (1 − x) H2 α1 + α2 − β1 ; β2 − α3 , β1 − α1 , β1 − α2 ; β2 ; ,x − 1 , x−1 

(5.2)

(5.3)

(5.4)



where H2 (α; β, γ, δ; ε; x, y) = A1 =

(5.5)

∞ X (α)m−n (β)m (γ)n (δ)n m n x y , (ε)m m!n! m,n=0

Γ (β1 ) Γ (β1 − α1 − α2 ) Γ (β1 ) Γ (α1 + α2 − β1 ) , A2 = , Γ (β1 − α1 ) Γ (β1 − α2 ) Γ (α1 ) Γ (α2 )

7

(5.6)

B1 =

Γ (β1 ) Γ (α1 − α2 ) Γ (β1 ) Γ (α2 − α1 ) , B2 = . Γ (α2 ) Γ (β1 − α1 ) Γ (α1 ) Γ (β1 − α2 )

Proof. Using the formula of an analytic continuation of Gauss function [2]   Γ (c) Γ (b − a) 1 −a F (a, b; c; x) = (−x) F a, 1 − c + a; 1 − b + a; Γ (b) Γ (c − a) x  1 Γ (c) Γ (a − b) −b , (−x) F b, 1 − c + b; 1 − a + b; + Γ (a) Γ (c − b) x

(5.7)

(5.8)

By virtue of the formula of an analytic continuation (5.8) from expansion (4.1), we have   α1 , α2 , α3 ;  x 3 F2 β1 , β2 ;   ∞ X (α1 )i (α2 )i (β2 − α3 )i 1 −α Γ (β1 ) Γ (α2 − α1 ) = (−x) 1 F α1 + i, 1 − β1 + α1 ; 1 − α2 + α1 ; Γ (α2 ) Γ (β1 − α1 ) i=0 (α2 )i (β2 )i i! x   ∞ X (α1 )i (α2 )i (β2 − α3 )i 1 −α2 Γ (β1 ) Γ (α1 − α2 ) . F α2 + i, 1 − β1 + α2 ; 1 − α1 + α2 ; + (−x) Γ (α1 ) Γ (β1 − α2 ) i=0 (α1 )i (β2 )i i! x (5.9) Decomposing in a series hypergeometric of Gauss function in identity (5.9) and considering definition of Appell function F2 (a; b1 , b2 ; c1 , c2 ; x, y), we receive the formula analytic continuation (5.2) for Clausen function. It is similarly proved also other formulas (5.3) - (5.5). The theorem is proved.

References [1] P. Appell and J. Kampe de Feriet, Fonctions Hypergeometriques et Hyperspheriques; Polynomes d’Hermite, Gauthier - Villars. Paris, 1926. [2] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, vol. I, McGraw-Hill Book Company, New York, Toronto and London, 1953. [3] H.M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series. Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985. [4] P.O.M. Olsson, Analytic continuations of higher-order hypergeometric functions. J. Math. Phys. 7 (1966), no. 4, 702-710. [5] J.L. Burchnall, T.W. Chaundy, Expansions of Appell’s double hypergeometric functions, Quart. J. Math. Oxford Ser. 11 (1940), 249-270. [6] J.L. Burchnall, T.W. Chaundy, Expansions of Appell’s double hypergeometric functions. II, Quart. J. Math. Oxford Ser. 12 (1941), 112-128. [7] T.W. Chaundy, Expansions of hypergeometric functions, Quart. J. Math. Oxford Ser. 13 (1942), 159-171.

8

[8] R.C. Pandey, On the expansions of hypergeometric functions, Agra Univ. J. Res. Sci. 12 (1963), 159-169. [9] H.M. Srivastava, Some integrals representing triple hypergeometric functions, Rend. Circ. Math. Palermo, (2) 16 (1967), 99-115. [10] H.M. Srivastava, H.L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984. [11] J.P. Singhal, S.S. Bhati, Certain expansions associated with hypergeometric functions of n variables, Glas. Math. Ser. III 11 (31) (1976), 239-245. [12] O. I. Marichev, Handbook of Integral Transforms of Higher Transcendental Functions. Theory and Algorithmic Tables. Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, Chichester and Toronto, 1983. [13] E. G. C. Poole, Introduction to the theory of linear differential equations. Clarendon, Oxford University Press, 1936. [14] A. Hasanov and H. M. Srivastava, Decomposition Formulas Associated with the Lauricella Multivariable Hypergeometric Functions. Computers and Mathematics with Applications, 53 (7), 2007, 1119-1128. [15] A. Hasanov and H. M. Srivastava, Some decomposition formulas associated with the Lauricella (r)

function FA and other multiple hypergeometric functions, Appl. Math. Lett. 19 (2006), no. 2, 113121.

9