Dynamics of dissolved (< 0.45 µm) trace elements ...

20 downloads 0 Views 6MB Size Report
mixing zones of the lower Athabasca River, ... Total [Pb] in river: 221 ng L-1 ... usk eg. R . 0%. 20%. 40%. 60%. 80%. 100%. Atha. R. Muskeg. Percentage of ...
Dynamics of dissolved (< 0.45 µm) trace elements and organic matter in tributary mixing zones of the lower Athabasca River, Alberta Chad W. Cuss, Mark W. Donner, Marjan Ghotbizadeh, Tommy Noernberg, and William Shotyk SWAMP lab facility Department of Renewable Resources University of Alberta [email protected]

Natural vs industrial sources of trace elements in the Lower Athabasca River (LAR)

Image courtesy Jon Fennell

2

Natural vs industrial sources of trace elements in the Lower Athabasca River (LAR) Emissions from city

Organic matter and trace elements from tributaries

Fugitive dust emissions

Petroleum coke

Other industry Natural bitumen outcrops Stack emissions, tailings ponds

Natural bitumen/bank dust

3 3

Industrial Tributariesactivity governincreases trace element trace element concentrations? concentrations? Muskeg R.

10.000

Upstream

Midstream

Downstream

Dissolved conc. (log µg L-1)

Midstream 1.000

Downstream

0.100

Upstream Midstream 0.010 Clearwater R.

Li

V

Mn

Fe

Co

Y

Pb

Horse R.

4

Tributaries govern trace element concentrations? Muskeg R.

10.000

Upstream

Upstream Midstream Downstream Midstreamtribs Midstream

100.000

Downstream

µgLL-1-1) ) (logµg conc.(log Dissolved Dissolvedconc.

Midstream 1.000 10.000

Downstream

1.000 0.100 0.100

Upstream Midstream

0.010 0.010 Clearwater R.

Li Li

V V

Mn Mn

Fe Fe

Co Co

YY

Pb Pb

Horse R.

5

Size distribution of colloidal carriers in the dissolved phase (< 0.45 µm)

Dissolved organic matter • Exudates and metabolites • Degradation products • Humic and fulvic acids • Polydisperse, polyfunctional, polyelectrolyte M+ M+

M+

M+

M+ M+

M+

Mainly ionic species • Hydrated ions • Small inorganic complexes (e.g. carbonates) + M-CO3

M

Mainly inorganic • Free/hydrated metal ions • Amorphous oxyhydroxides, clays, other minerals • Trapped and adsorbed trace elements • DOM adsorbed to surfaces M+

M+

M+

M+ M+

M+

M+

M+

M+ M+ Modified from Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ. Chem. 3:159–171.

• Distribution of TE sensitive to temperature, shear, pH and ionic strength

6

Challenge: natural [trace elements] can be ultra-trace Total [Pb] in river: 221 ng L-1 Particles (> 0.45 µm) 210 ng L-1, 95%

Bound to Organic matter ? Bound to Fe/Mn/Al ?

Dissolved (< 0.45 µm) 11 ng L-1, 5%

221 ng L-1 ≈ 0.0000002 g in 1 L



‘Truly dissolved’ & mainly ionic species

in: ≈ 0.5 g ≈ 2,500,000 L 7

ICAP Qc ICP-QMS

Element XR ICP-SFMS

Metal-free, ultraclean research facility

Sub-boiling distillation of HNO3 in high purity quartz

Autosampler within Class 100 clean air cabinet

High pressure microwave acid digestion system

Flow-field flow-fractionation (with 3 detectors) coupled to ICP-MS for size-resolved trace metal analysis of waters

Water dispenser within 8 Class 100 clean air cabinet

AF4-ICPMS flow program, LODs, and precision Element LOD (ng L-1) 7Li 37.2 24Mg 390.8 27Al 188.1 51V 10.2 55Mn 64.3 56Fe 599.0 57Fe 623.9 59Co 8.7 60Ni 323.4 63Cu 213.5 66Zn 657.5 75As 5.3 88Sr 105.4 89Y 7.5 95Mo 31.9 137Ba 107.5 208Pb 2.7 232Th 4.0 238U 0.9 SRNOM standard: MP ± 95% CI = 986 ± 6 Da (n = 5)

Eluent: Buffer from 99.999% trace metal free (NH4)2CO3 (pH ranges ~5.5–7, 8–10) Crossflow: 2.1 mL min-1 for 29 min. + 1 min. linear decrease to zero + 0 mL min-1 for 20 min. Channel/detector flow: 0.7 mL min-1 Inlet flow: 0.2 mL min-1 Focus time: 6 min. Elution time: 44 min. Cleaning cycle: 5 min. at 4 mL min-1 9 Total run time: 55.2 min./sample

AF4-UV-ICPMS UV-Visible absorbance Flow

Absorbance (254 nm)

AF4

ICP-MS (quadrupole)

80

Organic matter

60

40

Flow

20

0 400

500

600

700

800

900

5

40 30

Muskeg Atha. R.

20 10

4

Percentage of retained Fe

3 2

0%

20%

40%

60%

80%

1

100%

0

0 500

600

Void peak + mainly ionic

1000

1500

2000

Retention time (s)

3000

Large mainly inorganic/Fe-associated

DOM-bound

56

500

Muskeg R.

2500

Fe (ng L-1)

14 12 10

400 300

Small mainly inorganic/Fe-associated

200

8

Crossflow turned off

6 4

100

2 0

0 500

1000

1500

Retention time (s)

2000

2500

Athabasca R. (site WWTP)

Muskeg MuskegR.R.

6

DOM (A254, mAU)

50

Athabasca R. (site WWTP)

Time (seconds)

3000

10

Muskeg R.

500

0% DOM-bound

50%

Large mainly inorganic/Fe-associated

100%

56

Fe (ng L-1)

14 12 10

400

8

300

Small mainly inorganic/Fe-associated

200

6 4

100

2

0

0 500

1000

1500

2000

2500

Athabasca R. (site WWTP)

600

Void peak + mainly ionic

Percentage of retained Fe

Muskeg Atha. R.

3000

Retention time (s)

Site WWTP (upstream) 100%

Large inorganic

80%

Small inorganic

60%

40%

DOM-bound

20%

Mainly ionic

0%

Midstream tributary (Steepbank R.) 100% 80% 60% 40% 20% 0%

11

Tributary inputs govern dissolved concentration and speciation Upstream

Dissolved concentration (log µg L-1)

100.00

Midstream Downstream

10.00

Midstream tribs

1.00 0.10

Bound conc. (log µg L-1)

0.01 Li

V

Mn

Mn

Fe

Co

Fe

Co

Y

Pb

10.00 1.00 0.10 0.01 0.00

Zn

As

Pb

U 12

How well do the tributary inputs mix with the mainstem, and how representative are these single samples?

13

Metal-free depth sampling with ‘the fish’ and ‘portable clean room’ Tommy Noernberg Mechanical Engineering Technologist

14

Mixing transect: Horse River and AR 600 500 400 300 200 100 0

Pb, 15 ppb

300

800

1300

1800

2300

600 500 400 300 200 100 0

Pb, 26 ppb

300

2800

250000

Fe, 77 ppb

80000

150000

40000

100000

20000

50000

0

0 300

500

1300

300

2300

Pb, 21 ppb

400

1300

1800

2300

2800

Fe, 256 ppb

200000

60000

800

1500

1300

2300

Pb, 52 ppb

1000

300 200

500

100 0

0

300

800

1300

1800

2300

300 600000

Fe, 79 ppb

80000

2800

400000

40000

300000

1300

1800

2300

Fe, 719 ppb

500000

60000

800

200000

20000

100000

0

0 300

1300

2300

300

1300

2300

2800

Upstream

Upstream transects

Clearwater R. 16

Horse R.

Upstream of WWTP

17

Velocities for upstream of WWTP Distance from west shore (m) 0

50

100

150

200

250

300

0.0

1.55 m s-1

1.22 m s-1

1.04 m s-1

1.14 m s-1

0.88 m s-1

Depth (m)

-0.5

-1.0

1.46 m s-1

-1.5

-2.0

0.61 m s-1 0.61 m s-1

0.81 m s-1

-2.5

-3.0 18

Iron (Upstream WWTP) 100000

100000

80000

80000

80000

60000

60000

60000

40000

40000

40000

20000

20000

20000

0

0

0

100000

300

800

1300

1800

2300

2800

300

800

1300

1800

2300

2800 300 100000 80000 60000 40000 20000 0

800

1300

1800

2300

280

300

800

1300

1800

2300

2800

800

1300

1800

2300

280

1300

1800

100000 80000 60000 40000 20000 0

100000 80000 60000 40000

300

20000

100000

0 300

800

1300

1800

2300

2800

100000

80000

80000

60000

60000

40000

40000

20000

100000

20000

0

80000

0 300

800

1300

1800

2300

2800

300

800

2300

2800

60000 40000 20000 0 300

800

1300

1800

2300

2800

19

600000

Fe, Horse River 500000

Large Fe-associated Void peak

400000 CPS

DOM-associated 300000

Small Fe-associated

200000

100000

0 300

400000

800

1300

1800

350000

Fe, Clearwater River (0.3 m depth)

350000

300000

300000

250000

250000

200000

200000

150000

150000

2300

2800

Fe, Clearwater River (1.5 m depth)

100000

100000

50000

50000 0 300

0 300

800

1300

1800

2300

2800

800

1300 1800 Retention time (s)

2300

2800

Upstream of McLean Ck/A19

21

Velocities for upstream from McLean Ck. Distance from west shore (m) 0

50

100

150

200

250

300

350

400

450

0.0

0.46 m s-1

0.91 m s-1

0.88 m s-1

-0.5

Depth (m)

0.40 m s-1

-1.0

0.76 m s-1 -1.5

0.79 m s-1

0.67 m s-1

-2.0

-2.5

0.55 m s-1

-3.0

22

Iron (Upstream McLean Ck.)

80000

80000

60000

180000 150000

60000

120000

40000

40000

20000

90000 60000

20000

30000

0 300

800

1300

1800

2300

2800 0

0 300

80000

80000

60000

60000

40000

40000

20000

20000

800

1300

1800

2300

2800

300

800

1300

1800

2300

2800

300

800

1300

1800

2300

2800

300

800

1300

1800

2300

180000 150000 120000 90000 60000 30000

0

0 300

800

1300

1800

2300

2800

0 300

800

1300

1800

2300

80000

2800

250000

60000

200000 150000

40000

100000 20000

50000

0

0 300

800

1300

1800

2300

2800

23

2800

Midstream

Midstream transect

Upstream Downstream Upstream transect

Clearwater R.

Midstream 24

Horse R.

Iron (A17)

100000

180000

180000 150000 120000 90000 60000 30000 0

80000 60000 40000 20000 0 300

800

1300

1800

2300

150000 120000 90000 60000 30000 0

2800

300

800

1300

1800

2300

2800

300

800

1300

1800

2300

2800

1800

2300

2800

180000

100000 80000

180000

150000

150000

120000

120000

90000

90000

60000

60000

40000

30000

60000 30000 0

0

20000

300 300

800

1300

1800

300

800

1300

1800

2300

800

1300

2800

0 300

800

1300

1800

2300

2800 180000 150000

100000

120000

80000

90000

60000

60000 30000

40000

0 20000 0 300

800

1300

1800

2300

2800

2300

2800

25

Other applications of AF4-UV-ICPMS

Lina Du Poster 181345 Distribution of dissolved trace elements amongst colloidal species in soil solutions under different treatments

Andrew Nagel Poster 18214 Relating the distribution of trace elements amongst colloidal species to toxicity in aquatic systems (Daphnia magna)

Marjan Ghotbizadeh Poster 181871 Spatial variation in the speciation, composition and morphology of trace elements in the lower Athabasca River and its tributaries (with TEM-EDS of AF4 size fractions)

Current Members

Chad Cuss Postdoctoral Fellow

Melissa Dergousoff M.Sc. Candidate

Lina Du M.Sc. Candidate

Tracy Gartner Project Manager

Marjan Ghotbizadeh M.Sc. Candidate

Iain Grant-Weaver Technician

Muhammad Javed (Babar) Postdoctoral Fellow

Karen Lund Administrative Support

Acacia Markov Summer Research Assistant

Andrew Nagel M.Sc. Candidate

Tommy Noernberg Mechanical Engineering Technologist

Samantha Stachiw M.Sc. Candidate

William Shotyk Bocock Chair for Agriculture & the Environment

ACKNOWLEDGEMENTS

28

29

Thank you for your attention!

Additional slides: • Optimization: FFF theory and resolution + multi-element optimization • Visualization of AF4 separation • Routine QA/QC procedures for low LODs and high precision • AF4-UV-ICPMS component diagram • Precision of separation and fractogram deconvolution 30

First-order optimization: estimating ideal field strength for desired linear range Theoretical retention time-size relationship

Shaded box: theoretical linear range of size separation at FS = 0.5 mL min-1 Field strength (mL min-1)

Theoretical linear behaviour at FS = 1.0 mL min-1, to be verified using standards Modified from Von Der Kammer F, Legros S, Larsen EH, Loeschner K, Hofmann T (2011) Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. Trends in Analytical Chemistry (30):425–436.

31

Multi-element optimization: balancing retention and resolution Field Strength: 1.0 mL min-1 Time: 5 min.

FS: 1.8 mL min-1 T: 5 min.

FS: 1.8 mL min-1 T: 10 min.

FS: 2.7 mL min-1 T: 5 min.

100

78.4% retained

80

DOM

57.3%

36.9%

45.0%

60

Signal (CPS for elements, A254 in mAU for DOM)

40 20 0

400 600

800 1000 1200 1400

400 600

800 1000 1200 1400 400 600

800 1000 1200 1400 400 600

800 1000 1200 1400

Retention time (seconds) 500000 Max ~ 900,000 CPS

400000

Fe

12.9%

21.9%

11.8%

10.5%

300000 200000 100000 0

400 600

800 1000 1200 1400

400 600

800 1000 1200 1400 400 600

800 1000 1200 1400 400 600

800 1000 1200 1400

Retention time (seconds) 120000 100000

0.3%

1.5%

9.1%

1.5%

80000

Mg 60000 40000 20000

Max ~ 900,000 CPS

0

400 600

800 1000 1200 1400

400 600

800 1000 1200 1400 400 600

800 1000 1200 1400 400 600

800 1000 1200 1400

Retention time (seconds) 32

Tip

Asymmetrical flow field-flow fractionation (AF4) step 1: Injection and focussing

Focus

To Detectors

Detector

Tip flow

Focussing flow

< 350–750 𝜇m

300 Da PES membrane Cross flow out (waste)

33

Tip

AF4 step 2: Elution

Focus

To Detectors

Detector

Focussing flow Tip flow

300 Da PES membrane Cross flow out (waste)

34

Routine QA/QC: standard procedures for low LODs, high precision AF4 (daily routine) DOM (SRNOM standard to condition) Blank Size calibration mixture Blank 1 % HNO3 upstream, in cleaning mode Blank Sample 1 Blank Sample 2 Blank . . .

Sample 10

Blank Size calibration mixture Blank

ICPMS (daily routine) • Daily: 5-point calibration using multielement standard (10 ppt to 100 ppb, downstream injection under same flow conditions) • Daily: 2 SRMs to assess recovery (NIST 1640a and SPS SW2, downstream injection, same flow conditions) • Daily: Whole-sample injections of samples to measure analyte recovery (downstream injections)

• Daily: LOD determination to account for changing background Blank Sample 1 Blank . . .

Sample 10 Blank 35

For DOM characterization: 200 ≤ λ ≤ 640 nm, every 0.4 s 0.004” ID PEEK tubing

PN5300 Autosampler (0.3 mL sample loop)

Postnova AF2000 (300-Da PES membrane, 500 µm spacer)

UV/Vis DAD (G4212, Agilent)

Downstream injection valve (high pressure with 0.3 mL sample loop, Rheodyne)

Quadrupole ICPMS (KED mode)

Micro-mixing tee (PEEK, IDEX M-540A)

Injection valve for total concentration analysis and standards Doubledistilled HNO3 to final conc. of 2% (w/w) + 5 𝜇g L-1 In

Absorbance (254 nm)

AF4-UV-ICPMS system diagram 80

60

40

20

0 400

500

600

700

800

900

Time (seconds)

Adjustments/changes • New membranes and system leached with 2% HNO3 (double-distilled) • Glass eluent reservoir and autosampler vials replaced with acidleached polypropylene

36

Triplicate analyses: high reproducibility with statistical fractogram deconvolution Counts per second

40000

56Fe

30000

Peak

Retention time (s)

% area

1

454

13.9

2

591

39.3

3

858

46.8

Retention time (s)

% area

20000

10000

0 400

600

800

1000

1200

1400

1600

1800

Retention time (s)

Counts per second

40000

Peak 30000

1

456

13.4

20000

2

593

38.3

10000

3

883

48.3

Mean ± 1 SD Peak

Retention time (s)

% area

1

455 ± 1

14 ± 0.3

2

593 ± 2

39 ± 0.6

3

872 ± 13

48 ± 0.8

0 400

600

800

1000

1200

1400

1600

1800

Retention time (s)

Counts per second

40000

Peak

Retention time (s)

% area

1

455

14.0

2

594

38.4

3

874

47.5

30000

20000

10000

0 400

600

800

1000

1200

1400

1600

1800

Retention time (s)

37

Triplicate analyses: high reproducibility with statistical fractogram deconvolution 208Pb

Counts per second

180 160

Peak

Retention time (s)

% area

1

454

8.4

2

601

29.4

3

914

62.1

140 120 100 80 60 40 20 0 400

600

800

1000

1200

1400

1600

1800

Retention time (s)

Counts per second

180

Peak

160

Retention time (s)

140 120 100 80 60 40

Mean ± 1 SD

% area

Retention time (s)

% area

1

463

4.2

Peak

2

624

18.4

1

459 ± 5

8 ± 3.3

3

922

77.4

2

611 ± 12

23 ± 5.7

3

906 ± 21

69 ± 7.7

20 0 400

600

800

1000

1200

1400

1600

1800

Retention time (s)

Counts per second

180 160

Peak

Retention time (s)

% area

1

461

10.8

2

608

21.1

3

883

68.1

140 120 100 80 60 40 20 0 400

600

800

1000

1200

1400

1600

1800

Retention time (s)

38