Ecological Footprint: An indicator of environmental

3 downloads 186 Views 1MB Size Report
William Rees in the early 1990's (Wackernagel and Rees, 1996; Rees, 1992; Kitzes et al., 2009). Ecological. Footprint methods were designed to represent ...
Instituto  Superior  Técnico   Environmental  Engineering  Doctoral  Program   Environmental  Engineering  Seminar   Tatiana  Valada        

Ecological  Footprint:     An  indicator  of  environmental  (un)sustainability?   A  review  and  further  analysis  

        November  2010  

 

2    

Table  of  Contents     Executive  summary  .................................................................................................................................  7   1   Introduction  .....................................................................................................................................  9   1.1  

Goal  ..........................................................................................................................................  9  

1.2  

Motivation  ................................................................................................................................  9  

1.2.1  

Global  overview  ................................................................................................................  9  

1.2.2  

Inventory  of  applications  ................................................................................................  10  

2   Description  of  the  Ecological  Footprint  and  Biocapacity  ...............................................................  17   2.1  

Overview  ................................................................................................................................  17  

2.2  

Concept  ..................................................................................................................................  17  

2.3  

Methodology  presented  by  the  Global  Footprint  Network  ...................................................  17  

2.3.1  

Introduction  ...................................................................................................................  17  

2.3.2  

Land  use  types  ................................................................................................................  18  

2.3.3  

Yield  and  equivalence  factors  .........................................................................................  20  

2.3.4  

Calculation  formulas  .......................................................................................................  23  

2.3.5  

Results  ............................................................................................................................  24  

3   Critical  review  of  the  Ecological  Footprint  and  Biocapacity  ...........................................................  31   3.1  

Overview  ................................................................................................................................  31  

3.2  

Conceptual  issues  ...................................................................................................................  31  

3.3  

Methodological  issues  ............................................................................................................  33  

3.3.1  

Space  &  time  ..................................................................................................................  33  

3.3.2  

Technology  .....................................................................................................................  34  

3.3.3  

Data  selection  .................................................................................................................  34  

3.3.4  

Land  use  types  ................................................................................................................  35  

3.3.5  

Use  of  land  .....................................................................................................................  37  

3.3.6  

Yield  factors,  equivalence  factors  and  global  hectares  ..................................................  38   3  

 

4   Further  analysis  of  the  methodology  .............................................................................................  41   4.1  

Overview  ................................................................................................................................  41  

4.2  

Details  of  the  methodology  presented  by  the  Global  Footprint  Network  .............................  41  

4.2.1  

Biocapacity  and  equivalence  factors  ..............................................................................  42  

4.2.2  

Carbon  footprint  .............................................................................................................  44  

4.3  

Review  of  improvements  proposed  in  the  literature  .............................................................  46  

4.3.1  

Biocapacity  and  equivalence  factors  ..............................................................................  46  

4.3.2  

Carbon  footprint  and  other  wastes  ................................................................................  49  

4.4  

Methodological  changes  and  results  ......................................................................................  49  

4.4.1  

Biocapacity  and  equivalence  factors  ..............................................................................  49  

4.4.2  

Carbon  footprint  .............................................................................................................  52  

5   Discussion,  conclusions  and  future  work  .......................................................................................  55   References  ............................................................................................................................................  59   Appendix  A  –  Temporal  evolution  of  the  Ecological  Footprint  .............................................................  64   Appendix  B  –  Brief  description  of  the  Emergy  and  NPP  methods  ........................................................  65   Emergy  ..........................................................................................................................................  65   Net  Primary  Production  (NPP)  ......................................................................................................  65  

4    

List  of  Tables     Table  1  –  Applications  reported  by  the  Global  Footprint  Network  .......................................................  11   Table  2  –Applications  reported  in  the  international  scientific  community.  .........................................  13   Table  3  –  Sample  yield  factors  for  selected  countries,  2006.  ................................................................  21   Table  4  –  Equivalence  factors,  2006.  .....................................................................................................  22   Table  5  –  Biocapacity  values  presented  by  the  Global  Footprint  Network,  for  2006.  ..........................  42   Table  6  –  Data  sources  available  to  achieve  the  area,  in  ha,  used  in  the  Biocapacity  calculation.  .......  43   Table  7  –  Data  sources  used  in  the  Biocapacity  calculation.  .................................................................  43   Table  8  –  Carbon  footprint  as  calculated  by  Global  Footprint  Network.  ..............................................  44   Table  9  –  Land  areas  that  support  the  calculation  of  Biocapacity  and  equivalence  factors.  ................  50   Table  10  –  Original  and  recalculated  equivalence  factors.  ...................................................................  51   Table  11  –  Original  and  recalculated  equivalence  factors.  ...................................................................  52   Table  12  –  Probabilities  of  exceeding  2°C  in  global  temperature.  ........................................................  53   Table  13  –  Ecological  Footprint  and  Biocapacity  time  series.  ...............................................................  64  

List  of  Figures     Figure  1  –  Relative  area  of  land  use  types  worldwide  in  hectares  and  global  hectares,  2006.   ............  25   Figure  2  –  Ecological  Footprint  versus  Biocapacity,  1961  –  2006.  ........................................................  26   Figure  3  –  Ecological  Footprint  versus  Biocapacity  for  the  year  of  2006.  .............................................  28   Figure  4  –  Ecological  Footprint  versus  Biocapacity  for  North  America,  2006.  ......................................  28   Figure  5  –  Ecological  Footprint  versus  Biocapacity  for  Europe,  2006.  ..................................................  29   Figure  6  –  Ecological  Footprint  versus  Biocapacity  for  Asia,  2006.  .......................................................  29   Figure  7  –Temporal  evolution  of  Ecological  Footprint  and  GDP  (1961-­‐2006).  .....................................  32   Figure  8  –Ecological  Footprint  and  Gross  Domestic  Product,  for  a  sample  of  countries  (2006).  ..........  33   Figure  9  Representation  of  the  Ecological  Footprint,  as  presented  by  the  Global  Footprint  Network.  55   Figure  10  –Representation  of  the  Biocapacity,  as  presented  by  the  Global  Footprint  Network.  .........  55  

5    

List  of  Abbreviations   CEC  

Commission  of  the  European  Communities  

EEF  

Emergetic  Ecological  Footprint  

EF  

Ecological  Footprint  

EIONET  

European  Environment  Information  and  Observation  Network  

ENPP  

Emergy  Net  Primary  Production  

EQF  

Equivalence  factor  

FAO  

Food  and  Agriculture  Organisation  

FAOSTAT  

Food  and  Agriculture  Organisation  Corporate  Statistical  Database  

GAEZ  

Global  Agro  Ecological  Zones  

GDP  

Gross  Domestic  Product  

GED  

Global  Empower  Density  

gha  

Global  hectares  

GWP  

Global  Warming  Potential  

IEA  

International  Energy  Agency  

IPCC  

Intergovernmental  Panel  on  Climate  Change  

NPP  

Net  Primary  Production  

NRF  

Net  Radiative  Forcing  

OECD  

Organisation  for  Economic  Cooperation  and  Development  

SERI  

Sustainable  Europe  Research  Institute  

UK  

United  Kingdom  

USA  

United  States  of  America  

WBCSD  

World  Business  Council  for  Sustainable  Development  

WRI  

World  Research  Institute  

WWF  

World  Wildlife  Fund  

YF  

Yield  factor  

6    

Executive  summary   This  report  contains  5  chapters:  Introduction;  Description  of  the  Ecological  Footprint  and  Biocapacity;   Critical   review   of   the   Ecological   Footprint   and   Biocapacity;   Further   analysis   of   the   methodology   and   Discussion,  conclusions  and  further  work.   In  Chapter  1  we  present  the  goals  of  this  report,  as  well  as  the  motivation.  The  overall  goal  of  this   report  is  to  understand  the  utility  and  applicability  of  the  concepts  and  application,  done  by  the  Global   Footprint   Network,   of   the   Ecological   Footprint   and   Biocapacity,   in   the   context   of   environmental   sustainability.  As  a  motivation  to  this  work,  two  major  factors  must  be  addressed:   (1) The  fact  that,  over  the  past  50  years,  humans  have  changed  the  ecosystems  more  rapidly  and   extensively  than  in  any  comparable  period  of  time  in  human  history  makes  it  crucial  the  use   of   metrics   that   allow   us   to   document   resource   levels,   set   goals,   identify   options   for   action,   and  track  progress  towards  desired  outcomes;   (2) The   Ecological   Footprint   versus   Biocapacity,   as   done   by   the   Global   Footprint   Network,   has   been  presented  as  a  metric  that  can  assess   sustainability  and  has  actually  been  used  as  such   a  metric  by  governments,  enterprises  and  among  the  scientific  community.   Chapter  2  presents  the  concept,  methodology  and  results  of  the  Ecological  Footprint.  The  Ecological   Footprint  measures  human  appropriation  of  ecosystem  products  and  services  in  terms  of  the  amount  of   bioproductive   land   and   sea   area   needed   to   supply   these   services.   The   area   of   land   or   sea   available   to   serve   a   particular   use   is   called   Biocapacity,   and   represents   the   biosphere’s   ability   to   meet   human   demand   for   material   consumption   and   waste   disposal.   The   most   used   methodology   for   footprint   accounts   is   the   one   presented   by   the   Global   Footprint   Network.   According   to   this   methodological   approach,  the  Ecological  Footprint  and  Biocapacity  accounts  cover  six  land  use  types,  namely  cropland,   grazing   land,   forest   land,   fishing   ground,   built-­‐up   land   and   carbon   uptake   land.   The   final   results   are   expressed   in   global   hectares,   hectares   normalized   to   have   world-­‐average   biological   productivity   in   a   given   year.   The   global   results   indicate   that,   in   2006,   humanity   used   the   equivalent   of   1.4   Earths   to   support  its  consumption.  Half  of  the  global  footprint  was  attributable,  in  2006,  to  just  10  countries,  with   the   United   States   of   America   and   China   alone   each   using   23   and   21   percent,   respectively,   of   the   Earth’s   Biocapacity.  Brazil  has  the  most  Biocapacity  of  any  country.   Chapter  3  performs  a  review  of  the  critics  done  to  the  Ecological  Footprint.  Some  important  points  to   remark  are  the  following:   (3) When  the  Ecological  Footprint  is  smaller  than  the  Biocapacity  we  do  not  know  if  the  harvest   of   the   natural   resources   is   being   done   in   a   sustainable   or   unsustainable   way.   Therefore,   nothing  can  be  concluded.  The  comparison  between  the  Ecological  Footprint  and  Biocapacity   7    

can   only   be   useful   when   the   results   show   overshoot,   as   indicating   environmental   unsustainability;   (4) The  boundaries  used  does  not  always  make  environmental  sense,  and  the  time  scale  mostly   considered,  the  year,  is  a  snapshot,  which  does  not  allow  to  capture  dynamic  phenomena.     (5)  Regarding   the   land   use   types   considered,   only   fishing   grounds   and   carbon   footprint   can   reveal   overshoot,   since   with   the   other   types,   the   Biocapacity   and   Ecological   Footprint   are   measuring  exactly  the  same  amount;   (6)  As   currently   done   there   is   not   an   analysis   of   the   role   of   technological   change,   which   may   bias  the  Ecological  Footprint  interpretation;   (7) There   are   also   some   questions   about   the   data   used,   and   the   weighting   and   normalization.   These   items   don’t   always   reflect   the   reality   and   allows   trade-­‐offs   that   do   not   make   environmental  sense.       In   Chapter   4   we   perform   a   further   analysis   of   the   Biocapacity,   equivalence   factors   and   carbon   footprint;   analysis   of   the   changes/improvements   done   in   the   literature   and   application   of   some   methodological  changes  to  the  global  results  for  2006.  The  major  changes  done  in  Biocapacity  are  the   use   of   emergy   analysis;   consideration   of   the   total   world   area   and   the   set   aside   area   to   provide   for   biodiversity.   The   major   change   done   in   the   calculation   of   the   equivalence   factors   is   the   use   of   Net   Primary   Production.   Regarding   the   carbon   footprint  there  is  an   attempt  to  include  other  wastes  by  their   conversion   in   carbon   dioxide   equivalents.   The   proposed   changes   to   the   global   data   for   2006   is   the   consideration  of  all  the  world  area  and  set  aside  area  for  biodiversity  (14%).  The  new  results  indicate  an   increase  of  15%  in  total  Biocapacity  but  still  a  situation  of  overshoot.  The  changes  done  in  the  carbon   footprint   consider   the   possibility   of   a   2˚C   increase   in   temperature.   This   represents   a   decrease   in   the   Ecological  Footprint  of  about  0.4  planets.   In   Chapter   5   we   presented   some   discussion,   conclusions   and   future   work.   The   conclusion   to   be   drawn   from   the   exposed   is   that,   as   it   is   currently   being   done   by   the   Global   Footprint   Network,   the   comparison   between   the   Ecological   Footprint   and   Biocapacity   of   a   given   population   is   not   assessing   environmental  sustainability/unsustainability,  regarding  the  use  of  resources  and  deposition  of  wastes.   Despite   the   above,   we   understand   the   utility   of   such   an   analysis   and   plan   to   use   the   concepts   of   Ecological   Footprint   and   Biocapacity   as   the   basis   to   develop   an   absolute   indicator   of   environmental   unsustainability  of  resource  use.  In  order  to  do  that,  we  focus  our  attention  on  the  resource  instead  of   the   population.   The   Biocapacity   of   the   resource   should   correspond   to   the   amount   of   material   and   services   that   can   be   used   without   damaging   it.   The   Ecological   Footprint   of   the   resource   should   correspond   to   the   materials/services   actually   harvested.   We   will   also   continue   to   study   the   global   assessment,   as   it   is   presently   done   by   the   Global   Footprint   Network,   with   special   attention   to   the   Biocapacity,  carbon  footprint  and  other  wastes.   8    

1 Introduction   1.1 Goal   The   overall   goal   of   this   report   is   to   understand   the   utility   and   applicability   of   the   concepts   and   application,   done   by   the   Global   Footprint   Network,   of   the   Ecological   Footprint   and   Biocapacity,   in   the   context   of   environmental   sustainability.   In   order   to   lead   the   analysis   to   the   overall   goal,   the   following   steps  are  considered:   (1) Understand  the  need  to  analyse  the  Ecological  Footprint  and  Biocapacity;   (2) Describe  the  concept,  methodology  and  results  of  the  Ecological  Footprint  and  Biocapacity;   (3) Make  a  critical  analysis  of  the  Ecological  Footprint  and  Biocapacity;   (4) Analyse  with  special  attention  the  Biocapacity,  equivalence  factors  and  carbon  footprint.   1.2 Motivation   1.2.1

Global  overview  

Humanity   depends   completely   on   Earth’s   ecosystems   and   the   services   they   provide,   such   as   food,   water,   climate   regulation,   and   aesthetic   enjoyment   (Millennium   Ecosystem   Assessment,   2005).   This   dependence   implies   an   impact   on   ecosystems   that,   depending   on   its   characteristics,   may   result   in   degradation.   In   fact,   over   the   past   50   years,   humans   have   changed   the   ecosystems   more   rapidly   and   extensively   than   in   any   comparable   period   of   time   in   human   history,   largely   to   meet   rapidly   growing   demands   for   food,   fresh   water,   timber,   fibber,   and   fuel.   This   transformation   of   the   planet   has   contributed   to   net   gains   in   human   well-­‐being   and   economic   development   (Millennium   Ecosystem   Assessment,  2005).   Regarding   the   human   pressure,   it   must   be   noticed   that,   between   1960   and   2000,   the   demand   for   ecosystem  services  grew  significantly,  as  the  world  population  doubled  to  6  billion  people  and  the  global   economy  increased  more  than  sixfold.  To  meet  this  demand  (Millennium  Ecosystem  Assessment,  2005):   (1) Food  production  increased  by  roughly  two-­‐and-­‐a-­‐half  times;   (2) Water  use  doubled;   (3) Wood  harvests  for  pulp  and  paper  production  tripled;   (4) Installed  hydropower  capacity  doubled;   (5) Timber  production  increased  by  more  than  half.   As   a   result   of   the   human   pressure,   and   according   to   the   analysis   done   during   the   Millennium   Ecosystem  Assessment,  approximately  60%  of  the  24  ecosystem  services  examined  are  being  degraded   or  used  unsustainably,  including  fresh  water,  capture  fisheries,  and  the  regulation  of  regional  and  local   climate.  The  full  costs  of  the  loss  and  degradation  of  these  ecosystem  services  are  difficult  to  measure,   9    

but  the  available  evidence  demonstrates  that  they  are  substantial  and  growing  (Millennium  Ecosystem   Assessment,  2005).     Given  their  complexity,  there  is  no  simple  fix  to  these  problems.  Nevertheless,  there  is  a  tremendous   scope  for  action  to  reduce  them  in  the  coming  decades  (Millennium  Ecosystem  Assessment,  2005).  An   effective   set   of   responses   to   ensure   the   sustainable   management   of   ecosystems   requires   substantial   changes  in  institutions  and  governance,  economic  policies  and  incentives,  social  and  behaviour  factors,   technology,  and  knowledge  (Millennium  Ecosystem  Assessment,  2005).   In   this   context,   just   as   it   is   in   our   self-­‐interest   to   track   our   financial   assets   carefully,   it   is   equally   important   to   track   our   ecological   assets   (Wackernagel,   2009).   Quantitative   indicators   may   help   us   to   manage  those  ecological  assets.  Such  metrics  can  be  designed  to  allow  us  to  document  resource  levels,   set  goals,  identify  options  for  action,  and  track  progress  towards  desired  outcomes.  Therefore,  a  metric   tracking  human  demand  on,  and  the  availability  of,  regenerative  and  waste  absorptive  capacity  within   the  biosphere  could  be  useful  to  governments,  businesses  and  all  organizations  planning  for  their  mid-­‐   to  long-­‐term  success  (Wackernagel,  2009).     According   to   Ewing   et   al.   (2008),   providing   such   a   metric   is   the   goal   of   Ecological   Footprint.   As   a   matter  of  fact,  the  Ecological  Footprint  concept  and  indicator  seems  to  be  accepted  by  many  scientists   and  policy  makers.  According  to  the  CEC1  (2009),  the  Ecological  Footprint  has  been  formally  recognised   as  a  target  for  environmental  progress  by  several  nongovernmental  organizations  and  public  authorities,   and  the  Commission  continue  to  support  the  improvement  of  this  indicator  (CEC,  2009).  The  Report  to   the   European   Commission   done   by   Best   et   al.   (2008)   states   that   the   Ecological   Footprint   (National   Footprint  Accounts  only)  is  a  useful  indicator  for  assessing  progress  on  the  EU’s  resource  policies.    The   rapid  increase  of  its  popularity  and  influence  provides  motivation  for  a  further  analysis  (van  den  Bergh   and   Verbruggen,   1999).   As   an   evidence   of   its   influence,   multiple   applications   have   been   reported,   some   of  them  described  in  the  section  below.   1.2.2

Inventory  of  applications  

Much  has  been  said  about  the  Ecological  Footprint  (and  its  comparison  with  the  Biocapacity),  also,   much  has  been  written  and  there  are  already  several  applications  of  the  concept  and  methodology.  In   this  section  we  perform  an  inventory  of  the  major  applications.  Two  main  sources  are  considered:   (1) The  applications  reported  by  the  Global  Footprint  Network2;   (2) The  applications  done  in  the  international  scientific  community.                                                                                                                           1

 Commission  of  the  European  Communities.  

2

 There  are  other  methodologies  used  to  calculate  the  Ecological  Footprint,  but  the  accounts  done  by  the  Global  Footprint  

Network  are  the  most  widely  applied.  

10    

It   must   be   noticed   that,   in   this   section,   the   description   of   the   applications   follows   the   information   released  by  the  involved  entities  and  not  a  critical  review  of  what  has  been  said.  The  critical  review  of   the  concept  and  methodology  is  done  in  Chapter  3.   1.2.2.1 Applications  reported  by  the  Global  Footprint  Network   The   applications   reported   by   the   Global   Footprint   Network   are   done   both   at   a   local   and   regional   scales,  regarding  private  and  public  entities.  To  simplify,  the  country  is  used  as  the  unit  of  analysis.  The   gathered  applications  are  reported  in  Table  1.   Table  1  –  Applications  reported  by  the  Global  Footprint  Network     (source:  www.footprintnetwork.org,  visited  in  July  2010)   Country  

Application   The  Environmental  Protection  Authority  in  the  State  of  Vitoria,   Australia,  uses  the  Ecological  Footprint  as  an  engagement  and   resource  accounting  tool.  

Australia  

Canada  

3

The  GPT  Group  used  the  Ecological  Footprint  information  to   develop  a  standardized  method  of  measuring  the  environmental   impact  of  its  properties  to  meet  operational  sustainability   targets  of  impact  reduction.   In  2005,  the  government  of  the  city  of  Calgary  in  the  Province  of   Alberta,  Canada,  found  that  its  footprint  exceeded  the  Canadian   average  by  over  30%.  With  the  city´s  EcoFootprint  Program,   Calgary  plans  to  reduce  its  footprint  to  the  national  average  by   2036.   In  the  Province  of  Ontario,  Canada,  the  Ontario  Biodiversity   Council,  in  conjunction  with  the  Ontario  Ministry  of  Natural   Resources,  released  its  “State  of  Ontario’s  Biodiversity  2010”   report,  comprised  of  29  indicators.  One  of  these  indicators  is  the   Ecological  Footprint.  

Ecuador  

Ecuador  has  established  on  its  National  Plan  that,  by  2013,  the   country´s  footprint  should  be  lower  than  its  Biocapacity  and  that   it  will  remain  so  going  forward.  

England  

The  footprint  analysis  have  been  used  by  local  governments  and   business  for  policy  planning,  namely  to  understand  how  public   and  private  sector  might  work  together  to  reduce  the  Ecological   Footprint.   4

France  

SITA  uses  a  footprint  calculator  to  analyse  its  operation  systems   and  determine  how  to  lower  the  footprint  and  increase  their   operations  efficiency.  

Observations  (scale  and  documentation)   Local,  regional  and  municipal  application   (http://www.epa.vic.gov.au/ecologicalfootprint /casestudies/)  

Business  application   (http://www.footprintnetwork.org/newsletters/ footprint_network_enews_1-­‐8-­‐1.html)  

Local,  regional  and  municipal  application   (http://www.footprintnetwork.org/images/uplo ads/Calgary_ecological_footprint_Report.pdf)  

Local,  regional  and  municipal  application   (http://www.ontariobiodiversitycouncil.ca/files/ 1_MNR_OBC_Report_2010_v9.pdf)  

National  government  application   (http://www.footprintnetwork.org/en/index.ph p/newsletter/det/ecuador_sets_goal_to_reduc e_its_footprint)    

Local,  regional  and  municipal  applications   (http://www.citylimitslondon.com)    

Business  application   (http://www.empreinte.sita.fr/)  

   

                                                                                                                        3

  It   is   a   multinational   commercial   real   estate   development   company   that   owns   and   manages   retail   shopping   malls   in  

Australia  (www.footprintnetwork.org,  visited  in  July  2010).   4

 Part  of  the  SUEZ  Group,  is  a  waste  management  company  (www.footprintnetwork.org,  visited  in  July  2010).  

11    

Country  

Application  

Observations  (scale  and  documentation)   Local,  regional  and  municipal  applications  

5

(http://www.provincia.milano.it/export/sites/d efault/pianificazione_territoriale/agenda_21_O FFLINE/progetti_iniziative/impronta_ecologica/ abstractEN.pdf)  

Italia  

Ambienteitalia  calculated  the  Ecological  Footprint  of  the   Province  of  Milan.  

Japan  

After  some  reviews,  the  Ecological  Footprint  is  now  part  of   Japan’s  Basic  Environmental  Plan.  

Luxembourg  

The  government  has  completed  a  report  of  the  footprint   methodology  as  a  basis  for  regular  reporting  on  the  country’s   Ecological  Footprint.  

National  government  applications  

In  2009,  Agenda  Cascais  21    and  the  Center  for  Sustainability   Studies  and  Strategies  completed  a  study  of  the  Cascais’s  city   Ecological  Footprint.  

National  government  applications  

Portugal  

The  government  has  done  a  scientific  review  of  its  National   Accounts  and  the  Ecological  Footprint  data  is  being  incorporated   into  the  nation´s  Sustainability  Development  Plan.   6

Switzerland  

The  WBCSD    has  launched  Vision  2050  to  identify  the  pathways   toward  a  one-­‐planet  economy  in  the  next  four  decades.  Global   Footprint  Network  has  participated  in  the  process.  

National  government  application  

(http://www.myfootprint.lu/)      

(http://www.cascaisnatura.org/Pesquisa.aspx?I D=79&M=News&PID=0&NewsID=1086)  

National  government  applications   Business  applications   (http://www.wbcsd.org/templates/TemplateW BCSD5/layout.asp?type=p&MenuId=MTYxNg&d oOpen=1&ClickMenu=LeftMenu)  

7

Picket  Asset  Management  has  developed  a  new  type  of  country   bond  fund:  one  which  rates  countries  based  on  their  ability  to   provide  a  high  quality  of  life  at  a  minimal  ecological  cost.  In   order  to  do  this  it  uses  the  ratio  between  the  Ecological   Footprint  and  the  Human  Development  Index.   United  Arab   Emirates  

In  2007,  in  response  to  its  top-­‐ranking,  the  government   launched  the  “Al  Basma  Al  Beeiya  (Ecological  Footprint)   Initiative”  to  understand  and  reduce  the  country’s  Ecological   Footprint.   In  the  State  of  California,  the  Marin  County  Community   Development  Agency  used  the  Ecological  Footprint  to  choose   focus  areas  and  set  targets  for  reducing  the  county’s  footprint   by  15  percent.  

United  States   of  America  

In  the  State  of  California,  Sustainable  Sonoma  County,  a  local   non-­‐governmental  organization,  used  the  Ecological  Footprint  as   the  foundation  of  a  2002  campaign,  “Time  to  Lighten  Up”,  which   inspired  every  city  in  the  county  to  sign  up  a  commitment  to   reduce  their  CO2  output  by  20  percent.   In  the  State  of  Utah,  the  Utah  Population  and  Environment   Coalition  prepared  a  footprint  study  as  part  of  their  Utah  Vital   Signs  project  on  sustainability  indicators.  

Business  applications   (http://www.footprintnetwork.org/en/index.ph p/newsletter/det/rating_bonds_based_on_ecol ogical_return_on_investment)  

National  government  applications   (http://www.agedi.ae/English/national/Ecologic alFootprint/Pages/default.aspx)  

Local,  regional  and  municipal  applications   (http://www.co.marin.ca.us/depts/CD/main/pd f/BEST_pdf/eco_footprint_final2007-­‐01-­‐24.pdf)  

Local,  regional  and  municipal  applications   (http://www.sustainablesonoma.org/projects/s cefootprint.html)  

Local,  regional  and  municipal  applications   (http://www.utahpop.org/vitalsigns/UVS_ Report_v20b.pdf)  

                                                                                                                        5

 Research  and  consulting  institute  working  in  environmental  and  territorial  planning  (http://www.ambienteitalia.it/,  visited  

in  September  of  2010).   6

 World  Business  Council  for  Sustainable  Development,  an  organization  that  represents  corporations.  

7

 Swiss  investment  firm.  

12    

Country  

Application  

Observations  (scale  and  documentation)  

The  report  “One  Planet  Wales:  Transforming  Wales  for  a   prosperous  future  within  our  fair  share  of  the  Earth´s  resources”   highlights  how  Wales  can  transform  its  economy  to  reduce  its   Ecological  Footprint.   Wales  

Resulting  from  the  partnership  between  the  Cardiff  Council,  the   BRASS  Research  Centre  at  Cardiff  University  and  Stockholm   Environment  Institute,  in  2005,  the  city  of  Cardiff  completed  a   footprint  analysis  and  has  since  been  using  the  Ecological   Footprint  in  public  sustainability  outreach.    

National  government  applications   (http://assets.panda.org/downloads/25700_ww f_report_e.pdf)  

  Local,  regional  and  municipal  applications   (http://www.cardiff.gov.uk/content.asp?Parent _Directory_id=2865&nav=2870,3148,4119)  

  Also   worth   of   mention   is   that   the   European   Union   has   undertaken   a   program   called   One   Planet   Economy   Network,   aimed   at   building   an   economy   that   works   within   nature’s   means.   The   core   of   the   project   is   the   creation   of   a   footprint   tool   that   enables   European   decision-­‐makers   to   explore   future   scenarios   and   create   evidence-­‐based   policy   that   respects   ecological   limits.   A   tool,   called   EUREAPA,   is   being   created   through   a   collaborative   effort   by   Global   Footprint   Network,   Stockholm   Environmental   Institute,   World   Wildlife   Fund   (WWF)   –   United   Kingdom,   Twente   University,   Sustainable   Europe   Research  Institute  (SERI)  and  Ecologic.  EUREAPA  will  provide  data  for  a  “footprint  family  of  indicators”   including   carbon   footprint,   water   footprint   and   Ecological   Footprint   in   a   way   that   allows   them   to   be   integrated  and  compared  (www.footprintnetwork.org,  visited  in  July  2010).   1.2.2.2 Applications  done  in  the  international  scientific  community    The  performance  of  a  literature  review  revealed   a  large  amount  of  papers  discussing  some  aspect  of   the   Ecological   Footprint.   Some   of   them   focus   on   the   theoretical   concept   or   methodology   and   some   make  applications  using  real  data.  In  Table  2  some  of  these  applications  are  presented.       Table  2  –Applications  reported  in  the  international  scientific  community.   Title   Importing  terrestrial  Biocapacity:  The  U.S.  case  and  global   implications  

Author(s)   Meidad  Kissinger,   William  Rees  

Year  

Journal  

2010  

Land  Use  Policy  

Twelve  metropolitan  carbon  footprints:  A  preliminary   comparative  global  assessment  

Benjamin     Sovacool,  Mary   Brown  

2010  

Energy  Policy  

Incorporating  methane  into  Ecological  Footprint  analysis:  a  case   study  of  Ireland    

Conor  Walsh,   Bernadette   O’Regan,  Richard   Moles  

2009  

Ecological  Economics  

The  carbon  footprint  of  UK  households  1990  –  2004:  A  socio-­‐ economically  disaggregated,  quasi-­‐multi-­‐regional  input-­‐output   model  

Angela  Druckman,   Tim  Jackson  

2009  

Ecological  Economics  

Adaptative  environmental  management  of  tourism  in  the   Province  of  Siena,  Italy  using  the  Ecological  Footprint  

Trista  Patterson,   Valentina   Niccolucci,  Nadia  

2008  

Journal  of  Environmental   Management  

13    

Title  

Author(s)  

Year  

Journal  

Marchettini  

Long-­‐term  dynamics  of  terrestrial  carbon  stocks  in  Austria:  a   comprehensive  assessment  of  the  time  period  from  1830  to  2000  

Simone  Gingrich,   Karl-­‐Heinz  Erb,   Fridolin   Krausmann,   Veronika  Gaube,   Helmut  Haberl  

2007  

Regional  Environmental   Change  

The  Ecological  Footprint  as  a  key  indicator  of  sustainable  tourism  

Colin  Hunter,  Jon   Shaw  

2007  

Tourism  Management  

Beyond  “more  is  better”:  Ecological  Footprint  accounting  for   tourism  and  consumption  in  Val  di  Merse,  Italy  

Trista  Patterson,   Valentina   Niccolucci,   Simone   Bastianoni  

2007  

Ecological  Economics  

Present  and  future  Ecological  Footprint  of  Slovenia  –  The   influence  of  energy  demand  scenarios  

Sašo  Medved  

2006  

Ecological  Modelling  

Reducing  the  Ecological  Footprint  of  inbound  tourism  and   transport  to  Amsterdam  

F.  Schouten,  P.   Peeters  

2006  

Journal  of  Sustainable   Tourism  

The  Ecological  Footprints  of  fuels  

Erling  Holden,   Karl  Høyer  

2005  

Transportation  Research  

Ethanol  as  Fuel:  Energy,  Carbon  Dioxide  Balances,  and  Ecological   Footprint  

Marcelo  Oliveira,   Burton  Vaughan,   Edward  Rykiel  Jr.  

2005  

BioScience  

Ecological  Footprints  and  interdependencies  of  New  Zealand   regions  

Garry  McDonald,   Murray  Patterson  

2004  

Ecological  Economics  

Actual  land  demand  of  Austria  1926-­‐2000:  a  variation  on   Ecological  Footprint  assessments  

Karl-­‐Heinz  Erb  

2004  

Land  Use  Policy  

Land-­‐use  related  changes  in  aboveground  carbon  stocks  of   Austria´s  terrestrial  ecosystems  

Karl-­‐Heinz  Erb  

2004  

Ecosystems  

Assessing  the  Ecological  Footoprint  of  a  Large  Metropolitan  Water   Supplier:  Lesssons  for  Water  Management  and  Planning  towards   Sustainability  

Manfred  Lenzen,   Sven  Lundie,   Grant  Bransgrove,   Lisa  Charet,   Fabian  Sack  

2003  

Ecological  Footprint  analysis  as  a  tool  to  assess  tourism   sustainability  

Stefan  Gössling,   Carina  Hansson,   Oliver   Hörstmeier,   Stefan  Saggel  

2002  

Ecological  Economics  

Sustainable  tourism  and  the  touristic  Ecological  Footprint  

Colin  Hunter  

2002  

Environment,   Development  and   Sustainability  

A  modified  Ecological  Footprint  method  and  its  application  to   Australia  

Manfred  Lenzen,   Shauna  Murray  

2001  

Ecological  Economics  

Ecological  Footprints  of  Benin,  Bhutan,  Costa  Rica  and   Netherlands  

D.  P.  van  Vuuren,   E.  M.  W.  Smeets  

2000  

Ecological  Economics  

The  Ecological  Footprint  of  New  Zealand  as  a  step  towards   sustainability  

Alan  Fricker  

1998  

Futures  

Journal  of  Environmental   Plannig  and  Management      

14    

Title  

Author(s)  

New  methodology  for  the  Ecological  Footprint  with  an  application   to  the  New  Zealand  economy  

Kathryb  Bicknell,   Richard  Ball,  Ross   Cullen,  Hugh   Bigsby  

Year  

1998  

Journal  

Ecological  Economics  

15    

16    

2 Description  of  the  Ecological  Footprint  and  Biocapacity   2.1

Overview   In  order  to  make  a  correct  use  of  a  given  tool  is  essential  to  understand  the  assumptions  behind  it  as  

well   as   its   construction.   In   this   chapter   we   present   a   description   of   the   concept   and   methodology   of  the   Ecological  Footprint  and  Biocapacity,  as  presented  by  the  Global  Footprint  Network.       2.2

Concept   Ever   since   the   publication   of   An   Essay   on   the   Principle   of   Population,   by   Thomas   Malthus   in   1798,  

there   have   been   some   concerns   that   the   human   population   is   in   danger   of   growing   beyond   the   carrying   capacity  of  the  Earth  (Raport,  2000).  The  carrying  capacity  of  human  activities  consists  of  the  maximum   rate   of   resource   consumption   and   waste   discharge   that   can   be   sustained   indefinitely,   without   progressively  impairing  the  functional  integrity  and  productivity  of  ecosystems   (Deutsch  et  al.,  2000).  In   this   context,   the   Ecological   Footprint   concept   was   formally   introduced   by   Mathis   Wackernagel   and   William  Rees  in  the  early  1990’s  (Wackernagel  and  Rees,  1996;  Rees,  1992;  Kitzes  et  al.,  2009).  Ecological   Footprint   methods   were   designed   to   represent   actual   human   consumption   of   biological   renewable   resources  and  generation  of  wastes,  in  terms  of  appropriated  ecosystem  area.  The  Ecological  Footprint   can  be  compared  to  the  biosphere’s  productive  capacity  in  a  given  area,  which  is  called  Biocapacity.  The   comparison   between   the   Ecological   Footprint   and   Biocapacity   is   here   referred   as   Ecological   Footprint   analysis.     2.3

Methodology  presented  by  the  Global  Footprint  Network   2.3.1

Introduction  

Nowadays,  the  methodology  presented  by  the  Global  Footprint  Network  is  the  most  known  one.  This   methodology   is   developed   and   maintained   by   the   Global   Footprint   Network   and   its   more   than   75   partner   organizations.   These   accounts   cover   more   than   150   nations   and   extend   from   1961   (Kitzes   et   al.,   2009)8.  Although  the  accounts  are  refered  as  national,  the  methodology  is  also  applied  to  the  world.   As  currently  done,  the  Ecological  Footprint  and  Biocapacity  methodology  covers  six  land9  use  types   (Kitzes  et  al.,  2008;  Global  Footprint  Network,  2009a;  Ewing  et  al.,  2008;  Ewing  et  al.,  2009):     (1) Cropland;                                                                                                                           8

 Official  site  of  the  Global  Footprint  Network:  www.footprintnetwork.org.  

9

 This  represents  a  language  abuse,  since  the  actual  methodology  also  consider  ocean  areas.  This  abuse  is  done  in  order  to  

simplify  the  explanation.  

17    

(2) Grazing  land;     (3) Forest  land;   (4) Fishing  ground;   (5) Built-­‐up  land;   (6) Carbon  uptake  land  (to  accommodate  the  carbon  footprint).     For  all  land  use  types  there  is  a  demand  on  the  area  (for  human  consumption  and  waste  disposal),  as   well  as  a  supply  of  such  an  area  (Ewing  et  al.,  2009).   Before   describing   the   land   types   and   the   calculation   methodology,   we   present   some   fundamental   assumptions  taken  (Ewing  et  al.,  2008):   (1) The   majority   of   the   resources   that   people   consume   and   the   wastes   they   generate   can   be   tracked;   (2) Most   of   these   resource   and   waste   flows   can   be   measured   in   terms   of   the   biologically   productive   area   necessary   to   maintain   flows.   Resource   and   waste   flows   that   cannot   be   measured   are   excluded   from   the   assessment,   leading   to   a   systematic   underestimate   of   humanity’s  true  Ecological  Footprint;   (3) Area   demanded   can   exceed   area   supplied   if   demand   on   an   ecosystem   exceeds   that   ecosystems   regenerative   capacity   (for   example,   humans   can   temporarily   demand   more   Biocapacity  from  forests,  or  fisheries,  than  those  ecosystems  have  available).  This  situation  is   known  as  overshoot.   2.3.2

Land  use  types  

2.3.2.1 Cropland   The   Ecological   Footprint   of   cropland   consists   of   areas   used   to   produce   food   and   fibber   for   human   consumption,  feed  for  livestock,  oil  crops,  and  rubber.  Agriculture  typically  uses  the  most  suitable  and   productive   land   areas,   unless   they   have   been   urbanized.   Therefore,   cropland   is   considered   the   most   bioproductive   of   all   the   land   uses   types   (Ewing   et   al.,   2010;   Ewing   et   al.,   2009;   Ewing   et   al.,   2008).   Cropland   footprint   calculations   do   not   take   into   account   the   extent   to   which   farming   techniques   or   unsustainable  agriculture  practices  cause  long-­‐term  degradation  of  soil  (Ewing  et  al.,  2010;  Ewing  et  al.,   2009).   The   Biocapacity   of   cropland   consists   of   the   area   currently   categorized   as   used   for   cropland   (within  the  borders  of  the  system  analysed).   Locally,   cropland   can   be   in   deficit   when   countries   consume   more   crops   or   embodied   cropland   in   livestock   than   they   have   the   Biocapacity   to   produce   themselves.   However,   on   a   global   scale   cropland   Biocapacity   represents   the   combined   land   area   devoted   to   growing   all   crops,   which   the   cropland   footprint  cannot  exceed  (Ewing  et  al.,  2008).   18    

2.3.2.2 Grazing  land   The  Ecological  Footprint  of  grazing  land  measures  the  area  of  grassland  necessary,  in  addition  to  crop   feeds,  to  support  livestock  (Ewing  et  al.,  2008).  It  is  comprised  of  grassland  and  sparsely  wooded  land   and  is  used  to  raise  livestock  for  meat,  dairy,  hide,  and  wool  products  (Ewing  et  al.,  2008;  Ewing  et  al.,   2009).  The  Biocapacity  of  grazing  land  consists  of  the  area  currently  categorized  as  used  for  grazing  land   (within  the  borders  of  the  system  analysed).     Locally,   grazing   land   can   be   in   deficit   when   countries   consume   more   embodied   grazing   land   in   livestock  than  they  have  the  capacity  to  produce  themselves.  However,  on  a  global  scale,  demand  may   not  overshoot  supply  because  grasses  are  annual  plants  and,  thus,  it  is  assumed  that  there  are  no  stocks   from  the  previous  years  to  draw  down  (Ewing  et  al.,  2008).The  cropland  and  grazing  land  footprints  are   connected;  an  increase  in  crop  feed  may  reduce  demands  on  grazing  capacity  (Kitzes  et  al.,  2008).   2.3.2.3 Forest  land   The  Ecological  Footprint  of  forest  land  assesses  human  demand  for  the  regenerative  capacity  of  the   world’s  forests.  The  forest  land  footprint  is  comprised  of  two  broad  types  of  primary  products:  wood  for   fuel,  and  timber  used  as  a  raw  material  to  produce  secondary  timber  products.  As  a  summary,  the  forest   land  footprint  represents  the  area  of  world  average  forest  land  needed  to  supply  wood  for  construction,   fuel   and   paper   (Kitzes   et   al.,   2008).   The   Biocapacity   of   forest   land   consists   of   the   area   currently   categorized  as  used  for  forest  land  (within  the  borders  of  the  system  analysed).     According   to   the   definition   presented,   forest   land   footprint   can   be   in   overshoot   locally   but   not   globally.  When  overshoot  occurs,  forest  stocks  decrease  over  time  (Ewing  et  al.,  2008).   2.3.2.4 Fishing  ground   The   Ecological   Footprint   of   fishing   grounds   is   calculated   based   on   the   estimate   primary   production   required  to  support  the  fish  caught.  This  primary  production  requirement  is  calculated  from  the  average   trophic   level   of   the   species   in   question.   Fish   that   feed   higher   on   the   food   chain   require   more   primary   production  input  and  as  such  are  associated  with  a  higher  Ecological  Footprint  (Ewing  et  al.,  2008).  The   same   calculation   is   currently   used   for   marine   and   inland   fish   (Kitzes   et   al.,   2008).   The   Biocapacity   is   calculated  through  the  areas  categorized  as  being  used  as  fishing  ground,  namely  the  marine  continental   shelf  and  inland  water.  

19    

Fishing   grounds   can   enter   overshoot   if   the   area   demanded   for   sustainable   extraction   of   the   fish   exceeds  actual  area  used  as  fishing  grounds  (Ewing  et  al.,  2008)10.   2.3.2.5 Built-­‐up  land   Both   the   Ecological   Footprint   and   Biocapacity   of   built-­‐up   land   represents   bioproductive   land   which   has  been  physically  occupied  by  human  activities  (Kitzes  et  al.,  2008),  such  as  transportation,  housing,   industrial  structures,  and  reservoirs  for  hydropower  (Ewing  et  al.,  2008;  Ewing  et  al.,  2009).  Built-­‐up  land   presumably   occupies   what   would   previously   have   been   cropland.   This   assumption   is   based   on   the   theory   that   human   settlements   are   generally   situated   in   highly   fertile   areas   (Ewing   et   al.,   2008).   By   definition,   built-­‐up   land   has   a   Biocapacity   equal   to   its   Ecological   Footprint   (Ewing   et   al.,   2008).   Therefore,  there  is  no  overshoot  in  this  category.   2.3.2.6 Forest  for  carbon  dioxide  uptake   Carbon  uptake  land  is  the  only  component  of  the  Ecological  Footprint  dedicated  to  tracking  a  waste   product:  anthropogenic  carbon  dioxide.  Most  terrestrial  carbon  dioxide  uptake  in  the  biosphere  occurs   in   forests.   Taking   this   into   account,   carbon   dioxide   uptake   land   is   assumed   to   be   forest   land   (after   discounting  the  ocean  sequestration).  The  carbon  footprint  is,  then,  calculated  as  the  amount  of  forest   land   required   to   absorb   anthropogenic   carbon   dioxide   emissions   (Ewing   et   al.,   2008).   There   is   no   correspondent   Biocapacity   area   associated   with   this   category   since   it  “uses”   the   forest   Biocapacity,   also   considered  to  fulfil  the  forest  Ecological  Footprint.   This   category   can   present   overshoot,   since   it   is   possible   to   require   more   forest   land   to   absorb   the   carbon  dioxide  than  the  existing  forest  land.   2.3.3

Yield  and  equivalence  factors  

Average   bioproductivity   differs   between   various   land   types,   as   well   as   between   countries   for   any   given  use  type.  In  order  to  permit  comparisons  across  countries  and  land  use  types,  Ecological  Footprint   and  Biocapacity  are  expressed  in  units  of  world-­‐average  bioproductivity  area  –  global  hectares  (Ewing  et   al.,  2008;  Ewing  et  al.,  2009).  In  order  to  achieve  this  unit,  two  factors  are  used:   (1) Yield  factor  (YF);   (2) Equivalence  factor  (EQF).  

                                                                                                                        10

  In   spite   of   wide   acknowledgment   of   global   overfishing,   the   current   data   set   methods   in   the   National   Footprints   Accounts  

do  not  show  that  demand  exceeds  supply  in  this  component.  Therefore,  and  according  to  the  Global  Footprint  Network,  further   research  in  this  area  is  needed  to  clarify  the  way  fish  demand  is  being  accounted  for.  

20    

2.3.3.1 Yield  factor   This  factor  accounts  for  differences  in  productivity  of  a  given  land  use  type  between  a  country  and   the  global  average  in  this  area  type.  These  differences  are  driven  by  natural  factors,  such  as  precipitation   or  soil  quality,  as  well  as  by  management  practices  (Ewing  et  al.,  2008;  Ewing  et  al.,  2009).  To  account   for  these  differences,  the  yield  factor  compares  the  production  of  a  specific  land  use  type  in  a  country  to   a  world  average  hectare  of  the  same  land  use  type.  The  yield  factor  for  built-­‐up  land  is  assumed  to  be   equal   that   for   cropland   since   urban   areas   are   typically   built   on   or   near   the   most   productive   cropland   areas  (Ewing  et  al.,  2008).   Yield  factors  weight  land  areas  according  to  their  relative  productivities  (see  Table  3).  For  example,   the   average   hectare   of   pasture   in   New   Zealand   produces   more   grass   than   a   world   average   hectare   of   pasture   land.   Thus,   in   terms   of   productivity,   one   hectare   of   grassland   in   New   Zealand   is   equivalent   to   more   than   one   world   average   grazing   land   hectare;   it   is   potentially   capable   of   supporting   more   meat   production  (Ewing  et  al.,  2009).   Table  3  –  Sample  yield  factors  for  selected  countries,  2006.   (source:  Ewing  et  al.,  2009)    

Cropland   Forest  

Grazing  Land   Fishing  Ground  

World  average  yield  

1.0  

1.0  

1.0  

1.0  

Algeria  

0.6  

0.4  

0.7  

0.9  

Germany  

2.1  

4.1  

2.2  

3.0  

Hungary  

1.4  

2.6  

1.9  

0.0  

Japan  

1.5  

1.4  

2.2  

0.8  

Jordan  

1.0  

1.5  

0.4  

0.7  

New  Zealand  

1.9  

2.0  

2.5  

1.0  

Zambia  

0.5  

0.2  

1.5  

0.0  

2.3.3.2 Equivalence  factor   The   equivalence   factor   translates   a   specific   land   use   type   into   a   universal   unit   of   biologically   productive  area,  a  global  hectare.  Equivalence   factors  are  calculated  for  each  year,  and  are  identical  for   every  country  in  a  given  year.  The  equivalence  factor  for  built-­‐up  land  is  set  equal  to  that  for  cropland   and   carbon   uptake   land   is   set   equal   to   that   for   forest   land.   This   reflects   the   assumptions   that   infrastructures   tends   to   be   on   or   near   productive   agricultural   land,   and   that   carbon   uptake   occurs   on   forest  land.  The  equivalence  factor  for  hydro  area  is  set  equal  to  one,  which  assumes  that  hydroelectric   reservoirs   flood   world   average   land.   The   equivalence   factor   for   marine   area   is   calculated   such   that   a   single   global   hectare   of   pasture   will   produce   an   amount   of   calories   of   beef   equal   to   the   amount   of  

21    

calories   of   salmon   that   can   be   produced   by   a   single   global   hectare   of   marine   area.   The   equivalence   factor  for  inland  water  is  set  equal  to  the  equivalence  factor  for  marine  area  (Ewing  et  al.,  2009).   Equivalence   factors   are   calculated   using   suitability   indexes   from   the   Global   Agro   Ecological   Zones   (GAEZ)   model   combined   with   data   on   the   actual   areas   of   cropland,   forest   land,   and   grazing   land   area   from  the  Food  and  Agriculture  Organisation  Corporate  Statistical  Database  (FAOSTAT).  The  GAEZ  model   divides   all   land   globally   into   five   categories,   based   on   calculated   potential   productivity.   All   land   is   assigned   a   quantitative   suitability   index   from   among   the   following   (Kitzes   et   al.,   2008;   Ewing   et   al.,   2008):   (1) Very  suitable    –  0.9   (2) Suitable    –  0.7   (3) Moderately  suitable    –  0.5   (4) Marginally    suitable    –  0.3   (5) Not  suitable    –  0.1   The  calculation  of  the  equivalence  factors  assumes  that  the  most  productive  land  is  put  to  its  most   productive   use:   the   most   suitable   land   available   will   be   planted   to   cropland,   the   next   most   suitable   land   will   be   under   forest   land,   and   the   least   suitable   land   will   be   grazing   land.   The   equivalence   factors   are   calculated  as  the  ratio  of  the  average  suitability  index  for  a  given  land  use  type  divided  by  the  average   suitability   index   for   all   land   use   type   (Kitzes   et   al.,   2008;   Ewing   et   al.,   2008).   Table   4   presents   the   equivalence  factors  used  in  the  2006  calculations  (Ewing  et  al.,  2009).   Table  4  –  Equivalence  factors,  2006.   (source:  Ewing  et  al.,  2009)   Area  Type  

Equivalence  factor   -­‐1

[gha  ha ]  

Primary  cropland  

2.39  

Forest  

1.24  

Grazing  land  

0.51  

Marine  

0.41  

Inland  water  

0.41  

Built-­‐up  land  

2.39  

22    

2.3.4

Calculation  formulas  

For  any  land  use  type,  the  Ecological  Footprint  (EF)  and  the  Biocapacity  (BC)  of  a  given  population  are   calculated  according  to  Equation  1  and  Equation  2.   EF  [gha] =

P  [t] ⋅ YF  [−] ⋅ EQF  [gha ⋅ ha−1 ] YN  [t ⋅ ha−1 ]  

Equation  1  –  Ecological  Footprint  general  equation.   (sources:  Ewing  et  al.,  2009;  Ewing  et  al.,  2008;  Kitzes  et  al.,  2008)    

BC  [gha] = A  [ha] ⋅ YF  [−] ⋅ EQF  [gha ha −1 ]   Equation  2  –  Biocapacity  general  equation.   (sources:  Ewing  et  al.,  2009;  Ewing  et  al.,  2008;  Kitzes  et  al.,  2008)  

  P:    

amount  of  a  product  harvested  or  waste  emitted.  

YN:    

national  average  yield  for  P.  

A:    

area  available  for  a  given  land  use  type.  

YF:    

ratio   of   national   to   world   average   yields.   It   is   calculated   as   the   annual   availability   of  

usable  products  and  varies  by  country  and  year.   EQF:    

translate  the  area  supplied  or  demanded  of  a  specific  land  use  type  into  units  of  world  

average  biologically  productive  area  (global  hectares)  and  varies  by  land  use  type  and  year.   2.3.4.1 Ecological  Footprint   When   we   are   dealing   with   primary   products,   the   calculation   of   their   Ecological   Footprint   is   very   intuitive  (e.g.  area  of  cropland  necessary  to  produce  maize).  However,  in  some  cases,  it  is  necessary  to   know  the  Ecological  Footprint  of  products  derived  from  the  primary  flows  of  ecosystem  goods  (Ewing  et   al.,   2008).   In   this   case,   the   demand   for   manufactured   or   derivative   products   (e.g.   flour   or   wood   pulp),   is   converted   into   primary   product   equivalents   (e.g.   wheat   or   roundwood)   through   the   use   of   extraction   rates.  These  quantities  of  primary  product  equivalents  are  then  translated  into  an  Ecological  Footprint.   The   Ecological   Footprint   also   embodies   the   energy   required   for   the   manufacturing   process  (Ewing  et  al.,   2009).   Typically,  the  Ecological  Footprint  of  a  given  population  refers  to  the  consumption  of  that  population   (Ewing  et  al.,  2009).  This  measures  the  Biocapacity  demanded  by  the  final  consumption  of  all  members   of  the  population,  including  their  household  consumption  as  well  as  their  collective  consumption,  such   as  schools,  roads,  fire  brigades,  among  others,  which  serve  the  household,  but  may  not  be  directly  paid   for   by   the   households   (Ewing   et   al.,   2009).   In   contrast,   the   Ecological   Footprint   of   production   is   the   sum   of   the   footprints   for   all   resources   harvested   and   all   wastes   generated   within   the   population’s   geographical  borders.  This  includes  all  the  area  within  the  borders  necessary  for  supporting  the  actual   23    

harvest  of  primary  products  (cropland,  grazing  land,  forest  land,  and  fishing  grounds),  the  population’s   infrastructure  and  hydropower  (built-­‐up  land),  and  the  area  needed  to  absorb  fossil  fuel  carbon  dioxide   emissions  generated  within  the  borders  (carbon  footprint)  (Ewing  et  al.,  2009).  The  difference  between   the   production   and   consumption   footprint   is   trade   (see   Equation   3)   (Ewing   et   al.,   2008;   Ewing,   et   al.,   2009):  

EFC  [gha] = EFP  [gha] + EFI  [gha] − EFE  [gha]   Equation  3  –  Components  of  the  Ecological  Footprint  of  consumption.   (sources:  Ewing  et  al.,  2009;  Ewing  et  al.,  2008;  Kitzes  et  al.,  2008)  

  EFC:    

Ecological  Footprint  of  consumption.  

EFP:    

Ecological  Footprint  of  production.  

EFI:    

Ecological  Footprint  of  importation.  

EFE:    

Ecological  Footprint  of  exportation.  

In  order  to  measure  the  footprint  of  imports  and  exports,  we  need  to  know  both  the  amounts  traded   as   well   as   the   embodied   resources   (including   carbon   dioxide   emissions)   in   all   categories   (Ewing   et   al.,   2009).   2.3.4.2 Biocapacity   Biocapacity   refers   to   the   amount   of   biologically   productive   land   and   water   areas   available   within   the   borders   of   a   given   population   (Kitzes   et   al.,   2008).   Biologically   productive   area   refers   to   the   land   and   water  that  supports  significant  photosynthetic  activity  and  accumulation  of  biomass,  ignoring  unfruitful   areas   of   low,   dispersed   productivity.   Biocapacity   is   an   aggregated   measure   of   the   amount   of   land   available,  weighted  by  the  productivity  of  that  land.  It  represents  the  ability  of  the  biosphere  to  produce   crops,   livestock   (pasture),   timber   products   (forest),   and   fish,   as   well   as   to   uptake   carbon   dioxide   in   forests.   It   also   includes   how   much   of   this   regenerative   capacity   is   occupied   by   infrastructure   (built-­‐up   land)  (Ewing  et  al.,  2009).   2.3.5

Results  

2.3.5.1 Global  analysis   In   2006,   the   area   of   biologically   productive   land  and   water   was   nearly   11.9   billion   hectares.   World   Biocapacity   is   also   is   also   11.9   billion   global   hectares,   since   the   total   number   of   average   hectares   equals   the  total  number  of  global  hectares  (see  Figure  1).  But  the  relative  area  of  each  land  type  expressed  in   global  hectares  differs  from  the  distribution  in  actual  hectares.  In  2006,  the  world  had  3.7  billion  global   hectares  of  cropland   Biocapacity,   which   corresponds   to   1.6   billion   hectares   of   real  cropland  area.  This  

24    

difference  is  due  to  the  relatively  high  productivity  of  cropland  compared  to  other  land  use  types  (Ewing   et  al.,  2009).   14

12 Hydro

Area  (billions)

10

Infrastructure

8

Forest  L and Inland  W ater

6

Marine

4

Grazing  L and

2

Cropland

0 Hectares

Global  hectares

 

Figure  1  –  Relative  area  of  land  use  types  worldwide  in  hectares  and  global  hectares,  2006.   (source:  Ewing  et  al.,  2009)  

Natural  resources  and  material  consumption  are  not  evenly  distributed  worldwide.  Some  countries   and  regions  have  a  net  demand  on  the  planet  greater  than  their  respective  Biocapacity,  while  others  use   less  than  their  available  capacity.  Humanity  as  a  whole,  however,  is  not  living  within  the  means  of  the   planet  Earth.  In  2006,  humanity’s  total  Ecological  Footprint  worldwide  was  17.1  billion  global  hectares,   with   world   population   at   6.6   billion   people;   the   average   person’s   footprint   was   2.6   global   hectares.   There   were   only   11.9   billion   gha   of   Biocapacity   available   in   that   year,   or   1.8   gha   per   person.   This   overshoot  of  approximately  40  percent  means  that,  in  2006,  humanity  used  the  equivalent  of  1.4  Earths   to  support  its  consumption  (see  Figure  2).  It  took  the  Earth  nearly  a  year  and  four  months  to  regenerate   the  resources  used  by  humanity  in  that  year  (Ewing  et  al.,  2009).   In  1961,  the  first  year  for  which  National  Footprint  Accounts  are  available,  humanity’s  footprint  was   about  half  of  what  the  Earth  could  supply.   Human   demand   first   exceeded   the   planet´s   ability   to   meet   this  demand  around  1980,  and  this  state  of  overshoot  has  characterized  every  year  since  (see  Figure  2)   (Ewing  et  al.,  2009).  

25    

1,6

1,4

1,2

Planets

1,0

Forest  for  carbon  dioxide  uptake Built-­‐up  land

0,8

Fishing  ground Forest  land

0,6

Grazing  land Cropland

0,4

0,2

0,0 1961

1966

1971

1976

1981

1986

1991

1996

2001

2006

Year

 

Figure  2  –  Ecological  Footprint  versus  Biocapacity,  1961  –  2006.   (source:  Ewing  et  al.,  2009)  

2.3.5.2 Region  and  country’s  analysis   Regions   and   countries   differ   greatly   in   both   their   Ecological   Footprint   and   Biocapacity.   In   a   global   view,   half   of   the   global   Ecological   Footprint   was   attributable,   in   2006,   to   just   10   countries,   with   the   United   States   of   America   and   China   alone   each   using   23   and   21   percent,   respectively,   of   the   Earth’s   Biocapacity.  In  the  top  10  of  total  available  Biocapacity,  Brazil  has  the  most  Biocapacity  of  any  country,   followed   in   decreasing   order   by   United   States   of   America,   China,   Russian   Federation,   Canada,   India,   Australia,  Indonesia,  Argentina,  and  Bolivia.  Half  the  world’s  Biocapacity  is  found  within  the  borders  of   just  eight  countries  (Ewing  et  al.,  2009).   Analysing  the  Ecological  Footprint  versus  the  Biocapacity  for  the  world  regions  presented  in   Figure  3,   North   America   has   the   higher   deficit11   (3.05   gha   per   capita),   followed   by   Europe   (1.48   gha   per   capita)   and    Asia  (0.79  gha  per  capita).  The  Oceania  has  the  higher  surplus12,  7.02  gha  per  capita.   Within   the   North   America,   the   United   States   of   America   (USA)   is   the   responsible   for   the   deficit.   According   to   the   2006   national   accounts,   the   USA   has   an  Ecological   Footprint   of   9.02   gha   per   capita   and   a   Biocapacity   of   4.43   gha   per   capita   (with   a   deficit   of   4.59   gha   per   capita)   (see   Figure   4).   The   contribution  of  the  carbon  footprint  to  the  overall  Ecological  Footprint  of  North  America,  70  percent  of   the  region’s  footprint  of  consumption  and  58  percent  of  its  footprint  of  production,  is  higher  than  the   world  average.  Home  to  5  percent  of  the  global  population,  North  America  accounts  for  17  percent  of   the   world’s   total   Ecological   Footprint   of   consumption.   Since   1961,   North   America’s   total   Ecological   Footprint   of   consumption   has   grown   by   almost   1   800   million   gha.   The   region’s   total   population                                                                                                                           11

 In  this  context,  deficit  measures  the  negative  value  resulting  from  Biocapacity  minus  Ecological  Footprint.  

12

 Surplus  measures  the  positive  value  resulting  from  Biocapacity  minus  Ecological  Footprint.  

26    

increased   by   just   11   percent   over   that   period,   but   the   resource   flows   mobilized   per   person   grew   substantially.   The   160   percent   increase   in   North   America’s   total   Ecological   Footprint   of   consumption   during  that  time  is  almost  entirely  attributable  to  growth  in  demand  per  person  (Ewing  et  al.,  2009).   Within  the  Europe,  the  country  with  the  higher  deficit,  4.61  gha  per  capita,  is  Belgium  (the  country   with  the  higher  surplus,  7.48  gha  per  capita,  is  Finland);  the  country  with  the  higher  Ecological  Footprint,   8.19  gha  per  capita,  is  Ireland  (the  country  with  the  lowest  Ecological  Footprint,  1.75  gha  per  capita,  is   Moldova);  the  country  with  the  higher  Biocapacity,  12.99  gha  per  capita,  is  Finland  (the  country  with  the   lowest   Biocapacity,   1.02   gha   per   capita,   is   Albania)   (see   Figure   5).   For   this   region,   54   percent   of   total   Ecological   Footprint   of   production,   and   55   percent   of   its  footprint   of   consumption,   are   attributable   to   carbon   dioxide   emissions.   Europe’s   total   Ecological   Footprint   of   consumption   has   increased   by   1   070   million  gha  since  1961.  This  increase  was  driven  primarily  by  growth  in  per  capita  resource  flows,  though   population  growth  has  also  contributed:  the  Ecological  Footprint  of  the  average  European  resident  grew   by  33  percent  between  1961  and  2006,  while  Europe’s  total  population  increased  by  12  percent.     Within  the  Asia,  the  country  with  the  higher  deficit,  8.93  gha  per  capita,  is  the  United  Arab  Emirates   (the  country  with  the  higher  surplus,  0.59  gha  per  capita,  is  the  Myanmar);  the  country  with  the  higher   Ecological   Footprint,   10.29   gha   per   capita,   is   the   United   Arab   Emirates   (the   country   with   the   lowest   Ecological  Footprint,  0.75  gha  per  capita,  is  the  Pakistan);  the  country  with  the  higher  Biocapacity,  4.27   gha   per   capita,   is   the   Kazakhstan   (the   country   with   the   lowest   Biocapacity,   0.04   gha   per   capita,   is   Singapore)   (see   Figure   6).   Carbon   dioxide   emissions   account   for   56   percent   of   Asia’s   total   Ecological   Footprint   of   production,   and   53   percent   of   its   footprint   of   consumption.   However,   Asia’s   average   Ecological  Footprint  per  person  is  lower  than  the  world  average,  so  the  per  person  carbon  footprint  is   also   less.   Of   the   world’s   regions,   Asia   has   shown   the   greatest   total   growth   in   Ecological   Footprint   of   consumption,  increasing  by  4  020  million  gha  since  1961.  The  Ecological  Footprint  of  the  average  Asian   resident   increased   by   46   percent   between   1961   and   2006,   while   Asia’s   total   population   grew   by   185   percent.   Thus,   while   population   growth   is   a   major   factor   in   the   increase   in   Asia’s   total   Ecological   Footprint  of  consumption,  growth  in  per  capita  footprint  has  also  contributed  substantially.  

27    

  Figure  3  –  Ecological  Footprint  versus  Biocapacity  for  the  year  of  2006.   (source:  Ewing  et  al.,  2009)  

  Figure  4  –  Ecological  Footprint  versus  Biocapacity  for  North  America,  2006.   (source:  Ewing  et  al.,  2009)  

28    

   Figure  5  –  Ecological  Footprint  versus  Biocapacity  for  Europe,  2006.   (source:  Ewing  et  al.,  2009)  

  Figure  6  –  Ecological  Footprint  versus  Biocapacity  for  Asia,  2006.   (source:  Ewing  et  al.,  2009)  

29    

30    

3 Critical  review  of  the  Ecological  Footprint  and  Biocapacity   3.1

Overview   Much   has   been   said   about   the   concepts   of   Ecological   Footprint   and   Biocapacity,   as   well   as   their  

application   by   the   Global   Footprint   Network.   The   knowledge   of   the   strengths   and   weaknesses   of   the   Ecological   Footprint   and   Biocapacity   is   particularly   important   since,   as   it   was   already   discussed,   the   results   released   by   the   Global   Footprint   Network   are   used   worldwide   for   many   purposes,   including   policy   making.   It   is   necessary   to   understand   the   applicability   of   the   concepts   and   results,   what   they   actually   mean,   and   the   limitations   of   the   numbers   obtained.   In   the   following   sections   a   review   of   the   main  items  discussed  in  the  literature  is  presented.   3.2

Conceptual  issues   The  Ecological  Footprint  (and  its  comparison  with  the  available  Biocapacity)  has  been  pointed  out  as  

“(…)   an   ideal   tool   for   tracking   progress,   setting   targets   and   driving   policies   for   sustainability.”   (Wackernagel,   2006).   A   general   definition   states   that   sustainability   assessment   is   a   tool   that   can   help   decision  and  policy-­‐makers  determining  which  actions  should  and  shouldn’t  be  taken  when  the  goal  is  to   contribute  to  a  sustainable  development  (Pope  et  al.,  2004).  In  this  context  it  must  be  noticed  that,  in   addition   to   environmental   needs   and   material   needs   that   may   be   fulfilled   through   economic   development,   humans   also   need   social   development   to   improve   social   justice,   equality,   and   security.   Thus,   sustainability   has,   at   least,   three   overlapping   dimensions:   the   simultaneous   pursuit   of   economic   prosperity,   environmental   quality,   and   social   equity   (Liu,   2009).   The   comparison   between   the  Ecological   Footprint  and  the  available  Biocapacity  assesses,  at  most,  one  specific  issue  regarding  the  environmental   dimension,   and   therefore   cannot   be   used   alone   as   an   indicator   of   sustainability.   Other   important   question   that   must   be   raised   is   if   the   Ecological   Footprint   (and   its   comparison   with   the   available   Biocapacity)  says  something  about  environmental  sustainability.  In  fact,  when  the  Ecological  Footprint  is   smaller  than  the  Biocapacity  we  do  not  know  if  the  harvest  of  the  natural  resources  is  being  done  in  a   sustainable  or  unsustainable  way.  Therefore,  regarding  the  environmental  sustainability  nothing  can  be   concluded.  This  means  that  the  comparison  between  the  Ecological  Footprint  and  Biocapacity  can  only   be   useful   when   the   results   show   overshoot,   as   indicating   environmental   unsustainability.   If   correctly   applied,  this  indicator  gives  an  absolute  measure  of  environmental  unsustainability,  which  represents  an   advantage  in  this  kind  of  analysis.   In  the  context  of  this  discussion,  two  additional  items  deserve  special  attention:     (1) The  interpretation  of  an  overshoot  situation;   (2) The  per  capita  and  total  analysis.  

31    

Considering   the   global   application,   the   2006   results   indicate   that   it   is   necessary   1.4   planets   to   support   human   consumption   of   that   year,   but   humanity   still   lives   in   one   planet.   This   result   seems   to   indicate  that  the  comparison  between  the  Ecological  Footprint  and  Biocapacity  gives  a  wrong  result.  But   it   is   a   fake   question.   Let’s   not   focus   on   the   results   presented   by   the   Global   Footprint   Network,   and   analyse  the  concept.  According  to  this  one,  it  is  possible  to  observe  an  overshoot  situation  and  still  live   in  one  planet.  In  fact,  the  ecological  limits  can  be  exceeded  for  a  period  of  time  because  nature  reacts   with   inertia.   More   precisely,   natural   capital   can   be   harvested   faster   than   it   regenerates,   thereby   depleting   the   capital   stock   (Wackernagel   et   al.,   2000).   Of   course,   this   can   only   happen   as   long   as   the   stock  is  non-­‐zero.     Regardless  of  the  scale  of  application,  the  results  can  come  is  a  total  or  per  capita  basis.  According  to   van  den  Bergh  and  Verbruggen  (1999),  in  a  per  capita  basis,  the  comparison  among  regions  or  countries   appears,   in   essence,   to   be   a   reflection   of   the   distribution   of   wealth.   In   fact,   an   increase   in   the   Ecological   Footprint   suggests   an   increase   in   the   consumption.   This   last   increase   may   take   place   due   to   an   increase   in   wealth,   which   is   translated   into   an   increase   in   Gross   Domestic   Product   (GDP).   The   analysis   of  Figure   7   suggests   that,   globally,   the   Ecological   Footprint,   as   it   is   currently   done   by   the   Global   Footprint   Network,   roughly  follows  the  same  path  as  the  per  capita  GDP13.  But,  as  presented  in  Figure  8,  for  similar  levels  of   GDP   it   is   possible   to   have   different   levels   of   consumption   and   corresponding   Ecological   Footprint.     Therefore,  the  Ecological  Footprint  is  not  just  a  reflection  of  the  distribution  of  wealth.     18,5

8000

16,5

7000

GDP  

6000 t in r tp o o  fl ac ig lo o cE

14,5

)a it p ac r   12,5 e p  a h g( 10,5

5000 4000 3000 2000

8,5

GDP  (current  US$  per  capita)  

Ecological  Footprint  (gha  per  capita)  

Ecological  Footprint

a)t i p ac r   e   P p D $ G SU  t n e rr u  c(

1000

6,5

0

Year

  Figure  7  –Temporal  evolution  of  Ecological  Footprint  and  GDP  (1961-­‐2006).   (GDP  source:  http://www.worldbank.org/,  visited  in  August  2010)  

                                                                                                                        13

  GDP   is   the   sum   of   gross   value   added   by   all   resident   producers   in   the   economy   plus   any   product   taxes   and   minus   any  

subsidies  not  included  in  the  value  of  the  products.  It  is  calculated  without  making  deductions  for  depreciation  of  fabricated   assets  or  for  depletion  and  degradation  of  natural  resources  (www.worldbank.org,  visited  in  October  of  2010).  

32    

45000

GDP  

12,0

EF 40000 10,0

30000 )a ti p ac  r e 25000  p $ S  U t n re r 20000 cu  ( P D G 15000

8,0

6,0

4,0

Ecological  Footprint  (gha  per  capita)  

GDP  (current  US$  per  capita)  

35000

)a it ap  cr e p  a h g(  F E

10000 2,0 5000

0

0,0 Italy

Singapore

Japan

Germany

France

Belgium

United  A rab   Emirates

Austria

Kuwait

Canada

Finland

Country

 

Figure  8  –Ecological  Footprint  and  Gross  Domestic  Product,  for  a  sample  of  countries  (2006).   (GDP  source:  http://www.worldbank.org/,  visited  in  August  2010)  

Likewise,  the  comparison  of  the  total  Ecological  Footprint  with  the  available  productive  land  area  per   country  or  region  presents  important  problems.  This  raises  some  question  of  fairness,  to  compare  large   –   in   terms   of   economic   activity   or   land   area   –   and   small   countries.   And   similarly,   the   comparison   of   sparsely   populated,   large   countries,   such   as   Australia,   Canada   and   the   USA,   with   densely   populated,   small  countries  in  Europe,  is  a  bit  like  comparing  cities  with  continents.  The  latter  category  of  countries   necessarily  shows  a  greater  openness  and  trade  dependency  (van  den  Bergh  and  Verbruggen,  1999).   3.3

Methodological  issues   3.3.1

Space  &  time  

As   proposed   by   Wackernagel   and   Rees   and   done   by   the   Global   Footprint   Network,   the   Ecological   Footprint  and  Biocapacity  are  calculated  at  global,  regional,  national  and  local  (cities)  scales,  both  on  a   total  and  on  a  per  capita  basis  (van  den  Bergh  and  Verbruggen,  1999).  However,  from  an  environmental   perspective,  these  boundaries  are  rather  arbitrary  (Fiala,  2008;  van  den  Bergh  and  Verbruggen,  1999).   While  it  may  be  very  informative  to  understand  what  it  takes  to  sustain  a  city,  it  should  not  come  as  a   surprise   that   the   Ecological   Footprint   of   a   city   is   significantly   larger   than   the   city   boundaries   (Fiala,   2008).   National   boundaries   are   of   a   geo-­‐political   and   cultural   nature   and   have   no   environmental   33    

meaning   (for   example,   country   borders   often   cut   right   through   natural   areas   or   interconnected   ecosystems).   Taking   this   into   account,   it   may   make   more   sense   to   define   the   spatial   scale   from   an   environmental  perspective,  using  environmental  boundaries  (hydrological,  for  example)  (van  den  Bergh   and  Verbruggen,  1999).   According   to   the   concept   developed   by   Wackernagel   and   Rees   and   the   methodology   used   by   the   Global  Footprint  Network,  both  the  Ecological  Footprint  and  Biocapacity  are  accounted  on  a  yearly  basis.   Since   they   are   static   measures,   discounting   is   avoided.   However,   it   is   not   possible   to   talk   about   soil   erosion,  carbon  fluxes  and  ‘overshooting’  of  ecological  capacity,  without  taking  into  account  dynamics,   and   this   requires   explicit   or   implicit   assumptions   about   how   one   views   (discounts)   the   future   (van   Kooten  and  Bulte,  2000).     3.3.2

Technology  

In   the   calculation   of   the   Ecological   Footprint,   the   technology   level   that   is   assumed   for   producing   a   given  product  is  a  world  average  of  technologies  (considering  data  from  the  year  under  analysis)  (Fiala,   2008).   There   is   not   an   analysis   of   the   role   of   technological   change   (Moffatt,   2000),   which   makes   the   Ecological   Footprint   not   able   to   understand   the   effect   of   future   growth   in   consumption   (Fiala,   2008).   As   an   example   of   what   has   been   said,   while   individuals   in   the   developing   world   are   increasing   their   consumption  very  rapidly  and  could  reach  the  consumption  levels  of  the  developed  world,  the  Ecological   Footprint   cannot   answer   how   this   increasing   consumption   will   look   like.   This   issue   is   also   reflected   in   statements   such   as   that   it   would   take   5   Earths   to   sustain   consumption   if   everyone   consumed   like   Americans.  This  reasoning  assumes  that  the  average  consumption  of  an  area  extends  to  the  entire  world   population,   with   all   production   at   the   current   technology   level.   Before   such   a   growth,   much   technological  progress  is  expected  to  occur  (Fiala,  2008).   3.3.3

Data  selection  

As  it  is  done  by  the  Global  Footprint  Network,  the  Ecological  Footprint  and  Biocapacity  calculations   are  based  on  a  variety  of  international  and  national  data  sources,  including  databases  from:   (1) United  Nations  Food  and  Agriculture  Organization;     (2) United  Nations  Statistics  Division;   (3) International  Energy  Agency.   The  current  methodology  also  uses  published  scientific  papers,  satellite  land  use  surveys,  and  national   and   regional   databases   (Kitzes   et   al.,   2009).   A   great   amount   of   data   is   self-­‐reported,   and   usually,   although   not   always,   publicly   available   (Kitzes   et   al.,   2009).   One   identified   problem   in   data   is   that   the   official  statistics  may  not  cover  “off  the  books”  transactions  and  may  incompletely  cover  the  household  

34    

extraction   and   consumption   that   does   not   enter   into   markets,   such   as   subsistence   farming   (Kitzes   et   al.,   2009).   Even   if   the   data   were   accurate,   the   fact   that   multiple   data   sources   are   used   raises   some   issues,   namely   of   consistency.   To   minimize   this   issue,   researchers   should   exercise   caution   when   comparing   calculation   results   derived   from   different   data   sources,   as   different   product   lists   and   classification   systems   are   likely   to   produce   corresponding   differences   in   Ecological   Footprint   and   Biocapacity   estimates  (Kitzes  et  al.,  2009).   3.3.4

Land  use  types  

3.3.4.1 Cropland,  Grazing  land  and  Forest  land   In   the   cases   where   the   trade   is   not   considered   (such   as   the   global   assessment),   these   categories   cannot  show  overshoot,  since,  by  definition,  the   yields  of  harvest  are  equal  to  the  yields  of  growth.  The   lack  of  overshoot  cannot  be  interpreted  as  environmental  sustainability  of  these  land  types.  The  wrong   interpretation   of   the   results   can   be   disastrous   and   encourage   actions   that   drive   us   away   from   sustainable  development.   3.3.4.2 Forest  for  carbon  sequestration   The   carbon   footprint   estimates   the   forest   land   needed   to   assimilate   all   the   CO2   anthropogenic   emissions.   The   idea   behind   this   is   that,   in   order   to   achieve   environmental   sustainability,   the   carbon   sink   cannot  be  exceeded,  thus  focusing  only  on  the  emission  and  not  on  the  resource  scarcity  (van  den  Bergh   and   Verbruggen,   1999).   van   den   Bergh   and   Verbruggen   (1999)   point   out   several   problems   about   this   approach:   (1) There   may   not   be   sufficient   land   available   that   is   suitable   for   forests,   which   makes   the   assimilation  scenario  not  even  technically  or  environmentally  feasible;   (2) The  solution  would  depend  on  the  availability  and  cost  of  land  as  well  as  the  productivity  or   reforestation,  which  are  likely  to  differ  between  countries  or  regions;   (3) The   Ecological   Footprint   is   not   consistent   with   marginal   cost   thinking,   and   therefore   unnecessarily   unrealistic   from   an   economic   perspective.   The   most   straightforward   effect   is   that  the  more  land  will  be  (re)forested,  the  more  expensive  this  option  will  become,  due  to   increased   scarcity   of   appropriate   land.   Other   sustainable   solutions,   less   land-­‐intensive   and   thus  less  sensitive  to  increasing  land  prices,  may  become  attractive  then.   In   this   context,   Kitzes   et   al.   (2009)   suggests   the   inclusion   of   the   amount   of   world-­‐average   bioproductive   land  of  all  types  to  sequester  the  anthropogenic  carbon  emissions.     Fiala  (2008)  also  points  out  that,  while  a  major  reduction  in  greenhouse  gas  production  is  needed,  it   is   not   at   all   clear,   from   an   environmental   point   of   view   that   all   greenhouse   gases   mankind   produces   35    

need  to  be  sequestered  or  eliminated.  There  is  also  the  possibility  of  considering  in  the  calculation  ways   of   decreasing   the   carbon   dioxide   emissions,   namely   through   the   generation   of   useful   electric   energy   with   fewer   emissions,   ranging   from   to   windmills   to   tides,   water   power   and   photovoltaic   electricity   or   even  photovoltaic  hydrogen  (by  electrolysis  of  water)  (Ayres,  2000).  Kitzes  et  al.  (2009)  points  out  the   possibility  of  measuring  the  carbon  footprint  as  the  number  of  global  hectares  that  would  be  required  to   produce  a  quantity  of  biofuels  equal  in  energy  potential  to  the  fossil  fuels  being  combusted,  consistent   with  a  thermodynamic  equivalency  framework.   As   it   was   said,   the   carbon   footprint   only   accounts   for   the   anthropogenic   carbon   dioxide   emissions.   Globally,   carbon   dioxide   emissions   from   land   use   change   may   be   as   large   as   30%   of   carbon   dioxide   emissions  from  fossil  fuel  combustion  (Kitzes  et  al.,  2009).  Although  its  potential  impact,  these  emissions   are   not   considered   in   the   current   accounts.   Besides   this,   gases   such   as   methane,   nitrous   oxide,   fluorocarbons,  and  sulphur  hexafluoride,  are  not  calculated  to  have  an  additional  footprint  beyond  the   energy   required   for   their   creation   (Kitzes   et   al.,   2009;   Ayres,   2000).   The   most   common   suggested   method  for  including  these  gases  in  footprint  accounts  is  through  the  use  of  global  warming  potentials14,   which   reflect   the   radiative   forcing   and   atmospheric   lifetime   of   each   gas   (Kitzes   et   al.,   2009).   Current   emission  levels  of  these  other  greenhouse  gases  have  a  warming  potential  equal  to  as  much  as  30%  of   present  carbon  dioxide  emissions  (Kitzes  et  al.,  2009).  A  second  method  could  involve  calculations  of  the   atmospheric  lifetime  and  biospheric  sequestration  pathways  for  these  other  gases  (Kitzes  et  al.,  2009).     3.3.4.3 Fishing  grounds   The   marine   Ecological   Footprint   is   calculated   by   dividing   the   amount   of   the   primary   production   consumed  by  an  aquatic  species  over  its  lifetime  by  an  estimate  of  the  harvestable  primary  production   per  hectare  of  marine  area.  This  harvestable  primary  production  estimate  is  based  on  a  global  estimate   of  sustainable  aquatic  species  production,  converted  into  primary  production  equivalents,  and  divided   by   the   total   available   marine   area   (Kitzes   et   al.,   2009).   According   to   Pauly   (1996),   estimates   of   the   sustainable   aquatic   harvested   suffer   from   a   number   of   data   limitations   and   errors.   Besides   this,   estimates   of   the   actual   landings   in   a   given   year   may   be   subject   to   reporting   bias   (Kitzes   et   al.,   2009).   Methods   for   including   bycatch   are   based   on   single   year   estimates   rather   than   on   time   series   observations.   All   of   these   issues   weaken   the   calculations   of   the   fisheries   Ecological   Footprint   and   Biocapacity   under   current   accounting   methods   (Kitzes   et   al.,   2009).   Most   significantly,   calculations   of   the   Ecological   Footprint   and   Biocapacity   for   fisheries   based   only   on   primary   production   requirements   and   a   single   estimate   of   the   sustainable   yield   ignore   the   importance   of   the   availability   and   quality   of                                                                                                                           14

 These  potentials  convert  each  gas  into  its  carbon  dioxide  equivalent  based  on  its  ability  to  absorb  and  re-­‐release  radiation  

in  the  atmosphere  over  its  projected  atmospheric  lifetime  (Kitzes  et  al.,  2009).  

36    

fishing   stocks   in   determining   actual   regenerative   capacity   in   a   given   year   (Kitzes   et   al.,   2009).   The   current  very  small  estimate  of  overshoot  in  global  marine  fisheries  accounts  may  be  due  to  exactly  this   problem,   as   the   accounts   are   insensitive   to   any   declining   quality   and   yearly   sustainable   yield   of   fisheries   over  time  (Kitzes  et  al.,  2009).   3.3.4.4 Built-­‐up  land   Built-­‐up  land,  or  land  under  human  infrastructure,  is  calculated  by  assuming  that  built  infrastructures   occupies  formerly  productive  cropland.  This  assumption  was  developed  for  use  in  temperate  countries,   where   this   calculation   may   hold   reasonably   true,   but   it   is   clearly   violated   elsewhere.   In   tropical   countries,   for   example,   infrastructures   often   occupy   the   previously   forested   areas,   and   in   the   Middle   East   and   Central   Asia,   built   infrastructure   almost   certainly   occupies   formerly   arid   non-­‐productive   land   (Kitzes   et   al.,   2009).   Because   cropland   is   the   most   productive   of   all   land   types,   according   to   current   methodology,   the   assumption   that   built   space   occupies   cropland   can   create   a   counter-­‐intuitive   result   when   the   infrastructure   replaces   other   land   types.   In   this   instance,   the   estimated   Biocapacity   of   the   nation  will  actually  increase,  even  though  the  land  itself  is  degraded  (Kitzes  et  al.,  2009).   3.3.4.5 Other  land  types   Since   their   beginning,   the   accounts   have   excluded   several   land   types   that   supposedly   do   not   provide   significant   amounts   of   concentrated   resources   for   human   extraction   or   waste   absorption   services,   including   tundra   deserts,   lagoons   and   other   wetlands   (Kitzes   et   al.,   2009).   As   an   example   of   the   importance   of   these   areas,   let´s   consider   the   case   of   lagoons.   At   a   local   level,   a   study   by   Tiezzi   et   al.   (2004)  focus  the  attention  on  calculating  the  Biocapacity  of  lagoons  and  other  wetlands,  finding  that  the   Biocapacity  of  the  lagoon  under  analysis  may  be  higher  on  a  per  hectare  basis  than  open  sea.  Although   at   a   global   level   the   additional   ecosystems,   such   as   wetlands,   characterized   by   high   productivity   but   low   coverage,   may   not   be   significant,   their   contribution   to  Biocapacity   may   be   important   at   national   or   sub-­‐ national  scales  (Kitzes  et  al.,  2009).   3.3.5

Use  of  land  

In  the  Ecological  Footprint  accounts  there  isn’t  a  distinction  between  sustainable  and  unsustainable   use   of   land.   Such   a   distinction   is   of   extreme   importance   to   determine   to   what   extent   an   activity   or   region  is  contributing  to  sustainable  development  (van  den  Bergh  and  Verbruggen,  1999).  An  implication   of   this   is   that   the   Ecological   Footprint   does   not   allow   for   a   trade-­‐off   between   environmental   sustainability  and  intensive/extensive  land  use,  notably  in  agriculture.  Using  this  example,  intensive  land   use,   which   has   a   small   contribution   to   the   Ecological   Footprint   of   cropland   (high   productivities   allows   the  use  of  small  amounts  of  land),  is  usually  associated  with  high  environmental  pressure  due  to  the  use   37    

of  pesticides  and  fertilizers,  groundwater  control  and  irrigation  (van  den  Bergh  and  Verbruggen,  1999;   Fiala,   2008;   Herendeen,   2000).   For   a   given   year,   the   use   of   machinery   and   chemicals   is   evaluated   in   terms  of  carbon  footprint,  but  not  in  terms  of  other  important  impacts  such  as  land,  water  degradation   and  biodiversity.     In  fact,  and  in  a  more  general  way,  the  Ecological  Footprint  fails  to  capture  land  degradation  (Fiala,   2008).  Land  that  has  been  degraded  can  either  no  longer  be  used,  or  it  is  used  at  a  decreased  efficiency.   If   an   area   that   was   once   producing   for   a   given   population   becomes   unusable,   other   land   will   need   to   be   found  to  farm.  Destroying  land,  and  needing  to  move  from  one  land  area  to  another,  clearly  presents  an   important  sustainability  problem  for  a  population.  The  only  way  the  land  degradation  would  possibly  be   captured   is   through   the   alterations   in   soil   use   reflected   in   the   FAOSTAT.   The   problem   with   this   dependence   is   that   is   very   difficult,   if   not   almost   impossible,   to   understand   the   cause-­‐effect   relationships.   Besides   this,   the   time   gap   between   each   statistical   update   can   compromise   all   the   assessment.   Also  notice  that,  if  a  population  is  using  land  inefficiently,  but  is  doing  so  without  destroying  the  land,   the  system  could  be  sustainable.  A  large  land  footprint  then  could  be  more  sustainable  than  a  small  one,   depending  on  how  the  land  is  used  (Fiala,  2008).   Besides  that,  and  according  to  the  methodology  presented  by  the  Global  Footprint  Network,  land  use   is   regarded   to   be   associated   with   single   functions   only.   However,   in   many   cases,   land   use   (and   land   cover)   provides   multiple   services   or   functions,   and   land   is   subject   to   multiple   use   regimes.   Neglecting   multiple   uses   associated   with   land   use   will   bias   the   Ecological   Footprint   upwards   (van   den   Bergh   and   Verbruggen,  1999).   3.3.6

Yield  factors,  equivalence  factors  and  global  hectares  

Yield  factors  accounts  for  differences  in  productivity  of  a  given  land  use  type  between  the  system   under  analysis  (most  commonly  a  country)  and  the  global  average  in  this  area  type.  Equivalence  factors   are   used   to   convert   world-­‐average   land   of   a   specific   type,   such   as   cropland   or   forest,   to   global   hectares.   Global   hectares   are   defined   as   hectares   with   world-­‐average   biological   productivity,   or   ability   to   produce   useful  goods  and  services  for  humans  (Kitzes  et  al.,  2009).     Some   issues   have   been   raised   regarding   these   factors.   First   of   all,   when   comparing   different   years,   it   must   be   taken   into   account   that   yield   values   change   over   time   (a   single   hectare   does   not   necessarily   produce   the   same   amount   of   goods   or   services   each   year).   Therefore,   time   trends   calculated   using   different  yields  each  year  reflect  changes  in  both  total  consumption  and  in  yield.  These  two  factors  can   be   difficult   to   distinguish   under   annual   yield   methods.   At   a   global   level,   for   example,   both   average   material  consumption  and  average  yields  have  increased  over  the  past  forty  years  (Kitzes  et  al.,  2009).   Recent  analyses  suggest  that  a  global  hectare  in  2003  yielded  at  least  15%  more  material  than  a  global   38    

hectare  in  1961  (Kitzes  et  al.,  2009).  Kitzes  et  al.  (2009)  points  out  that  an  alternate  method  that  could   isolate  changes  in  total  consumption  would  be  to  calculate  time  series  using  yields  for  a  single  reference   year.   Under   this   method,   time   trends   will   reflect   changes   in   absolute   consumption   and   material   extraction  (Kitzes  et  al.,  2009;  Ferguson,  1999;  Kitzes  et  al.,  2008).   The  use  of  fixed  equivalence  factors  allows  a  fixed  rate  of  substitution  between  different  categories   of   environmental   pressure.   Some   categories   receive   identical   weight,   even   if   it   is   clear   that   their   environmental  impacts  are  very  distinct.  For  instance,  in  the  Ecological  Footprint  procedure,  land  used   by   infrastructure   has   the   same   weight   as   land   use   by   agriculture,   although   designating   land   for   road   infrastructure  clearly  may  be  more  environmentally  destructive  than  designating  it  for  crop  production   (van   den   Bergh   and   Verbruggen,   1999).   According   to   these   assumptions,   the   Ecological   Footprint   procedure   may   produce   odd   results   that   are   unwanted   from   both   an   environmental   and   a   socio-­‐ economic  point  of  view  (van  den  Bergh  and  Verbruggen,  1999).   Concerning   the   global   hectares,   this   aggregation   into   a   single   number   is   related   to   the   most   important  advantage  pointed  to  the  Ecological  Footprint,  its  conceptual  simplicity  and  intuitive  appeal   (Rees,   2000;   Templet,   2000).   Nevertheless,   with   the   aggregation,   one   can   easily   be   ignorant   of   where   the  numbers  came  from,  how  they  are  aggregated,  the  uncertainties,  weights,  and  assumptions  involved   (Costanza,   2000).   The   information   is   not   lost,   usually   it   is   possible   to   look   at   the   details   of   how   any   aggregate  indicator  has  been  constructed  (Costanza,  2000).   Another   question   raised   has   to   do   with   the   duality   between   global   hectares   and   local   hectares15.   While  the  global  hectares  approach  assesses  local  demand  (and  supply)  in  the  global  context,  and  is  thus   particularly   useful   for   comparisons   across   geographic   regions,   for   some   applications,   such   as   projects   focused   on   local   resource   management,   the   use   of   local   yields,   and   local   hectares,   may   be   more   appropriate   (Kitzes   et   al.,   2009).   In   this   last   situation,   local   hectares   footprints   can   be   determined   either   through  (Kitzes  et  al.,  2009):   (1) Measured   area   approach,   which   draws   area   occupied   estimates   directly   from   land   use   and   land   cover   surveys,   and   often   combines   these   areas   with   disturbance   weightings.   In   this   method,  footprints  are  generally  measured  in  actual  hectares;   (2) Calculated  area  approach,  in  which  product  flows  are  simply  divided  by  local  yields,  instead   of  global  yields.   Importantly,  neither  measured  area  nor  calculated  area  methods  provide  specific  information  about   the   long   term   impacts   of   current   practices,   but   only   uncover   whether   current   practices   are   within   or   exceed  the  capacity  of  the  biosphere  (Kitzes  et  al.,  2009).                                                                                                                             15

 This  discussion  does  not  include  the  global  scale.  

39    

40    

4 Further  analysis  of  the  methodology   4.1 Overview   Inspired  by  some  of  the  critics  done  in  the  previous  chapter,  in  this  one  we  aim  to  further  understand   the   current   methodology,   the   improvements   already   done   in   the   literature   and   apply   some   methodological  changes.   The   items   under   analysis   are   the   Biocapacity,   equivalence  factors   and   carbon   footprint.   According   to   the  Global  Footprint  Network,  our  planet  is  in  an  overshoot  situation,  and  it  is  necessary  approximately   one  year  and  four  months  to  regenerate  the  resources  humanity  consumed  in  the  year  of  2006.  When   the  results  are  analysed,  there  are  two  main  items  that  contribute  to  the  overshoot,  the  Biocapacity  and   the  carbon  footprint.     The  Biocapacity  is  considered  this  way  because  it  represents  the  physical  limit  of  consumption,  and   the  value  against  which  the  total  Ecological  Footprint  is  compared.  In  the  carbon  footprint  accounts,  by   now,  it  is  considered  that  the  total  carbon  dioxide  emitted  must  be  sequestered  in  forest.  According  to   the  Global  Footprint  Network,  in  2006,  33  876  Mt  CO2  were  emitted  worldwide  (see  Table  8),  which  is   equivalent   to   9   063   591   443   global   hectares,   and   represents   53%   of   total   Ecological   Footprint,   0.8   planets  (Global  Footprint  Network,  2009b)16.  The  carbon  footprint,  by  itself,  is  responsible  for  more  than   half  of  the  total  Ecological  Footprint,  and,  therefore,  should  be  carefully  analysed.  The  calculation  of  the   equivalence  factors  is  attached  with  both  the  Biocapacity  and  carbon  footprint.   4.2 Details  of  the  methodology  presented  by  the  Global  Footprint  Network   This  section  uses  the  data  and  results  presented  in  two  workbooks  released  by  the  Global  Footprint   Network:   National   Footprint   Accounts,   2009   Edition   and   the   equivalence   factor   calculation.   The   year   considered  is  2006,  and  for  a  global  scale.  

                                                                                                                        16

 Global  Footprint  Network  2009.  All  rights  reserved.  These  materials  contain  confidential  information  of  Global  Footprint  

Network  and  may  only  be  used  for  non-­‐commercial  academic  research  and  study  purposes  and  may  not  be  further  reproduced   or   disclosed.   Commercial   and   free   academic   licenses   may   be   received   from   the   Global   Footprint   Network   at   www.footprintnetwork.org.  

41    

4.2.1

Biocapacity  and  equivalence  factors  

According  to  the  methodology  proposed  by  the  Global  Footprint  Network,  the  Biocapacity  accounts   for:   (1) Cropland  area;   (2) Grazing  land;   (3) Forest  land;   (4) Fishing  grounds  (marine  and  inland  waters);   (5) Built-­‐up  land  (infrastructure  and  hydro).   The  sum  of  the  Biocapacity  of  each  land  type  gives  the  total  Biocapacity  (see  Equation  2)   For   the   year   of   2006,   the   values   are   presented   in   Table   5.   Built-­‐up   land   is   included   here   because,   although  it  does  not  generate  resources,  buildings  and  infrastructure  do  occupy  the  Biocapacity  of  the   land   they   cover.   The   carbon   uptake   land   use  is   assumed   not   to   have   Biocapacity   since   it   is   based   on   the   forest  land  and  this  way  double  counting  is  avoided  (Kitzes  et  al.,  2008).     Table  5  –  Biocapacity  values  presented  by  the  Global  Footprint  Network,  for  2006.   17

(source:  Global  Footprint  Network,  2009b )   Land  Cover  

Area  

YF  

[ha]  

[wha  ha ]  

-­‐1

EQF  

Biocapacity  

[gha  wha-­‐1]  

[gha]  

Cropland  

1  553  693  000  

1.00  

2.39  

3  713  326  270  

Grazing  Land  

3  384  091  000  

1.00  

0.51  

1  725  886  410  

Marine  

2  423  046  900  

1.00  

0.41  

993  449  229  

432  797  000  

1.00  

0.41  

177  446  770  

3  944  643  000  

1.00  

1.24  

4  891  357  320  

167  368  480  

1.00  

2.39  

400  010  667  

40  013  

1.00  

1.00  

40  013  

11  905  679  393  

 

 

11  901  516  679  

Inland  Water   Forest  Land   Infrastructure   Hydro   Total  

  The  sources  typically  used  by  the  Global  Footprint  Network  are  presented  in  Table  6.  In  this  case,  the   sources   effectively   considered   in   the   2006   accounts   are   the   ones   presented   in   Table   7.   There   is   one   exception,   the   hydro   area.   Since   country   specific   areas   inundated   are   not   available,   these   areas   are   estimated   based   on   an   assumed   average   area   inundated   per   MWh   of   generating   capacity.   The                                                                                                                           17

 Global  Footprint  Network  2009.  All  rights  reserved.  These  materials  contain  confidential  information  of  Global  Footprint  

Network  and  may  only  be  used  for  non-­‐commercial  academic  research  and  study  purposes  and  may  not  be  further  reproduced   or   disclosed.   Commercial   and   free   academic   licenses   may   be   received   from   the   Global   Footprint   Network   at   www.footprintnetwork.org.  

42    

Ecological   Footprint   of   hydroelectric   power   generation   is   estimated   based   on   the   assumption   that   hydroelectric  plants  operate  at  45%  of  their  rated  generating  capacity   (Kitzes  et  al.,  2008).  Since  we  are   dealing   with   the   world   calculation,   the   yield   factors   assume   the   value   1.   The   equivalence   factors   are   the   ones  already  presented  in  Table  4.     Table  6  –  Data  sources  available  to  achieve  the  area,  in  ha,  used  in  the  Biocapacity  calculation.   (source:  Kitzes  et  al.,  2008)   Data  

Data  Source  

First  source  for  land  areas  of  cropland,  grazing  land,  forest,  other   wooded  land,  inland  waters,  and  built-­‐up  land.  Limited  to  EU   member  countries.  

Corine  Land  Cover  2000.  European  Topic  Center  on  Land   18 Use  and  Spatial  Information,  2000.  Barcelona:  EIONET .  

Second  source  for  data  on  cropland,  grazing  land,  other  wooded   lands,  inland  waters  

FAO  ResourcesSTAT  Statistical  Database.  

Second  source  for  built-­‐up  land  areas.  

Global  Agro-­‐Ecological  Zones  (GAEZ).  FAO  and   International  Institute  for  Applied  Systems  Analysis  2000.  

Third  source  for  built-­‐up  land  areas  

Global  Land  Cover  2000.  Institute  for  Environment  and   Sustainability,  Joint  Research  Center  and  European   Commission.  Italy  

Fourth  source  for  built-­‐up  land  areas  

Global  Land  Use  Database.  Center  for  Sustainability  and   the  Global  Environment,  University  of  Wisconsin-­‐Madison.   1992.  

Only  source  for  area  of  marine  continental  shelf  

WRI   Global  Land  Cover  Classification  Database.  

19

Table  7  –  Data  sources  used  in  the  Biocapacity  calculation.   (source:  Kitzes  et  al.,  2008)   Source  

Land  Use  Type  

Description  

Area   [1  000  ha]  

FAOSTAT  

Cropland  

Arable  land  and  Permanent  crops  

1  553  693  

FAOSTAT  

Fishing  grounds  –  inland  

Inland  water  

FAOSTAT  

Forest  

Forest  area  

3  944  643  

FAOSTAT  

Grazing  land  

Permanent  meadows  and  pastures  

3  384  091  

GAEZ  

Infrastructure  

Settlement  and  infrastructure  

WRI  

Fishing  grounds  -­‐  marine  shelf  

Continental  shelf  area  

432  797  

167  368   2  423  047  

  The  calculation  of  the  equivalence  factors,  as  done  by  the  Global  Footprint  Network,  is  explained  in   the  following  numbered  items:  

                                                                                                                        18

 European  Environment  Information  and  Observation  Network.  

19

 World  Resource  Institute.  

43    

(1) For   each   country   is   considered   the   total   available   area   within   the   classification   of   “very   suitable”,   “suitable”,   “moderately   suitable”,   “marginally   suitable”   and   “not   suitable”,   using   data  from  the  GAEZ  model.  This  data  does  not  include  several  countries,  so,  the  sum  of  all   areas  cannot  be  considered  as  the  “world”;   (2) For   each   country   is   also   gathered   information   about   the   areas   occupied   with   cropland,   built-­‐ up  land,  forest  land  and  grazing  land;   (3) For   each   country,   the   area   of   cropland   and   built-­‐up   land   is   allocated   to   the   most   suitable   land.  The  forest  land  is  allocated  to  the  most  productive  remaining  area  and  after,  the  same   is  done  with  the  grazing  land.  In  the  end  there  is  a  final  remaining  land,  which  is  not  used  to   cropland  &  built-­‐up  land,  forest  or  grazing  land.  This  remaining  land  it  mostly  “not  suitable”,   but,  nevertheless,  has  non-­‐zero  productivity;   (4) For   each   land   occupation,   the   equivalence   factor   is   obtained   as   a   weighted   value   of   productivity.   The  final  remaining  area  is  not  used  neither  to  calculate  the  equivalence  factor  nor  the  Biocapacity,   but  since  it  has  some  productivity,  it  should  be  accounted  for.   4.2.2

Carbon  footprint  

According   to   the   Global   Footprint   Network,   the   calculation   of   the   carbon   footprint   follows   the   reasoning  presented  in  Table  8.   Table  8  –  Carbon  footprint  as  calculated  by  Global  Footprint  Network.   20

(source:  Global  Footprint  Network,  2009b )  

Name  

CO2  emissions   -­‐1

[Mt  CO2  yr ]  

Fossil  fuel  emissions   Other  sources   Bunker  fuel   Total  

CO2  emissions  considering  the   ocean  uptake  fraction  (22%)  

Yield   -­‐1

EQF   -­‐1

[tCO2  ha  yr ]  

-­‐1

[Mt  CO2  yr ]  

-­‐1

[gha  ha ]  

Carbon   footprint   [gha]  

28  003  

21  706  

3.59  

1.24  

7  492  079  745  

4  894  

3  794  

3.59  

1.24  

1  309  408  203  

980  

759  

3.59  

1.24  

262  103  495  

33  876  

26  260  

3.59  

1.24  

9  063  591  443  

  The  carbon  footprint  calculation  follows  the  Equation  4:  

                                                                                                                        20

 Global  Footprint  Network  2009.  All  rights  reserved.  These  materials  contain  confidential  information  of  Global  Footprint  

Network  and  may  only  be  used  for  non-­‐commercial  academic  research  and  study  purposes  and  may  not  be  further  reproduced   or   disclosed.   Commercial   and   free   academic   licenses   may   be   received   from   the   Global   Footprint   Network   at   www.footprintnetwork.org.  

44    

Carbon  footprint    [gha] = CO2 emitted    [tCO2 ⋅ yr −1 ] × (1 − ocean    uptake  fraction  [-­‐]) ×

EQF    [gha ⋅  ha-­‐1 ]   Yield    [tCO2 ⋅ ha-­‐1 ⋅ yr -­‐1 ]

Equation  4  –  Calculation  formula  of  the  carbon  footprint.   (source:  Kitzes  et  al.,  2008)  

As  presented  in  Table  8,  three  “kinds”  of  carbon  dioxide  sources  are  considered:   (1) Fossil   fuel   emissions.   It   accounts   for   all   emission   from   fossil   fuel   combustion   (Kitzes   et   al.,   2008);   (2) Other   sources.   This   value   is   a   combination   of   carbon   dioxide   emissions   from   industrial   processes   (mainly   concrete   manufacture),   forest   land   clearing,   flaring   associated   with   oil   and   natural  gas  extraction,  and  10%  of  biofuels  emissions  (assumed  to  be  the  fraction  produced   unsustainably,  according  to  IPCC21  Sink/Source  Category  5)  (Kitzes  et  al.,  2008);   (3) Bunker  fuel.  This  item  assesses  the  footprint  of  the  international  travel  and  shipping  (Kitzes   et  al.,  2008).  Worldwide  airplane  and  ship  bunker  fuels  are  added  as  a  ‘’tax’’  on  all  countries   relative  to  their  total  fossil  fuel  combustion  footprint.  The  bunker  fuels  ‘’tax’’  is  calculated  by   multiplying   the   fossil   fuel   footprint   by   a   value   representing   the   percent   of   world   fossil   fuel   emissions  stemming  from  international  transport.  This  percentage  has  historically  been  near   3-­‐4   of   total   global   carbon   dioxide   emissions.   This   is   also   the   value   used   in   the   global   accountings  (Kitzes  et  al.,  2008).   There  are  two  sources  typically  used  in  the  emissions  gathering  (Kitzes  et  al.,  2008):   (1) IEA22  CO2  Emissions  from  Fuel  Combustion  Database.  This  is  the  preferential  source  data,  and   the  one  used  in  National  Footprint  Accounts,  2009  Edition23;   (2) Marland,   G.,   T.A.   Boden,   and   R.   J.   Andres.   2007.   Global,   Regional,   and   National   Fossil   Fuel   CO2  Emissions.  In  Trends:  A  Compendium  of  Data  on  Global  Change.  Oak  Ridge,  TN:  Carbon   Dioxide  Information  Analysis  Center,  Oak  Ridge  National  Laboratory  and  U.S.  Department  of   Energy.   The   ocean   sequestration   percentage   reflects   the   percentage   of   global   fossil   fuel   carbon   emissions   that  are  sequestered  by  oceans.  This  percentage  is  calculated  for  each  year  as  the  ratio  of  the  estimated   annual  oceanic  carbon  sink  to  total  global  emissions  from  fossil  fuel  combustion  in  that  year  (Kitzes  et   al.,  2008).                                                                                                                           21

 Intergovernmental  Panel  on  Climate  Change  

22

 International  Energy  Agency.  

23

  Global   Footprint   Network     2009.   All   rights   reserved.   These   materials   contain   confidential   information   of   Global   Footprint  

Network  and  may  only  be  used  for  non-­‐commercial  academic  research  and  study  purposes  and  may  not  be  further  reproduced   or   disclosed.   Commercial   and   free   academic   licenses   may   be   received   from   the   Global   Footprint   Network   at   www.footprintnetwork.org.  

45    

The   yield   factor   presented   in   Table   8   allows   the   conversion   of   CO2   emissions   to   forest   area   (see   Equation  6).   Yield    [tCO2 ⋅ ha-­‐1 ⋅ yr -­‐1 ] =

Carbon  sequestration  factor    [tC ⋅ ha-­‐1 ⋅ yr -­‐1 ]   C  to  CO2  ratio    [tC  ⋅ (tCO 2 )−1 ]

Equation  5  –  Calculation  formula  of  the  yield  factor.   (source:  Kitzes  et  al.,  2008)  

In  the  National  Footprint  Accounts,  2009  Edition  workbook,  the  total  amount  of  carbon  dioxide  (after   discounting  the  ocean  sequestration)  is  converted  into  global  hectares  by  using  the  net  annual  growth  of   forests  as  the  yield  for  carbon  uptake.  The  carbon  uptake  rate  used  to  convert  tones  of  carbon  dioxide   to  global  hectares  is  derived  from  data  on  the  net  annual  growth  of  forests  drawn  from  the  IPCC  (the   carbon   sequestration   factor   estimates   the   annual   carbon   uptake   of   a   hectare   of   world   average   forest   land;  this  factor  is  based  on  the  average  sequestration  potential  of  world  forest,  and  is  calculated  using   IPCC   data).   The   uptake   rate   is   calculated   assuming   that   carbon   comprises   half   of   that   net   increase   in   biomass.  This  ‘yield’  for  carbon  uptake,  combined  with  the  forest  equivalence  factor,  converts  tones  of   carbon  dioxide  into  a  footprint  in  global  hectares  (Kitzes  et  al.,  2008).   Summing   up,   it   is   possible   to   say   that   carbon   footprint   is   the   most   important   contributor   to   the   total   Ecological   Footprint   and,   as   it   is   done   by   the   Global   Footprint   Network,   after   discounting   the   ocean   sequestration,   considers   the   sequestration   of   total   carbon   emissions   by   forest.   Regarding   the   forest   sequestration,   this   methodology   is   not   to   propose   that   forestry   is   the   solution   to   climate   change   but   rather   demonstrates   how   much   larger   the   world   would   have   to   be   in   order   to   negate   the   effects   of   carbon  emissions  (Walsh  et  al.,  2009).  Concerning  the  need  of  sequestration  of  the  total  CO2  emissions,   according  to  Meinshausen  et  al.  (2009)  and  Allen  et   al.  (2009),  a  global  warming  limit  of  2˚C  or  below   (comparative   to   pre-­‐industrial   levels)   can   be   permitted.   This   indicates   that   maybe   there   is   no   need   to   sequester   all   the   CO2   emissions.   Besides   this,   instead   of   looking   of   the   area   needed   to   sequester   the   emissions,  it  is  also  possible  to  analyse  the  possibility  of  reducing  the  carbon  dioxide  emissions.  It  should   also  be  noticed  that  the  carbon  footprint  is  the  only  waste  accounted,  ignoring  all  the  others.   4.3 Review  of  improvements  proposed  in  the  literature   4.3.1

Biocapacity  and  equivalence  factors    

Regarding   the   Biocapacity   calculation,   Zhao   et   al.   (2005)   was   the   first   to   propose   a   change   of   the   methodology   using   the   emergy   analysis.   In   fact,   Zhao   et   al.   (2005)   aims   to   show   a   modified   form   of   Ecological   Footprint   calculation   by   combining   emergy   analysis   with   conventional   Ecological   Footprint   form  of  calculation  (see  Appendix  B  to  a  brief  description  of  emergy).  The  modified  method  starts  from   the  energy  flows  of  a  system  in  calculating  Ecological  Footprint  and  carrying  capacity.  Through  a  study  of   the   energy   flows,   and   using   the   method   of   emergy   analysis,   the   energy   flows   of   a   system   are   translated   46    

into  corresponding  biological  productive  units  (Zhao  et  al.,  2005).  Here,  we  focus  on  the  calculation  of   the  carrying  capacity24.  According  to  this  author,  the  carrying  capacity  can  be  defined  as  the  maximum   (entropic)  “load”  that  can  safely  be  imposed  on  the  environment  by  people.  A  better  understanding  of   carrying   capacity   can   be   gained   by   separating   the   natural   resources   for   society   into   renewable   and   non-­‐ renewable   components.   The   non-­‐renewable   resources   are   depleted   because   they   are   being   used   at   a   rate  that  exceeds  their  rate  of  replacement.  Carrying  capacity  is  not  sustainable  unless  it  is  based  on  the   use   of   resources   in   a   renewable   way.   In   this   context,   only   the   renewable   resources   are   taken   into   account  in  this  calculation  of  carrying  capacity.   The  Equation  6  is  used  to  calculate  the  carrying  capacity  (CC):   CC[m2 ] =

e  [sej ⋅ yr -­‐1 ]   p 1  [sej  ⋅ yr   -­‐1⋅ m -­‐2 ]

Equation  6  –  Calculation  of  the  carrying  capacity  using  an  emergy  approach.     (sources:  Zhao  et  al.,  2005)  

e:    

renewable  resources  of  emergy  amount  per  capita.  

p1:    

Earth  emergy  density.  

p 1 [sej  ⋅ yr   -­‐1⋅ m-­‐2 ] =

total emergy of the earth  [sej.yr -­‐1 ] 1.583 × 10 25 sej.yr -­‐1 = = 3.1 × 10 10 [sej  ⋅ yr   -­‐1⋅ m-­‐2 ]   2 14 2 areas of the earth  [m ] 5.1 × 10 m

The   total   emergy   amount   of   the   Earth   is   the   sum   of   the   emergy   of   solar   insolation,   deep   Earth   heat   and   tidal  energy  (Zhao  et  al.,  2005).   In   the   calculation   of   the   carrying   capacity,   first,   the   emergy   amounts   of   available   renewable   resources   are   estimated.   Here,   five   kinds   of   renewable   resources   emergy   are   considered:   sun,   wind,   chemical  energy  in  rain,  geopotential  energy  in  rain,  and  Earth  cycle  energy.  In  order  to  avoid  duplicate   calculation,  the  maximum  item  of  emergy  amount  is  regarded  as  the  total  available  emergy.  Thus,  this   amount   is   divided   by   the   amount   of   population.   The   value  e   is   gathered   that   way,   the   emergy   supply   of   natural   resources   per   capita.   Then,   the   amount   of  e   is   divided   by   the   emergy   density   p1.   This   method   considers  that  12%  of  total  carrying  capacity  should  be  discounted  to  provide  for  biodiversity  (Zhao  et   al.,  2005).   Chen   and   Chen   (2006)  uses   a   very   similar   method,   compared   to   the   one   used   by   Zhao   et   al.,   2005.   In   this  case,  as  the  emergy  due  to   the  Earth’s  heat  and  the  gravitational  effect  associated  with  the  sun  and   the   moon   is   negligible,   the   global   emergy   sustaining   the   Earth   is   approximately   9.44   x   1024   sej/yr.   The   total   surface   area   of   the   Earth   is   5.1   x   1014   m2.   Therefore,   the   global   empower   density   (GED)   is   the   ratio   of   the   annual   global   emergy   consumption   to   the   surface   area   of   the   Earth,   1.85   x   1010   sej/m2yr                                                                                                                           24

 Here,  the  carrying  capacity  is  not  exactly  equivalent  to  the  concept  of  Biocapacity,  as  presented  by  the  Global  Footprint  

Network,  but  is  also  the  value  with  which  the  Ecological  Footprint  is  compared.  

47    

(comparable  to  3.1x1010  sej/m2  yr).  Renewable  resources,  including  surface  wind,  physical  energy  of  rain   on   land,   chemical   energy   of   rain   on   land,   physical   stream   energy,   waves   absorbed   on   shores,   Earth’s   sedimentary   cycle   and   chemical   stream   energy,   are   calculated   as   the   ecological   capacity.   To   avoid   double   accounting,   only   the   largest   renewable   emergy   flow   is   chosen   to   determine   the   carrying   capacity.     Siche   et   al.   (2010b)   uses   as   basis   the   study   by   Zhao   et   al.   (2005)   and   aims   to   discuss   some   weak   points   found   in   Zhao’s   approach,   trying   to   overcome   them   through   a   new   approach   called   Emergetic   Ecological   Footprint   (EEF).   The   main   difference   between   Zhao’s   approach   and   EEF,   regarding   the   carrying   capacity   calculation,   is   that   EEF   accounted   for   the   internal   storage   of   capital   natural.   Natural   capital  is  an  internal  storage  of  a  country  that  was  filled  up  during  several  decades  (or  even  centuries)  by   external   natural   energy   flows.   Nowadays,   mainly   the   under   development   countries   are   dependant   of   that  storage.  For  that  reason,  natural  capital  is  considered  as  a  supplier  of  renewable  resources  (Siche  et   al.,  2010b).  Besides  this,  the  calculation  is  similar  to  the  one  presented  in  Zhao  et  al.  (2005).  All  the  flows   in  global  hectares  per  capita  are  summed  and  14.2%  is  subtracted,  aiming  at  the  preservation  of  other   species  (Siche  et  al.,  2010b).   Other  studies,  like  Venetoulis  and  Talberth  (2008)  and  Siche  et  al.  (2010a),  consider  the  ecosystems   that  are  not  considered  by  the  Global  Footprint  Network  since  their  productivity  is  low.   Venetoulis  and  Talberth  (2008),  as  well  as  Siche  et  al.  (2010a),  use  a  Net  Primary  Production  (NPP)   approach   to   calculate   the   equivalence   factors   (see   Appendix   B   for   a   brief   description   of   NPP).   In   the   Venetoulis  and  Talberth  (2008)  study,  the  GAEZ  suitability  indices  are  replaced  with  NPP.  Here,  EQF’s  are   the   ratio   of   each   biome´s   NPP   per   unit   of   area   to   the   global   average.   NPP   figures   for   each   biome   are   based  in  Amthor  (1998),  which  provides  area,  annual  NPP,  plant  carbon  content,  and  soil  carbon  content   for   16   distinct   biomes.   To   illustrate   how   EQF’s   were   derived,   consider   the   2.12   EQF   for   cropland   and   global   NPP   for   cropland   of   6.3   Pg   Carbon   over   an   area   of   14.8x1012   m2   (0.43   Pg   Carbon/m2).   The   crop   land  EQF  of  2.12  is  simply  0.43  Pg  Carbon/m2  divided  by  the  global  average  NPP  (0.20  Pg  Carbon/m2).   Thus,  EQF’s  here  calculated  represent  the  ratio  of  productivity  of  one  land  type  to  the  average,  where   productivity  is  measured  in  NPP  (Venetoulis  and  Talberth,  2008).   According  to  Siche  et  al.  (2010a),  the  EQF  for  each  category  is  calculated  through  the  ratio  between   its  Emergy  Net  Primary  Production  (ENPP)  and  the  system  total  ENPP,  both  in  sej  m-­‐2  year-­‐1.  To  calculate   the   ENPP   for   each   ecosystem   is   necessary   to   multiply   its   NPP   value   in   energy   units   (NPPENERGY)   by   its   respective   Transformity.   NPPENERGY   is   obtained   through   the   multiplication   of   energy   content   in   the   dry   biomass  (J/gbiomass)  by  the  NPP  in  mass  units  (NPPMASS).  

48    

4.3.2

Carbon  footprint  and  other  wastes  

Lenzen   and   Murray   (2001)   consider   emissions   of   CO2   and   other   greenhouse   gases   (CH4,   N2O,   CF4   and   C2F6)   that   are   not   from   energy   use   but   from   sources   such   as   land   clearing,   enteric   fermentation   in   livestock,   industrial   processes,   waste,   coal   seams,   venting   and   leakage   of   natural   gas,   among   others.   Non   CO2   emissions   are   converted   into   units   of   carbon   dioxide   equivalent   using   Global   Warming   Potential  (GWP).   Walsh  et  al.  (2009)  analyses  the  incorporation  of  methane  in  the  Ecological  Footprint.  According  to   these   authors,  perhaps   the   most   obvious   method   for   calculating  a  footprint  of  methane  is  to  emulate   standard   CO2   footprinting.   This   requires   methane   to   be   translated   into   carbon   equivalents   (through   GWP),   which   allows   an   estimation   of   the   area   of   new   forest   growth   required   to   sequester   it   and   subsequently  into  a  land  area  of  global  average  bioproductivity.   This  study  also  considers  the  possibility  of  using  the  net  radiative  forcing25  (NRF),  instead  of  the  GWP.   In  terms  of  anthropogenic   emissions,   net   radiative   forcing   is   related   to   GWP   and   measures   the   increase   in  net  energy  gain  due  to  emissions  realised  since  pre-­‐industrial  times.  This  quantifies  incoming  radiance   in   W/m2   and   a   positive   value   indicates   that   human   activity   is   contributing   to   a   net   increase   in   temperature.     The   main   rationale   for   its   application   is   that   it   quantifies   the   actual   effects   of   climate   change  as  opposed  to  expressing  methane  emissions  in  terms  of  a  related  variable.  In  order  for  radiative   forcing  to  be  incorporated  into  a  national  footprint  account,  annual  methane  consumption  needs  to  be   translated  into  a  unit  comparable  with  pre-­‐industrial  conditions,  in  this  case  concentration  in  parts  per   billion  (Walsh  et  al.,  2009).       4.4 Methodological  changes  and  results   4.4.1

Biocapacity  and  equivalence  factors  

As   a   first   iteration,   we   consider   the   total   world   area   both   in   the   calculation   of   the   Biocapacity   and   equivalence   factors,   and   a   percentage   of   Biocapacity   available   to   biodiversity.   As   seen   in   the   previous   section,   other   improvements   have   already   been   done   in   the   literature.   But   we   consider   that,   prior   to   their  application  more  research  has  to  be  done  to  make  sure  that  a  real  improvement  is  done.  This  is   especially  true  to  the  emergy  analysis,  since  it  is  blind  to  the  current  human  need  for  resources.   In  order  to  consider  the  remaining  area  in  the  Biocapacity,  it  is  necessary  to  re-­‐calculate  two  items:   (1) Areas,  including  the  remaining  area,  in  ha;   (2) Equivalence  factors.                                                                                                                           25

  NRF   estimates   the   overall   increase   in   irradiance   reaching   the   tropopause   due   to   the   action   of   a   climate   change   driver  

such  as  GHG  emissions  or  increased  solar  insolation  (Walsh  et  al.,  2009).  

49    

To   recalculate   the   areas   used,   several   issues   must   be   addressed.   First   of   all,   it   is   necessary   to   combine   data   from   the   two   workbooks   (National   Footprint   Accounts,   2009   Edition   and   equivalence   factor  calculation),  so,  its  compatibility  must  be  assessed.  The  areas  considered  in  the  National  Footprint   Accounts,   2009   Edition   workbook   are   world   areas   (from   the   sources   already   presented).   The   areas   used   to  calculate  the  equivalence  factors  do  not  include  the  entire  world  and  are  the  ones  presented  in  Table   9.   Table  9  –  Land  areas  that  support  the  calculation  of  Biocapacity  and  equivalence  factors.   26

(source:  Global  Footprint  Network,  2009b )  

Land  type  

Areas  considered  in  the   equivalence  factors  workbook  

Areas  considered  in  the  National   Footprint  Accounts  workbook  

[1  000  ha]  

 [1  000  ha]  

Cropland  &  built-­‐up  land  

1  715  174  

1  721  101    

Forest  land  

2  922  299  

3  944  643    

Grazing  land  

3  372  649  

3  384  091    

Remaining  area  

5  105  091  

 

13  115  214  

9  049  835    

Total  

  It   must   be   noticed   that,   in   the   “cropland   &   built-­‐up   land”   category,   according   to   the   data   of   the   National   Footprint   Accounts,   2009   Edition   workbook,   it   is   considered   the   “hydro”   referred   in   Table   5.   The   main   difference   between   the   two   sources   of   information   is   the   forest   land27,   and,   besides   the   hypothesis   of   an   error,   it   must   be   due   to   the   lack   of   some   countries   in   the   equivalence   factors   calculation.     To  include  the  remaining  area  in  the  calculation  we  considered  that  the  upper  bond  of  total  land  area   is  the  one  given  by  FAOSTAT,  also  for  the  year  of  2006.  According  to  FAOSTAT,  land  area  is  the  total  area   of  the  world  excluding  area  under  inland  water  bodies  (http://faostat.fao.org  visited  in  May  2010)  and   assumes   the   value   of   13   009   151   500   ha.   The   total   area   used   in   the   calculation   of   the   equivalence   factors   is   higher   than   that   value,   even   though   not   all   countries   of   the   world   are   considered.   This   difference  can  be,  once  again,  explained  by  the  difference  of  data  sources.  Although  the  land  occupied   by  cropland,  forest  and  grazing  came  from  the  FAOSTAT,  the  total  areas  and  the  built-­‐up  land  came  from  

                                                                                                                        26

 Global  Footprint  Network  2009.  All  rights  reserved.  These  materials  contain  confidential  information  of  Global  Footprint  

Network  and  may  only  be  used  for  non-­‐commercial  academic  research  and  study  purposes  and  may  not  be  further  reproduced   or   disclosed.   Commercial   and   free   academic   licenses   may   be   received   from   the   Global   Footprint   Network   at   www.footprintnetwork.org.   27

 According  to  the  Global  Footprint  Network  the  source  data  used  is  the  same,  FAOSTAT,  and  for  the  same  year.  

50    

the  GAEZ.  In  order  to  keep  the  upper  bond  from  FAOSTAT,  it  is  considered  that  the  remaining  area  used   in  calculations  assumes  the  value  of  3  959  316  x  103  ha.   To  recalculate  the  equivalence  factors  it  is  only  necessary  to  also  consider  the  remaining  area,  and   apply   to   it   the   exact   same   equations   that   are   applied   to   the   other   areas.   The   results   obtained   are   presented  in  Table  10.   Table  10  –  Original  and  recalculated  equivalence  factors.   Land  Cover  

EQF  

Recalculated  EQF   -­‐1

-­‐1

[gha  wha ]  

[gha  wha ]  

Cropland/Built-­‐up  land  

2.39  

2.76  

Forest  

1.24  

1.43  

Grassland/Other  Wooded  Land  

0.51  

0.60  

0.41  

0.48  

-­‐  

0.53  

28

Marine   Remaining  area  

  Considering   these   recalculated   values   of   equivalence   factors,   as   well   as   the   remaining   area,   is   now   possible  to  recalculate  the  Biocapacity  (see  Table  11).  The  results  indicate  an  increase  of  about  33%  in   the  available  Biocapacity.  According  to  these  accounts  the  total  world  area  could  be  used  to  fulfil  human   needs,  which  is  not  an  expected  sustainable  situation  in  terms  of  biodiversity  conservation.  Besides  this,   the  exploration  of  all  the  world  area  certainly  represents  a  challenge.  We  intent  to  further  analysis  these   questions,   but   just   to   illustrate   the   biodiversity   issue,   we   considered   that   14%   of   the   total   Biocapacity   is   reserved  to  biodiversity.  In  this  scenario,  the  increment  in  the  Biocapacity  (relative  to  the  value  released   by  the  Global  Footprint  Network)  is  15%.  Nevertheless,  the  comparison  of  the  Ecological  Footprint  and   Biocapacity  still  indicates  overshoot.  This  analysis  does  not  pretend  to  make  important  improvements  in   the   Biocapacity   accounts,   it   is   just   a   first   iteration   that   wishes   to   understand   the   vulnerabilities   of   the   calculation.  

                                                                                                                        28

  The   values   for   the   category   “marine”   are   calculated   based   on   a   comparison   of   beef   protein   per   hectare   grassland   and  

salmon  protein  per  hectare  marine  area.  

51    

Table  11  –  Original  and  recalculated  equivalence  factors.   Land  Cover  

Area  

Original  

YF   EQF  

[-­‐]  

-­‐1

[ha]  

Recalculated  

Biocapacity   -­‐1

[wha  ha ]  

[gha  wha ]  

EQF  

Biocapacity   -­‐1

[gha]  

[gha  wha ]  

[gha]  

Cropland  

1  553  693  000  

1  

2.39  

3  713  326  270  

2.76  

4  294  162  058  

Grazing  Land  

3  384  091  000  

1  

0.51  

1  725  886  410  

0.60  

2  016  254  415  

Marine  

2  423  046  900  

1  

0.41  

993  449  229  

0.48  

1  154  928  520  

432  797  000  

1  

0.41  

177  446  770  

0.48  

206  289  692  

3  944  643  000  

1  

1.24  

4  891  357  320  

1.43  

5  643  751  866  

167  368  480  

1  

2.39  

400  010  667  

2.76  

462  580  044  

40  013  

1  

1  

40  013  

1.00  

40  013  

3  959  316  007  

1  

 

   

0.53  

2  086  988  844  

15  864  995  400  

-­‐  

-­‐  

11  901  516  679  

-­‐  

15  864  995  452  

-­‐  

-­‐  

-­‐  

-­‐  

-­‐  

13.643.896.089  

Inland  Water   Forest  Land   Infrastructure   Hydro   Remaining  land   Total   Total  (-­‐14%  )  

4.4.2

Carbon  footprint  

In  order  to  start  to  understand  the  influence  of  the  change  on  the  assumptions  taken  by  the  Global   Footprint  Network  regarding  the  calculation  of  the  carbon  footprint,  we  considered  the  possibility  of  not   sequester  the  total  carbon  dioxide  emissions.   More   than   100   countries   have   adopted   a   global   warming   limit   of   2°   C   or   below   (relative   to   pre-­‐ industrial  levels  as  a  guiding  principle  for  mitigation  efforts  to  reduce  climate  change  risks,  impacts  and   damages  (Meinshausen  et  al.,  2009;  Allen  et  al.,  2009).   Limiting  cumulative  CO2  emissions  over  2000-­‐50  to  1000  Gt  CO2  yields  a  25%  probability  of  warming   exceeding   2˚C   –   and   a   limit   of   1440   Gt   CO2   yields   a   50%   probability   –   given   a   representative   estimate   of   the  distribution  of  climate  system  properties  (Meinshausen  et  al.,  2009).  In  Table  12  it  is  possible  to  find   a  relationship  between  the  cumulative  emissions  of  carbon  dioxide  and  the  corresponding  probability  of   exceeding   2°C.   According   to   Meinshausen   et   al.   (2009),   the   focus   on   2°C   relative   to   pre-­‐industrial   levels,   as   such   a   warming   limit   has   gained   increasing   prominence   in   science   and   policy   circles   as   a   goal   to   prevent   dangerous   climate   change.   The   author   also   recognize   that   2°C   cannot   be   regarded   as   a   ‘safe   level’,  and  that,  for  example,  small  island  states  and  least  developed  countries  are  calling  for  warming  to   be  limited  to  1.5°C  (Meinshausen  et  al.,  2009).  

52    

Table  12  –  Probabilities  of  exceeding  2°C  in  global  temperature.   (source:  Meinshausen  et  al.,  2009)   Cumulative  emissions  over  2000-­‐2050   Probability  of  exceeding  2°  C   [Gt  CO2]  

[%]   886  

8  –  37  

1000  

10  –  42  

1158  

16  –  51  

1437  

29  -­‐  70  

  In  order  to  re-­‐calculate  the  carbon  footprint,  the  value  of  886  Gt  CO2  of  cumulative  emissions  over   2000   –   2050   is   used   (a   conservative   scenario).   Since   2000   –   2006   emissions   were   about   234   Gt   CO2   (Meinshausen   et   al.,   2009),   there   are   about   652   Gt   CO2   of   cumulative   emission   over   2006   –   2050.   Assuming   that   the   cumulative   emission   over   2000   –   2050   will   be   fulfilled,   several   scenarios   can   be   considered  in  the  calculation  of  the  emissions  that  are  allowed  to  emit  in  the  2006  year  (considering  a   uniform  distribution):   (1) The   value   can   be   an   average   emission   considering   the   2000   –   2050   cumulative   emissions   (886  Gt  CO2),  which  implies  an  emission  of  18  Gt  CO2  yr-­‐1;   (2) The  value  can  be  an  average  of  the  emissions  that  took  place  between  2000  and  2006  (234   Gt  CO2),  which  represents  a  permitted  emission  of  39  Gt  CO2  yr-­‐1  ;   (3) The  value  can  be  an  average  of  the  remaining  emissions  allowed  between  2006  –  2050  (652   Gt  CO2),  which  represents  15  Gt  CO2  yr-­‐1.   Once   again,   since   we   already   have   information   about   the   2000  –  2006  cumulative  emissions,  we  will   use   the   most   conservative   value,   15   Gt   CO2   yr-­‐1   and   apply   it   as   the   permitted   emissions   for   2006.   Comparing   the   values   from   Table   8   with   the   ones   from   Table   13,   considering   the   possibility   of   a   2°C   increase,  there  is  a  decrease  of  5  233  507  552  gha,  which  represents  about  0.4  planets.   Considering   the   possibility   of   the   CO2   emission   permit,   and   applying   the   same   methodology   as   the   one  used  by  the  Global  Footprint  Network,  there  is  not  a  situation  of  overshoot.  Although  it  is  obvious   that   is   not   possible   to   sequester   all   the   carbon   dioxide   emissions,   a   2°C   increase   may   have   serious   negative   effects.   It   might   be   necessary   to   review   the   viability   of   such   an   increase.   Despite   all   the   reservations   regarding   the   2˚C   assumption,   this   calculation   serves   to   show   the   vulnerability   of   the   Ecological  Footprint  analysis  to  changes  in  the  carbon  footprint.  This  vulnerability  reveals  that  the  values   released  for  the  Ecological  Footprint  analysis  must  be  carefully  interpreted.  Another  issue  to  discuss  is   the  reduction  of  carbon  dioxide  emissions,  instead  of  discussing  the  ways  of  sequestering  it.    

53    

54    

5 Discussion,  conclusions  and  future  work   In   order   to   lead   the   discussion   to   the   conclusions,   we   start   with   the   analysis   of   the   schematic   representations   of   the   Ecological   Footprint   and   Biocapacity,   as   they   are   presently   considered   by   the   Global   Footprint   Network   (see   Figure   9   and   Figure   10).   As   presented   in   Figure   9,   the   Global   Footprint   Network   focuses   the   concept   and   calculation   of   the   Ecological   Footprint   in   the   consumption   (and   generation   of   wastes)   of   a   given   population   that   lives   within   the   borders   of   a   given   region.   In   this   context,  the  Ecological  Footprint  considers  the  resources  that  are  harvested  within  the  borders,  minus   the  resources  that  are  exported,  and  plus  the  resources  that  are  imported.  In  the  Biocapacity  (see  Figure   10),  the  Global  Footprint  Network  considers  and  calculates  the  resources  that  are  available  for  human   consumption  and  are  produced  inside  the  borders  of  the  region  under  analysis  (also  the  ability  to  absorb   the  residues).   Resource 1

Resource 2

Resource…

used

Resources

used

Resources

Population released

Waste1

released

Waste 2

Waste…

  Figure  9  Representation  of  the  Ecological  Footprint,  as  presented  by  the  Global  Footprint  Network.  

Resource 1

Resource 2 available

Resource… available

Population can be absorbed

Waste1

can be absorbed

Waste 2

Waste…

  Figure  10  –Representation  of  the  Biocapacity,  as  presented  by  the  Global  Footprint  Network.  

This   approach   has,   at   least,   three   important   problems.   The   first   problem   is   related   with   the   trade   considered  in  the  Ecological  Footprint,  and  consequent  comparability  with  the  available  Biocapacity.  The   second  problem  is  related  with  the  methodology  followed  in  the  calculation  of  the  Biocapacity.  The  third   problem  concerns  the  inclusion  of  wastes  in  the  analysis.   In  order  to  explore  the  question  of  trade,  let´s  consider  a  given  region  with  a  known  level  of  resource   exploitation.  As  said  in  Chapter  3,  the  comparison  between  Ecological  Footprint  and  Biocapacity  is  only   interesting  when  it  shows  overshoot.  In  this  case,  we  expected  the  result  to  reflect  a  situation  of  over-­‐

55    

exploitation  of  the  resources  that  are  within  the  borders  of  the  region.  There  are  two  items  positively   contributing   to   the   Ecological   Footprint   of   consumption   (see   Equation   3),   the   Ecological   Footprint   of   production29   and   the   Ecological   Footprint   of   the   imported   goods.   The   Ecological   Footprint   of   production   represents   the   consumption   of   the   resources   available   within   the   borders   of   the   region   (and   generation   of   wastes).   Instead,   in   the   case   of   the   Ecological   Footprint   of   importation,   the   resources   where   harvested  elsewhere  with  an  effect  on  the  resources  of  the  region  of  origin.  This  effect  happens  in  the   region   of   origin   but   it   is   accounted   in   the   region   of   consumption.   In   our   opinion,   this   approach   does   not   allow  a  correct  comparison  between  the  Ecological  Footprint  of  consumption  of  a  given  population  in  a   given   region   and   the   Biocapacity   available   within   the   border   of   the   region.   This   approach   assigns   a   confuse   connotation   to   trade.   In   fact,   the   region   under   analysis   may   have   a   poor   Biocapacity,   and   therefore,  may  be  highly  dependent  on  importations.  In  this  case,  the  region  shows  overshoot,  but  the   imported  goods  can  be  harvested  in  a  sustainable  way  in  their  region  of  origin,  which  is  not  reflected  on   the  results.   Neither   is   reflected  the   economic  and  social  advantages  of  such  trade.  This   question   is   not   a   problem  at  a  global  scale,  where  the  trade  is  zero.   Regarding  the  Biocapacity,  it  must  be  noticed  that,  according  to  the  methodology  presented  by  the   Global  Footprint  Network,  it  measures  the  areas  that  are  indeed  used  as  cropland,  grazing  land,  forest   land   and   built-­‐up   land.   Therefore,   at   a   global   scale,   by   definition,   these   categories   cannot   show   overshoot.   The   only   items   that   can   show   overshoot   are   the   fishing   grounds   and   the   carbon   footprint.   These  assumptions  reflect  the  fact  that,  in  this  calculation,  the  Biocapacity  is  not  assessing  the  areas  that   would   be   sustainably   available   to   fulfil   the   human   needs,   but   the   areas   that   are   indeed   used.   In   this   case,  the  resource  soil,  which  supports  the  cropland,  grazing  land,  forest  land  and  built-­‐up  area,  and  that   we  know  it  is,  in  many  cases,  subject  to  unsustainable  harvesting,  by  definition,  can  only  be  in  overshoot   through  trade,  which  does  not  reflect  the  bad  practices.  Besides  that,  as  was  seen  in  chapter  4,  it  does   not   consider   neither   the   total   area   that   could   be   harvested,   nor   the   area   necessary   to   sustain   biodiversity.  As  demonstrated,  the  inclusion  of  these  areas  affects  the  final  results.   Concerning   the   wastes,   only   the   carbon   dioxide   is   assessed,   which   by   itself   does   not   reflect   the   current   situation   in   terms   of   the   residues   production.   Besides   this,   the   carbon   footprint,   alone,   is   responsible,  for  the  year  of  2006,  for  the  appropriation  of  0.8  planets.  Therefore,  it  is  the  category  that   most   contributes   to   the   overshoot   reported,   1.4   planets.   Given   the   importance   of   this   category,   the                                                                                                                           29

  A   country’s   Ecological   Footprint   of   production   is   the   sum   of   the   footprints   for   all   resources   harvested   and   all   wastes  

generated  within  the  population’s  geographical  borders.  This  includes  all  the  area  within  the  borders  necessary  for  supporting   the  actual  harvest  of  primary  products  (cropland,  grazing  land,  forest  land,  and  fishing  grounds),  the  population’s  infrastructure   and   hydropower   (built-­‐up   land),   and   the   area   needed   to   absorb   fossil   fuel   carbon   dioxide   emissions   generated   within   the   borders  (carbon  footprint).  

56    

corresponding  calculation  should  be  robust  and  reflect  a  plausible  situation.  The  assumptions  taken  in   the  calculation  of  the  carbon  footprint  do  not  reflect  a  plausible  scenario,  namely  because:   (1) It  assumes  the  need  for  sequestration  of  all  the  anthropogenic  CO2  emissions.  Although  it  is   not   clear   the   cause-­‐effect   relationships   related   with   the   increase   of   the   concentration   of   CO2   in  the  atmosphere,  the  sequestration  of  all  the  emissions  nowadays  does  seem  like  a  possible   situation;   (2) It   is   considered   that   the   ocean   is   responsible   for   the   sequestration   of   about   20%   of   the   emissions   and   the   remaining   percentage   should   be   sequestered   by   the   forest.   Although   forest   is   actually   very   efficient   in   carbon   sequestration,   this   assumption   does   not   reflect   a   real   situation.   Besides   this,   and   according   to   this   assumption,   it   is   not   considered   the   implementation  of  methods  of  emissions  reduction.   In   chapter   4   it   was   assumed   the   possibility   of   allowing   an   increase   in   the   concentration   of   the   CO2,   and,   as  expected,  the  final  results  are  highly  affected.  Given  the  importance  of  the  category,  a  more  robust   calculation  is  expected.   The   conclusion   to   be   drawn   from   the   exposed   is   that,   as   it   is   currently   being   done   by   the   Global   Footprint   Network,   the   comparison   between   the   Ecological   Footprint   and   Biocapacity   of   a   given   population  is  not  assessing  environmental  sustainability/unsustainability,  regarding  the  use  of  resources   and  deposition  of  wastes.   Despite   the   above,   we   understand   the   utility   of   such   concepts.   In   one   hand   it   is   of   extreme   importance  to  capture  the  unsustainable  use  of  renewable  resources.  And  that  is  exactly  what  we  plan   to  do.  We  plan  to  use  the  concepts  of  Ecological  Footprint  and  Biocapacity  as  the  basis  to  develop  an   absolute  indicator  of  environmental  unsustainability  of  resource  use.  In  order  to  do  that,  we  focus  our   attention   on   the   resource   instead   of   the   population.   Our   work   will   start   at   a   regional   scale,   in   the   continental   territory   of   Portugal,   and   for   the   resource   soil.   The   borders   of   analysis   correspond   to   the   borders   of   the   resource.   The   Biocapacity   of   the   resource   corresponds   to   the   amount   of   material   and   services   that   can   be   used   without   damaging   it.   The   Ecological   Footprint   of   the   resource   should   correspond   to   the   materials/services   actually   harvested.   This   approach   presents   several   advantages   (comparative  to  the  methodology  presented  by  the  Global  Footprint  Network):   (1) Since   it   focus   on   the   resource   instead   of   the   population,   the  problems   related   with   trade   are   not  an  issue;   (2) The   Biocapacity   measures   the   amount   of   materials/services   that   can   be   used   without   damaging  the  resource,  instead  of  the  use  of  the  resource;   (3) Since   it   is   expected   to   be   a   less   aggregated   indicator,   less   factors   of   normalization   and   aggregation  are  needed,  and  therefore  less  relationships  of  possible  trade-­‐offs  are  expected;  

57    

(4) It  should  allow  a  better  understanding  of  what  is  happening  wrong,  and  therefore  lead  the   analysis  to  the  set  of  actions  needed  to  decrease  the  damage;       This  approach  also  shows  some  weaknesses,  such  as:   (1) The  difficulty  of  defining  the  amounts  of  resource  that  can  be  used  without  damage,  in  the   calculation   of   the   Biocapacity.   Here,   some   very   important   assumption   will   be   taken.   These   assumptions  are  expected  to  be  subjective  and  have  an  associated  error;   (2) It  still  has  the  issue  of  the  technology  described  in  the  chapter  3;   (3) This  method  only  assesses  renewable  resources.  The  non-­‐renewable  resources  analysis  is  of   extreme  importance  in  the  context  of  environmental  sustainability  and  therefore,  a  further   analysis  should  be  done  to  incorporate  them.   Besides   the   challenge   that   exists   when   the   resource   under   analysis   exchanges   flows   and   damages   with   other   resources,   the   quantitative   and   qualitative   analysis   of   the   damages   done   to   the   studied   resource   represents   a   huge   challenge.   Those   are   not   static   phenomena   and   their   incorporation   in   the   analysis  will  require  a  carefully  analysis  of  the  available  tools.  One  possibility  that  has  been  identified,   but  not  studied  yet,  is  the  consideration  of  shadow  projects.  In  this  context,  and  according  to  Edward-­‐ Jones  et  al.  (2000),  a  shadow  project  is  a  project  that  provides  an  equal,  alternate  environmental  good   or   service   elsewhere   in   the   area   that   suffers   an   environmental   loss.   The   proposed   alternatives,   by   definition,   will   have   differing   qualities   to   the   original   site.   It   may   therefore   be   problematic   to   determine   how  successfully  any  shadow  scheme  can  provide  the  benefits  of  the  original.  Rather  than  focusing  on   directly   equivalent   sites,   planners   may   prefer   to   consider   instead   planning   gains,   where   developers   guarantee   protection   of   other   non-­‐related   environmental   sites   to   compensate   for   damaging   the   site   under  development.  We  intend  to  further  analyse  this  question  and  include  it  in  our  assessment.     On   the   other   hand   it   is   also   useful   to   work   with   the   global   assessment,   as   presently   done   by   the   Global  Footprint  Network,  in  the  sense  that  it  gives  a  glimpse  of  the  “big  picture”.    Here,  we  will  mainly   work  on  the  Biocapacity  calculation  in  two  main  essential  issues:   (1) If   we   can   measure   a   Biocapacity   that   both   reflect   the   human   needs   and   the   ability   of   the   ecosystems  to  fulfil  them  (instead  of  simply  reflecting  the  current  use).  In  order  to  do  this,   we  will  start  by  analysing  the  Human  Appropriation  of  Net  Primary  Production  tool  and  find   out  if  it  is  useful  in  this  context;   (2) After  this,  we  will  study  how  to  distribute  the  Biocapacity  in  a  fair  way  by  all  nations.   We  will  also  continue  our  work  with  the  carbon  dioxide  and  other  wastes,  taking  into  account  the  critics   and  improvements  already  done  in  this  report.    

58    

References   (1) Allen,   M.,   Frame,   D.,   Frieler,   K.,   Hare,   W.,   Huntingford,   C.,   Jones,   C.,   Knutti,   R.,   Lowe,   J.,   Meinshausen,  M.,  Meinshausen,  N.,  Raper,  S.,  2009.  The  exit  strategy.  Nature  reports  climate   change  3,  56-­‐58     (2) Ayres,   R.,   2000.   Commentary   on   the   utility   of   the   Ecological   Footprint   concept.   Ecological   Economics  32,  347-­‐349.   (3) van   den   Bergh,   J.,   Verbruggen,   H.,   1999.   Spatial   sustainability,   trade   and   indicators:   an   evaluation  of  the  ‘Ecological  Footprint’.  Ecological  Economics  29,  61-­‐72.   (4) Best,   A.,   Blobel,   D.,   Cavalieri,   S.,   Giljum,   S.,   Hammer,   M.,   Lutter,   S.,   Simmons,   C.,   Lewis,   K.,   2008.   Potential   of   the   Ecological   Footprint   for   monitoring   environmental   impacts   from   natural   resource   use:   Analysis   of   the   potential   of   the   Ecological   Footprint   and   related   assessment   tools   for   use   in   the   EU’s   Thematic   Strategy   on   the   Sustainable   Use   of   Natural   Resources.  Report  to  the  European  Commission,  DG  Environment.   (5) Bicknell,   K.,   Ball,   R.,   Cullen,   R.,   Bigsby,   H.,   1998.   New   methodology   for   the   Ecological   Footprint   with   an   application   to   the   New   Zealand   economy.   Ecological   Economics   27,   149-­‐ 160.   (6) Brown,   M.,   Ulgiati,   S.,   1997.   Emergy-­‐based   indices   and   ratios   to   evaluate   sustainability:   monitoring   economies   and   technology   toward   environmental   sound   innovation.   Ecological   Engeneering  9,  51-­‐69.   (7) Chen,  B.,  Chen,  G.,  2006.  Ecological  footprint  accounting  based  on  emergy  –  A  case  study  of   the  Chinese  society.  Ecological  Modelling  198,  101-­‐114.   (8) CEC,  2009.  GDP  and  beyond:  Measuring  progress  in  a  changing  world.  Brussels   (9) Costanza,  R.,  2000.  The  dynamics  of  the  Ecological  Footprint  concept.  Ecological  Economics   32,  341-­‐345.   (10)Deutsch,  L.,  Jansson,  Å.,  Troell,  M.,  Rönnbäck,  P.,  Folke,  C.,  Kautsky,  N.,  2000.  The  ‘Ecological   Footprint’:   communicating   human   dependence   on   nature’s   work.   Ecological   Economics   32,   351-­‐355.   (11)Druckman,  A.,  Jackson,  T.,  2009.  The  carbon  footprint  of  UK  households  1990-­‐2004:  A  socio-­‐ economically   disaggregated,   quasi-­‐multi-­‐regional   input-­‐output   model.   Ecological   Economics   68,  2066-­‐2077.   (12)Edwards-­‐Jones,  G.,  Davies,  B.,  Hussain,  S.,  2000.  Ecological  Economics  –  An  Introduction.     (13)Erb,  K.,  2004a.  Actual  land  demand  of  Austria  1926-­‐2000:  a  variation  on  Ecological  Footprint   assessments.  Land  Use  Policy  21,  247-­‐259.   59    

(14)Erb,  K.,  2004b.  Land-­‐use  related  changes  in  aboveground  carbon  stocks  of  Austria’s  terrestrial   ecosystems.  Ecosystems  7,  563-­‐572.   (15)Erb,  K.,  Krausmann,  F.,  Gaube,  V.,  Gingrich,  S.,  Bondeau,  A.,  Fischer-­‐Kowalski,  M.,  Haberl,  H.,   2009.   Analyzing   the   global   human   appropriation   of   net   primary   production   –   processes,   trajectories,  implications.  An  introduction.  Ecological  Economics  69,  250-­‐259.   (16)Ewing,   B.,   Reed,   A.,   Rizk,   S.,   Galli,   A.,   Wackernagel,   M.,   Kitzes,   J.,   2008.   Calculation   Methodology  for  the  National  Footprint  Accounts,  2008.  Global  Footprint  Network,  Oakland.   (17)Ewing,   B.,   Goldfinger,   S.,   Oursler,   A.,   Reed,   A.,   Moore,   D.,   Wackernagel,   M.,   2009.   The   Ecological  Footprint  Atlas  2009.  Global  Footprint  Network,  Oakland.   (18)Ewing,   B.,   Moore,   D.,   Goldfinger,   S.,   Oursler,   A.,   Reed,   A.,   Wackernagel,   M.,   2010.   The   Ecological  Footprint  Atlas  2010.  Global  Footprint  Network,  Oakland.   (19)Ferguson,   A.,   1999.   The   logical   foundations   of   Ecological   Footprints.   Environment,   Development  and  Sustainability  1,  149-­‐156.   (20)Fiala,  N.,  2008.  Measuring  sustainability:  Why  the  Ecological  Footprint  is  bad  economics  and   bad  environmental  science.  Ecological  Economics  67,  519-­‐525.   (21)Fricker,   A.,   1998.   The   Ecological   Footprint   of   New   Zealand   as   a   step   towards   sustainability.   Futures  30,  559-­‐567.   (22)Gingrich,   S.,   Erb,   K.,   Krausmann,   F.,   Gaube,   V.,   Haberl,   H.,   2007.   Long-­‐term   dynamics   of   terrestrial   carbon   stocks   in   Austria:   a   comprehensive   assessment   of   the   time   period   from   1830  to  2000.  Reg.  Environ.  Change  7,  37-­‐47.   (23)Global   Footprint   Network,   2009a.   Ecological   Footprint   Standards   2009.   Global   Footprint   Netwok,  Oakland.   (24)Global  Footprint  Network,  2009b.  National  Footprint  Accounts,  2009  Edition.   (25)Gössling,  S.,  Hansson,  C.,  Hörstmeier,  O.,  Saggel,  S.,  2002.  Ecological  Footprint  analysis  as  a   tool  to  assess  tourism  sustainability.  Ecological  Economics  42,  199-­‐211.   (26)Herendeen,   R.,   2000.   Ecological   Footprint   as   a   vivid   indicator   of   indirect   effects.   Ecological   Economics  32,  357-­‐358.   (27)Holden,  E.,  Høyer,  K.,  2005.  The  Ecological  Footprints  of  fuels.  Transportation  Research  Part  D   10,  395-­‐403.   (28)Hunter,  C.,  Shaw,  J.,  2007.  The  Ecological  Footprint  as  a  key  indicator  of  sustainable  tourism.   Tourism  Management  28,  46-­‐57.   (29)Hunter,   C.,   2002.   Sustainable   tourism   and   the   touristic   Ecological   Footprint.   Environment,   Development  and  Sustainability  4,  7-­‐20.   (30)Kitzes,   J.,   Galli,   A.,   Bagliani,   M.,   Barrett,   J.,   Dige,   G.,   Ede,   S.,   Erb,   K.,   Giljum,   S.,   Haberl,   H.,   Hails,   C.,   Jolia-­‐Ferrier,   L.,   Jungwirth,   S.,   Lenzen,   M.,   Lewis,   K.,   Loh,   J.,   Marchettini,   N.,   60    

Messinger,  H.,  Milne,  K.,  Moles,  R.,  Monfreda,  C.,  Moran,  D.,  Nakano,  K.,  Pyhälä,  A.,  Rees,  W.,   Simmons,  C.,  Wackernagel,  M.,  Wada,  Y.,  Walsh,  C.,  Weidmann,  T.,  2009.  A  research  agenda   for  improving  national  Ecological  Footprint  accounts.  Ecological  Economics  68,  1991-­‐2007.   (31)Kitzes,   J.,   Galli,   A.,   Rizk,   S.,   Reed,   A.,   Wackernagel,   M.,   2008.   Guidebook   to   the   National   Footprint  Accounts:  2008  Edition.  Global  Footprint  Network,  Oakland.   (32)Kissinger,   M.,   Rees,   W.,   2010.   Importing   terrestrial   Biocapacity:   The   U.S.   case   and   global   implications.  Land  Use  Policy  27,  589-­‐599.   (33)van  Kooten,  G.,  Bulte,  E.,  2000.  The  Ecological  Footprint:  useful  science  or  politics?  Ecological   Economics  32,  385-­‐389.   (34)Lenzen,   M.,   Lundie,   S.,   Bransgrove,   G.,   Charet,   L.,   Sack,   F.,   2003.   Assessing   the   Ecological   Footprint   of   a   large   metropolitan   water   supplier:   Lessons   for   water   management   and   planning   towards   sustainability.   Journal   of   Environmental   Planning   and   Management   46,   113-­‐141.   (35)Lenzen,  M.,  Murray,  S.,  2001.  A  modified  Ecological  Footprint  method  and  its  application  to   Australia.  Ecological  Economics  37,  229-­‐255.   (36)Liu,  L.,  2009.  Sustainability:  living  within  one’s  own  ecological  means.  Sustainability  1,  1412-­‐ 1430.   (37)McDonald,   G.,   Patterson,   M.,   2004.   Ecological   Footprints   and   interdependencies   of   New   Zealand  regions.  Ecological  Economics  50,  49-­‐67.   (38)Medved,   S.,   2006.   Present   and   future   Ecological   Footprint   of   Slovenia   –   The   influence   of   energy  demand  scenarios.  Ecological  Modelling  192,  25-­‐36.   (39)Meinshausen,   M.,   Meinshausen,   N.,   Hare,   W.,   Raper,   S.,   Frieler,   K.,   Knutti,   R.,   Frame,   D.,   Allen,   M.,   2009.   Greenhouse-­‐gas   emission   targets   for   limiting   global   warming   to   2°   C.   Nature   458,  1158-­‐1162.   (40)Millennium   Ecosystem   Assessment,   2005.   Ecosystems   and   Human   Well-­‐Being:   Synthesis.   Island  Press,  Washington,  DC.   (41)Moffatt,   I.,   2000.   Ecological   Footprints   and   sustainable   footprint.   Ecological   Economics   32,   359-­‐362.   (42)Odum,   H.,   2002.   Emergy   accounting,   in   Bartelmus,   P.   (ed.),   Unveiling   Wealth.   Kluwer   Academic  Publishers,  Netherlands,  pp.  135-­‐146.   (43)Oliveira,  M.,  Vaughan,  B.,  Rykiel,  E.,  2005.  Ethanol  as  fuel:  energy,  carbon  dioxide  balances,   and  Ecological  Footprint.  BioScience  55,  593-­‐602.   (44)Pauly,   D.,   1996.   One   hundred   million   tonnes   of   fish,   and   fisheries   research.   Fisheries   Research  25,  25-­‐38.  

61    

(45)Patterson,  T.,  Niccolucci,  V.,  Marchettini,  N.,  2008.  Adaptative  environmental  management  of   tourism   in   the   Province   of   Siena,   Italy   using   the   Ecological   Footprint.   Journal   of   Environmental  Management  86,  407-­‐418.   (46)Patterson,   T.,   Niccolucci,   V.,   Bastianoni,   S.,   2007.   Beyond   “more   is   better”:   Ecological   Footprint   accounting   for   tourism   and   consumption   in   Val   di   Merse,   Italy.   Ecological   Economics  62,  747-­‐756.   (47)Pope,   J.,   Annandale,   D.,   Morrison-­‐Saunders,   A.,   2004.   Environmental   Impact   Assessment   Review  24,  595  –  616.   (48)Raport,   D.,   2000.   Ecological   Footprints   and   ecosystem   health:   complementary   approaches   to   a  sustainable  future,  Ecological  Economics  32,  367-­‐370.   (49)Rees,   W.,   1992.   Ecological   Footprints   and   appropriated   carrying   capacity:   what   urban   economics  leaves  out.  Environment  and  Urbanization  4,  121-­‐130.   (50)Rees,   W.,   2000.   Eco-­‐Footprint   analysis:   merits   and   brickbats.   Ecological   Economics   32,   371-­‐ 374.   (51)Schouten,   F.,   Peeters,   P.,   2006.   Reducing   the   Ecological   Footprint   of   inbound   tourism   and   transport  to  Amsterdam.  Journal  of  Sustainable  Tourism  14,  157-­‐171.   (52)Siche,  R.,  Agostinho,  F.,  Ortega,  E.,  2010a.  Emergy  Net  Primary  Production  (ENPP)  as  basis  for   calculation  of  Ecological  Footprint.  Ecological  Indicators  10,  475-­‐483.     (53)Siche,   R.,   Pereira,   L.,   Agostinho,   F.,   Ortega,   E.,   2010b.   Convergence   of   ecological   footprint   and   emergy   analysis   as   a   sustainability   indicator   of   countries:   Peru   as   case   study.   Commun   Nonlinear  Sci  Numer  Simulat  15,  3182-­‐3192.   (54)Sovacool,   B.,   Brown,   M.,   2010.   Twelve   metropolitan   carbon   footprints:   A   preliminary   comparative  global  assessment.  Energy  Policy  38,  4856-­‐4869.   (55)Templet,   P.,   2000.   Externalities,   subsidies   and   the   Ecological   Footprint:   an   empirical   analysis.   Ecological  Economics  32,  381-­‐383.   (56)Tiezzi,  E.,  Marchettini,  N.,  Bastianoni,  S.,  Pulselli,  F.M.,  Niccolucci,  V.,  Bagliani,  M.,  Battaglia,   S.,   Coscia,   I.,   2004.   Studio   di   sostenibilità   della   Provincia   di   Venezia:   Relazione   di   Sintesi,   Provincia  di  Venezia.   (57)Venetoulis,   J.,   Talberth,   J.,   2008.   Refining   the   Ecological   Footprint.   Environment,   Development  and  Sustainability  10,  441-­‐469.   (58)van  Vuuren,  D.,  Smeets,  E.,  2000.  Ecological  Footprint  of  Benin,  Bhutan,  Costa  Rica  and  the   Netherlands.  Ecological  Economics  34,  115-­‐130.   (59)Walsh,   C.,   O’Regan,   B.,   Moles,   R.,   2009.   Incorporating   methane   into   Ecological   Footprint   analysis:  A  case  study  of  Ireland.  Ecological  Economics  68,  1952-­‐1962.  

62    

(60)Wackernagel,   M.,   2009.   Methodological   advancements   in   footprint   analysis.   Ecological   Economics  68,  1925-­‐1927.   (61)Wackernagel,  M.,  Rees,  W.,  1996.  Our  Ecological  Footprint:  Reducing  Human  Impact  on  the   Earth.  New  Society,  Gabriola  Island,  BC.   (62)Wackernagel,   M.,   2006.   Ecological   Footprint   accounting   –   comparing   Earth’s   biological   capacity   with   an   economy’s   resource   demand,   in:   Keiner,   M.,   (ed.),   The   Future   of   Sustainbility.  Springer,  Netherlands,  pp.  193-­‐209.   (63)Wackernagel,  M.,  Yount,  J.,  2000.  Footprints  for  sustainability:  the  next  steps.  Environment,   Development  and  Sustainability  2,  21-­‐42.   (64)Zhao,   S.,   Li,   Z.,   Li,   W.,   2005.   A   modified   method   of   ecological   footprint   calculation   and   its   application.  Ecological  Moddelling  185,  65-­‐75.  

63    

Appendix  A  –  Temporal  evolution  of  the  Ecological  Footprint   Table  13  –  Ecological  Footprint  and  Biocapacity  time  series.   (source:  Global  Footprint  Network,  http://www.footprintnetwork.org/,  visited  in  May  2010)   1961

1965

1970

1975

1980

1985

1990

1995

2000

2005

2006

Global Population (billion)

3.1

3.3

3.7

4.1

4.4

4.8

5.3

5.7

6.1

6.5

6.6

Total Ecological Footprint

7.1

8.1

9.6

10.6

11.7

11.9

13.3

13.8

15.1

16.8

17.1

Cropland footprint

3.3

3.4

3.5

3.5

3.6

3.6

3.7

3.7

3.7

3.7

3.7

Grazing land footprint

1.3

1.3

1.4

1.4

1.4

1.1

1.3

1.4

1.4

1.5

1.4

Forest footprint

1.1

1.2

1.2

1.2

1.3

1.4

1.5

1.4

1.8

1.9

1.8

Fishing ground footprint

0.3

0.3

0.4

0.4

0.4

0.4

0.5

0.6

0.6

0.6

0.6

Carbon footprint

0.9

1.7

2.9

3.8

4.7

4.9

5.9

6.4

7.3

8.7

9.1

Built-up land

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.4

0.4

0.4

Total Biocapacity

11.4

11.5

11.6

11.6

11.7

11.7

11.9

12.0

12.0

11.9

11.9

Ecological Footprint to Biocapacity ratio

0.62

0.70

0.83

0.92

1.00

1.01

1.12

1.15

1.27

1.41

1.44

64    

Appendix  B  –  Brief  description  of  the  Emergy  and  NPP  methods   Emergy   Emergy  analysis  has  been  developed  by  Odum  (Zhao  et  al.,  2005)  as  a  tool  for  environmental  policy   and  to  evaluate  quality  of  resources  in  the  dynamics  of  complex  systems  (Brown  and  Ulgiati,  1997).  It   measures  both  the  work  of  nature  and  that  of  humans  in  generating  products  and  services,  as  a  science-­‐ based   evaluation   system   that   represents   both   natural   values   and   economic   values   with   a   simple,   universal   unit   (Zhao   et   al.,   2005).   Emergy   is   defined   as   the   energy   of   one   type   required   in   transformations   to   generate   a   flow   and   storage   (Zhao   et   al.,   2005).   In   other   words,   and   according   to   Odum  (2002):   “(...)  the  emergy  of  anything  is  the  available  energy  of  one  kind  previously  used  up  to  make  it.”   For  example,  the  solar  energy  previously  required  is  called  the  solar  emergy  (Odum,  2002).  To  keep  from   confusing   energy   that   is   in   a   product   with   that   which   has   been   used   up   to   make   it,   emergy   units   are   called  emcalories  (or  emjoules).  The  emergy  of  one  kind,  required  to  be  transformed  to  make  one  unit   of   energy   of   another   kind,   is   called   transformity   (Odum,   2002).   Using   the   example,   the   units   of   transformity   are   solar   emjoules/Joule,   abbreviated   sej/J   or   solar   emjoules/g   (sej/g).   The   higher   the   transformity,   the   higher   that   item   is   located   in   the   energy   hierarchy   chain.   This   is   based   on   the   assumption  implicit  in  the  maximum  power  principle  that  the  more  energy  required  to  make  a  product   or  service,  the  higher  its  emergy  value  (Zhao  et  al.,  2005).  The  transformity  can  be  used  to  transform  a   given  energy  into  emergy,  by  multiplying  the  energy  by  its  transformity.  Once  transformities  are  known   for  a  class  of  item,  the  total  energy  on  an  item  can  be  expressed  according  to  Equation  7  (Zhao  et  al.,   2005).  

emergy [sej] = available energy of item    [J or g] × transformity [sej/J or sej/g]   Equation  7  –  Calculation  of  the  emergy.     (sources:  Zhao  et  al.,  2005)  

Net  Primary  Production  (NPP)   NPP   quantifies   the   conversion   of   atmospheric   CO2   into   plant   biomass.   Thus,   NPP   is   a   rate   process   that   tracks   the   net   flux   of   carbon   from   the   atmosphere   into   green   plants   per   day,   week,   or   year.   It   is   highly   variable   year   to   year   and   seasonally.   For   some   seasons   and   biomes   NPP   may   be   negative,   indicating  that  plant  respiration  is  greater  than  the  uptake  of  carbon  by  plants,  as  during  months  when   vegetation  is  stressed  by  drought  conditions  or  low  temperatures.  In  addition,  succession  can  influence   NPP   though   allocation   of   fixed   carbon   to   maintenance   rather   than   growth.   Net   primary   productivity   provides   the   basis   for   maintenance,   growth,   and   reproduction   of   all   consumers   and   decomposes   (Venetoulis   and   Talberth,   2008).   Because   of   this,   NPP   is   also   referred   to   as   a   measure   of   the   ‘‘total   food   resource’’  available  on  the  planet     65