Edexcel IGCSE in Science (Double Award). (4SC0) ... At Easter you will be
provided with a CGP Revision book. ... Edexcel International GCSE in Science.
TONBRIDGE SCHOOL Edexcel IGCSE in Physics (4PH0) Edexcel IGCSE in Science (Double Award) (4SC0) Revision January 2014 Information This document is simply a check list for the revision you should have done. The Physics exam will take place in January 2014 in Old Big School and Big School. The exam will be 80 minutes long; remember to bring a BLACK pen, a pencil, a calculator, ruler and protractor; these items will not be provided for you! The triple award P-sets will be doing an additional 30 minute exam in lessons after the main mocks. At Easter you will be provided with a CGP Revision book. The following list are some examples of revision websites; they are no means comprehensive and are often aimed at “C” – grade candidates, so Tonbridge students shouldn’t get any questions wrong! http://www.gcse.com/physics.htm http://www.s-cool.co.uk/gcse/physics.html http://www.physics.org/ http://www.bbc.co.uk/schools/gcsebitesize/physics/ pick any exam board http://www.thestudentroom.co.uk/wiki/Category:GCSE_Physics_Revision_Notes http://www.cambridgestudents.org.uk/subjectpages/physics/igscephysics/igcsephysicssimulations/ Plus the interactive textbook with lots of questions: Username: student15566 p/w: Fizzicks http://www.absorblearning.com/physics/contents.html
Index Pages 2 – 23 Pages 24-55 Pages 56-73 Pages 74-93 Pages 94-102
Mark Weatheritte Head of Physics
Specification and topics list (please note bold is for triple only) Paper 1 June 2011 all sets must complete this and hand in to their teacher Mark scheme for the above paper Paper 2 June 2012 triple sets ONLY to complete this and hand in to their teachers Mark scheme for the above paper
Specification and Sample Assessment Material Edexcel International GCSE in Physics (4PH0) First examination June 2013 Also
Edexcel International GCSE in Science (Double Award) (4SC0)
Qualification content Paper 1 assesses only the content that is not in bold. BOTH TRIPLE & DOUBLE Paper 2 assesses all content including content in bold. - TRIPLE ONLY This Edexcel International GCSE in Physics requires students to demonstrate an understanding of: •
forces and motion
•
electricity
•
waves
•
energy resources and energy transfer
•
solids, liquids and gases
•
magnetism and electromagnetism
•
radioactivity and particles.
Section 1: Forces and motion a) Units b) Movement and position c) Forces, movement, shape and momentum d) Astronomy
a)
Units
Students will be assessed on their ability to: 1.1
use the following units: kilogram (kg), metre (m), metre/second (m/s), metre/second2 (m/s2), newton (N), second (s), newton per kilogram (N/kg), kilogram metre/second (kg m/s).
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) –
Issue 4 – November 2011 © Pearson Education Limited 2011
3
b)
Movement and position
Students will be assessed on their ability to: 1.2
plot and interpret distance-time graphs
1.3
know and use the relationship between average speed, distance moved and time: average speed =
distance moved time taken
1.4
describe experiments to investigate the motion of everyday objects such as toy cars or tennis balls
1.5
know and use the relationship between acceleration, velocity and time: acceleration =
a=
changein velocity time taken
(v u ) t
1.6
plot and interpret velocity-time graphs
1.7
determine acceleration from the gradient of a velocity-time graph
1.8
determine the distance travelled from the area between a velocity-time graph and the time axis.
4
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
c)
Forces, movement, shape and momentum
Students will be assessed on their ability to: 1.9
describe the effects of forces between bodies such as changes in speed, shape or direction
1.10
identify different types of force such as gravitational or electrostatic
1.11
distinguish between vector and scalar quantities
1.12
understand that force is a vector quantity
1.13
find the resultant force of forces that act along a line
1.14
understand that friction is a force that opposes motion
1.15
know and use the relationship between unbalanced force, mass and acceleration: force = mass × acceleration
F = m× a 1.16
know and use the relationship between weight, mass and g: weight = mass × g
W=m×g 1.17
describe the forces acting on falling objects and explain why falling objects reach a terminal velocity
1.18
describe experiments to investigate the forces acting on falling objects, such as sycamore seeds or parachutes
1.19
describe the factors affecting vehicle stopping distance including speed, mass, road condition and reaction time
1.20
know and use the relationship between momentum, mass and velocity: momentum = mass × velocity
p=m×v 1.21
use the idea of momentum to explain safety features
1.22
use the conservation of momentum to calculate the mass, velocity or momentum of objects
1.23
use the relationship between force, change in momentum and time taken:
force =
change in momentum time taken
1.24
demonstrate an understanding of Newton’s third law
1.25
know and use the relationship between the moment of a force and its distance from the pivot: moment = force × perpendicular distance from the pivot
1.26
recall that the weight of a body acts through its centre of gravity
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
5
1.27
know and use the principle of moments for a simple system of parallel forces acting in one plane
1.28
understand that the upward forces on a light beam, supported at its ends, vary with the position of a heavy object placed on the beam
1.29
describe experiments to investigate how extension varies with applied force for helical springs, metal wires and rubber bands
1.30
understand that the initial linear region of a force-extension graph is associated with Hooke’s law
1.31
describe elastic behaviour as the ability of a material to recover its original shape after the forces causing deformation have been removed.
d)
Astronomy
Students will be assessed on their ability to: 1.32
understand gravitational field strength, g, and recall that it is different on other planets and the moon from that on the Earth
1.33
explain that gravitational force:
x causes moons to orbit planets
x causes the planets to orbit the sun
x causes artificial satellites to orbit the Earth x causes comets to orbit the sun
1.34
describe the differences in the orbits of comets, moons and planets
1.35
use the relationship between orbital speed, orbital radius and time period:
orbital speed =
v 1.36
2 u ʌ u orbital radius time period
2uʌ ur T
understand that:
x the universe is a large collection of billions of galaxies
x a galaxy is a large collection of billions of stars x our solar system is in the Milky Way galaxy.
6
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
Section 2: Electricity a) Units b) Mains electricity c) Energy and potential difference in circuits d) Electric charge
a)
Units
Students will be assessed on their ability to: 2.1
use the following units: ampere (A), coulomb (C), joule (J), ohm (:), second (s), volt (V), watt (W).
b)
Mains electricity
Students will be assessed on their ability to: 2.2
understand and identify the hazards of electricity including frayed cables, long cables, damaged plugs, water around sockets, and pushing metal objects into sockets
2.3
understand the uses of insulation, double insulation, earthing, fuses and circuit breakers in a range of domestic appliances
2.4
understand that a current in a resistor results in the electrical transfer of energy and an increase in temperature, and how this can be used in a variety of domestic contexts
2.5
know and use the relationship: power = current × voltage
P=I×V and apply the relationship to the selection of appropriate fuses 2.6
use the relationship between energy transferred, current, voltage and time: energy transferred = current × voltage × time
E=I×V×t 2.7
understand the difference between mains electricity being alternating current (a.c.) and direct current (d.c.) being supplied by a cell or battery.
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
7
c)
Energy and potential difference in circuits
Students will be assessed on their ability to: 2.8
explain why a series or parallel circuit is more appropriate for particular applications, including domestic lighting
2.9
understand that the current in a series circuit depends on the applied voltage and the number and nature of other components
2.10
describe how current varies with voltage in wires, resistors, metal filament lamps and diodes, and how this can be investigated experimentally
2.11
describe the qualitative effect of changing resistance on the current in a circuit
2.12
describe the qualitative variation of resistance of LDRs with illumination and of thermistors with temperature
2.13
know that lamps and LEDs can be used to indicate the presence of a current in a circuit
2.14
know and use the relationship between voltage, current and resistance: voltage = current × resistance
V=I×R 2.15
understand that current is the rate of flow of charge
2.16
know and use the relationship between charge, current and time: charge = current × time
Q=I×t 2.17
know that electric current in solid metallic conductors is a flow of negatively charged electrons
2.18
understand that:
x voltage is the energy transferred per unit charge passed x the volt is a joule per coulomb.
8
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
d)
Electric charge
Students will be assessed on their ability to: 2.19
identify common materials which are electrical conductors or insulators, including metals and plastics
2.20
describe experiments to investigate how insulating materials can be charged by friction
2.21
explain that positive and negative electrostatic charges are produced on materials by the loss and gain of electrons
2.22
understand that there are forces of attraction between unlike charges and forces of repulsion between like charges
2.23
explain electrostatic phenomena in terms of the movement of electrons
2.24
explain the potential dangers of electrostatic charges, eg when fuelling aircraft and tankers
2.25
explain some uses of electrostatic charges, eg in photocopiers and inkjet printers.
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
9
Section 3: Waves a) Units b) Properties of waves c) The electromagnetic spectrum d) Light and sound
a)
Units
Students will be assessed on their ability to: 3.1
use the following units: degree (°), hertz (Hz), metre (m), metre/second (m/s), second (s).
b)
Properties of waves
Students will be assessed on their ability to: 3.2
understand the difference between longitudinal and transverse waves and describe experiments to show longitudinal and transverse waves in, for example, ropes, springs and water
3.3
define amplitude, frequency, wavelength and period of a wave
3.4
understand that waves transfer energy and information without transferring matter
3.5
know and use the relationship between the speed, frequency and wavelength of a wave: wave speed = frequency × wavelength
v=f×O 3.6
use the relationship between frequency and time period: frequency
f
1 time period
1 T
3.7
use the above relationships in different contexts including sound waves and electromagnetic waves
3.8
understand that waves can be diffracted when they pass an edge
3.9
understand that waves can be diffracted through gaps, and that the extent of diffraction depends on the wavelength and the physical dimension of the gap.
10
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
c)
The electromagnetic spectrum
Students will be assessed on their ability to: 3.10
understand that light is part of a continuous electromagnetic spectrum which includes radio, microwave, infrared, visible, ultraviolet, x-ray and gamma ray radiations and that all these waves travel at the same speed in free space
3.11
identify the order of the electromagnetic spectrum in terms of decreasing wavelength and increasing frequency, including the colours of the visible spectrum
3.12
explain some of the uses of electromagnetic radiations, including:
x radio waves: broadcasting and communications
x microwaves: cooking and satellite transmissions
x infrared: heaters and night vision equipment
x visible light: optical fibres and photography
x ultraviolet: fluorescent lamps
x x-rays: observing the internal structure of objects and materials and medical applications
x gamma rays: sterilising food and medical equipment 3.13
understand the detrimental effects of excessive exposure of the human body to electromagnetic waves, including: x microwaves: internal heating of body tissue
x infrared: skin burns
x ultraviolet: damage to surface cells and blindness
x gamma rays: cancer, mutation
and describe simple protective measures against the risks.
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
11
d)
Light and sound
Students will be assessed on their ability to: 3.14
understand that light waves are transverse waves which can be reflected, refracted and diffracted
3.15
use the law of reflection (the angle of incidence equals the angle of reflection)
3.16
construct ray diagrams to illustrate the formation of a virtual image in a plane mirror
3.17
describe experiments to investigate the refraction of light, using rectangular blocks, semicircular blocks and triangular prisms
3.18
know and use the relationship between refractive index, angle of incidence and angle of refraction:
n
sin i sin r
3.19
describe an experiment to determine the refractive index of glass, using a glass block
3.20
describe the role of total internal reflection in transmitting information along optical fibres and in prisms
3.21
explain the meaning of critical angle c
3.22
know and use the relationship between critical angle and refractive index: sin c
1 n
3.23
understand the difference between analogue and digital signals
3.24
describe the advantages of using digital signals rather than analogue signals
3.25
describe how digital signals can carry more information
3.26
understand that sound waves are longitudinal waves and how they can be reflected, refracted and diffracted
3.27
understand that the frequency range for human hearing is 20 Hz – 20,000 Hz
3.28
describe an experiment to measure the speed of sound in air
3.29
understand how an oscilloscope and microphone can be used to display a sound wave
3.30
describe an experiment using an oscilloscope to determine the frequency of a sound wave
3.31
relate the pitch of a sound to the frequency of vibration of the source
3.32
relate the loudness of a sound to the amplitude of vibration.
12
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
Section 4: Energy resources and energy transfer a) Units b) Energy transfer c) Work and power d) Energy resources and electricity generation
a)
Units
Students will be assessed on their ability to: 4.1
use the following units: kilogram (kg), joule (J), metre (m), metre/second (m/s), metre/second2 (m/s2), newton (N), second (s), watt (W).
b)
Energy transfer
Students will be assessed on their ability to: 4.2
describe energy transfers involving the following forms of energy: thermal (heat), light, electrical, sound, kinetic, chemical, nuclear and potential (elastic and gravitational)
4.3
understand that energy is conserved
4.4
know and use the relationship:
efficiency
useful energy output total energy input
4.5
describe a variety of everyday and scientific devices and situations, explaining the fate of the input energy in terms of the above relationship, including their representation by Sankey diagrams
4.6
describe how energy transfer may take place by conduction, convection and radiation
4.7
explain the role of convection in everyday phenomena
4.8
explain how insulation is used to reduce energy transfers from buildings and the human body.
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
13
c)
Work and power
Students will be assessed on their ability to: 4.9
know and use the relationship between work, force and distance moved in the direction of the force: work done = force × distance moved
W=F×d 4.10
understand that work done is equal to energy transferred
4.11
know and use the relationship: gravitational potential energy = mass × g × height GPE = m × g × h
4.12
know and use the relationship: kinetic energy = 1 × mass × speed2 2 KE = 1 × m × v2 2
4.13
understand how conservation of energy produces a link between gravitational potential energy, kinetic energy and work
4.14
describe power as the rate of transfer of energy or the rate of doing work
4.15
use the relationship between power, work done (energy transferred) and time taken:
power =
P
14
work done time taken
W t
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
d)
Energy resources and electricity generation
Students will be assessed on their ability to: 4.16
describe the energy transfers involved in generating electricity using: x wind
x water
x geothermal resources
x solar heating systems
x solar cells
x fossil fuels
x nuclear power 4.17
describe the advantages and disadvantages of methods of largescale electricity production from various renewable and nonrenewable resources.
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
15
Section 5: Solids, liquids and gases a) Units b) Density and pressure c) Change of state d) Ideal gas molecules
a)
Units
Students will be assessed on their ability to: 5.1
use the following units: degrees Celsius (oC), kelvin (K), joule (J), kilogram (kg), kilogram/metre3 (kg/m3), metre (m), metre2 (m2 ), metre3 (m3), metre/second (m/s), metre/second2 (m/s2 ), newton (N), pascal (Pa).
b)
Density and pressure
Students will be assessed on their ability to: 5.2
know and use the relationship between density, mass and volume: density=
U
mass volume
m V
5.3
describe experiments to determine density using direct measurements of mass and volume
5.4
know and use the relationship between pressure, force and area: pressure
p
force area
F A
5.5
understand that the pressure at a point in a gas or liquid which is at rest acts equally in all directions
5.6
know and use the relationship for pressure difference: pressure difference = height × density × g
p=h×ȡ×g
16
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
c)
Change of state
Students will be assessed on their ability to: 5.7
understand the changes that occur when a solid melts to form a liquid, and when a liquid evaporates or boils to form a gas
5.8
describe the arrangement and motion of particles in solids, liquids and gases
d)
Ideal gas molecules
Students will be assessed on their ability to: 5.9
understand the significance of Brownian motion, as supporting evidence for particle theory
5.10
understand that molecules in a gas have a random motion and that they exert a force and hence a pressure on the walls of the container
5.11
understand why there is an absolute zero of temperature which is –273qC
5.12
describe the Kelvin scale of temperature and be able to convert between the Kelvin and Celsius scales
5.13
understand that an increase in temperature results in an increase in the average speed of gas molecules
5.14
understand that the Kelvin temperature of the gas is proportional to the average kinetic energy of its molecules
5.15
describe the qualitative relationship between pressure and Kelvin temperature for a gas in a sealed container
5.16
use the relationship between the pressure and Kelvin temperature of a fixed mass of gas at constant volume:
p1 p2 = T1 T2 5.17
use the relationship between the pressure and volume of a fixed mass of gas at constant temperature:
p 1 V1 = = p 2 V2
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
17
Section 6: Magnetism and electromagnetism a) Units b) Magnetism c) Electromagnetism e) Electromagnetic induction
a)
Units
Students will be assessed on their ability to: 6.1
use the following units: ampere (A), volt (V), watt (W).
b)
Magnetism
Students will be assessed on their ability to: 6.2
understand that magnets repel and attract other magnets and attract magnetic substances
6.3
describe the properties of magnetically hard and soft materials
6.4
understand the term ‘magnetic field line’
6.5
understand that magnetism is induced in some materials when they are placed in a magnetic field
6.6
describe experiments to investigate the magnetic field pattern for a permanent bar magnet and that between two bar magnets
6.7
describe how to use two permanent magnets to produce a uniform magnetic field pattern.
18
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
c)
Electromagnetism
Students will be assessed on their ability to: 6.8
understand that an electric current in a conductor produces a magnetic field round it
6.9
describe the construction of electromagnets
6.10
sketch and recognise magnetic field patterns for a straight wire, a flat circular coil and a solenoid when each is carrying a current
6.11
understand that there is a force on a charged particle when it moves in a magnetic field as long as its motion is not parallel to the field
6.12
understand that a force is exerted on a current-carrying wire in a magnetic field, and how this effect is applied in simple d.c. electric motors and loudspeakers
6.13
use the left hand rule to predict the direction of the resulting force when a wire carries a current perpendicular to a magnetic field
6.14
describe how the force on a current-carrying conductor in a magnetic field increases with the strength of the field and with the current.
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
19
d)
Electromagnetic induction
Students will be assessed on their ability to: 6.15
understand that a voltage is induced in a conductor or a coil when it moves through a magnetic field or when a magnetic field changes through it and describe the factors which affect the size of the induced voltage
6.16
describe the generation of electricity by the rotation of a magnet within a coil of wire and of a coil of wire within a magnetic field and describe the factors which affect the size of the induced voltage
6.17
describe the structure of a transformer, and understand that a transformer changes the size of an alternating voltage by having different numbers of turns on the input and output sides
6.18
explain the use of step-up and step-down transformers in the largescale generation and transmission of electrical energy
6.19
know and use the relationship between input (primary) and output (secondary) voltages and the turns ratio for a transformer: input (primary) voltage output (secondary) voltage
VP VS
6.20
=
primary turns secondary turns
nP nS
know and use the relationship: input power = output power
VP IP = VS IS for 100% efficiency
20
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
Section 7: Radioactivity and particles a) Units b) Radioactivity c) Particles
a)
Units
Students will be assessed on their ability to: 7.1
use the following units: becquerel (Bq), centimetre (cm), hour (h), minute (min), second (s).
b)
Radioactivity
Students will be assessed on their ability to: 7.2
describe the structure of an atom in terms of protons, neutrons and electrons and use symbols such as
14 6
C to describe particular nuclei
7.3
understand the terms atomic (proton) number, mass (nucleon) number and isotope
7.4
understand that alpha and beta particles and gamma rays are ionising radiations emitted from unstable nuclei in a random process
7.5
describe the nature of alpha and beta particles and gamma rays and recall that they may be distinguished in terms of penetrating power
7.6
describe the effects on the atomic and mass numbers of a nucleus of the emission of each of the three main types of radiation
7.7
understand how to complete balanced nuclear equations
7.8
understand that ionising radiations can be detected using a photographic film or a Geiger-Muller detector
7.9
explain the sources of background radiation
7.10
understand that the activity of a radioactive source decreases over a period of time and is measured in becquerels
7.11
understand the term ‘half-life’ and understand that it is different for different radioactive isotopes
7.12
use the concept of half-life to carry out simple calculations on activity
7.13
describe the uses of radioactivity in medical and non-medical tracers, in radiotherapy, and in the radioactive dating of archaeological specimens and rocks
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
21
7.14
describe the dangers of ionising radiations, including:
x radiation can cause mutations in living organisms
x radiation can damage cells and tissue
x the problems arising in the disposal of radioactive waste and describe how the associated risks can be reduced.
c)
Particles
Students will be assessed on their ability to: 7.15
describe the results of Geiger and Marsden’s experiments with gold foil and alpha particles
7.16
describe Rutherford’s nuclear model of the atom and how it accounts for the results of Geiger and Marsden’s experiment and understand the factors (charge and speed) which affect the deflection of alpha particles by a nucleus
7.17
understand that a nucleus of U-235 can be split (the process of fission) by collision with a neutron, and that this process releases energy in the form of kinetic energy of the fission products
7.18
understand that the fission of U-235 produces two daughter nuclei and a small number of neutrons
7.19
understand that a chain reaction can be set up if the neutrons produced by one fission strike other U-235 nuclei
7.20
understand the role played by the control rods and moderator when the fission process is used as an energy source to generate electricity.
22
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
Assessment Assessment summary Paper 1 is externally assessed through an examination paper lasting 2 hours. Paper 2 is externally assessed through an examination paper lasting 1 hour.
The assessment for this qualification is linear and both papers must be taken in the same series. There will be a range of compulsory, short-answer structured questions in both papers which are ramped to ensure accessibility for less able students, as well as to stretch more able students. Students may be required to perform calculations, draw graphs and describe, explain and interpret physical phenomena. Some of the question content will be unfamiliar to students; these questions are designed to assess data-handling skills and the ability to apply physical principles to unfamiliar situations. Questions targeted at grades A*–B will include questions designed to test knowledge, understanding and skills at a higher level, including some requiring longer prose answers.
Summary of table of assessment Physics Paper 1 x
x
x
x
x
x
x
Externally assessed Availability: January and June series First assessment: June 2013 Assesses all Assessment Objectives Maximum mark 120 2-hour examination Assesses specification content not in bold
Physics Paper 2 x
x
x
x
x
x
x
Paper code: 4PH0/1P
Paper code: 4PH0/2P
Externally assessed Availability: January and June series First assessment: June 2013 Assesses all Assessment Objectives Maximum mark 60 1-hour examination Assesses all specification content, including that in bold
UG029854 – Specification – Edexcel International GCSE in Physics (4PH0) – Issue 4 – November 2011 © Pearson Education Limited 2011
23
Write your name here Surname
Other names
Centre Number
Candidate Number
Edexcel IGCSE
Physics Unit: 4PH0 Science (Double Award) 4SC0 Paper: 1P Friday 27 May 2011 – Morning Time: 2 hours
Paper Reference
4PH0/1P 4SC0/1P
Materials required for examination. Ruler, protractor, calculator
Total Marks
Instructions
black ink or ball-point pen. t Use in the boxes at the top of this page with your name, t Fill centre number and candidate number. all questions. t Answer the questions in the spaces provided t Answer – there may be more space than you need. all the steps in any calculations and state the units. t Show Some questions must be answered with a cross in a box . If you change t your mind about an answer, put a line through the box and then mark your new answer with a cross
.
Information
total mark for this paper is 120. t The for each question are shown in brackets t –Theusemarks this as a guide as to how much time to spend on each question.
Advice
each question carefully before you start to answer it. t Read Keep on the time. t Write anyoureyeanswers and in good English. t Try to answer everyneatly t Check your answersquestion. if you have time at the end. t
P38759A ©2011 Edexcel Limited.
1/1/1/1/
*P38759A0132*
Turn over
EQUATIONS 50% of grid used); Axes labelled with quantities and units (either way around); Plotting to nearest half square (minus one for each plotting error);; Curved line of best fit acceptable;
(iii)
(v)
Any two of student is wrong ; because current increases with temp (for constant voltage) ; so resistance decrease with temp ;
(iv) current increases with temperature ; non-linear relationship OWTTE ;
Substitution Calculation
12 = 0.002 ȝ R; R = 12 / 0.002 = 6000 ();
voltage = current ȝ resistance
correct voltmeter symbol ; connected in parallel with thermistor ;
thermistor labelled correctly
Answer
(ii)
(i)
(ii)
Question number 10 (a) (i)
2
2
5
2
1
2
1
Marks
Total 15 marks
“student is correct” scores 0 marks Because it is an ntc thermistor for 1 mark ACCEPT: relevant use of figures for resistance from graph/table
ACCEPT: positive correlation
REJECT: joining the dots Bar chart for 4 max
ACCEPT: ° OR C
If (i) is blank, but correct equation written in (ii), then credit. 12 = 2 x R = 6 () gets 1 mark Bald answer 2 marks 6 k gets 2 marks
Or equivalent – resistance = voltage y current V=IxR
REJECT: connected in parallel with battery
ACCEPT: ringed thermistor
Notes
Any two from: equation; correct substitution made or correct mass indicated; density = between 1.24 and 1.25; density unit (g/cm3 OR g/ml);
Any two from: more sensitive equipment ; check balance zero ; calibrate any equipment ; avoid parallax when reading measuring cylinder / bottom of meniscus ; use larger volume of liquid ;
(c)
Mass of cylinder + unit = 325 ; Mass of cylinder = 106 ; Mass of liquid in cylinder = 219 ; Volume of liquid = 176 ; Mass unit: g ; Volume unit: cm3 / ml ;
Answer
(b)
Question number 11 (a)
IGNORE: repeat experiment IGNORE: refs to “use more accurate…”
2
2
6
Marks
Total 10 marks
ACCEPT: measure to more dp / use burette
Correct and consistent alternative e.g. 1240 kg/m3 1.24 kg/dm3
ecf from 11(a)
ACCEPT: either unit used appropriately at least once
ACCEPT: ecf on M1 and M2
Notes
density / g / area the same for each cup ;
{depth / mass / weight} of liquid / force different M4 in each cup ;
Question Answer number 12 M1 pressure greater in the full cup / less in the halffull cup ; M2 reference to equation / p = W y A / p = h ȝ Ǐ ȝ g M3 ; IGNORE: amount of coffee different
ACCEPT: F in place of W
Notes
Total 4 marks
4
Marks
77
C
beta will penetrate the tumour but no further / stays in tumour and doesn’t affect horse / ionises within tumour (but no further) / OWTTE ;
(ii) activity decreases over time ; relate activity to situation e.g. C remains sufficiently active (over the treatment) / A and B not effective over period of treatment / A and B would need source to be replaced / D continues to be radioactive / cause damage (after treatment) ;
(i)
alpha not penetrating enough (of the tumour) / ionises before reaching whole tumour ;
(d)
(e)
192; 78;
(c)
gamma too penetrating / travels straight through /too weakly ionising / OWTTE ;
(nuclei with) same number of protons / same atomic number / same element ; different numbers of {neutrons / nucleons} / different mass number;
Answer
(b)
(ii) 115
Question number 13 (a) (i)
ACCEPT: calculation of period of activity IGNORE: bald ‘weak’ or ‘strong’
2
1
3
2
2
1
1
Marks
Total 12 marks
IGNORE: general properties of alpha, beta and gamma
IGNORE: bald ‘weak’ or ‘strong’
IGNORE: doesn’t penetrate skin
ACCEPT: atoms / elements for nuclei REJECT: molecules / substances for nuclei IGNORE: electrons
Notes
(b)
Any two of: to avoid / reduce absorption / ionisation / loss of energy of alpha particles ; to avoid / reduce chance of collisions between air molecules and alpha particles ; to allow sufficient range for alpha particles / would stop in few cm of air / does not reach foil ;
Any two of: electrostatic (force) ; repulsion ; between like charges ;
(ii)
two protons labelled ; two neutrons labelled ;
Answer
(i)
Question number 14 (a)
ACCEPT: electric (force) IGNORE: magnetic / poles
IGNORE: speed of alpha particles
ACCEPT: ideas of alpha particle absorption, collision and range expressed in other words
ACCEPT: a proton and a neutron for 1 mark ACCEPT: correct labels inside circles
Notes
2
2
2
Marks
Large deflections show – nuclei have enough mass for alphas to bounce back; mass of a nucleus is more than the mass of an alpha particle; high density related to mass and small size;
Deflections show – a repulsive force operates; (if electrostatic force) then nuclei have same charge as alpha particles (or both positive charge); (only some) deflected so nuclei are a small target;
Undeflected alpha particles show – there are gaps between nuclei/atoms mostly empty space;
14 (b) (iii) Any five of:
5
Total 11 marks PAPER TOTAL: 120 MARKS
ACCEPT: correct reverse arguments
Write your name here Surname
Other names
Centre Number
Candidate Number
Edexcel IGCSE
Physics Unit: 4PH0 Paper: 2P Friday 17 June 2011 – Afternoon Time: 1 hour
Paper Reference
4PH0/2P
Materials required for examination. Ruler, protractor, calculator
Total Marks
Instructions
black ink or ball-point pen. t Use in the boxes at the top of this page with your name, t Fill centre number and candidate number. all questions. t Answer the questions in the spaces provided t Answer – there may be more space than you need. all the steps in any calculations and state the units. t Show Some questions must be answered with a cross in a box . If you change t your mind about an answer, put a line through the box and then mark your new answer with a cross
.
Information
total mark for this paper is 60. t The for each question are shown in brackets t –Theusemarks this as a guide as to how much time to spend on each question.
Advice
each question carefully before you start to answer it. t Read Keep on the time. t Write anyoureyeanswers and in good English. t Try to answer everyneatly t Check your answersquestion. if you have time at the end. t
P38760A ©2011 Edexcel Limited.
1/1/1/
*P38760A0120*
Turn over
EQUATIONS You may find the following equations useful. energy transferred = current u voltage u time
pressure u volume = constant frequency =
1 time period
E = I uVut
p1 uV1 = p2 uV2 f =
1 T
power =
work done time taken
P=
W t
power =
energy transferred time taken
P=
W t
V=
2× π × r T
orbital speed =
2π × orbital radius time period
p1 p2 = T1 T2
pressure = constant temperature force =
change in momentum time taken
Where necessary, assume the acceleration of free fall, g = 10 m / s2.
2
*P38760A0220*
BLANK PAGE
*P38760A0320*
3
Turn over
Answer ALL questions. 1 Hubble and Kepler are the names of two space telescopes.
Hubble telescope
Kepler telescope
(a) The Hubble telescope is in a circular orbit around the Earth. The Kepler telescope is in a circular orbit around the Sun. (i) The orbit of the Hubble telescope is most like the orbit of a (1) A comet B moon C planet D star (ii) The orbit of the Kepler telescope is most like the orbit of a (1) A comet B moon C planet D star (iii) The force that keeps space telescopes in orbit is (1) A friction B gravity C lift D upthrust
4
*P38760A0420*
(b) Space telescopes are used to study galaxies. Use words from the box to complete the sentences below. Each word may be used once, more than once, or not at all. Milky Way
Solar System
Sun
Universe
(i) There are billions of stars in the galaxy called the . . .. . . . .. . . . .. . . .. . . .. . . .. . .. ... .. . . .. . .. . . .. .. .. . .. ... .. . . .. . .. . . .. . (1) (ii) There are billions of galaxies in the . . .. . . . .. . . . . . . . .. . . . . . . . . .. . . . . . . . .. . . . . . .. . . . . . ... . . . ... . . .. . . . .. . . (1) (c) Which of these is nearest to the Earth? (1) A the surface of the Moon B the surface of the Sun C the centre of the Solar System D the centre of the Universe (d) Gravitational field strength is measured in (1) A kg/N B kg/N2 C N/kg D N/kg2 (Total for Question 1 = 7 marks)
*P38760A0520*
5
Turn over
2 The photograph shows a plotting compass and a small bar magnet.
(a) Describe how you should use this apparatus to investigate the magnetic field pattern of the bar magnet. (3) . .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
(b) Add the magnetic field pattern of the bar magnet to the diagram below. (3)
N S
(Total for Question 2 = 6 marks) 6
*P38760A0620*
3 The photograph shows a worker fuelling an aircraft.
Fuelling an electrically-charged aircraft can be dangerous. The worker connects a safety wire to the aircraft before adding the fuel. (a) Explain how an aircraft can become electrically charged while it is flying.
(2)
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
(b) Describe a possible danger of fuelling an electrically-charged aircraft.
(1)
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
(c) What electrical connection is made by the safety wire?
(1)
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
(d) Explain how connecting the safety wire reduces the possible dangers when fuelling an electrically-charged aircraft.
(2)
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
(Total for Question 3 = 6 marks)
*P38760A0720*
7
Turn over
4 CD players use digital signals to transfer information.
Earlier systems using vinyl discs produced analogue signals.
(a) Describe the difference between digital signals and analogue signals. (2) . .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
(b) Give one advantage of using digital signals. (1) . .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
8
*P38760A0820*
(c) A CD player is connected to this loudspeaker system.
The sound produced has a range of frequencies. Use ideas about diffraction to explain why different frequencies require different sizes of loudspeaker. (3) . .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
(Total for Question 4 = 6 marks)
*P38760A0920*
9
Turn over
BLANK PAGE
10
*P38760A01020*
5 A student wants to use a weighing scale to find the weight of her school bag. She has a weighing scale marked in kilograms instead of newtons. The weighing scale is not working properly. With nothing hanging from it, the weighing scale shows 1.5 kg.
(a) What is the weight of a 1.5 kg mass? (1)
Weight = .. .. . .. .. ... ... .. .. . .. ... .. .. .. . .. . . .. .. . N
*P38760A01120*
11
Turn over
(b) The student decides to check the weighing scale. She has no accurate weights. Instead, she puts some tins of beans in a plastic bag and hangs it from the scale.
Her readings are shown in the table.
Number of tins of beans
0
1
2
3
4
5
6
Scale reading (in kg)
1.5
2.0
2.3
2.8
3.7
3.5
3.9
12
*P38760A01220*
(i) Draw a graph to show how the scale reading varies with the number of tins of beans. (5)
(ii) Circle the anomalous point on your graph. (1)
*P38760A01320*
13
Turn over
(c) The student notices that the label on each tin says ‘contains 0.4 kg of beans’. She remembers that six tins of beans gave a scale reading of 3.9 kg. She thinks: Six tins of beans, so… mass = 6 x 0.4 = 2.4 kg and… 3.9 – 1.5 = 2.4 kg She concludes: I can use this scale as normal! All I need to do is to subtract 1.5 kg from each reading to get the right answer.
She hangs her school bag from the weighing scale. The scale reading is 5.0 kg. She also concludes that her school bag must have a mass of exactly 3.5 kg. Suggest reasons why the student’s conclusions might be incorrect. (4) . .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
(Total for Question 5 = 11 marks) 14
*P38760A01420*
BLANK PAGE
*P38760A01520*
15
Turn over
6 The photograph shows a kettle on a camping stove. The cylinder contains some gas.
kettle
burner
gas cylinder
(a) Water in the kettle boils at a temperature of 100 °C and steam is produced. (i) Convert this to a temperature on the Kelvin scale. (1)
100 °C = . . .. . . . .. . .. ... .. .. . .. ... .. .. .. . .. . . .. .. .. . .. ... .. .. K (ii) State one way in which the molecules in steam are different from the molecules in water. (1) . .. .. . .. .. .. .. . .. .. . ... . . . .. .. . . . . .. .. .. . .. .. . .. .. .. . . .. ... .. . . . .. .. . .. .. .. .. . . ... .. . . . . . .. .. .... .... .. . . .. .. . . .. . . .. .. .. .. . . .. . . .. . . . .. . . . .. . . .. . . .. . . . .. .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . . .. .. . . . . ..
. .. .. . .. .. .. .. . .. .. . ... . . . .. .. . . . . .. .. .. . .. .. . . . .. .. . . .. ... .. .. . .. .. . .. .. .. .. . . ... .. . . . . . .. .. .. .. .. .. .. . . .. .. . . .. . . .. .. .. .. . . .. . . .. . . . .. . . . .. . . .. . . .. . . . .. .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... .. . . .. .. . . . ...
16
*P38760A01620*
(iii) Explain how the molecules of steam exert a pressure on the inside of the kettle. (3) . .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
(b) The wind blows the flame out and 820 cm3 of gas, at a pressure of 130 kPa, escapes from the cylinder. As the gas escapes, its pressure decreases to 101 kPa. Calculate the volume of the escaped gas at a pressure of 101 kPa. (2)
Volume = . . .. . . . .. . . . .. . .. .. ... .. . .. .. ... .. . . .. . .. . . .. .. . .. .. cm3 (c) The cylinder is turned off to stop more gas escaping. The temperature of the gas in the cylinder decreases. Explain what happens to the pressure of the gas in the cylinder. (2) . .. .. . .. .. .. .. . .. .. . ... . . . .. .. . . . . .. .. .. . .. .. . .. .. .. . . .. ... .. . . . .. .. . .. .. .. .. . . ... .. . . . . . .. .. .... .... .. . . .. .. . . .. . . .. .. .. .. . . .. . . .. . . . .. . . . .. . . .. . . .. . . . .. .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . . .. .. . . . . ..
. .. .. . .. .. .. .. . .. .. . ... . . . .. .. . . . . .. .. .. . .. .. . . . .. .. . . .. ... .. .. . .. .. . .. .. .. .. . . ... .. . . . . . .. .. .. .. .. .. .. . . .. .. . . .. . . .. .. .. .. . . .. . . .. . . . .. . . . .. . . .. . . .. . . . .. .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... .. . . .. .. . . . ...
. .. .. . .. .. .. .. . .. .. . ... . . . .. .. . . . . .. .. . . . . . .. . . . .. ... . . . . .. .. .. . .. .. . . . . . .. ... . . .. .. .. .. . .. .. .. .. ... ... . . .. .. . . .. . . .. .. .. .. . . .. . . .. . . . .. . . . .. . . .. . . .. . . . .. .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. .. . .. .. . ... . . . .. .. . . . . .. .. . . . . . .. . .. .. ... . . . . .. .. . . . .. .. . . . . . .. ... . . .. .. .. .. . .. .. .... ... ... . . .. .. . . .. . . .. .. .. .. . . .. . . .. . . . .. . . . .. . . .. . . .. . . . .. .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . . .... . . .. ..
. .. .. . .. .. .. .. . .. .. . ... . . . .. .. . . . . .. .. .. . .. .. . .. .. .. . . .. ... .. . . . .. .. . .. .. .. .. . . ... .. . . . . . .. .. .... .... .. . . .. .. . . .. . . .. .. .. .. . . .. . . .. . . . .. . . . .. . . .. . . .. . . . .. .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . .. .. .. . . . . ..
(Total for Question 6 = 9 marks)
*P38760A01720*
17
Turn over
7 Scientists test the safety features of a car by crashing it into a large block of concrete. A dummy is placed in the driver’s seat and the scientists video the crash.
(a) In one test, the dummy and the car travel at 8 m/s. The mass of the dummy is 72 kg. Calculate the momentum of the dummy. (2)
Momentum = . . .. . . . .. . . . . . . . .. . . . . .. .. .. . . .. . .. .. .. ... .. . .. .. ... kg m/s
18
*P38760A01820*
(b) In another test, the momentum of the dummy changes by 920 kg m/s in a time of 0.17 s. Calculate the average horizontal force acting on the dummy during this time. (2)
Average force = . . .. . . . .. .. . . ... .. . .. . . .. . .. . . .. ... .. .. . .. .. . . .. . ... N (c) These tests help to make our roads safer. (i) State two factors that affect the stopping distance of a car driven on a road. (2) 1
. .. .. . .. .. .. .. . .. .. . ... . . . .. .. . . . . .. .. . . . ... .. . . . .. .. . .. .. .. . . . . ... .. . . . .. .. . . . .. .. .. . . . .. ... .. .. .. . ... . . .. .. . . .. . . .. .. .. .. . . ... . .. . . . .. . . . . . . . .. . . . . . . . . .. . . . . . .. .. .. ... .. . .. .. .. . . .. . .. .. .. ... .. . .. . . .. . ... . . . .. .. . .. .. . .. .. . .. .. . .. . .. . .
. .. .. . .. .. .. .. . .. .. . ... . . . .. .. . . . . .. .. . . . . .. .. . . . .... . .. .. ... .. . . .. .. .. ... .. . . . .. .. .. . . . .. ... .... ... ... . . .. .. . . .. . . .. .. .. .. . . ... . .. . . . .. . . . . . . . .. . . . . . . . . .. . . . . . . . .. . . ... .. . .. .. .. . . .. . .. . . .. ... .. . .. . . .. . . .. . . .. . .. ... .. . .. . . . .... . .. . ... .. . .. .
2
. .. .. . .. .. .. .. . .. .. . ... . . . .. .. . . . . .. .. . . . ... .. . . . .. .. . .. .. .. . . . . ... .. . . . .. .. . . . .. .. .. . . . .. ... .. .. .. . ... . . .. .. . . .. . . .. .. .. .. . . ... . .. . . . .. . . . . . . . .. . . . . . . . . .. . . . . . .. .. .. ... .. . .. .. .. . . .. . .. .. .. ... .. . .. . . .. . ... . . . .. .. . .. .. . .. .. . .. .. . .. . .. . .
. .. .. . .. .. .. .. . .. .. . ... . . . .. .. . . . . .. .. . . . . .. .. . . . .... . .. .. ... .. . . .. .. .. ... .. . . . .. .. .. . . . .. ... .... ... ... . . .. .. . . .. . . .. .. .. .. . . ... . .. . . . .. . . . . . . . .. . . . . . . . . .. . . . . . . . .. . . ... .. . .. .. .. . . .. . .. . . .. ... .. . .. . . .. . . .. . . .. . .. ... .. . .. . . . .... . .. . ... .. . .. .
(ii) Use ideas about momentum to explain how the crumple zone of a car helps to reduce injuries during a crash. (3) . .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
(Total for Question 7 = 9 marks)
*P38760A01920*
19
Turn over
8 The diagram shows some of the parts of a nuclear power station. steam
heat exchanger
concrete chamber graphite core (moderator) uranium rods (fuel) control rods
steel vessel
pump
pressurised water (as coolant)
Describe the process of controlled fission of U-235 in the nuclear reactor. (6) . .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
. .. .. . .. .. .. . .. .. .. .. . .. .. . . . . .. .. . . . . .. .. . . . . .. . . .. . .. .. . .. .. .. .. . .. .. .. .. ... .. ... .. .. .. . . . ... .... .... ... . .. .. . ... . ... .... ... .. . .. . . . .. . . . .. . . .. . . .. . . . . . .. . . . . . .. .. . .. . . .. .. .. . .. ... .. .. .. . .. . . .. . . .. . .. ... . ... .. . .. . . . . . . .. . ... . . . ... .. . . . . ..
(Total for Question 8 = 6 marks) TOTAL FOR PAPER = 60 MARKS 20
*P38760A02020*
C – N/kg
(d)
Universe
(ii)
A – surface of the Moon
Milky Way
(i)
$QVZHU
(c)
(b)
C - Planet
(ii)
(iii) B - Gravity
B - Moon
4XHVWLRQ QXPEHU 1 (a) (i)
,NTERNATIONAL *&6(3+1 line ;
Make marks to record (field) ; ALLOW use of >1 compass / pencil
4XHVWLRQ $QVZHU QXPEHU 2 (a) Place compass in field and observe the needle ;
(Connect to) earth / ground ;
Idea of charge / current flowing in wire ;
(c)
(d)
Discharges aircraft / no charge is left / no p.d. remains ;
Idea of spark / ignition / fire / explosion ;
(b)
Due to friction / lightning ;
4XHVWLRQ $QVZHU QXPEHU 3 (a) Idea of electron transfer ;
2
1
1
2
0DUNV
7RWDOPDUNV
ACCEPT “all charge goes to earth” for 2 marks
IGNORE further discussion of danger
ALLOW no overall charge / (aircraft) neutral
ALLOW earthing / grounding
IGNORE refs to electric shock IGNORE refs to charge jumping / escaping
ALLOW rubbing / description of friction / flying through charged clouds
REJECT proton movement
1RWHV
(c)
(b)
Giving a more even sound (if all frequencies diffract equally) ;
Diffract most if speaker size matches wavelength ;
(Different frequencies / notes have) different wavelengths ;
Waves spread out (as they leave the speaker) ;
Any WKUHH from:
may carry more information / more stations / easier to store /copy / use with computers ;
easier to remove noise / can regenerate /
Analogue: any value allowed / ‘continuously variable’ ;
4XHVWLRQ $QVZHU QXPEHU 4 (a) Digital: only set values allowed ;
e.g. “high and low frequencies have same loudness” OWTTE
ACCEPT this idea on another diagram
ACCEPT this idea on a diagram
IGNORE refs to quality / clarity of sound
ALLOW can be cleaned IGNORE ‘less noise’ alone REJECT carries information faster REJECT easier to amplify
ACCEPT information in diagrams e.g. labelled correct waveforms
REJECT ‘varies’ alone / ‘continuous’ alone / ‘varies within a range’ REJECT refs to frequency
ACCEPT Idea of on-off OR 1-0 for digital signal
1RWHV
7RWDOPDUNV
3
1
2
0DUNV
(c)
(ii)
(b) (i)
4XHVWLRQ QXPEHU 5 (a)
Methods x The conclusion was based on just one pair of readings ; x The experiment was not repeated ; x The weight of tins / bag was not taken into account ; x (0 – 5kg is an) inadequate range to measure schoolbag ;
Data x There is an obvious error / anomaly / inconsistency in the readings ; x The data on the tin may be wrong ; x The extension of spring might not be linear / broken scales / scales not obeying Hookes Law ; x There is a zero error ; x There could be reading error / parallax error ;
7RWDOPDUNV
4
Any IRXU from:
5
1
0DUNV
1
Bar charts: can only score S, A and P marks (4 max)
ALLOW ‘mass’ / ‘scale reading’ for y-axis
1RWHV
(4, 3.7) identified / circled ;
Scale on axes is linear - 1 mark Axes labelled with scales and units - 1 mark Plotting to nearest half-square (minus one for each plotting / scale error, up to max 2 marks) - 2 marks Line (straight) of best fit acceptable - 1 mark
15 (N)
$QVZHU
(c)
(b)
(iii)
(ii)
4XHVWLRQ QXPEHU 6 (a) (i)
130 ȝ 820 = 101 ȝ V2 OR V2 = (130 ȝ 820) y 101 ;
= 1060 (cm ) ;
3
Molecules move more slowly / have less kinetic energy ; Molecules hit sides with less frequently / often ; Less momentum change / force produced (per collision or overall) ; Pressure is proportional to temperature / P Į T (for constant volume) ;
Any RQH from:
Pressure decreases;
Answer
Substitution OR Rearrangement
(Molecules) in motion / moving ; Bounce off / hit / collide with / strike inside of kettle ; Momentum changes ; There is a force (on the inside) ; pressure = force y area OWTTE ;
Any WKUHH from:
More (kinetic) energy / more quickly / faster / further apart (in steam) ; ACCEPT more freely
373 (K);
$QVZHU
NB “pressure increases / stays the same” scores zero for question
2
2
3
1
1
0DUNV
7RWDOPDUNV
ACCEPT 1055 (cm3) / or with further dp after 1055 (cm3)
Correct answer with no working gets both marks
IGNORE push
IGNORE molecules hitting each other
ACCEPT reverse argument for water REJECT vibration NB Must be a comparison
IGNORE any decimal places / degree sign REJECT negative values
1RWHV
(c)
(b)
(i)
4XHVWLRQ QXPEHU 7 (a)
920 y 0.17 ; 5400 (N) ;
580 (kg m/s);
Road Weather-related e.g. wet / dry / rainy / icy ; Surface-related e.g. gravel / mud / freshly tarmaced / oily ; Gradient e.g. uphill / downhill ; Car Mechanical e.g. quality of tyres / brakes ; Momentum-related e.g. speed / number of passengers / mass ; Driver State of alertness e.g. tired / alcohol / drugs / mobile phone / other distractions ; Reaction time ;
Any WZR from:
Substitution Calculation
Calculation
momentum = mass ȝ velocity OR 72 ȝ 8 ;
$QVZHU
ALLOW slippery if qualified
2
2
2
Or equivalent rearrangement ACCEPT use of standard abbreviations i.e. p = mv ALLOW 576 (kg m/s) REJECT Alternative incorrect unit for 1 mark ACCEPT 5410 / 5412 / 5411.7…… 5411.8 REJECT 5411
0DUNV
1RWHV
7
(c)
(ii)
x Car (and driver) take longer to slow down / time for crash increases ; x Momentum changes / decreases ; x Rate of change of momentum (and thus force) reduced ; x Smaller force leads to less severe injuries ; 25 x Driver travels further in crash / for a longer time ; x Acceleration / deceleration (and thus force) is lower ; x Rate of change of momentum (and thus force) reduced ; x Smaller force leads to less severe injuries ;
Any WKUHH from:
7RWDOPDUNV
NB “change of momentum, divided by time is less” scores two marks
ALLOW reverse arguments e.g. “If no crumple zone…”
3
$QVZHU
Energy harvesting described (Energy released) used to heat water ; A heat transfer mechanism mentioned ;
Control described Moderator to slow down neutrons / increases rate ; Control rod ‘mops up’ / absorbs neutrons / reduces rate ; Control rods can be inserted / removed ;
Further fissions described (Spare) neutrons can cause further fissions ; In a chain reaction ;
Single fission described Neutrons captured / absorbed / metastable / unstable state ; Causes break-up of nucleus / daughter nuclei ; Releasing energy ; Releasing neutrons ;
4XHVWLRQ QXPEHU 8 Any VL[ from:
7RWDOPDUNV
6
0DUNV
3$3(5727$/0$5.6
ACCEPT points shown in a clear and labelled diagram
REJECT (for 1 mark) Confusion of electrons and neutrons REJECT (for 1 mark) Fission of atoms / molecules / cells
1RWHV