Effect of oxygen volumetric flowrate on

0 downloads 0 Views 9MB Size Report
Jun 6, 2009 - acid and indigo carmine solution will be used to determine the variation in the yields and ..... Lowering pH reduces formation of bromate as it shifts the reaction .... TNSA model with the addition of the first excited state of molecular oxygen. ..... 91.1. 0.51. 0.324. 0.20. 61.8. 0.50. 0.328. 0.40. 0.397. 0.30. 0.508 ...
 

Effect  of  oxygen  volumetric  flowrate  on   decontamination  efficiency  of  a   microplasma  ozonation  system   Tom  Butterworth   Supervisor:  Prof.  W  Zimmerman    

Summary     Disinfection   and   decontamination   of   water   are   an   essential   process   to   provide   clean  and  safe  drinking  water.  Ozone  and  advanced  oxidation  processes  (AOPs)   are   well-­‐established,   highly   effective   methods   of   disinfecting   water.   However   chlorine   based   disinfection   treatments   are   more   popular   because   of   their   significantly   lower   operating   cost,   despite   the   negative   effects   that   chlorination   can  have  on  drinking  water  quality.  Hence  there  is  a  need  to  be  able  to  provide   economically   viable   methods   of   disinfecting   and   decontaminating   water   using   ozone  or  AOPs.     A  radial  microplasma  reactor  developed  by  Zimmerman  et  al  at  the  University  of   Sheffield   has   shown   a   potentially   economical   method   of   disinfecting   water   via   the   production   of   ozone,   ultraviolet   light   and   possibly   the   powerful   oxidants,   hydoxyl   radicals.   This   research   project   used   computational   modeling   techniques   using   the   Comsol   Multiphysics   software,   to   research   the   effect   of   the   inlet   velocity   of   oxygen   into   the   microplasma   reactor   on   the   reactor   residence   time.   Using   the   data   collected   from   the   computational   modeling,   an   empirical   relationship   was   derived   relating   electrode   radius   (r),   residence   time   (τ),   inlet   velocity   (ui),   inlet   Reynolds   number   (Re)   and   a   reference   radial   position   (r0),   with  two  additional  coefficients,  n  and  γ,  for  a  laminar  flow  radial  reactor:     r 2 − r0 2 n τ =γ (Re)   2r0 ui   The   derived   equation   was   rearranged   into   various   alternate   forms   to   calculate,   amongst  other  things,  ideal  reactor  radius  for  a  range  of  possible  inlet  velocities   € theoretical   reactor   residence   time   of   0.1s.   It   was   found   to   achieve   a   maximum   that   a   reduction   in   electrode   width   might   be   possible,   dependant   on   optimum   oxygen   inlet   velocity,   leading   to   potentially   large   increases   in   reactor   efficiency   by  reducing  the  power  requirement  of  the  reactor.     An  experiment  was  devised  and  constructed  to  determine  the  optimum  oxygen   inlet   velocity   for   the   microplasma   reactor.   Two   chemical   indicators,   terephthalic   acid  and  indigo  carmine  solution  will  be  used  to  determine  the  variation  in  the   yields   and   production   rates   of   hydroxyl   radicals   and   oxidizing   species   (such   as   ozone,  atomic  oxygen  and  hydroxyl  radicals)  with  varying  oxygen  inlet  velocities   to   the   plasma   reactor.   It   is   envisaged   that   this   information   regarding   the   optimum  inlet  velocity  will  be  used  in  conjunction  with  the  derived  equations  in   order  to  assist  in  a  redesign  of  the  microplasma  reactor  to  improve  the  operating   efficiency  of  the  device.  

(

 

)

2  

Acknowledgments     I  would  like  to  thank  Professor  Will  Zimmerman  and  Dr  Jaime  Lozano-­‐Parada  for   their   patience,   assistance,   guidance   and   most   of   all,   expertise,   during   my   research   project,   without   which   it   would   not   have   been   possible.   I   would   also   like  to  thank  Tom  Holmes  and  Dr  Hemaka  Bandulasena  who  have  also  provided   assitance  along  the  way.    

 

3  

 

Table  of  Contents   Summary ............................................................................................................... 2   Acknowledgments ................................................................................................. 3   1.0  Introduction ..................................................................................................... 5   2.0  Literature  Review............................................................................................. 7   2.1  Dielectric  Barrier  Discharge...................................................................................................................7   2.2  Formation  of  Bromate...............................................................................................................................9   2.3  Effects  of  pressure  and  temperature  on  ozone  formation ........................................................9   2.4  Microbubble  Ozonation......................................................................................................................... 10   2.5  Oxygen  Radicals  for  water  treatment ............................................................................................. 10   2.6  Kinetic  models  of  reactions  of  aqueous  ozone ............................................................................ 12   2.7  Ozone  and  Ultraviolet  light .................................................................................................................. 13   2.8  Methods  of  detecting  ozone  and  hydroxyl  radicals................................................................... 15   3.0  Hypothesis ..................................................................................................... 19   4.0  Computational  Modelling............................................................................... 20   4.1  Developing  an  Empirical  Relationship............................................................................................ 24   5.0  Experimental  Method .................................................................................... 30   5.1  Equipment  Description ......................................................................................................................... 30   5.2  Description  of  Experimental  Setup .................................................................................................. 30   5.3  Description  of  Microplasma  Reactor ............................................................................................... 32   5.6  Preparation  of  Indigo  Carmine  Solution ........................................................................................ 34   5.7  Preparation  of  buffered  water............................................................................................................ 35   5.8  Calibration  of  the  spectrophotometer ............................................................................................ 35   5.11  Calibration  of  the  Power  Supply ..................................................................................................... 36   5.12  Experimental  procedure .................................................................................................................... 36   6.0  Experimental  Analysis .................................................................................... 38   7.0  Conclusions .................................................................................................... 39   8.0  Suggestions  for  future  work ........................................................................... 40   9.0  Appendix........................................................................................................ 41   Mathematica  Syntax ....................................................................................................................................... 41   9.1  Empirical  Equations  -­‐  Derivation...................................................................................................... 43   9.2  Emprical  Equations  -­‐  Dimensional  Analysis................................................................................. 46   9.3  Empirical  Equation  –  Error  Analysis ............................................................................................... 49   10.0  References ................................................................................................... 56    

 

 

4  

1.0  Introduction     Water  is  a  very  valuable  resource;  as  global  population  increases,  the  effects  of   climate   change   are   felt   and   more   of   the   global   population   adopt   “western   lifestyles”  there  is  an  increasing  pressure  to  secure  clean  and  safe  water  supplies.     For  water  to  be  considered  clean  and  safe  it  should  be  free  from  all  biological  and   chemical   components   that   have   the   potential   to   cause   harm   or   impart   an   unpleasant  odour,  taste  or  appearance.   To   remove   harmful   biological   components,   drinking   water   is   treated   by   a   process   called   disinfection.   Removal   of   chemical   components   is   more   complex   usually   requiring   a   number   of   treatments   due   to   the   wide   range   of   potentially   harmful  chemicals  which  can  be  found  in  drinking  water,  including  heavy  metals,   toxic   inorganics,   organic   chemicals   and   radio   nuclides.   Ozone   was   first   documented   as   having   disinfectant   properties   in   Germany   in   1891   when   Frohlich   demonstrated   it’s   bactericidal   properties   (Haley   &   Watts,   1986).   Since   then  further  research  into  the  ozone  has  shown  it  is  also  capable  of  destroying  or   removing   metals   (particularly   iron   and   manganese),   minerals,   inorganics,   dyes   and  organic  contaminants  in  drinking  water,  particularly  when  used  as  part  of  an   advanced  oxidation  process  (AOP)  (Eagleton,  1999).       Currently   the   most   commonly   used   disinfectants   globally   are   chlorine   based   treatments   such   as   chlorine   dioxide,   hypochlorite   solutions   and   chlorine   gas.   However  chlorine  treatments  have  a  number  of  disadvantages:     • Chlorine   has   a   broad   spectrum   of   action   against   microorganisms,   however   it   is   incapable   of   destroying   cryptosporidium   oocytes   and   giardia  cysts  (WHO,  1996)   • Chlorine   gas,   hypochlorite   solutions,   chlorine   dioxide   and   the   precursor   chemicals  used  to  produce  it  are  toxic.  In  order  to  treat  water  they  need  to   be   stored   and   transported   in   large   quantities.   This   is   inherently   hazardous,  so  it  would  be  preferable  to  avoid  excessive  handling   • Chlorine  reacts  with  naturally  occurring  organic  compounds  in  the  water   to  form  trihalomethanes,  some  of  which  are  possible  carcinogens  such  as   chloroform.   Chlorine   can   also   react   with   other   organic   contaminants   in   the  water  to  form  a  wide  range  of  chlorinated  chemicals,  some  of  unkown   toxicity,  such  as  chlorinated  acetic  acids,  chloral  hydrate,  chloroacetones,   cyanogen  chloride  and  chlorophenols  which  impart  a  bad  taste  and  odour   on  the  water  (WHO,  1996)     It   is   well   documented   that   ozone   is   a   much   more   effective   disinfectant   than   chlorine,   requiring   shorter   contact   times   and   lower   concentrations   to   destroy   the   majority   of   microorganisms.   It   is   also   effective   against   cryptosporidium   oocysts   and   giardia   cysts,   which   as   stated   previously   chlorine   is   not   (WHO,   2002).   Ozone   is   also   capable   of   destroying   organic   contaminants,   so   unlike   chlorine  that  can  cause  formation  of  toxic  or  carcinogenic  chemicals,  ozone  can   reduce  the  concentration  of  hazardous  chemicals  in  water.  (However  it  can  also   lead  to  formation  of  the  possible  carcinogen  Bromate)  

 

5  

Despite  the  apparent  benefits  of  ozone  over  chlorine-­‐based  treatments  it  is  not   nearly  as  popular  in  industry,  this  is  because  ozone  has  a  number  of  unresolved   disadvantages:   • Ozone  is  usually  produced  using  plasma  technology.  A  simple  explanation   of   an   ozone   producing   plasma   is   that   it   is   the   result   of   an   electrical   discharge   between   two   electrodes   over   an   air   (or   oxygen)   filled   gap   (Soloman   et   al,   1998).   The   atoms   and   molecules   in   the   gas   are   excited   and   ionized   which   starts   off   a   chain   of   reactions   ultimately   leading   to   the   formation   of   ozone.   Currently   the   production   of   ozone   using   plasma   requires  a  large  amount  of  power.  Despite  the  obvious  benefits  of  using   ozone   as   a   disinfectant,   due   to   the   high   cost   of   electricity,   disinfection   using   ozone   is   not   economically   viable   when   compared   with   chlorine-­‐ based   treatments.   As   such   large   volumes   of   water   have   to   be   treated,   operating   cost   is   a   very   important   factor   when   choosing   a   disinfection   process.   This   is   currently   the   greatest   barrier   to   the   widespread   usage   of   ozone  disinfection.   • The  formation  of  bromate  –  Ozone  (or  rather  hydroxyl  radicals)  oxidize   bromine   to   form   the   possible   carciogen   bromate.   A   number   of   possibilites   for   avoiding   formation   of   bromate   are   discussed   in   the   literature  review.   • The  formation  of  NOx  –  When  using  an  air  feed  for  a  plasma  reactor  some   NOx   is   formed.   NOx   emissions   are   subject   to   strict   regulation,   so   they   should   be   avoided.   Using   an   oxygen   feed   eliminates   this   problem,   however   such   a   solution   requires   the   transport   and   storage   of   oxygen   potentially  resulting  in  higher  operating  costs.     Similarly   ozone   treatment   is   a   commonly   used   method   in   removal   of   chemical   contaminants  from  water.  However  AOPs  which  utilize  ozone  are  more  effective   still,  as  they  tend  to  promote  the  formation  of  hydroxyl  radicals.       Table  1:  Oxidation  Potential  of  various  species  

Species   F2   OH  Radical   O(1D)  Radical   O3   H2O2   HO2   Cl2  

Oxidation  Potential  (V)   3.03   2.80   2.42   2.07   1.78   1.70   1.36  

    Table   1   shows   the   oxidation   potential   of   chlorine,   fluorine   and   reactive   species   which   may   be   present   in   an   ozone   or   AOP   system,   clearly   hydroxyl   radicals   have   the  highest  oxidation  potential.  Hydroxyl  radicals  are  the  most  reactive  and  least   selective  oxidizing  species  used  in  oxidative  pollution  abatement  in  wastewater   and   drinking   water   treatment,   these   same   properties   could   also   be   of   great   benefit   for   disinfection   processes.   The   purpose   of   this   research   is   to   identify   a   method   of   improving   efficiency   and   rate   of   disinfection   of   water   using   an   experimental   microplasma   reactor   producing   ozone   and   it’s   reactive  

 

6  

intermediates  from  oxygen.  This  is  achieved  by  drawing  on  current  research  into   AOPs,   plasmas   and   reaction   kinetics   of   aqueous   ozone   and   other   oxygen   containing  reactive  species.    

2.0  Literature  Review     The  purpose  of  this  literature  review  is  to:   1. Identify   possible   methods   of   improving   the   yield   of   hydroxyl   radicals   produced  by  the  microplasma  reactor.   2. Find   ways   in   which   the   efficiency   of   the   microplasma   reactor   can   be   improved  with  regards  to  disinfection  per  unit  of  power.   3. Research  potential  methods  of  determining  hydroxyl  radical  formation,  as   well   as   a   method   of   differentiating   between   the   potential   range   of   products  formed  by  the  micro  plasma  reactor.   4. Consider   the   interactions   of   ozone   and   hydroxyl   radicals   with   common   chemicals   found   in   water,   and   how   this   might   effect   the   rate   of   disinfection  or  formation  of  potentially  harmful  chemicals.  

2.1  Dielectric  Barrier  Discharge     Commercially  ozone  is  produced  on  a  large  scale  by  dielectric  barrier  discharge   (DBD).  The  DBD  is  characterized  by  2  electrodes  separated  typically  by  a  gap  of   1mm   for   ozone   generators   (Kogelschatz   et   al,   1999).   A   dielectric   layer   divides   this   gap.   The   DBD   is   charecterised   by   filaments   of   plasma   of   nanosecond   duration   (microdischarges).   These   microdischarges   are   caused   by   build   up   of   charge   on   the   dielectric   surface,   within   afew   nanoseconds   of   breakdown   the   electric  field  at  the  site  of  the  discharge  is  reduced  to  the  extent  that  current  flow   at  that  point  is  interrupted.  As  a  result  of  this  short  duration,  limited  current  flow   and  energy  dissipation  there  is  relatively  little  heating  of  the  gas  through  which   the  plasma  travels.  This  is  beneficial  as  the  majority  of  the  electron  energy  can  be   used   for   exciting   molecules   or   atoms   in   the   gas,   hence   initiating   chemical   reactions   and   emission   of   radiation.   (Kogelschatz   et   al,   1999)   DBD   ozone   generators  typically  use  cylindrical  discharge  tubes  of  20-­‐50mm  diameter  and  1-­‐ 3m   in   length.   In   traditional   ozone   generators   pyrex   tubes   with   a   conductive   internal   coating   (Usually   aluminium)   are   mounted   inside   stainless   steel   tubes   forming  a  discharge  gap  of  0.5-­‐1mm.  With  the  outer  tube  serving  as  the  ground   electrode.   Increasingly   a   dielectric   coating,   usually   ceramic,   is   applied   to   a   stainless  steel  tube.  High  performance  ozone  generators  use  non-­‐glass  dielectrics   and  smaller  discharge  gaps.  Ozone  production  on  a  large  scale  could  use  several   hundred   discharge   tubes.   Modern   high   power   ozone   generators   use   square   waves   of   between   0.5-­‐5kHz   (as   opposed   to   mains   frequency   of   50Hz).   Higher   operating   frequencies   deliver   greater   power   densities   requiring   lower   operating   voltages.   Using   modern   DBD   methods   ozone   can   be   generated   at   a   cost   of   2US$/kg  (Kogelschatz  et  al,  1999).       Baroch   et   al   (2008)   investigated   a   DBD   system   for   direct   disinfection   of   water.   They   attached   a   porous   ceramic   layer   to   the   metallic   electrode   that   acted   as   a   guide   for   flowing   water.   The   hydrophilic   properties   of   the   ceramic   layer   allowed    

7  

the  flow  of  water  to  remain  undisturbed  by  the  electrical  discharge.  They  report   that  this  allowed  them  to  reduce  the  discharge  gap,  which  increased  the  intensity   and   stability   of   the   plasma.   It   also   transitioned   the   plasma   from   filamentous   to   semi   homogenous.   They   used   an   organic   die   to   test   the   efficacy   of   the   disinfection   process,   and   found   that   using   the   ceramic   layer   was   35%   more   effective  at  discoloration  of  the  organic  dye  than  without  the  ceramic.       Significant  to  this  research  project  is  an  experiment  carried  out  by  Williamson  et   al   (2006)   comparing   the   effects   of   high   voltage   AC   and   pulsed   power   supply   to   a   DBD  ozone  generator.  The  AC  power  supply  had  a  frequency  ranging  from  0.3  –  2   kHz   with   a   voltage   of   up   to   10kV,   whilst   the   pulsed   power   supply   had   a   pulse   frequency  of    50-­‐600Hz  and  a  voltage  of  up  to  30kV.  They  found  that  the  pulsed   power  supply  was  capable  of  increasing  ozone  concentration  much  more  rapidly   as   a   function   of   average   power   input   than   the   AC   supply.   With   the   maximum   ozone   density   achieved   by   the   AC   power   supply   being   3×10-­‐15   cm-­‐3   at   25W   compared   with   the   pulsed   power   supply   achieving   densities   8.5×10-­‐15   cm-­‐3   at   20W,  which  they  note  as  being  4  times  greater  than  that  achieved  by  the  AC  at   the  same  power  level.  The  increase  in  ozone  density  compared  with  input  power   for  an  AC  and  pulsed  power  supply  is  shown  in  figure  1:    

 

Figure  1:  Ozone  number  density  as  a  function  of  average  deposited  power  into  the  DBD  for  ac  and   short-­pulse  excitation.  (Williamson  et  al,  2006)  

Similar  results  have  been  found  in  other  studies  comparing  AC  and  pulsed  power   supplies   for   DBD   discharges,   with   much   higher   ozone   densities   consistently   being   found   for   pulsed   power   supplies   per   watt   than   AC.   (Pemen   et   al,   2009;   Dhainaut   et   al,   2002)   These   results   suggest   that   simply   switching   the   power   source  to  the  microplasma  reactor  to  a  pulsed  supply  could  significantly  increase   efficiency   of   ozone   generation,   however   further   research   into   the   most   appropriate  supply  would  have  to  be  carried  out.    

 

8  

2.2  Formation  of  Bromate  

  One   of   the   major   disadvantages   of   using   ozone   for   the   disinfection   of   water   is   that   it   causes   the   formation   of   the   possible   carcinogen   bromate.   There   a   number   of   methods   of   both   minimizing   formation   and   also   removing   bromate   during   treatment  of  drinking  water.  The  various  methods  are  briefly  discussed  by  Von   Gunten  (2003)  and  are  summarized  here:   • The  addition  of  ammonia  does  not  eafect  ozone  stability  and  hence  does   not   effect   the   disinfection   process.   Ammonia   interferes   with   a   key   intermediate  step  in  the  bromate  formation  mechanism.   • Lowering   pH   reduces   formation   of   bromate   as   it   shifts   the   reaction   equilibrium   of   HOBr-­‐/OBr-­‐   towards   HOBr.   This   is   because   hydroxyl   radicals   lead   to   the   dominant   mechanism   of   oxidation   of   HOBr-­‐/OBr-­‐.   However   this   method   could   possibly   lead   to   a   reduced   efficiency   of   disinfection.   • Bromate  can  be  reduced  by  the  addition  Iron  (II)  however  it  is  unlikely  to   be   a   feasible   option   as   dissolved   oxygen   competes   with   bromate   as   an   oxidant  for  iron(II).   • Most   relevant   to   this   piece   of   research   is   that   UV   irradiation   at   a   wavelength  of  255nm  leads  to  the  reduction  of  bromate  to  hydrobromous   acid   and   eventually   bromide.   However   the   required   exposure   to   UV   is   higher   than   is   typically   required   by   disinfection   processes   by   up   to   a   factor  of  100  times  which  in  most  situations  is  likely  to  restrict  it’s  usage   for  economical  reasons.     • The  addition  of  granular  activated  carbon  (GAC)  is  able  to  reduce  bromate   to   bromide.   However   the   presence   of   natural   organic   matter   decreases   the  ability  of  GAC  to  reduce  bromate  to  bromide.  This  limits  the  usage  of   GAC  to  reducing  bromate  as  a  post  ozonaton  treatment.  

2.3  Effects  of  pressure  and  temperature  on  ozone  formation  

  Yasuoka  et  al  produced  ozone  using  an  ozone  generator  that  they  describe  as  a   micro   hollow   cathode   discharge   plasma   reactor.   The   claimed   benefits   of   the   reactor   are   high   current   density,   high   electron   density   and   stability   with   high   pressure  gasses.  It  was  found  that  by  decreasing  the  residence  time  by  increasing   gas  velocity  of  the  reagents  inside  their  reactor  that  more  ozone  is  formed  as  a   result.  They  conclude  that  this  is  caused  by  reduced  oxygen  temperature  and  less   electron  impacts  which  promote  the  decomposition  mechanisms  of  ozone.       These   findings   are   supported   by   computational   models   produced   by   Lozano-­‐ Parada  of  a  plasma  producing  ozone  from  oxygen,  it  was  found  that  by  lowering   the   plasma   temperature   and   increasing   gas   pressure   that   significantly   higher   yields   of   ozone   could   be   produced.   This   supports   the   findings   of   Yasuoka   et   al   and   suggests   that   increasing   flow   rate   of   oxygen   through   the   reactor   will   yield   more   ozone   as   there   would   be   fewer   electron   impacts,   higher   pressure   and   a   lower  gas  temperature.  

 

9  

2.4  Microbubble  Ozonation  

  As   a   fluidic   oscillator   to   produce   microbubbles   will   be   used   with   the   microplasma   reactor   in   future   experiments,   it   is   worth   considering   the   effects   that   this   will   have   on   disinfection   processes.   Previous   work   carried   out   by   Zimmerman   et   al   have   extensively   documented   the   benefits   of   using   microbubbles  for  significantly  improving  rates  of  mass  transfer.     Chu   et   al   tested   the   effect   of   ozonation   of   simulated   dyestuff   wastewater   using   microbubbles.  Similarly  to  the  work  carried  out  by  Zimmerman  et  al  they  found   higher   rates   of   mass   transfer   and   higher   rates   of   reaction   using   the   microbubble   contactor   over   a   standard   bubble   contactor   (Mass   transfer   coefficient   was   1.8   times   higher   and   pseudo   first   order   rate   constant   was   3.2   –   3.6   times   higher).   More   interestingly   however   was,   even   after   taking   into   account   the   effects   of   enhanced  mass  transfer,  that  1.3  times  more  organic  carbon  was  destroyed  per   gram  of  ozone  using  the  microbubble  system  than  the  standard  bubble  system.   They   used   terepthalic   acid   as   a   chemical   probe   to   test   the   concentration   of   hydroxyl   radicals   being   formed   and   found   a   greater   concentration   when   using   the   microbubble   system.   They   support   their   claim   by   stating   that   according   to   the   Young-­‐Laplace   equation,   microbubbles   have   a   higher   internal   pressure   which  enhanced  the  formation  of  hydroxyl  radicals.    

2.5  Oxygen  Radicals  for  water  treatment  

  Excited   atomic   oxygen   radicals,   O(1D),   are   highly   reactive   species   with   a   very   short  lifetime  (~10-­‐30ns)  in  atmospheric  oxygen.  Upon  reaction  with  water  they   generate  hydroxyl  radicals  by  equation  1  (Yamatake  et  al,  2006):     O( 1D) + H 2O →•OH + •OH   Equation  1  

Potentially,   excited   atomic   oxygen   could   be   generated   to   react   with   water   to   form   hydroxyl   radicals.   However   their   short   lifetime   is   problematic   and   hence   € research   generally   focuses   around   direct   generation   and   injection   of   hydroxyl   radicals  into  water.       Yamatake   et   al   (2006)   tested   a   DC   driven   microhollow   cathode   discharge   to   produce  a  direct  “injection”  of  oxygen  radicals  into  water.  This  was  achieved  by   having  the  cathode  in  direct  contact  with  the  water,  indeed  the  cathode  formed   the  base  of  the  flask  in  which  the  experiment  was  being  carried  out.  The  anode   was   positioned   500   micrometers   beneath   the   discharge   hole   (diameter   of   200-­‐ 300  micrometers)  in  the  centre  of  the  cathode  separated  by  an  aluminium  oxide   dielectric   spacer,   a   comparison   was   made   to   a   similar   reactor   where   the   electrodes   were   separated   by   an   undisclosed   but   significant   distance   from   the   water  so  that  no  oxygen  radicals  would  be  injected  into  the  water.  Flow  rates  of   oxygen   tested   through   the   reactor   were   100,   500   and   1,000   standard   cubic   centimeters  per  minute.  The  effect  of  direct  oxygen  radical  injection  was  tested   by   using   acetic   acid   as   a   chemical   probe   and   measuring   the   change   in  

 

10  

concentration   of   total   organic   carbon   (TOC)   using   a   TOC   analyzer.   They   found   that   using   their   radical   injection   system   that   acetic   acid   was   observed   to   decompose,   compared   with   the   ozone   system   where   it   did   not.   They   also   observed   that   with   increasing   gas   flow   rate   that   the   efficiency   of   acetic   acid   decomposition  also  increased.  They  conclude  that  in  order  for  O  radical  injection   to   be   effective,   a   high   flow   rate   of   oxygen   into   the   reactor   needs   to   be   used   so   that  there  is  an  effective  reaction  at  the  gas  water  interface.  This  is  explained  by   the   very   short   lifetime   of   the   oxygen   radicals,   which   Yamatake   suggests   would   not   last   over   a   distance   of   several   hundred   micrometers.   This   finding   suggests   that  increasing  volumetric  flow  rate  of  oxygen  may  not  result  in  direct  injection   of  oxygen  radicals  into  the  water  for  the  microplasma  reactor  being  researched,   and  hence  may  affect  the  rate  of  disinfection  observed.     Similarly  to  Yamatake  et  al,  Reuter  et  al  (2009)  tested  an  alternative  method  of   direct   atomic   oxygen   injection   into   an   effluent   using   a   low   temperature   atmospheric  pressure  plasma  jet  (APPJ)  using  a  gas  mix  of  99.5mol%  helium  and   0.5mol%   oxygen   discharging   into   air.   They   report   high   densities   of   atomic   oxygen   near   to   the   nozzle   (the   jet   outlet)   of   approximately   ~1016   cm-­‐3,   while   several  cm  away  the  atomic  oxygen  concentration  is  found  to  be  1%  of  that  at  the   nozzle.  They  also  report  finding  excited  atomic  oxygen  10cm  away  from  the  jet   nozzle,   a   surprising   result   considering   the   lifetime   of   these   species   is   about   ~30ns.   Due   to   the   extremely   high   improbability   of   an   excited   oxygen   atom   reaching   such   distances   at   relatively   low   gas   velocities   (~6m/s),   they   conclude   that  some  energy  is  transferred  from  the  plasma  and  into  the  effluent.  After  some   investigation  they  dismiss  the  possibility  of  electrons,  ions  or  metastable  helium   atoms   as   a   source   of   energy   as   their   concentrations   rapidly   decrease   with   distance   into   the   effluent.   The   energy   transport   is   attributed   to   vacuum   ultraviolet   radiation   (VUV)   produced   by   the   plasma,   which   reaches   far   into   the   effluent.   The   main   spectral   bands   of   VUV   produced   by   the   plasma   are   in   the   Schumann-­‐Runge   bands   of   O2   at   about   181nm   and   the   atomic   oxygen   line   at   130nm.  Hence  the  formation  of  atomic  oxygen  at  a  distance  from  the  jet  nozzle  is   in  fact  caused  by  photo-­‐dissociation  of  ozone  and  molecular  oxygen.     Previous   work   carried   out   by   Dr   Lozano-­‐Parada   for   a   PhD   thesis   involved   the   computer   simulation   of   a   plasma   reactor   for   ozone   synthesis.   A   number   of   models   were   produced   of   the   temporal   evolution   of   different   oxygen   species   inside   a   plasma   reactor.   131   different   reactions   were   considered,   however   5   different   models   of   increasing   complexity   were   produced.   The   models   were   produced  on  the  assumption  that  kinetic  processes  are  significantly  faster  than   diffusion,   convective   or   electrical   drift   processes   so   that   the   reactions   do   not   need  to  be  spatially  resolved.  The  “three  neutral  species  approximation”  (TNSA)   model  considers  only  the  ground  states  of  atomic  oxygen,  molecular  oxygen  and   ozone.   The   “four   neutral   species   approximation”   considers   those   species   in   the   TNSA  model  with  the  addition  of  the  first  excited  state  of  molecular  oxygen.  The   “nine   neutral   species   approximation”   (NNSA)   model   includes   an   additional   8   oxygen  species,  including  O(1D),  which  compromises  of  62  kinetic  equations.  The   formation  of  O(1D)  is  observed  to  increase  and  plateau  at  about  10-­‐5s.  The  most   complex   model   incorporates   the   roles   of   the   ions   of   atomic   and   molecular   oxygen  as  participating  species.  There  are  two  models  which  are  discussed,  that  

 

11  

of   Lieberman   et   al   and   Soria   et   al.   Both   of   which   found   that   show   that   atomic   oxygen  is  formed  and  decays  between  0.1  and  10  microseconds.  Suggesting  that   in  order  for  oxygen  radicals  to  be  formed  inside  the  plasma  reactor,  rather  than   ozone,   the   residence   time   inside   the   plasma   should   be   0.1   to   10   microseconds.   These  models  also  generally  show  that  steady  state  is  reached  after  0.1  seconds,   although   ozone   generation   reaches   a   maximum   after   10-­‐5   seconds.   These   theoretical  required  residence  times  give  an  approximate  guideline  for  the  target   residence   times   inside   the   plasma   of   the   plasma   reactor.   As   stated   previously   however,   the   lifetime   of   O(1D)   is   in   the   order   of   10s   of   nanoseconds,   the   significance   of   this   being   that   the   oxygen   radicals   need   to   be   transported   from   the   plasma   into   the   water   within   this   time   scale   which   is   likely   to   be   why   Yamatake   et   al   and   Reuter   et   al   tested   whether   direct   oxygen   radical   injection   would  be  successful  as  even  with  very  high  oxygen  inlet  velocities  to  the  plasma   reactor,  such  short  time  scales  are  unlikely  to  be  achievable.    

2.6  Kinetic  models  of  reactions  of  aqueous  ozone  

  The  first  kinetic  model  for  the  decomposition  of  ozone  was  developed  by  Weiss   in   1935   (Beltran,   2005;   Weiss,   1935),   it   has   become   a   focal   point   for   research   with   a   number   of   different   models   being   developed.   The   two   most   widely   accepted   models   are   the   Tomiyasu,   Fukutomi,   and   Gordon   (TFG)   model   developed  in  1985,  and  the  Staehelin,  Bühler,  and  Hoigné  (SBH)  model  in  1982   (Beltran,   2005).     The   discrepancies   between   the   SBH   and   TFG   models   were   based   on   the   initiation   steps   and   the   significance   of   certain   chain   carriers.   However  Hoigné  later  suggested  that  the  SBH  model  does  in  fact  have  the  same   initation   step   as   the   TFG   model   (Hrubec,   1998).   Hoigné’s   alteration   of   the   initation  step  implies  that  other  mechanisms  outside  of  the  model  also  take  place   (Beltran,  2005).  The  SBH  model  is  generally  the  most  widely  accepted,  except  at   high   pH   where   the   TFG   model   is   considered   more   representative   (Beltran,   2005).         More  recently  however  challenges  have  been  made  to  the  results  obtained  in  the   TFG  and  SBH  models  because  of,  “experimental  complications  and  oversimplified   evaluation   methods”.   (Fábián,   2006)   Fábián   has   reviewed   the   experiments’   methods   used   in   the   development   of   the   SBH   and   TFG   models.   He   argues   that   due   to   the   instability   of   aqueous   ozone   and   the   limitations   of   earlier   methods   that  calculated  values  for  some  rate  constants  are  incorrect,  particularly  for  the   initiation  step.       The   reactions   of   aqueous   ozone   are   further   complicated   by   impurities   that   can   either   stabilise   or   promote   decomposition   of   the   ozone   in   water.   These   substances   can   also   contribute   to   the   appearance   or   inhibition   of   free   radicals.   (Staehelin   &   Hoigné,   1985).   There   have   been   countless   publications   identifying   mechanisms   by   which   ozone,   occasionally   with   UV   or   titanium   dioxide,   react   with  other  species  in  aqueous  systems.  However  a  broad,  flexible  model  for  the   disinfection   of   water   has   not   been   developed.   This   is   not   surprising   given   the   infinite  quantity  of  variables  to  be  considered.    

 

12  

 Nöthe   et   al   studied   the   effect   of   UV   ozonation   on   micropollutants   (Pharmaceuticals,   human   care   and   technical   products),   they   found   that   at   low   ozone  concentrations  of  5mg/L  that  only  the  most  reactive  micropollutants  (k>   3x10-­‐3   M-­‐1   s-­‐1)   are   destroyed,   where   as   at   concentrations   of   10mg/L   the   much   less  reactive  micropollutants  (k  =  300  M-­‐1  s-­‐1)  are  oxidized.  They  add  that  usually   the   very   first   reactive   step   suppresses   the   biological   activity   of   a   pollutant.   In   addition   they   state   that   electron   rich   compounds   such   as   phenols,   amines   and   alkoxylated   aromatics   enhance   the   formation   of   hydroxyl   radical,   which   is   less   selective  than  ozone  so  enhances  disinfection  (Beltran,  2005;  Nöthe  et  al,  2009).       It   is   well   established   that   at   a   higher   pH   the   rate   of   ozone   decomposition   is   accelerated  due  to  the  presence  of  hydroxyl  ions  (Yershov  et  al,  2009;   Ignat  ́ev  et   al,  2009).  Yershov  et  al  tested  the  rate  of  decompostion  of  ozone  over  a  range  of   pH,   temperature   and   with   the   presence   of   addtives.   They   found   that   over   the   range  of  pH  tested  the  order  of  the  reaction  did  not  change,  suggesting  that  the   mechanisms   of   decomposition   do   not   change   from   pH   4   -­‐   8.   The   addition   of   carbonate   ions,   phosphate   ions   or   hydrogen   peroxide   is   also   an   area   that   has   been   extensively   studied,   as   dissolved   CO2   or   phosphate   buffers   used   to   maintain   pH   can   inhibit   ozone   decopmposition.   Ignat   ́ev   et   al   used   mathematical   modeling  techniques  to  find  the  apparent  rate  constants  of  ozone  decomposition   and  hydroxyl  concentration  in  the  presence  of  compounds  (Hydrogen  peroxide,   phosphate   and   carbonate)   that   can   inhibit   or   accelerate   the   reactions   of   ozone   and  water.    

2.7  Ozone  and  Ultraviolet  light  

  Ultraviolet  light  results  in  photolytic  reactions  of  ozone  and  causes  the  formation   of  hydrogen  peroxide  and  hydroxyl  radicals,  for  which  the  mechanism  was  first   discussed   in   1988   by   Peyton   and   Glaze.   Similarly   to   the   SBH   model   O3-­‐   was   identified  as  the  main  charge  carrier  (Peyton  &  Glaze,  1988)  although  clearly  the   initiation   steps   were   different   because   of   the   addition   of   UV   light.   Peyton   and   Glaze’s   experiments   used   light   with   a   wavelength   of   “primarily”   254nm,   this   will   differ   from   this   research   which   will   use   the   plasma   reactor   itself   as   the   UV   source.   Previous   research   on   the   experimental   reactor   by   Dr   Lozano-­‐Parada   produced   a   UV-­‐vis   emission   spectrum   for   an   air   plasma   at   atmospheric   pressure   shown  in  figure  2.    

 

13  

 

Figure  2:  Emission  Sectrum  from  the  microplasma  reator  using  air  (Source:  J.  Lozano-­Parada)  

  It  is  immediately  clear  from  figure  2  that  the  UV  light  is  emitted  over  a  range  of   wavelengths   at   varying   intensities.   It   is   also   worth   noting   that   this   emission   spectrum  is  from  a  plasma  reactor  using  air  rather  than  oxygen,  and  additionally   that  any  emission  of  ultraviolet  light  in  the  VUV  range  was  not  considered.  This  is   likely  to  be  because  of  the  inherent  difficulty  (and  probably  expense)  of  detecting   light   in   the   VUV   range,   as   VUV   is   strongly   absorbed   by   both   UV   and   water.   However  if  light  in  this  range  is  being  emitted,  it  would  likely  be  of  benefit  for  a   water   disinfection   process   as   VUV   light   is   known   to   produce   atomic   oxygen   radicals,  and  as  a  result  also  produce  hydroxyl  radicals.      Oppenlander  et  al  (2004)  used  a  xenon  excimer  lamp  to  emit  ultraviolet  light  in   the   range   λ=160-­‐200nm   into   different   samples   of   water   containing   organic   chemicals  including:  1-­‐heptanol,  benzoic  acid,  potassium  hydrogen  phthalte  and   cyclohexanol.   Additionally   they   tested   whether   rate   of   TOC   mineralization   was   dependant  upon  dissolved  oxygen  concentration  by  bubbling  oxygen  through  the   test   solutions.   They   found   that   the   VUV   lamp   did   cause   the   oxidation   and   mineralization   of   the   organic   contaminants,   significantly   they   also   found   that     rate   of   mineralization   and   oxiation   was   strongly   dependant   upon   dissolved   oxygen  concentration.  This  was  attributed  to  fast  scavenging  of  dissolved  oxygen   by   hydrogen   radicals   and   carbon   centered   radicals,   causing   a   permanant   oxygen   deficit   within   the   irradiated   area,   hence   the   injection   of   molecular   oxygen   removed   this   deficit.   The   work   of   Oppenlander   et   al   is   notable   because   the   bubbling  of  oxygen  was  found  to  significantly  increase  the  rate  of  destruction  of   organic   contaminants   in   the   water   in   the   presence   of   VUV   light.   However   the   VUV   light   produce   by   the   plasma   reactor   may   have   a   greater   range   than   that   tested   by   Oppenlander   et   al.   As   noted   previously   Reuter   et   al   used   an   atmospheric  pressure  plasma  jet,  and  VUV  light  down  to  a  wavelength  of  about   λ=130nm   was   observed,   corresponding   to   the   emission   spectrum   of   atomic   oxygen.   As   shorter   wavelength   photons   have   higher   energies,   they   can   cause   the   photolytic   dissociation   of   a   greater   range   of   molecules   as   the   energy   of   the    

14  

photon   becomes   greater   than   that   of   molecular   bond   energies.   Clearly   the   difficulties   in   direct   detection   of   VUV,   particularly   in   water,   would   make   it   difficult   to   ascertain   whether   or   not   the   plasma   reactor   does   emit   VUV   light.   However  there  may  be  a  method  of  inferring  VUV  presence  by  the  addition  of  a   chemical   that   is   photoluminescent   from   excitation   in   the   VUV   range.   Although   this  would  be  a  matter  for  further  research  if  the  formation  of  hydroxyl  radicals   was  found  to  occur  inside  the  reactor.  

2.8  Methods  of  detecting  ozone  and  hydroxyl  radicals  

  As   both   hydroxyl   radicals   and   ozone   are   being   investigated   in   this   research,   a   suitable   method   of   detection   capable   of   differentiating   between   both   species   needs   to   be   selected.   Locke   and   Sahni   (2006)   discuss   methods   of   detecting   hydroxyl   radicals,   two   of   which   are   discussed   at   length;   using   either   dimethyl   sulphoxide   (DMSO)   or   terephthalic   acid   as   the   indicator.   The   former   method   uses   the   reaction   between   DMSO   and   the   hydroxyl   radical   to   yield   methane   sulfinic  acid  and  a  methyl  radical.  The  authors  state  that  several  DMSO  methods   are   unsuitable   as   they   calculate   hydroxyl   radical   concentration   by   quantifying   either   methane   sulfinic   acid,   or   the   subsequent   reaction   products   methane   sulfonic   acid   or   sulphate   anions,   however   this   is   problematic   because   of   the   multiple   by-­‐products.   They   suggest   that   quantification   of   either   the   methyl   radical   or   it’s   subsequent   byproduct   formaldehyde   is   more   appropriate.   The   detection   of   formaldehyde   can   either   be   achieved   by   fluorescence   detection   using   the   Hantzch   reaction   or   derivatization   using   2,4-­‐dinitrophenylhydrazine   and   subsequently   using   HPLC/UV-­‐vis   detection   of   the   hydrozone,   a   method   developed  by  the  authors  themselves.     The  terephthalic  acid  method  reacts  terephthalic  acid  (TA)  in  a  0.5mM  solution   with   hydroxyl   radicals   to   form   a   solution   of   2-­‐hydroxyterephthalic   acid   which   fluoresces   (at   a   wavelength   of   315nm)   under   light   at   a   wavelength   of   425nm.   This   method   of   detection   is   used   in   the   microbubble   ozonation   experiment   carried  out  by  Chu  et  al  described  previously.  Locke  and  Sahni  used  the  disodium   salt   of   terephthalic   acid   (NaTA)   as   TA   is   less   soluble   and   as   such   is   usually   dissolved   in   sodium   hydroxide   prior   to   use.   They   reported   that   the   pH   of   the   resultant  2-­‐hydroxyterephthalic  acid  solution  should  be  between  pH  6-­‐11,  as  the   fluorescence   intensity   drops   outside   of   this   range.   Hence   sodium   hydroxide   or   sodium   bicarbonate   was   added   to   adjust   the   pH   as   required.   Terephthalic   acid   reacts   with   hydroxyl   radicals   in   a   1:1   stochiometric   ratio   to   form   2-­‐ hydroxyterephthalic   acid.   Matthews   (1980)   and   Sahni   et   al   (2006)   reports   that   in  the  presence  of  oxygen  the  yield  of  2-­‐hydroxyterephthalic  acid  is  only  35%  of   the   hydroxyl   radical   yield.   This   is   caused   by   the   variety   of   possible   reaction   mechanisms   that   occur.   An   addition   reaction   of   the   hydroxyl   radical   either   takes   place  at  the  ipso  position  (15%)  of  the  carboxylate  group  or  the  ortho  position   (85%)  as  illustrated  in  figure  3.  

 

15  

 

Figure  3:  Possible  mechanism  of  hydroxyl  radical  addition  to  TA  illustrating  the  ispo  and  ortho   positions  

It   has   also   been   proposed   that   molecular   oxygen   adds   reversibly   to   the   hydrocyclohexadienyl   radical   to   form   the   hydroxycyclohexadienylperoxyl   radical.   This   is   followed   by   removal   of   the   peroxy   radical   to   form   2-­‐ hydroxyterephthalic  acid  in  competition  with  other  ring  fragmentation  reactions   as   shown   in   figure   4.   These   alternative   mechanisms   account   for   the   35%   yield   of   HTA  in  the  presence  of  oxygen.    

Figure   4:     Oxidation   mechanism   of   NaTA   in   the   presence   of   oxygen   to   form   HTA   and   other   compounds.  Taken  from  Locke  &  Sahni,  2006.  

 

Mason  et  al  (1994)  describe  a  method  of  preparation  of  both  a  terephthalic  acid   solution   and   a   2-­‐hydroxyterephthalic   acid   solution,   they   describe   using   a   phosphate   buffer   to   maintain   a   pH   of   7.4,   however   as   Ignat’ev   et   al   found   the   addition   of   a   phosphate   buffer   “noticeably   affects   the   decomposition   rate   of   ozone”.  So  rather  than  using  a  phosphate  buffer,  the  pH  could  be  corrected  by  the   addition  of  sodium  bicarbonate  or  sodium  hydroxide  to  between  pH  6  -­‐11  after  a   sample  is  removed  from  the  experiment.       The   most   commonly   used   method   of   detection   of   aqueous   ozone   uses   indigo   carmine  and  as  such  it  is  well  documented,  a  chemical  dye  that  is  widely  used  for   the  production  of  clothes.  Bader  and  Hoigne  (1981)  determined  that  the  reaction   between   indigo   and   ozone   was   stochiometric   and   very   fast   (k>107M-­‐1s-­‐1).   They   also  found  that  the  absorbance  of  indigo  at  600nm  against  ozone  concentration   is   -­‐2.0±0.1×104M-­‐1cm-­‐1,   and   the   apparent   absorption   coeffecient   of   indigo   is    

16  

16,500M-­‐1cm-­‐1   at  the  absorption  peak  of  600nm.  The  reaction  scheme  is  shown   in  figure  5.    

Figure   5:   Indigo   trisulfonate   reaction   scheme   with   ozone   and   it’s   reaction   product.   Taken   from   Bader  and  Hoigne,  1981.  

 

 However   indigo   carmine   does   not   exclusively   react   with   ozone,   it   also   reacts   with  hydroxyl  radicals  (Flox  et  al,  2006)  and  the  superoxide  (Kettle  et  al,  2004),   both  of  which  can  be  produced  by  microplasma  ozone  generation,  meaning  that   it  cannot  be  used  to  detect  ozone  concentration  exclusively.  Rather  it  can  be  used   to   test   the   overall   oxidizing   rate   of   the   species   produced   by   the   microplasma   reactor.  Alternately  an  OH  radical  scavenger  could  be  introduced,  which  if  added   in   high   concentrations   will   lead   to   lower   hydroxyl   radical   concentrations.   A   radical   scavenger   can   outcompete   other   solutes   for   oxidation   by   hydroxyl   radicals,   (Amy,   1997)   hence   a   radical   scavenger   can   eliminate   any   indirect   oxidation  reactions.  This  would  allow  the  indigo  carmine  solution  to  be  used  to   determine   the   concentration   of   ozone   being   formed.   Amy   states   that   tertiary   butanol   is   a   suitable   radical   scavenger   for   such   purposes   as   it   is   effective   at   separating   indirect   from   direct   oxidation   reactions;   as   opposed   to   his   other   suggestion,   inorganic   carbon   as   the   radical   scavenger,   which   forms   secondary   radical  oxidants.     However  addition  of  tertiary  butanol  was  found  to  affect  mass  transfer  of  ozone   from  the  gaseous  to  the  aqueous  phase  (Tizaoui  et  al,  2009).    T-­‐butanol  reduced   surface   tension   and   viscosity   by   up   to   4%   and   30%   respectively.   Additional   effects   from   the   addition   of   t-­‐butanol   include   increased   bubble   hold   up   and   significantly   decreased   bubble   diameter.   These   affected   properties   were   correlated   to   the   observed   enhancement   of   mass   transfer.   The   findings   of   Tizaoui   et   al   would   have   to   be   compensated   for   in   attempting   to   infer   ozone  

 

17  

concentration   from   discoloration   of   a   chemical   dye   if   t-­‐butanol   was   used   as   a   radical  scavenger.     As   previously   mentioned   (see   Oxygen   Radicals   for   Water   treatment   and   Yamatake   et   al,   2006),   acetic   acid   can   be   used   as   a   chemical   probe   to   measure   concentration   of   O   and   OH   radicals   being   formed   from   oxygen.   Whilst   this   method  does  not  measure  OH  radicals  exclusively,  it  does  measure  species,  such   as  hydroxyl  and  oxygen  radicals,  with  an  oxidation  potential  greater  than  2.40V   (Oxidation   potential   of   ozone   is   2.07V).   The   acetic   acid   is   broken   down   into   carbon  dioxide  and  hence  TOC  concentration  decreases,  which  is  measured  using   a   TOC   analyzer.   Despite   the   simplicity   of   this   method,   the   very   high   price   of   a   TOC   analyzer   makes   it   an   inappropriate   testing   method   for   preliminary   experimentation.      

 

18  

3.0  Hypothesis     Changing  the  volumetric  flowrate  of  oxygen  into  the  plasma  reactor  will  increase   the  rate  of  disinfection.  There  are  a  number  of  reasons  why  this  is  likely  to  occur:     1. If  the  conversion  rate  of  oxygen  to  ozone  (or  hydroxyl  radicals)  is  either   maintained  or  increased  at  increasing  flowrate,  then  there  will  also  be  an   increased  volumetric  flowrate  of  the  reaction  products  out  of  the  reactor.   So   reactive   species   will   be   produced   at   a   higher   rate,   and   hence   rate   of   disinfection  will  also  increase.   2. Ozone   formation   is   favoured   at   low   temperatures.   Higher   volumetric   flowrates  will  increase  the  rate  of  heat  transfer  out  of  the  reactor,  which   will  maintain  lower  gas  and  plasma  temperatures.   3. Very   short   residence   times   in   the   plasma   reactor   will   form   unstable   oxygen  species  such  as  O(1D)  that  react  with  water  to  produce  hydroxyl   radicals   which   are   widely   acknowledged   to   be   more   powerful   disinfectants  than  ozone.   4. Once  the  gas  is  ionized,  the  reactions  proceed  for  a  short  period  of  time   without  further  ionization,  i.e.  a  burnout  time.  If  the  volumetric  flowrate   of   oxygen   into   the   reactor   can   increase   the   outlet   velocity   of   the   gasses   sufficiently  for  the  burnout  time  to  exceed  the  time  it  takes  for  the  gasses   to   reach   the   water   interface,   then   potentially   higher   yields   of   hydroxyl   radicals  will  be  formed.   5. As   changing   flowrate   through   the   reactor   will   influence   the   reaction   products   formed,   the   plasma   reactor   will   emit   light   at   different   wavelengths   for   each   flowrate.   Whilst   the   wavelengths   of   UV   light   emitted  are  likely  to  be  similar,  there  will  be  variation  in  the  intensities  of   light  emitted  at  specific  wavelengths.  There  is  also  some  possibility  that   light   in   the   Vacuum   UV   range   (λ=100-­‐200nm)   may   cause   photolysis   of   ozone   and   oxygen   to   atomic   oxygen   radicals,   leading   to   formation   of   hydroxyl  radicals.    

 

19  

4.0  Computational  Modelling     In  order  to  verify  the  hypothesis,  an  experiment  testing  the  effect  of  volumetric   flowrate  of  oxygen  through  the  plasma  reactor  on  the  concentration  of  aqueous   hydroxyl   radicals   and   aqueous   ozone   should   be   carried   out.   The   reaction   mechanism   of   oxygen   to   ozone   and   other   reactive   species   that   takes   place   inside   the   plasma   reactor   is   believed   to   be   known.   This   reaction   mechanism   gives   an   approximate  idea  of  the  residence  time  of  the  gaseous  mixture  inside  the  reactor   to  form  specific  products.   By  using  computational  software  to  calculate  the  approximate  residence  time  of   the   gasses   flowing   through   both   the   electrodes   of   the   plasma   reactor   and   the   area  between  the  electrodes  and  the  water  interface  and  comparing  the  results   to  the  lifetime  of  species  formed  the  mechanism  of  their  formation,  it  is  possible   to   estimate   which   inlet   flowrates   will   be   most   effective   for   disinfection.   Using   this  information,  an  initial  idea  of  which  oxygen  volumetric  flow  rates  should  be   experimentally  investigated  can  be  estimated.  It  is  important  to  stress  that  due  to   limitations   of   this   model,   it   has   been   used   only   to   find   an   approximate   idea   of   residence  time  corresponding  to  each  volumetric  flowrate.   Using   the   computational   modelling   software,   Comsol   Multiphysics   4.1,   a   geometry   was   produced   which   replicates   the   important   parameters   of   the   micro   plasma   reactor   being   evaluated.   This   geometry   is   shown   in   figure   6   with   the   dimensions  and  boundary  conditions  given,  note  that  any  unlabelled  boundary  in   the  diagram  is  a  wall  boundary.      

Figure  6:  Comsol  geometry  showing  dimensions  and  boundary  conditions.  Any  boundary  that  has   not  been  labeled  is  a  "Wall  boundary"  

Figure  7  shows  a  comparison  between  the  Comsol  geometry  and  a  CAD  drawing   of  the  microplasma  reactor:    

 

20  

 

 

Figure  7:  Comparison  between  Comsol  geometry  and  CAD  drawings  of  the  microplasma  reactor  

The  model  uses  an  axisymmetric  geometry  consisting  of  4  connected  rectangles,   corresponding  to  the  inlet  space,  the  plasma  space  and  an  additional  space  which   connects  the  inlet  and  plasma  spaces.  The  plasma  space  is  kept  separate  from  the   connecting   space   so   that   additional   physics   models   can   be   applied   here   as   required.   As   low   Reynolds   number   are   being   used   (Re