Effect of protein environment and the excitonic ... - Open Access LMU

2 downloads 0 Views 827KB Size Report
by Β. Robert, A. Vermeglio, R. Steiner, Η. Scheer and Μ. Lutz. 355 ... by R. van Grondelle, H. Bergström, V. Sundström, R.J. van Dorssen,. M. Vos and C.N. ...
Photosynthetic Light-Harvesting Systems Organization and Function

Proceedings of an International Workshop October 12-16,1987 Freising, Fed Rep. of Germany Editors Hugo Scheer · Siegfried Schneider

W G Walter de Gruyter · Berlin · New York 1988 DE

CONTENTS

List of Participants SECTION I .

XIII

ORGANIZATION: BIOCHEMICAL METHODS

I n t r o d u c t i o n : The B i o c h e m i s t r y o f L i g h t - H a r v e s t i n g Complexes by R.J. Cogdell

1

P h y c o b i l i s o m e - T h y l a k o i d I n t e r a c t i o n : The Nature o f High M o l e c u l a r Weight P o l y p e p t i d e s by E. Gantt C.A. L i p s c h u l t z and F.X. Cunningham J r

11

On t h e S t r u c t u r e o f Photosystem I I - P h y c o b i l i s o m e Complexes o f Cyanobacteria by E. Mörschel and G.-H. Schatz

21

S t r u c t u r e o f C r y p t o p h y t e P h o t o s y n t h e t i c Membranes by W. Wehrmeyer

35

S t r u c t u r a l and P h y l o g e n e t i c R e l a t i o n s h i p s o f P h y c o e r y t h r i n s from C y a n o b a c t e r i a , Red Algae and Cryptophyceae by W. S i d l e r and H. Zuber

49

I s o l a t i o n and C h a r a c t e r i z a t i o n o f t h e Components o f t h e Phycobilisome f r o m M a s t i g o c l a d u s laminosus and Crossl i n k i n g Experiments by R. Rümbeli and H. Zuber

61

C-Phycocyanin f r o m M a s t i g o c l a d u s laminosus: Chromophore Assignment i n Higher Aggregates by C y s t e i n M o d i f i c a t i o n by R. F i s c h e r , S. S i e b z e h n r l i b l and H. Scheer

71

Photochromic P r o p e r t i e s o f C-Phycocyanin by G. Schmidt, S. Siebzehnrübl, R. F i s c h e r and H. Scheer

77

Concerning t h e R e l a t i o n s h i p o f L i g h t H a r v e s t i n g B i l i p r o t e i n s t o Phycochromes i n Cyanobacteria by W. K u f e r

89

Subunit S t r u c t u r e and Reassembly o f t h e L i g h t - H a r v e s t i n g Complex f r o m R h o d o s p i r i Hum rubrum G9+ by R. Ghosh, ThT~Rosatzin ancTR. B a c l o f e n

93

Primary S t r u c t u r e Analyses o f B a c t e r i a l Antenna P o l y p e p t i d e s - C o r r e l a t i o n o f Aromatic Amino Acids w i t h S p e c t r a l P r o p e r t i e s - S t r u c t u r a l S i m i l a r i t i e s w i t h Reaction Center Polypeptides by R.A. B r u n i s h o l z and H. Zuber

103

VIII The

S t r u c t u r e o f t h e "Core * o f t h e P u r p l e B a c t e r i a l synthetic Unit by D.J. Dawkins, L.A. Ferguson and R.J. Cogdell 1

Photo115

A Comparison o f t h e B a c t e r i o c h l o r o p h y l 1 C--Binding P r o t e i n s o f Chlorobium and C h l o r o f l e x u s by P.D. G e r o l a , P. H p j r u p and J.M. Olson

129

I n t e r a c t i o n s between B a c t e r i o c h l o r o p h y l 1 c Molecules i n Oligomers and i n Chlorosomes o f Green P h o t o s y n t h e t i c Bacteria by D.C. Brune, G.H. King and R.E. B l a n k e n s h i p

141

L i g h t - H a r v e s t i n g Complexes o f C h l o r o p h y l l c - C o n t a i n i n g by A.W.D. Larkum and R.G. H i l l e r

Algae

I s o l a t i o n and C h a r a c t e r i z a t i o n o f a C h l o r o p h y l l a/c-Heterox a n t h i n / D i a d i n o x a n t h i n L i g h t - H a r v e s t i n g Complex f r o m P l e u r o c h l o r i s m e i r i n g e n s i s (Xanthophyceae) by C. W i l h e l m , C. Bliche I and B. Rousseau The

Antenna Components o f Photosystem I I w i t h Emphasis on t h e Major P i g m e n t - P r o t e i n , LHC l i b by G.F. Peter and P. Thornber

SECTION I I :

153

167

175

ORGANIZATION: MOLECULAR GENETICS AND CRYSTALLOGRAPHY

M o l e c u l a r B i o l o g y o f Antennas by G. Drews

187

H i g h - R e s o l u t i o n C r y s t a l S t r u c t u r e o f C-Phycocyanin and Polarized O p t i c a l Spectra o f Single C r y s t a l s by T. Schirmer, W. Bode and R. Huber

195

C r y s t a l l i z a t i o n and S p e c t r o s c o p i c I n v e s t i g a t i o n o f P u r p l e B a c t e r i a l B800-850 and RC-B875 Complexes by W. Welte, Τ. Wacker and A. Becker Structure of the Light-Harvesting Chlorophyll Complex from C h l o r o p l a s t Membranes by W. Kühlbrandt

201

a/b-Protein 211

P h y c o b i I i somes o f Synchechococcus Sp. PCC 7002, Pseudanabaena Sp. PCC 7409, and Cyanopnora paracioxa: An "Analysis by" HoTecular Genetics by D.A. Bryant

217

O r g a n i z a t i o n and Assembly o f B a c t e r i a l Antenna Complexes by G. Drews

233

IX The Use o f Mutants t o I n v e s t i g a t e t h e O r g a n i z a t i o n o f t h e P h o t o s y n t h e t i c Apparatus o f Rhodobacter sphaeroides by C.N. Hunter and R. van Grondel l e 77.77

247

Mechanisms o f P l a s t i d and Nuclear Gene Expression During T h y l a k o i d Membrane Biogenesis i n Higher P l a n t s by P. W e s t h o f f ,Η. Grüne, Η. Schrubar,Α. Oswald,Μ. S t r e u b e l , U. L j u n g b e r g and R.G. Herrmann

261

SECTION I I I :

ORGANIZATION: SPECIAL SPECTROSCOPY TECHNIQUES AND MODELS

Assigment o f S p e c t r a l Forms i n t h e P h o t o s y n t h e t i c Antennas t o C h e m i c a l l y D e f i n e d Chromophores by A. Scherz

277

L i n e a r D i c h r o i s m and O r i e n t a t i o n o f Pigments i n Phycobilisomes and t h e i r S u b u n i t s by L. Juszcak, N.E. Geacintov, B.A. Z i l i n s k a s and J. B r e t o n

281

Low Temperature Spectroscopy o f C y a n o b a c t e r i a ! Antenna Pigments by W. Köhler, J. F r i e d r i c h , R. F i s c h e r and H. Scheer

293

Chromophore Conformations i n Phycocyanin and A l l o p h y c o c y a n i n as S t u d i e d by Resonance Raman Spectroscopy by B. S z a l o n t a i , V. Csizmadia, Z. Gombos, K. Csatorday and M. L u t z

307

Coherent A n t i - S t o k e s Raman Spectroscopy o f Phycobi1isomes, Phycocyanin and A l l o p h y c o c y a n i n f r o m Mastigocladus laminosus by S. S c h n e i d e r , F. Baumann, W. S t e i n e r , R. F i s c h e r , S. S i e b z e h n r l i b l and H. Scheer

317

O p t i c a l A b s o r p t i o n and C i r c u l a r D i c h r o i s m o f B a c t e r i o c h l o r o p h y l 1 Oligomers i n T r i t o n X-100 and i n t h e Light-Harvesting-Complex B850; A Comparative Study by V. Rozenbach-Belkin, P. Braun, P. Kovatch and A.Scherz

323

A b s o r p t i o n Detected Magnetic Resonance i n Zero Magnetic F i e l d on Antenna Complexes f r o m Rps. a c i d o p h i l a 7050 - The Temperature Dependence o f tfie CarotenoTiTTrTpTet S t a t e Properties by J . U l l r i c h , J.U. v. Schütz and H.C. Wolf

339

E f f e c t o f L i t h i u m Dodecyl S u l f a t e onΒ 800-850 Antenna Complexes f r o m Rhodopseudomonas a c i d o p h i l a : A Resonance Raman Study by B. Robert and H. Frank

349

χ B a c t e r i o c h l o r o p h y l 1 a/b i n Antenna Complexes o f P u r p l e B a c t e r i a by Β. R o b e r t , A. V e r m e g l i o , R. S t e i n e r , Η. Scheer andΜ. Lutz

355

B a c t e r i o c h l o r o p h y l l c Aggregates i n Carbon T e t r a c h l o r i d e as Models f o r C h l o r o p h y l l O r g a n i z a t i o n i n Green Photosynthetic Bacteria by J.M. Olson and J.P. Pedersen

365

O r i e n t a t i o n o f t h e Pigments i n t h e Reaction Center and t h e Core Antenna o f Photosystem I I by J. B r e t o n , J. Duranton and K. Satoh

375

Non-Linear A b s o r p t i o n Spectroscopy o f Antenna C h l o r o p h y l l a i n Higher P l a n t s by D. L e u p o l d , H. S t i e l and P. Hoffmann

387

SECTION I V :

FUNCTION: ELECTRONIC EXCITATION AND ENERGY TRANSFER

E x c i t a t i o n Energy T r a n s f e r i n P h o t o s y n t h e s i s by R. van G r o n d e l l e and V. Sundström

403

Fluorescence Spectroscopy o f A l l o p h y c o c y a n i n Complexes f r o m Synechococcus 6301 S t r a i n AN112 by P.Maxson, K T T a u e r and A.N. Glazer

439

Picosecond Energy T r a n s f e r K i n e t i c s i n A l l o p h y c o c y a n i n Aggregates f r o m M a s t i g o c l a d u s laminosus by E. B i t t e r s m a n n , W. Reuter, W. Wehrmeyer and A.R. Holzwarth

451

Picosecond Time-Resolved Energy T r a n s f e r K i n e t i c s w i t h i n C-Phycocyanin and A l l o p h y c o c y a n i n Aggregates by T. G i l l b r o , A. Sandström, V. Sundström, R. F i s c h e r and H. Scheer

457

Energy T r a n s f e r i n " N a t i v e " and C h e m i c a l l y M o d i f i e d C-Phycoc y a n i n T r i m e r s and t h e C o n s t i t u e n t Subunits by S. S c h n e i d e r , P. G e i s e l h a r t , F. Baumann, S. Siebzehnrübl, R. F i s c h e r andΗ. Scheer

469

E f f e c t o f P r o t e i n Environment and E x c i t o n i c Coupling on t h e Excited-State P r o p e r t i e s o f t h e Bilinchromophores i n C-Phycocyanin by S. S c h n e i d e r , Ch. S c h a r n a g l , M. Dürring, T. Schirmer and W. Bode

483

E x c i t a t i o n Energy M i g r a t i o n i n C-Phycocyanin Aggregates I s o l a t e d f r o m Phormidium l u r i d u m : P r e d i c t i o n s f r o m t h e Förster's I n d u c t i v e Resonance Theory by J. Grabowski and G.S. Björn

491

XI

Energy T r a n s f e r C a l c u l a t i o n s f o r two C-Phycocyanins Based on R e f i n e d X-Ray C r y s t a l S t r u c t u r e C o o r d i n a t e s of Chromophores by K. Sauer and H. Scheer

507

Energy T r a n s f e r i n L i g h t - H a r v e s t i n g Antenna o f Purple B a c t e r i a S t u d i e d by Picosecond Spectroscopy by V. Sundström, H. Bergström, Τ. G i l l b r o , R. van G r o n d e l l e , W. W e s t e r h u i s , R.A. Niederman and R.J. Cogdell

513

E x c i t a t i o n Energy T r a n s f e r i n t h e L i g h t - H a r v e s t i n g Antenna o f P h o t o s y n t h e t i c P u r p l e B a c t e r i a : The Role o f t h e Long-WaveLength A b s o r b i n g Pigment B896 by R. van G r o n d e l l e , H. Bergström, V. Sundström, R.J. van Dorssen, M. Vos and C.N. Hunter

519

The F u n c t i o n o f Chlorosomes i n Energy T r a n s f e r i n Green P h o t o synthetic Bacteria by R.J. van Dorssen, M. Vos and J. Amesz

531

Energy T r a n s f e r i n C h l o r o f l e x u s a u r a n t i a c u s : E f f e c t s o f Temperature and T S a e r o b i c ^ o n ö n H o n s by B.P. W i t t m e r s h a u s , D.C. Brune and R.E. Blankenship

543

I n t e r p r e t a t i o n o f Optical Spectra o f Bacteriochlorophyl 1 Antenna Complexes by R.M. P e a r l s t e i n

555

Time R e s o l u t i o n and K i n e t i c s o f "F680" a t Low Temperatures i n Spinach C h l o r o p l a s t s by R. Knox and S. L i n

567

Picosecond S t u d i e s o f Fluorescence and Absorbance Changes i n Photosystem I I P a r t i c l e s f r o m Synechococcus Sp. by A.R. H o l z w a r t h , G.H. Schatz and H. Brock

579

A n a l y s i s o f E x c i t a t i o n Energy T r a n s f e r i n T h y l a k o i d Membranes by t h e Time-Resolved F l u o r e s c e n c e Spectra by M. Mimuro

589

V. CONCLUDING REMARKS F u t u r e Problems on Antenna Systems and Summary Remarks by E. Gantt

601

Author Index

605

S u b j e c t Index

609

EFFECT OF PROTEIN ENVIRONMENT AND EXCITONIC COUPLING ON THE EXCITED-STATE PROPERTIES OF THE ΒILINCHROMOPHORES I N C-PHYCOCYANIN

S. S c h n e i d e r , Ch.Scharnag 1 I n s t i t u t für P h y s i k a l i s c h e und T h e o r e t i s c h e Chemie d e r T e c h n i s c h e n Universität München, D-8046 G a r c h i n g M. D u e r r i n g ,

T. S c h i r m e r , W.

Max-Planck-Institut

Bode

für B i o c h e m i e , D-8033 M a r t i n s r i e d

Introduction C - P h y c o c y a n i n (C-PC), one o f t h e l i g h t - h a r v e s t i n g p i g m e n t s o f cyanobacteria, former

chromophores apoprotein The

i s composed o f

contains

one,

(phycocyanobi1 i n ) ,

geometries

and

have r e c e n t l y

that

individual

a

absorption

and

0. The

tetrayrrole

bound

to

the

(1)). of

the three

Mastigocladus

laminosus

sequencing

(2) and

( 3 a , b , c ) . The

crystal

similiarity

spectroscopic,

Lately

bands

of

by p e p t i d e

strong

p r o p e r t i e s must be m a i n l y surroundings.

α

environments

X-ray c r y s t a l l o g r a p h y

displays

different

(see e.g.

phycocyanin

been d e t e r m i n e d

high resolution

subunits, covalently

v i a t h i o e t h e r linkages

chromophores i n t h e

structure

two

t h e l a t t e r two o p e n - c h a i n

o f g e o m e t r i e s , so

biochemical

and

functional

a t t r i b u t e d t o the d i f f e r e n t protein

i t has (maxima)

been to

possible

the

to

different

assign the phycocyanin

chromophores u n a m b i g u o u s l y i n t h e f o l l o w i n g manner

(4,5):

A84:

A max i a b s ) = 616 - 618 nm (4)

618 nm (5)

B84:

622 - 624 nm (4)

624 - 632 nm (5)

B155:

598 - 600 nm (4)

m

594 - 598 nm (5) 582 - 598 nm

Photosynthetic Light-Harvesting Systems © 1988 Walter de Gruyter & Co., Berlin · New York

(5,CD)

484 CD-spectroscopy elucidate

the

t i v e probe the

is

an

source

e f f e c t of p r o t e i n - c h r o m o p h o r e and

mechanical

the

model

to

information a

and get

studied

in

by means of

order

to

quantum

improve

our

c o n t r i b u t i o n of these i n t e r a c t i o n s t o

functional properties an

to

sensi­

chromophore-chromophore

chiroptic properties

calculations,

knowledge about the spectral

of

chromophores and

t o n o n c o v a l e n t i n t e r a c t i o n s . T h e r e f o r e we

i n t e r a c t i o n s on

and

important

c o n f o r m a t i o n of b i l i n

e s t i m a t e of

the

of t h e

the

phycobi1inproteins

significance

of t h e s e

inter­

actions .

Methods Our

calculations

are based on

f o r chromophore and result

from

standard

a

protein

of s i n g l y e x c i t e d redshift

and

lated without The

and

and

6

in

tion potential

(PPP)

with

occupied,

6

(CI)

virtual

l e a d s t o a 10 t o 15 the

other

and

calcu­

(6a,6b,7). t r e a t e d as

one

a l l i n t e r a c t i o n s b e t w e e n perma­ included.

Polar

l y i n g i n a sphere w i t h

10

A

were t a k e n i n t o a c c o u n t . s i m u l a t e d by v a r y i n g

the

effective ioniza­

( I P ' ) of t h e h e t e r o a t o m s i n c e a w i t h d r a w a l

the hydrogen from a center to

pyrrole nitrogen f r o m 19.6

IP' midway

and

pyridine

n i t r o g e n ) . The

are

given elsewhere

(6,7).

eV

of

causes t h e i r - e l e c t r o n s

de l o c a l i z e more e a s i l y . The

changed a c c o r d i n g l y

(strong bonding,

nm

calculated

f - v a l u e s are

s u r r o u n d i n g s are

amino a c i d r e s i d u e s

Hydrogen bonds are

was

their

Therefore,

a r o u n d CIO

X-ray d a t a

interaction

t r a n s i t i o n charge d i s t r i b u t i o n s are

aromatic

of t h i s

variations

f u r t h e r approximations

chromophores

radius

(Cl-basis:

rotatory strengths

"supermolecule". n e n t and

calculation

configuration

a larger Cl-basis

small

p r o p e r t i e s ) . The

model and

states

molecular o r b i t a l s ;

high-resolution

(3c). Approximative wavefunctions

ττ-electron

parametrisation

the

parameter

(no b o n d i n g )

between t h e v a l u e s of

t o 16.5

values f o r a l l other

IP' eV

pyrrole

parameters

485 Results Single

and D i s c u s s i o n Chromophores

Figures

1

and

2

show

the variations

of

the absorption

w a v e l e n g t h and r o t a t o r y s t r e n g t h R o f t h e r e d band o f B84 and B155,

respectively,

We r e s t r i c t separated

due t o c h r o m o p h o r e - p r o t e i n

our discussion from

other

to this

interactions.

band because

transitions

and

i t i swell

therefore easier t o

a n a l y s e - t h e o r e t i c a l l y as w e l l as e x p e r i m e n t a l l y . Case Case

I : i s o l a t e d chromophore, n e g l e c t i n g a l l s i d e II:

I + p r o p i o n i c a c i d side chains

Case I I I :

I I + a s p a r t a t e r e s i d u e n e a r p y r r o l e r i n g s Β and C (B87

Case

IV: I I I

and B39, r e s p e c t i v e l y )

+ residues

o f p o l a r amino a c i d s n e a r t h e

propionic side Case

chains

a t t a c h e d t o C8 + C12

chains

V: IV + a l l p o l a r and a r o m a t i c

residues

i n a sphere of

10 A a r o u n d CIO Case

V I : V + amide g r o u p s o f t h e p r o t e i n backbone w i t h i n t h e same s p h e r e ( i n b r a c k e t s )

The c a l c u l a t e d t r a n s i t i o n e n e r g i e s phores ( I )

a r e around

hypsochromic (6a,6b,7),

shift, is

o r below when

compared

the significant

g e o m e t r y . Coulombic i n t e r a c t i o n first

order

energies

f o rthe

perturbation

(bathochromic

to

CI-wavefunctions

and

a

planar

effects

the

transition

o r b i t a l s . The r o t a t o r y

t h e concomitant

coefficients modified

i n the

mixing

of

and m a g n e t i c t r a n s i t i o n moments.

Inclusion of the carboxylate

groups only

chains

tautomerism

( I I ) exhibits i s f i x e d by

of

the propionic acid

small e f f e c t s

the interaction

(the proton

w i t h adjacent

amino

(3c) ) .

B o t h chromophores A84)

calculations

from

because o f t h e d i f f e r e n t

o f changed

side acids

chromo­

( s t a t i c c o u p l i n g i n terms of

theory)

s t a b i l i z a t i o n of t h e v a r i o u s molecular

electric

prior

deviation

s h i f t ) mainly

s t r e n g t h i s a l t e r e d because

isolated

550 nm. The o r i g i n f o r t h i s

(as w e l l

as t h e t h i r d ,

not displayed, at

show a common p r i n c i p l e o f i n t e r a c t i o n w i t h t h e p r o t e i n .

486

Figure

1: C a l c u l a t e d r o t a t o r y s t r e n g t h R o f t h e longwavel e n g t h a b s o r p t i o n band o f t h e B84 chromophore (1 DBM=0.93 10 c g s ; case I t o V I : see t e x t ) . The shaded r e g i o n s show t h e s p e c t r a l v a r i a t i o n s w i t h t h e tautomerism of t h e a r g i n i n e groups: a) B80 as shown b) t a u t o m e r i c f o r m 1) B79 and B86 as shown 2) t a u t o m e r i c f o r m

487

F i g u r e 2: C a l c u l a t e d r o t a t o r y s t r e n g t h R o f t h e longwavel e n g t h a b s o r p t i o n band o f t h e B155 chromophore. The shaded a r e a r e f l e c t s t h e b a t h o c h r o m i c s h i f t c a l c u l a t e d f o r an i n c r e a s i n g o f t h e h y d r o g e n bond s t r e n g t h t o t h e B39 a s p a r t a t e r e s i d u e , a) N23-H-tautomer b) N22-H-tautomer

488 They a r c h

a r o u n d an

aspartate residue

t h e n i t r o g e n s of p y r r o l e r i n g s Β w i t h i n hydrogen oxygens. T h i s

and

bonding d i s t a n c e

(B87

C

and B39,

(N22

o f one

and

resp.),

N23)

of t h e

being

carboxylate

i n t e r a c t i o n dominates the wavelength

adjustment

(III) . For ΒΘ4

(and A84)

chromophore, necessary

the assumption of a p r o t o n t r a n s f e r t o

leaving

a

shift

the

to

negative

aspartate

calculated

the

counterion, i s

electronic

excitation

energy i n t o the e x p e r i m e n t a l l y e s t a b l i s h e d r e g i o n . B155

deviates

result

in

t h a t B155 Only a

from t h i s

a transition and

a s p a r t a t e B39

positive partial

as -0-H)

behaviour; n e a r 700

yields a

m e r i s m (N22-H

a

nm.

proton t r a n s f e r would Therefore

are coupled

via

c h a r g e n e a r N22 and

postulate

a h y d r o g e n bond.

and N23

r e d s h i f t . Depending

o r N23-H)

we

(0D2

on t h e

treated

methen t a u t o -

t h e h y d r o g e n bond s t r e n g t h , t h e

v i s u a l a b s o r p t i o n band v a r i e s i n a w a v e l e n g t h r e g i o n o f 50 nm w i d t h Inclusion

(shaded a r e a s i n f i g u r e 2 ) . of

the

(case

IV: A r g B80;

B119,

T h r B124, in

geometry

charged

and

case V:

A r g B79,

T h r B118)

strong indication, role

about

tuning

an exchange

charges) r e s u l t

in

a

A r g B86,

around

Ser

B84

B72,

Tyr

arginine residues

play a v i t a l

t r a n s i t i o n energy. Small v a r i a t i o n s i n

(e.g. a r o t a t i o n of the

equivalent to

residues

leads t o f u r t h e r s h i f t s . There i s a

t h a t the the

aromatic

2

of p o s i t i v e

drastic

wavelength. Therefore,

- C ( N H ) ( N H ) - g r o u p s by

these

and

variation r e s i d u e s may

the h e t e r o g e n e i t y observed i n

the

negative

of

the

180°,

partial

transition

be r e s p o n s i b l e f o r

fluorescence

kinetics

of

smaller aggregates ( 8 ) . I n c l u s i o n of the charges i n t h e s u r r o u n d i n g Thr B151,

Asn

B35;

case V:

Lys B36,

a d d i t i o n a l r e d s h i f t s of t h e f i r s t for

o f B155

G l u B33)

(case

IV:

induces

also

electronic transition.

Only

t h e N23-H-tautomer i s t h e t h e o r e t i c a l r e s u l t , however, i n

agreement w i t h o b s e r v a t i o n . The

i n t e r a c t i o n w i t h t h e amide g r o u p s of t h e p r o t e i n backbone

(case V I ) p r o d u c e s state

properties

approximation

only and

studies.

small can

corrections

therefore

be

to

the e x c i t e d

ignored

in first

489 ß-subunit The r e s u l t s two,

d e s c r i b e d so f a r p r e d i c t t h a t t h e CD-spectrum o f

non-interacting

exhibit

a

large

chromophores

i n t h e Ö-subunit

s t r e n g t h a r o u n d 6 2 0 nm. T h i s i s ,

rotatory

however, i n c o n t r a d i c t i o n

to

the experimental

finding

e x t e n d e d o u r model c a l c u l a t i o n s

account

chromophores

and t h e i r e n v i r o n m e n t s

status

chromophore-protein

both

selected

according t o

of

approximation VI

i s marked

wavelength

region

and

also

t o take

into

together. interaction

i n f i g u r e s 1 and 2

f o r b o t h chromophores. I t y i e l d s t r a n s i t i o n correct

(4)

longwave l e n g t h a b s o r p t i o n band, a t t r i b u t e d t o B 8 4 ) .

(inactive

T h e r e f o r e , we The

should

energies

the required

s p a c i n g f o r B 8 4 and B 1 5 5 . F i g u r e 3 shows t h e t h e r e b y

i n the energy

obtained

t h e o r e t i c a l CD-spectrum o f t h e ß-subunit.

R= 1 DBM

580

600

590

610 X/nm

F i g u r e 3: C a l c u l a t e d v i s i b l e CD-spectrum o f i n d i v i d u a l chromophores (B84 • · , B155 · -) and t h e ß-subunit w i t h e x c i t o n i c c o u p l i n g included ( ) .

Due t o (γ+=0.9 which

e x c i t o n i c coupling, t h e s h o r t e r wavelength γ*(Β155) +

i s lost

This f i n a l very

w i t h charged

ψ*(Β84)) g a i n s

i n the corresponding

result f i t s

well

0.1

and

longwave l e n g t h t r a n s i t i o n .

the experimentally

i s a clear indication,

residues c o n t r o l s

transition

rotatory strength, f o u n d CD-bandshape that the interaction

a l s o t h e chromophore-chromo-

490 phore c o u p l i n g

within the phycobi1iproteins.

more a w a r n i n g t h a t may

the properties

I t i s further­

of isolated

n o t be e x t r a c t e d f r o m measurements

chromophores

on b i o l o g i c a l

systems

Scheer f o r many f r u i t f u l

discus­

w i t h i n t e r a c t i n g chromophores.

Acknowledgement We want t o t h a n k s i o n s . Free

P r o f . H.

computer t i m e

and t h e a c c e s s t o NOS/VE by t h e

L e i b n i z Rechenzentrum d e r B a y e r i s c h e n schaften i s greatly

Akademie

d e r Wissen­

appreciated.

References 1. Scheer, Η. 1983. I n : L i g h t R e a c t i o n P a t h o f P h o t o s y n t h e s i s (F. K. Fong, e d . ) . S p r i n g e r V e r l a g , B e r l i n , P P . 7-45. 2. F r a n k , G., W. S i d l e r , H. Widmer and H. Z u b e r . 1978. H o p p e - S e y l e r ' s Z. P h y s i o l . Chem. 359, 1491-1507. 3a. S c h i r m e r , T., W. Bode, R. Huber, W. S i d l e r and H. Zuber. 1985. J . M o l . B i o l . 184, 257-277 b. S c h i r m e r , T., R. Huber, M. S c h n e i d e r , W. Bode, M. M i l l e r and M. L. H a c k e r t . 1986. J . M o l . B i o l . 188, 651-676 c. S c h i r m e r , T., W. Bode and R. Huber. 1987. J . M o l . B i o l . 196, 677-695 4. Siebzehnrübl, S., R. F i s c h e r and H. Scheer. 1987. Z. N a t u r f o r s c h . 4 2 c , 258-262. 5. Mimuro, M., R. Rümbe1i, P. Füg l i s t a l l e r and Η. Zuber. 1987. B i o c h i m i c a e t B i o p h y s i c a A c t a 8 5 1 , 447-456. 6a. B l a u e r , G. and G. Wagniöre. 1975. J . Am. Chem. Soc. 97, 1949-1954. b. B l a u e r , G. and G. Wagni£re. 1976. J . Am. Chem. Soc. 98, 7806-7810. 7. S c h a r n a g l , Ch., Ε. Köst-Reyes, S. S c h n e i d e r , H.-P. K o s t and Η. Scheer. 1983. Z. N a t u r f o r s c h . 3 8 c , 951-959. 8. S c h n e i d e r , S., P. G e i s e l h a r t , F. Baumann, S. Siebzehnrübl, R. F i s c h e r and H. Scheer. C o n t r i b u t i o n i n t h i s v o l u m e .