Effects of Drought Stress on Sunflower Stems and Roots

3 downloads 0 Views 753KB Size Report
on sunflower plants to defend themselves against drought and to overcome of this stress period. Roots and other plant organs mostly affected from drought ...
International Conference on Chemical, Agricultural and Life Sciences (CALS-16) Feb. 4-5, 2016 Bali (Indonesia)

Effects of Drought Stress on Sunflower Stems and Roots Veli PEKCAN1*, Goksel EVCI1, M. Ibrahim YILMAZ1, A. Suna BALKAN NALCAIYI2, Şeküre ÇULHA ERDAL2, Nuran CICEK2, Ozlem ARSLAN3, Yasemin EKMEKCI2, Yalcin KAYA4 

cultivated largely in rainfed areas so water stress is commonly limiting factor in sunflower production [1], [2], [3]. Under water stress, crop productivity is basically related to the dry matter accumulation in the plant and root development in soil. Drought stress leads firstly starting with diminishing of plant water contents of sunflower, then leaf water potential, biomass, cell enlargement and growth and with closing stomata due to mainly turgor loss [4], [5] [6], [7], [8], [9]. The amount of roots play critical roles for efficient water uptake for higher crop yield under drought stress in particular soils. When limited water availability, it results lessening leaf growth then leading to decrease relative dry matter portioning into the root and shoot/root ratio [10]. The plant roots is the most important organ to get moisture and nutrients from deep layers of soil so higher root length sunflower genotypes exhibit more tolerance drought stress condition [11]. However, to understand properly functions of other root traits, its relations and to know which root trait exhibit more vital role for increasing crop productivity by sunflower breeders are so important issues to develop more productive and drought tolerant lines in their breeding programs under water stress conditions [12]. Recent studies indicated that some root traits such as root length and diameter, root length density, root volume, fresh and dry root weight and also total dry matter are significant indicator of drought tolerance in sunflower [13], [14], [15], [16], so these traits are so useful to develop the drought tolerant hybrids. Therefore, in addition to root traits, developing whole plant strategies by sunflower breeders with considering specifics of genotype as well as genotype x environment interactions is so key issue in drought resistance breeding [17], [18], [19]. Sunflower wild types have very useful genes for drought tolerant genes because some subspecies of Helianthus genus have very wide adaptation capability for drought stress conditions such as H. mollis, H. deserticola, H. hirsutus, H. maximiliani, H. tuberosus, H. argophyllus etc. [20], [21]. Therefore, cultural types have some tolerant genes especially derived from these sources and also from some land races. Various screening methods were used to classify sunflower genotypes for root and other yield traits associated with drought tolerance in sunflower [9], [13], [17], [18], [19]. Damage Index (DI) and Relative Tolerance index (RTI) also are better indicators to measure drought tolerance of plant genotypes [22], [23], [24], On the other hand, drought tolerance tests should conduct under controlled environment and these studies should perform in different growth periods constituting of seed

Abstract— Although sunflower (Helianthus annuus L.) is deep rooted crop, water stress is one the most reducing factors on sunflower seed yield because sunflower grows generally in dry lands and rainfed regions. When drought stress appears in dry summers, some morphological and physiological changes emerge on sunflower plants to defend themselves against drought and to overcome of this stress period. Roots and other plant organs mostly affected from drought stress during this period. Therefore, sunflower breeders should be aware of plant responses to drought stress to develop better drought resistant lines and cultivars in their breeding programs. The study was conducted to determine drought tolerances of sunflower male inbred lines developed in National Project under controlled conditions in Edirne, a city in Trakya region which has about 50% of sunflower areas in Turkey. Their root and plant developments and responses of fifty sunflower male lines were evaluated against drought stress in the study. Based on results, the most affected trait in the study was total fresh root weight and reduced over 90% especially at first stress conditions. Total fresh and dry weights followed this trait respectively. Sunflower inbred lines responded varyingly drought stress in the studied traits depending on when stress applied early or late. However, mostly sunflower plants influenced more at first stress conditions almost all traits because these traits started to be effective mostly while constituting yield at earlier plant development stages. Based on measured traits and damage index for drought stress, TT 135 R, TT 199 R, 9786 R and 9993 R inbred lines existed at drought tolerant lines. As results, dry and total fresh weight and total root fresh weight are important indicators evaluating of sunflower genotypes for drought tolerance. Besides, sunflower genotypes exhibited different tolerance levels against drought stress so higher tolerant male lines will be selected to develop hybrids regarding these traits. Keywords: Drought tolerance, inbred lines, sunflower, yield traits, plant and root responses.

I. INTRODUCTION Drought stress is one of the most key aspects for crop yield losses in recent years and it seems that will be active threats for restricting crop productivity in next years due to recent climatic changes and global warming. Sunflower is one of the important oil crops in the world. Sunflower which is a spring crop is Manuscript received November 11, 2015. This study was supported by the Scientific and Technological. Research Council of Turkey (TUBITAK) under the Project 1001- 113O926. 1 Trakya Agricultural Research Institute, PO Box: 16, 22100 Edirne, Turkey 2 Hacettepe University Science Faculty, Biology Dept, 06800 Ankara, Turkey 3 Giresun University, Espiye Vocational School, Giresun, Turkey 4 Trakya University Engineering Faculty, Genetic and Bioengineering Dept, 22100 Edirne, Turkey, *[email protected]

53

International Conference on Chemical, Agricultural and Life Sciences (CALS-16) Feb. 4-5, 2016 Bali (Indonesia)

absolute values for each genotype and in the different drought levels using the following formula [23], [24]: RTI (%) = Absolute Value × 100 / Value at 0.00% On the other hand, Damage Index (DI) also were calculated based the measured values above to determine their drought tolerance of sunflower inbred lines under controlled environment conditions [22]. In this formula: DI (%) = (Drought Stress – Control) / [1 - (Control / 100)]*100

yield formation for better understanding of tolerance levels of sunflower genotypes [25], [26] [27], [28], [29]. The aim of the study was mainly identifying drought tolerant sunflower male inbred lines with investigating root traits under controlled environmental conditions in Edirne, Turkey. II. MATERIAL AND METHODS Many sunflower inbred lines and hybrids have been developed in National Sunflower Project conducted by Trakya Agricultural Research Institute (TARI) since over 45 years. The research was carried out in growth chamber in 2014, in TARI, Edirne, Turkey with fifty restorer inbred lines originated different genetic sources and developed in this project. The inbred lines were planted at the pots with a capacity of 7.5 kg containing sand, peat compost and field soil in 1:1:1 ratio and fertilizers. Drip irrigation was applied in the pots. Trials were conducted with randomized complete block design with one plant and three replications. After planting and then emerging, plants were thinned and only one plant left in each pot. All planted pots were irrigated well in order to get good germination at the beginning. The water stress treatments were applied into pots and they were weighed before irrigation and necessary water request of sunflower plants were given during four weeks. Measured parameters were given below: Total fresh plant weight at over soil (g): The whole plants were cut from soil surface then they were weighed in precision scale (0.01 g). Total dry plant weight at over soil (g): The same plants were dried at 78 C for 48 hours in the oven then they were weighed in precision scale (0.01 g). Total fresh root weight at over soil (g): After harvesting, the whole plant roots were cut then cleaned with water until removing all soil particles over roots. They have been waited up to 30 minutes between two paper towels at shadow until removing all water over roots. Then, they were weighed in precision scale (0.01 g). Field Capacity (%) = (The amount of water (g) / Dry soil weight (g)) × 100. The amount water absorbed by the soil was calculated from the difference between dry and wet soil weight [23], [24]. The applied drought stress conditions were given below in the study: 100%: There were no drought stress condition and sunflower plants stayed field capacity (100%) in all vegetation period (Control). 75%: Field capacity was 75% of total absorbed water by sunflower plants (Mild). 50%: Field capacity was 50% of total absorbed water by sunflower plants (Moderate). 25%: Field capacity was 25% of total absorbed water by sunflower plants (Severe).

III. RESULTS AND DISCUSSION Drought is the most severe environmental factor which results of global warming and affected almost all living organism in the world. Sunflower male inbred lines were affected more in vivo conditions also like controlled environment conditions [26]. Total fresh plant weight of restorer inbred lines was influenced more from drought stress and it was observed that until 60% reductions in the study. At mild drought stress conditions; the numbered of 2, 10, 38, 17, 49, 1, 20 and 47 male lines; at moderate drought stress level, the numbered of 2, 32, 21, 17, 34, 20 and 14 lines; and at severe drought application, the number of 32, 2, 38, 21, 47,10 and 34 male lines influenced less from drought stress (Table 1). While total dry root weight of sunflower inbred lines was examined, it seemed that this trait also affected more from drought generally too. The number of 47, 7, 34, 1, 38, 19, 6 and 11 male lines at mild stress application; the number of 34, 3, 25, 38, 45 and 57 lines at moderate stress level and the number of 34, 3, 25, 7, 5, 2 and 31 male inbred lines at severe stress conditions affected from less from drought stress conditions in the study (Table 2). Similarly, total fresh roots weight of male inbred lines was also influenced until 60% from drought stress. In this trait, the numbered of 49, 8, 7, 16, 23, 14 and 26 male lines at mild stress conditions, the number of 8, 7, 30, 24, 11, 41, 14, 10 and 45 inbred lines at moderate stress application and the numbered of 11, 8, 24, 14, 7, 10, 30, 45, 23 and 49 sunflower inbred lines at severe stress application were observed as less influenced lines from drought stress in the study (Table 3). The drought stress applications reduced significantly in sunflower genotype both dry and fresh biomasses (Figure 1). Similar results also were obtained some previous studies [23], [24]. While DI values of sunflower male inbred lines were in more negative values in 25% field capacity, sunflower male inbred plants grown at 50% and 75% field capacity had higher DI values than 25% field capacity relatively. Based on DI values of total dry root weight of sunflower inbred lines, the less influenced male lines were determined as 10004-2 R, TT199 R, 010018 R and 0536 R male lines and the most affected line from drought stress as K9 R SN 1 line was observed in the study (Figure 1). On the other hand, based on DI values of sunflower genotypes existing in the study, drought stress applications also affected severely in negative way to total fresh roots weight of male inbred lines. TT 135 R, TT 199 R, 9786 R and 9993 R lines were observed as the most tolerant lines among sunflower

Relative Tolerance Index (RTI) were calculated to classify sunflower inbred lines based on drought tolerance levels at different growth periods which play major roles on determining sunflower yield. Relative tolerance of sunflower inbred lines was calculated based relative values instead of 54

International Conference on Chemical, Agricultural and Life Sciences (CALS-16) Feb. 4-5, 2016 Bali (Indonesia)

male lines in all three drought stress applications in the

research (Figure 2).

TABLE I: THE EFFECT OF DROUGHT STRESS ON TOTAL FRESH PLANT WEIGHT AT OVER SOIL (G) IN SUNFLOWER

32

Name of Line 9999 R

2

01001 R

3,97

3,12

78,5

1,22

30,6

0,72

18,1

38

TT 199 R

5,72

4,35

76,0

1,53

26,7

0,97

17,0

21

9759 R

4,91

3,57

72,7

1,41

28,7

0,78

15,9

47

K9 R SN 1

11,40

8,35

73,3

2,92

25,6

1,81

15,9

10

7887-1 R

4,31

3,29

76,5

1,08

25,0

0,68

15,8

34

10004-2 R

5,72

3,84

67,2

1,55

27,2

0,89

15,6

36

TT 135 R

5,63

3,62

64,3

1,40

25,0

0,82

14,6

30

9993 R

6,01

3,97

66,0

1,35

22,4

0,85

14,1

6

62301 R

3,97

2,58

64,9

0,99

25,0

0,55

13,7

20

9758 R

4,80

3,52

73,3

1,30

27,1

0,64

13,3

45

TT 321 R

6,49

4,13

63,6

1,65

25,3

0,87

13,3

37

TT 138 R

5,39

3,31

61,4

1,18

21,8

0,72

13,3

23

9786 R

7,28

5,25

72,1

1,80

24,7

0,96

13,2

28

9990 R

5,20

3,43

66,0

1,17

22,5

0,68

13,0

13

8267 R

5,56

3,26

58,6

1,12

20,2

0,71

12,7

14

TT 326 R

4,51

2,97

65,9

1,22

27,1

0,57

12,6

7

6973 R

6,37

4,02

63,1

1,48

23,2

0,80

12,5

8

70352 R

6,96

4,71

67,7

1,54

22,1

0,87

12,5

4

25712 R

5,77

3,79

65,7

1,43

24,7

0,71

12,4

33

10004-1 R

5,27

3,16

59,9

1,20

22,8

0,65

12,4

26

9979 R

4,32

2,82

65,2

1,10

25,3

0,53

12,3

35

TT 119 R

5,72

3,72

65,0

1,35

23,6

0,71

12,3

31

9997-7 R

6,64

4,28

64,5

1,36

20,6

0,82

12,3

17

9753-1 R

4,17

3,17

75,9

1,18

28,3

0,51

12,2

25

9947 R

5,05

3,17

62,7

1,05

20,9

0,61

12,1

24

9889 R

5,28

3,32

62,9

1,20

22,7

0,63

12,0

1

0536 R

3,47

2,54

73,3

0,88

25,3

0,41

11,9

43

TT 216 R

6,08

3,81

62,6

1,22

20,0

0,72

11,8

29

9992 R

8,29

5,37

64,8

1,65

19,9

0,98

11,8

11

8129 R

8,31

4,77

57,4

1,50

18,1

0,93

11,2

42

TT 214 R

5,84

3,47

59,4

1,15

19,7

0,64

11,0

22

9761 R

5,20

3,14

60,4

1,07

20,6

0,56

10,8

27

9987 R

6,09

3,74

61,5

1,24

20,3

0,66

10,8

19

9753-3 R

4,40

2,83

64,3

0,87

19,7

0,47

10,7

44

TT 317 R

7,53

4,67

62,0

1,43

19,0

0,79

10,5

3

010018 R

4,84

2,72

56,1

0,86

17,8

0,51

10,5

41

TT 212 R

4,71

3,09

65,7

0,91

19,2

0,48

10,1

40

TT 207 R

5,64

3,33

59,1

1,02

18,1

0,56

9,9

5

3510 R

6,53

3,29

50,4

1,04

15,9

0,64

9,9

16

9702 R

6,77

3,49

51,6

1,39

20,6

0,66

9,7

46

TT 330 R

6,43

3,61

56,1

1,05

16,3

0,61

9,4

15

9487 R

5,75

3,19

55,6

1,03

17,9

0,52

9,1

50

CL 217 R

7,88

4,36

55,3

1,50

19,1

0,70

8,8

48

9868 R

6,92

3,74

54,1

1,00

14,4

0,56

8,1

49

98920 R

9,17

6,90

75,2

1,67

18,2

0,65

7,1

6,07 A

3,83 B

#

x̅: LSD (0,01):0,21

Control

Mild

4,49

3,24

Relative Tolerance (%) 72,2

Moderate

Relative Tolerance (%)

Severe

Relative Tolerance (%)

1,30

29,0

0,87

19,3

1,29 C

55

0,72 D

International Conference on Chemical, Agricultural and Life Sciences (CALS-16) Feb. 4-5, 2016 Bali (Indonesia)

TABLE II: THE EFFECT OF DROUGHT STRESS ON TOTAL DRY PLANT WEIGHT AT OVER SOIL (G) IN SUNFLOWER

34

Name of Line 10004-2 R

0,31

0,10

31,9

0,09

27,7

0,07

23,4

3

010018 R

0,51

0,10

19,7

0,10

20,4

0,08

15,8

25

9947 R

0,72

0,15

21,3

0,14

19,0

0,10

14,4

7

6973 R

1,05

0,45

43,0

0,18

17,2

0,14

13,7

5

3510 R

0,54

0,13

24,7

0,09

17,3

0,07

13,0

2

01001 R

0,67

0,16

24,0

0,11

16,0

0,09

13,0

31

9997-7 R

0,67

0,16

24,5

0,11

16,0

0,08

12,5

6

62301 R

0,74

0,19

25,7

0,11

14,9

0,09

11,7

35

TT 119 R

0,46

0,11

23,2

0,07

15,9

0,05

11,6

38

TT 199 R

0,78

0,21

26,5

0,15

18,8

0,09

11,5

8

70352 R

1,09

0,25

23,0

0,16

14,7

0,12

11,3

30

9993 R

0,69

0,17

24,3

0,11

16,5

0,08

11,2

4

25712 R

0,75

0,16

21,7

0,10

12,8

0,08

11,1

11

8129 R

1,25

0,32

25,4

0,19

15,5

0,14

11,0

36

TT 135 R

0,59

0,12

20,5

0,10

17,0

0,06

10,8

40

TT 207 R

0,63

0,12

18,4

0,09

13,7

0,07

10,5

21

9759 R

0,84

0,19

22,2

0,10

11,9

0,09

10,3

16

9702 R

0,72

0,15

20,8

0,10

13,4

0,07

10,2

41

TT 212 R

1,05

0,21

20,4

0,15

14,3

0,10

9,9

44

TT 317 R

0,84

0,13

15,9

0,10

12,3

0,08

9,9

37

TT 138 R

0,68

0,13

19,1

0,09

13,2

0,07

9,8

45

TT 321 R

0,77

0,19

24,8

0,14

18,7

0,07

9,6

29

9992 R

1,46

0,23

16,0

0,16

11,0

0,14

9,6

20

9758 R

0,75

0,18

23,9

0,11

15,0

0,07

9,3

50

CL 217 R

0,83

0,18

22,0

0,11

12,8

0,08

9,2

17

9753-1 R

0,61

0,13

22,0

0,09

14,8

0,05

8,8

14

TT 326 R

0,53

0,12

21,9

0,08

14,4

0,05

8,8

26

9979 R

0,87

0,20

22,7

0,09

10,8

0,08

8,8

1

0536 R

0,50

0,14

27,3

0,06

11,3

0,04

8,7

22

9761 R

0,67

0,12

17,3

0,09

13,9

0,06

8,4

27

9987 R

1,24

0,25

19,9

0,14

11,6

0,10

8,1

39

TT 205 R

0,51

0,11

21,1

0,08

16,4

0,04

7,9

19

9753-3 R

0,59

0,15

25,8

0,09

15,7

0,05

7,9

10

7887-1 R

0,91

0,19

20,6

0,14

15,1

0,07

7,4

42

TT 214 R

0,54

0,11

20,4

0,06

11,7

0,04

7,4

13

8267 R

1,64

0,35

21,1

0,23

13,8

0,12

7,1

28

9990 R

1,20

0,20

16,9

0,12

10,3

0,08

6,7

24

9889 R

0,61

0,08

13,6

0,05

8,7

0,04

6,5

15

9487 R

0,85

0,17

20,5

0,08

9,8

0,05

5,9

32

9999 R

0,85

0,19

22,8

0,09

11,0

0,05

5,5

43

TT 216 R

0,69

0,09

12,6

0,05

6,8

0,04

5,3

33

10004-1 R

0,87

0,13

15,4

0,08

8,8

0,04

5,0

46

TT 330 R

0,69

0,11

16,0

0,06

8,7

0,03

4,9

48

9868 R

0,90

0,21

23,0

0,07

8,1

0,04

4,8

23

9786 R

1,23

0,28

22,4

0,17

13,5

0,05

4,3

47

K9 R SN 1

3,80

2,22

58,4

0,36

9,5

0,16

4,1

0,95 A

0,26 B

#

x̅: LSD (0,01):0,038

Control

Mild

Relative Tolerance (%)

Moderate

0,12 C

56

Relative Tolerance (%)

Severe

0,08 D

Relative Tolerance (%)

International Conference on Chemical, Agricultural and Life Sciences (CALS-16) Feb. 4-5, 2016 Bali (Indonesia)

TABLE III: THE EFFECT OF DROUGHT STRESS ON TOTAL FRESH PLANT ROOTS (G) IN SUNFLOWER

11

Name of Line 8129 R

1,24

0,91

Relative Tolerance (%) 73,0

0,32

Relative Tolerance (%) 25,5

0,26

Relative Tolerance (%) 20,7

8

70352 R

1,92

1,68

87,5

0,59

30,6

24

9889 R

0,74

0,51

0,37

19,3

68,8

0,20

27,6

0,14

19,0

14

TT 326 R

0,94

7

6973 R

1,09

0,71

75,3

0,23

24,5

0,17

18,5

0,89

82,1

0,32

29,4

0,20

10

7887-1 R

18,1

0,89

0,60

67,8

0,22

24,5

0,16

17,7

30 45

9993 R

0,87

0,61

69,4

0,24

27,8

0,14

16,4

TT 321 R

0,66

0,49

73,6

0,16

24,2

0,10

15,6

23

9786 R

0,75

0,57

75,4

0,15

19,5

0,12

15,5

49

98920 R

1,41

1,31

92,9

0,28

19,8

0,22

15,3

13

8267 R

1,45

1,08

74,7

0,31

21,2

0,22

15,0

36

TT 135 R

1,40

0,99

70,8

0,32

22,8

0,21

14,7

37

TT 138 R

0,75

0,46

61,2

0,16

20,8

0,11

14,6

1

0536 R

0,60

0,38

63,6

0,14

22,9

0,09

14,5

31

9997-7 R

1,31

0,85

65,0

0,26

19,8

0,19

14,2

42

TT 214 R

0,87

0,51

59,0

0,17

19,6

0,12

14,2

22

9761 R

1,27

0,79

62,2

0,26

20,1

0,18

14,1

40

TT 207 R

1,18

0,83

70,1

0,22

18,9

0,17

14,1

25

9947 R

1,49

1,07

72,1

0,26

17,7

0,20

13,4

2

01001 R

0,97

0,63

65,6

0,22

22,8

0,13

13,1

41

TT 212 R

1,03

0,71

68,7

0,26

24,9

0,13

13,0

50

CL 217 R

1,14

0,71

62,5

0,23

19,9

0,15

12,9

26

9979 R

0,87

0,65

75,2

0,16

18,4

0,11

12,3

33

10004-1 R

0,93

0,62

66,4

0,20

21,4

0,11

12,1

15

9487 R

0,86

0,53

61,0

0,19

21,6

0,10

12,0

34

10004-2 R

1,00

0,55

54,8

0,21

21,1

0,12

12,0

38

TT 199 R

0,86

0,45

52,8

0,18

20,6

0,10

12,0

46

TT 330 R

0,84

0,49

58,5

0,19

22,5

0,10

11,9

29

9992 R

1,29

0,72

56,0

0,25

19,7

0,15

11,4

19

9753-3 R

1,00

0,57

56,5

0,19

18,9

0,11

11,3

17

9753-1 R

1,00

0,61

61,5

0,15

14,7

0,11

11,0

43

TT 216 R

0,74

0,46

62,5

0,15

19,9

0,08

10,9

21

9759 R

0,95

0,58

60,8

0,18

18,9

0,10

10,8

27

9987 R

1,62

1,21

74,8

0,33

20,4

0,17

10,7

39

TT 205 R

0,73

0,37

50,6

0,14

19,8

0,07

10,1

6

62301 R

1,02

0,56

54,7

0,17

16,9

0,10

10,1

44

TT 317 R

1,30

0,59

45,8

0,20

15,7

0,13

9,8

48

9868 R

1,08

0,65

60,0

0,18

16,4

0,10

9,6

28

9990 R

1,30

0,73

55,8

0,23

17,4

0,12

9,5

20

9758 R

0,75

0,41

55,0

0,10

12,9

0,07

9,3

16

9702 R

1,47

1,13

76,5

0,25

16,8

0,13

9,1

32

9999 R

0,82

0,49

60,5

0,13

16,3

0,07

9,0

5

3510 R

0,97

0,50

51,8

0,17

17,6

0,08

8,6

4

25712 R

1,15

0,51

44,6

0,17

14,8

0,10

8,4

3

010018 R

2,29

0,81

35,5

0,29

12,5

0,16

7,1

47

K9 R SN 1

5,69

2,37

41,7

0,47

8,3

0,26

4,6

1,37 A

0,81 B

#

x̅: LSD (0,01):0,034

Control

Mild

Moderate

0,24 C

57

Severe

0,15 D

International Conference on Chemical, Agricultural and Life Sciences (CALS-16) Feb. 4-5, 2016 Bali (Indonesia)

Fig. 2. Damage index of total root fresh weight of fifty sunflower lines exposed to three different drought stress levels.

Fig. 1. Damage indexes of shoot fresh weight (lower column) and dry weight (upper column) of fifty sunflower inbred lines exposed to drought stress.

58

International Conference on Chemical, Agricultural and Life Sciences (CALS-16) Feb. 4-5, 2016 Bali (Indonesia) [17] Ghaffari M., Toorchi M., Valizadeh M., Komatsu S. Differential response of root proteome to drought stress in drought sensitive and tolerant sunflower inbred lines. Functional Plant Biology, 40, 609–617, 2013 [18] Safavi, S. M., Safavi, A. S., Safavi, S. A. Evaluation of drought Tolerance in Sunflower (Helianthus annuus L.) Inbred Lines and Synthetic Varieties under Non Stress and Drought Stress Conditions. Biological Forum 7(1): 1849-1854, 2015. [19] Asadolaei, M. V., B. M. Nassiri, M. Yousefifard. Diversity of drought tolerance and seed yield in sunflower (Helianthus annuus L.) hybrids. Journal of Biodiversity and Environmental Sciences (JBES). 6(5): 305-310, 2015 [20] Vassilevska-Ivanova, R., L. Shtereva, B. Kraptchev, T. Karceva. Response of sunflower (Helianthus annuus L) genotypes to PEG-mediated water stress. Central European Journal of Biology. 9 (12): 1206-1214, 2014 [21] Škorić, D. Sunflower breeding for resistance to abiotic stresses. Helia 32(50): 1-16. 2009 [22] Glerum C. Frost hardiness of coniferous seedlings: principles and applications. In: Duryea ML, editor. Proc. of The workshop “Evaluating seedling quality: principles, procedures, and predictive abilities of major tests”. October 16-18. Corvallis (OR): Oregon State University, Forest Research Laboratory. p 107-123. 1985 [23] Turhan, H., Baser, I. In vitro and in vivo water stress in sunflower (Helianthus annuus L.). Helia 27(40): 227-236, 2004 [24] Onemli, F., T. Gucer. Response to Drought of Some Wild Species of Helianthus at Seedling Growth Stage, Helia, 33 (53): 45-54. 2010 [25] Jocic, S., D. Miladinovic, Kaya Y. “Breeding and Genetics of Sunflower”. N. Dunford, E. M. Force (Ed) Sunflower: Chemistry, Production, Processing, and Utilization. 710. American Oil Chemistry Society (AOCS). 2015. pp. 1-26. [26] Pekcan, V., G. Evci, M. I. Yilmaz, A. S. Balkan Nalcaiyi, Ş. Çulha Erdal, N. Cicek, Y. Ekmekci, Kaya, Y. Drought Tolerance of Some Sunflower Inbred Lines and Effects on Some Yield Traits. Agriculture & Forestry, 61(4): 101-107, 2015 [27] Fulda1, S., S. Mikkat, H. Stegmann, R. Horn. Physiology and proteomics of drought stress acclimation in sunflower (Helianthus annuus L.). Plant Biology, 13: 632–642, 2011 [28] Baloglu, M. C., M. Kavas, G. Aydin, H. A. Öktem, A. M. Yücel, Antioxidative and Physiological Responses of Two Sunflower (Helianthus annuus) Cultivars under PEG-Mediated Drought Stress, Turkish Journal of Botany, 36(6): 707-714, 2012 [29] Andrade, A., A. Vigliocco, S. Alemano, A. Llanes G. Abdala, Comparative Morpho-Biochemical Responses of Sunflower Lines Sensitive and Tolerant to Water Stress. American Journal of Plant Sciences, 4(12C): 156-167, 2013

IV. CONCLUSION When sunflower plants were exposed to drought stress under in vivo conditions; plant and root development was severely reduced. Based on RTI and DI indexes on investigated traits, TT199 R line were the less affected line from drought and this line and tolerant lines will be used to develop drought tolerant hybrids in National Sunflower Program in the future. ACKNOWLEDGMENT This study was supported by the Scientific and Technological. Research Council of Turkey (TUBITAK) under the Project 1001- 113O926. REFERENCES [1] [2]

[3] [4]

[5]

[6]

[7] [8]

[9]

[10]

[11] [12]

[13]

[14]

[15]

[16]

Kaya, Y. “Sunflower”. Breeding Oilseed Crops for Sustainable Production, 1st Ed. Surinder Gupta (Ed.). Elseiver Press. 2015. pp. 56-88. Kaya Y., S. Jocic, D. Miladinovic. “Sunflower”. S.K. Gupta. (Ed) Technological Innovations in Major World Oil Crops, Vol. 1. Springer Press. 2012. pp. 85-129. Kaya Y., “Sunflower”. A. Pratap. (Ed) Alien Gene Transfer in Crop Plants, Vol. 2. Springer Press. 2014. pp. 281-315. Jaleel, C.A., P. Manivannan, A. Wahid, M. Farooq, R. Somasundaram, R. Panneerselvam. Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Biol., 11: 100–105, 2009 Mozaffari, K., Y. Arshi, H. Zeinali-Khanghaa. Research on the effects of water stress on some morphophysiological traits and yield components of sunflower (Helianthus annuus L.). Seed Plant, 12: 24–33, 1996 El-Midaoui, M., Serieys, H., Griveau, Y., Benbella, M., Talouizte, A., Berville, A., Kaan, F. Effects of osmotic and water stresses on root and shoot morphology and seed yield in sunflower (Helianthus annuusL.) genotypes bred for Morocco or issued from introgression with H. argophyllus T. & G. and H. debilis Nutt. Helia 26(38): 1-16. 2003 Fayyaz-Ul-Hassan, Qadir G., Ahmad R A. Growth and development of sunflower in response to seasonal variations. Helia 28(42): 159-166. 2005 Ghaffari, M., M. Toorchi, M. Valizadeh, M. R. Shakiba. Morpho Physiological Screening of Sunflower Inbred Lines under Drought Stress Condition. Turkish Journal of Field Crops.17(2):185-190, 2012 Javaid, T., A. Bibi, H. A. Sadaqat, S. Javed. Screening of Sunflower (Helianthus annuus L.) Hybrids for Drought Tolerance at Seedling Stage. International Journal of Plant Science and Ecology, 1(1): 6-16, 2015 Rauf S,. H. A. Sadaqat. Effects of varied water regimes on root length, dry matter partitioning and endogenous plant growth regulators in sunflower (Helianthus annuus L.). Journal of Plant Interactions, March 2007; 2(1): 41-51. Angadi, S. V. Entz, M. H. Root system and water use patterns of sunflower. Agronomy Journal, 94: 136-145. 2002. Comas, L. H., S. R. Becker, V. M. V. Cruz, P. F. Byrne, D. A. Dierig. Root traits contributing to plant productivity under drought. Front Plant Science. 4: 442. 2013 Geetha, A., Suresh J., Saidaiah P. Study on response of sunflower (Helianthus annuus L.) genotypes for root and yield characters under water stress. Current Biotica 6(1): 32-41. 2012 Nagarathna, T. K., Shadakshari, Y. G., Ramakrishna, P. V. R., Jagadish, K. S., Puttarangaswamy, K. T. Examination of root characters, isotope discrimination, physiological and morphological traits and their relationship used to identify the drought tolerant sunflower (Helianthus annuus L.) genotypes. Helia, 35(56): 1-8. 2012 Rauf, S., Sadaqat, H. A. Identification of physiological traits and genotypes combined to high achene yield in sunflower (Helianthus annuus L.) under contrasting water regimes. Australian Journal of Crop Sciences. 1(1): 23-30. 2008 Rauf, S., Sadaqat, H. A., Ahmad, R., Khan, I. A. Genetics of root characteristics in sunflower (Helianthus annuus L.) under contrasting water regimes. Indian Journal of Plant Physiology, 14(4): 319-327. 2009

Assoc Prof Dr Yalcin KAYA After graduating of Agriculture Faculty, I started to work in Ministry of Agriculture as Field Crops Specialist. In National Extension and Research Project in 1990-94 funded by World Bank. I managed, planned of extension program. Later, I appointed to Agricultural Research Institute and have worked in National Sunflower Coordinator and Project leader for over 20 years. I had MSc in Univ. Nebraska – Lincoln, US in 1996-98, and PhD in Trakya University. I have worked also deputy Director of Institute for 10 years. I made Post Doctorate on sunflower molecular Breeding in USDA Sunflower Research Unit at Fargo, ND in USA. Now I am the director of Plant Breeding Research Center and Genetic Engineering Dept. Head in Trakya University, Edirne, Turkey. At National level, now I am President of Turkish Plant Breeders Union. At International level, I am FAO Sunflower Research Coordinator and the president of International Sunflower Association. Therefore, we have huge collaboration opportunities with local and international seed companies. On the other hand, we have also very nice relationships with International organizations and local government organizations and NGOs in agriculture such as research institutes, farmer unions, etc. Because I have over 20 years past carrier in agricultural research institute and agricultural production and management.

59