Efficient Lead Finding, Activity Enhancement and Preliminary ... - MDPI

1 downloads 0 Views 2MB Size Report
Jul 18, 2018 - Fukuda, H.; Karaki, F.; Dodo, K.; Noguchi-Yachide, T.; Ishikawa, M.; Hashimoto, Y.; Ohgane, K. Phenanthridin-6-one Derivatives as the First ...
International Journal of

Molecular Sciences Article

Efficient Lead Finding, Activity Enhancement and Preliminary Selectivity Control of Nuclear Receptor Ligands Bearing a Phenanthridinone Skeleton Yuko Nishiyama 1 , Shinya Fujii 1 , Makoto Makishima 2 and Minoru Ishikawa 1, * ID 1 2

*

ID

, Yuichi Hashimoto 1

Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; [email protected] (Y.N.); [email protected] (S.F.); [email protected] (Y.H.) Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; [email protected] Correspondence: [email protected]; Tel.: +81-358-417-853

Received: 25 June 2018; Accepted: 17 July 2018; Published: 18 July 2018

 

Abstract: Background: Nuclear receptors (NRs) are considered as potential drug targets because they control diverse biological functions. However, steroidal ligands for NRs have the potential to cross-react with other nuclear receptors, so development of non-steroidal NR ligands is desirable to obtain safer agents for clinical use. We anticipated that efficient lead finding and enhancement of activity toward nuclear receptors recognizing endogenous steroidal ligands might be achieved by exhaustive evaluation of a steroid surrogate library coupled with examination of structure-activity relationships (SAR). Method: We evaluated our library of RORs (retinoic acid receptor-related orphan receptors) inverse agonists and/or PR (progesterone receptor) antagonists based on the phenanthridinone skeleton for antagonistic activities toward liver X receptors (LXRs), androgen receptor (AR) and glucocorticoid receptor (GR) and examined their SAR. Results: Potent LXRβ, AR, and GR antagonists were identified. SAR studies led to a potent AR antagonist (IC50 : 0.059 µM). Conclusions: Our approach proved effective for efficient lead finding, activity enhancement and preliminary control of selectivity over other receptors. The phenanthridinone skeleton appears to be a promising steroid surrogate. Keywords: phenanthridinone; steroid surrogate; antagonist

1. Introduction Nuclear receptors (NRs) are ligand-dependent transcription factors that regulate DNA transcription by binding small molecular agonists such as hormones. Forty-eight structurally conserved kinds of NRs have been identified, and many of them recognize endogenous steroidal ligands (Figure 1). Because NRs control diverse biological functions including reproduction, differentiation, homeostasis, and the immune system, they were the targets of approximately 5% of FDA-approved drugs in 2011 [1]. However, not only a steroidal ligand, but also its metabolites, brings with it the potential to cross-react with other nuclear receptors, which can result in unwanted side effects, potentially limiting the clinical utility of these agents. Therefore, surrogates for the steroid skeleton are required to develop selective non-steroidal NR ligands for clinical use [2].

Int. J. Mol. Sci. 2018, 19, 2090; doi:10.3390/ijms19072090

www.mdpi.com/journal/ijms

Int. J. Mol. Sci. 2018, 19, 2090 Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW   

2 of 12 2 of 12 

  Figure  Chemical  structures  of  endogenous  steroidal  ligands  for and NRs  and  phenanthridinone  Figure 1.1. Chemical structures of endogenous steroidal ligands for NRs phenanthridinone ligands ligands for target proteins that recognize endogenous steroidal ligands.  for target proteins that recognize endogenous steroidal ligands.

The number of fold structures of human proteins is at least 50 times smaller than the number of  The number of fold structures of human proteins is at least 50 times smaller than the number human  proteins  [2].  This  fact  indicates  that  a  scaffold  that  is  spatially  complementary  to  one‐fold  of human proteins [2]. This fact indicates that a scaffold that is spatially complementary to one-fold structure might serve as a common scaffold for ligands that would interact specifically with more  structure might serve as a common scaffold for ligands that would interact specifically with more than than 50 different human proteins, neglecting interactions of the peptide sequences of the proteins. In  50 different human proteins, neglecting interactions of the peptide sequences of the proteins. In other other words, the structures of ligands that bind to one member of fold structures may be useful for the  words, the structures of ligands that bind to one member of fold structures may be useful for the development  of  novel  lead  compounds  for  other  proteins  with  the  similar  fold  structure.  However,  development of novel lead compounds for other proteins with the similar fold structure. However, lead lead compounds obtained based on this approach are likely to possess polypharmacological character.  compounds obtained based on this approach are likely to possess polypharmacological character. Therefore,  chemical  modification  of  polypharmacological  lead  compounds,  aimed  at  optimizing  Therefore, chemical modification of polypharmacological lead compounds, aimed at optimizing selectivity for a particular target, is required. Since the fold structures of NR ligand‐binding domains  selectivity for a particular target, is required. Since the fold structures of NR ligand-binding domains (LBDs) are similar, we have used this strategy to create ligands bearing a diphenylmethane skeleton  (LBDs) are similar, we have used this strategy to create ligands bearing a diphenylmethane skeleton for several NRs, including farnesoid X receptor [3], liver X receptor (LXR) [4], vitamin D receptor [5],  for several NRs, including farnesoid X receptor [3], liver X receptor (LXR) [4], vitamin D receptor [5], androgen receptor (AR) [6], and estrogen receptor [7].  androgen receptor (AR) [6], and estrogen receptor [7]. We  have  previously  developed  LXRs  antagonist  1  [8],  retinoic  acid  receptor‐related  orphan  We have previously developed LXRs antagonist 1 [8], retinoic acid receptor-related orphan receptors  (RORs)  inverse  agonist  2  [9],  progesterone  receptor  (PR)  antagonist  3  [10],  and  receptors (RORs) inverse agonist 2 [9], progesterone receptor (PR) antagonist 3 [10], and pharmacological pharmacological  chaperones  4  and  5  for  Niemann‐Pick  disease  type  C1  (NPC1)  [11]  and  chaperones 4 and 5 for Niemann-Pick disease type C1 (NPC1) [11] and Niemann-Pick type C1-like 1 Niemann‐Pick  type  C1‐like  1  (NPC1L1)  (Figure  1)  [12].  These  compounds  all  contain  a  (NPC1L1) (Figure 1) [12]. These compounds all contain a phenanthridin-6(5H)-one skeleton as a cyclized phenanthridin‐6(5H)‐one  skeleton  as  a  cyclized  carba‐analog  of  the  skeleton  of  LXRs  pan  agonist  carba-analog of the skeleton of LXRs pan agonist T0901317 (6). Because endogenous ligands for the T0901317  (6).  Because  endogenous  ligands  for  the  above  proteins  (LXRs,  RORs,  PR,  NPLC1  and  above proteins (LXRs, RORs, PR, NPLC1 and NPC1L1) all have a steroid skeleton, we hypothesized that NPC1L1) all have a steroid skeleton, we hypothesized that if the phenanthridin‐6(5H)‐one scaffold  if the phenanthridin-6(5H)-one scaffold acts as a steroid surrogate, phenanthridinone derivatives would acts  as  a  steroid  surrogate,  phenanthridinone  derivatives  would  also  bind  to  other  NRs  that  also bind to other NRs that recognize endogenous steroidal ligands. The approach described here is recognize endogenous steroidal ligands. The approach described here is expected to be useful in the  expected to be useful in the development of novel steroid surrogates, such as the phenanthridinone development of novel steroid surrogates, such as the phenanthridinone skeleton, enabling efficient  skeleton, enabling efficient lead finding of ligands for target proteins that recognize endogenous lead  finding  of  ligands  for  target  proteins  that  recognize  endogenous  steroidal  ligands,  and  the  steroidal ligands, and the generation of more selective ligands by further molecular modifications of generation  of  more  selective  ligands  by  further  molecular  modifications  of  new  and  convenient  new and convenient scaffolds (easy to synthesis, easy to introduce substitutent(s) at any position, etc.), scaffolds (easy to synthesis, easy to introduce substitutent(s) at any position, etc.), compared to the  compared to the steroid skeleton. Here, we show that application of this approach to our small library steroid  skeleton.  Here,  we  show  that  application  of  this  approach  to  our  small  library  of  of phenanthridinone-based RORs inverse agonists and PR antagonists led to several selective LXRβ, phenanthridinone‐based  RORs  inverse  agonists  and  PR  antagonists  led  to  several  selective  LXRβ,  AR and glucocorticoid receptor (GR) antagonists. AR and glucocorticoid receptor (GR) antagonists.  2. Results and Discussion 2. Results and Discussion  AR and GR, members of NRs, recognize endogenous steroidal ligands as shown in Figure 1. AR and GR, members of NRs, recognize endogenous steroidal ligands as shown in Figure 1. In  In addition, because LXRs antagonistic activities of only limited numbers of phenanthridinone addition, because LXRs antagonistic activities of only limited numbers of phenanthridinone analog  analog have been reported [8], precise structure-activity relationships (SAR) remain unclear. have been reported [8], precise structure‐activity relationships (SAR) remain unclear. Therefore, we  Therefore, we exhaustively evaluated our small library of RORs inverse agonists and/or PR exhaustively evaluated our small library of RORs inverse agonists and/or PR antagonists bearing a  antagonists bearing a phenanthridinone skeleton for LXRα, LXRβ, AR and GR antagonistic activities, phenanthridinone skeleton for LXRα, LXRβ, AR and GR antagonistic activities, and examined their  and examined their SAR. LXRs regulate ATP-binding cassette proteins (ABCs), ApoE and glucose SAR.  LXRs  regulate  ATP‐binding  cassette  proteins  (ABCs),  ApoE  and  glucose  transporter  4  (GLUT4), are involved in lipid metabolism, reverse cholesterol transport, and glucose transport, so 

Int. J. Mol. Sci. 2018, 19, 2090

3 of 12

transporter 4 (GLUT4), are involved in lipid metabolism, reverse cholesterol transport, and glucose transport, so LXRs agonists are likely to be of therapeutic value in the treatment of atherosclerosis, hyperlipidemia, and metabolic syndrome. They are also involved in the upregulation of sterol regulatory element-binding protein-1c (SREBP-1c) and fatty acid synthase (FAS), so LXRs antagonists might have therapeutic value for hepatic steatosis [13]. AR is a receptor of androgens essential for the development and maintenance of the male reproductive system and secondary male sex characteristics. AR antagonists including hydroxyflutamide (OHF) are used for treatment of androgen-dependent tumors, especially prostate tumors. GR is a receptor of cortisol, and selective antagonists of GR could be useful in treating hypercortisolemia associated with Cushing’s syndrome and other conditions in which the endogenous GR is hyperactivated either through higher glucocorticoid levels or increased receptor sensitivity [14]. A steroidal GR antagonist, mifepristone (RU486), shows potent activities toward other steroid receptors. For this work, compounds 1–3, 7–42 and 44 were prepared as described previously [9,10,15]. PR-antagonistic activity was evaluated by assay of PR-regulated alkaline phosphatase activity in human breast cancer cell line T47D [10,16] while RORα, RORβ and RORγ inverse agonistic activities, and LXRα, LXRβ, AR and GR antagonistic activities were evaluated by reporter gene assay in HEK293 cell line [9,10]. Concentration of the agonists were set as around their EC50 values. Reproducibility of our assay systems is shown in Table S1. First, we focused on the SAR at the 2-position of phenanthridinone. The results, including the activities of positive controls T0901317 (6), RU486, and OHF, are shown in Table 1. We have reported that introduction of alkyl groups (8–10) or a hydroxymethyl group (11) at the 2-position of 7 resulted in retention or decrease of the PR-antagonistic activity [10] and RORs inverse agonistic activity [9]. Introduction of a hexafluoropropanol moiety somewhat increased the RORs activity and PR activity. According to the reported X-ray crystal structures of compound 6 and human LXRs LBD, the hydroxyl group of 6 forms a hydrogen bond with a histidine residue (His421 for LXRα and His435 for LXRβ) in helix 11 [17,18]. The SARs for RORs and PR are broadly consistent with those of LXRs, AR, and GR. For AR and PR, introduction of a hydroxymethyl group (11) resulted in retention of the activity, whereas introduction of hexafluoropropanol (12) resulted in 6-fold and 9-fold increases of PR and AR activity, respectively. On the other hand, for LXRs and RORs, 11 showed weaker activity than 7 whereas 12 showed stronger activity than 7, suggesting that the two trifluoromethyl groups might be associated with more potent activity and the hydroxyl group might not form a strong hydrogen bond with histidine in these receptors, in contrast to the other receptors. This idea is consistent with the reported co-crystal structure of T0901317 (6) complexed with RORγ [19]. Overall, we found that compound 12 showed not only PR-antagonistic activity and RORs inverse agonistic activity, but also LXRα, LXRβ, AR and GR antagonistic activity (Table 1). These results support our view that the phenanthridin-6(5H)-one scaffold acts as a steroid surrogate. Next, SAR at the nitrogen atom is shown in Table 2. Similar to the SAR for RORs, introduction of a longer-chain alkyl group on the nitrogen atom (12 and 15) resulted in enhancement of the GR antagonistic activity. SAR for AR was similar to that for PR, that is, hydrogen analog 12 showed potent AR antagonistic activity with an IC50 value of 0.10 µM, and more than 200-fold selectivity for AR over RORs and GR, and about 7.8- and 50-fold selectivity over PR and LXRs, respectively. The longest alkyl analog 17 showed decreased activity toward all NRs, suggesting that the binding pocket hosting the N-alkylated derivatives might not be able to accommodate a group larger than a hexyl group. Next, SAR at the nitrogen atom is shown in Table 2. Similar to the SAR for RORs, introduction of a longer-chain alkyl group on the nitrogen atom (12 and 15) resulted in enhancement of the GR antagonistic activity. SAR for AR was similar to that for PR, that is, hydrogen analog 12 showed potent AR antagonistic activity with an IC50 value of 0.10 µM, and more than 200-fold selectivity for AR over RORs and GR, and about 7.8- and 50-fold selectivity over PR and LXRs, respectively. The longest alkyl analog 17 showed decreased activity towards all NRs, suggesting that the binding pocket hosting the N-alkylated derivatives might not be able to accommodate a group larger than a hexyl group.

bond with histidine in these receptors, in contrast to the other receptors. This idea is consistent with  the reported co‐crystal structure of T0901317 (6) complexed with RORγ [19]. Overall, we found that  compound 12 showed not only PR‐antagonistic activity and RORs inverse agonistic activity, but also  LXRα,  LXRβ,  AR  and  GR  antagonistic  activity  (Table  1).  These  results  support  our  view  that  the  Int. J. Mol. Sci. 2018, 19, 2090 4 of 12 phenanthridin‐6(5H)‐one scaffold acts as a steroid surrogate.  Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW   

4 of 12 

Table 1. SAR at 2‐position.  Table 1. SAR at 2-position.

Next, SAR at the nitrogen atom is shown in Table 2. Similar to the SAR for RORs, introduction  of  a  longer‐chain  alkyl  group  on  the  nitrogen  atom  (12  and  15)  resulted  in  enhancement  of  the  GR  antagonistic activity. SAR for AR was similar to that for PR, that is, hydrogen analog 12 showed potent  AR antagonistic activity with an IC50 value of 0.10 μM, and more than 200‐fold selectivity for AR over  RORs and GR, and about 7.8‐ and 50‐fold selectivity over PR and LXRs, respectively. The longest alkyl    Compound  R  RORα 1  RORβ 1  RORγ 1  LXRα 2  LXRβ 2  PR 2,3  AR 2  GR 2  analog 17 showed decreased activity toward all NRs, suggesting that the binding pocket hosting the  1 1 1 Compound R RORα RORβ RORγ LXRα 2 4 LXRβ 2 4 PR 2,3 AR 2 GR 2 6  ‐  >20,000  >20,000  6500  290    130          N‐alkylated derivatives might not be able to accommodate a group larger than a hexyl group.  6 - ‐  >20,000  >20,000  6500   290 4   130 4   RU486  0.073    2.0  Next, SAR at the nitrogen atom is shown in Table 2. Similar to the SAR for RORs, introduction  RU486 - ‐  0.073  2.0 OH‐Flu            170    of  a OH-Flu longer‐chain  on  the  nitrogen  (12  and  15)  resulted  enhancement  of  the  GR  -alkyl  170 7  H  group 10,000  13,000  atom  15,000  19,000  15,000  in 7100  17,000  >20,000  7 8  H Me  10,000 17,000 >20,000 18,000  13,000 17,000  15,000 17,000  19,000 17,000  15,000 16,000  7100 7900  11,000  >20,000  antagonistic activity. SAR for AR was similar to that for PR, that is, hydrogen analog 12 showed potent  8 9  Me Et  18,000 17,000 17,000 17,000 16,000 7900 11,000 >20,000 9000  50 value of 0.10 μM, and more than 200‐fold selectivity for AR over  7900  9200  17,000  16,000  7800  19,000  19,000  AR antagonistic activity with an IC 9 10  Et t‐Bu  9000 19,000 19,000 12,000  7900 13,000  9200 10,000  17,000 >20,000  16,000 >20,000  7800 8300  17,000  >20,000  RORs and GR, and about 7.8‐ and 50‐fold selectivity over PR and LXRs, respectively. The longest alkyl  1011  t-Bu 12,000 13,000 10,000 >20,000 >20,000 8300 17,000 >20,000 >20,000  >20,000  >20,000  >20,000  >20,000  8600  9600  >20,000  CH2OH  11 CH2 OH >20,000 >20,000 >20,000 >20,000 >20,000 8600 9600 >20,000 analog 17 showed decreased activity towards all NRs, suggesting that the binding pocket hosting the  12  9800  6500  3900  8400  3700  1200  1800  7400  (CF3)2COH  12 (CF3 )2 COH 9800 6500 3900 8400 3700 1200 1800 7400 N‐alkylated derivatives might not be able to accommodate a group larger than a hexyl group.  1 Inverse agonistic activity (IC50: nM) [9].  2 Antagonistic activity (IC50: nM).  3 [10].  4 Agonistic activity  1

Inverse agonistic activity (IC50 : nM) [9]. 2 Antagonistic activity (IC50 : nM). 3 [10]. 4 Agonistic activity (IC50 : nM).

(IC50: nM). 

Table 2. SAR at nitrogen atom.  Table 2. SAR at nitrogen atom.

  Compound  Compound 1  113  14  13 15  1416  1517 

16 17

R  R H  HMe  Et  Me n‐Pr  Et n‐Hex  n-Pr n‐C9H19 

RORα 1  1 RORα >20,000  >20,000  >20,000 >20,000  >20,000 11,000  >20,000 7600  11,000 >20,000 

RORβ 1  1 RORβ >20,000  >20,000  >20,000 >20,000  >20,000 8200  >20,000 5400  8200 >20,000 

RORγ 1  1 RORγ >20,000  >20,000  >20,000 >20,000  >20,000 4200  >20,000 4700  4200 >20,000 

LXRα 2  2 LXRα 5000 4  4 4100    5000 14,000  4100 4 12,000  14,000 16,000  12,000 >20,000 

LXRβ 2 

PR 2,3 

2 LXRβ 5100 4 

2,3 PR 780 

>20,000 5100 4  4  6600  >20,000 4 6900  6600 10,000  6900 >20,000 

340  780 1400  340 3800  1400 2500  3800 10,000 

AR 2  AR 2 100  500  100 1700  500 5600  1700 4000  5600 15,000 

n-Hex 7600 5400 4700 16,000 10,000 2500 4000  Inverse agonistic activity (IC 50: nM) [9]. 2 Antagonistic activity (IC50: nM). 3 [10].4 [8]. 

1

n-C9 H19 1

>20,000

>20,000

>20,000 2

>20,000

>20,000

10,000 3

15,000

GR 2  GR 2 >20,000  >20,000  >20,000 >20,000  >20,000 17,000  >20,000 >20,000  17,000 >20,000 

>20,000 >20,000

4

Inverse agonistic activity (IC50 : nM) [9]. Antagonistic activity (IC50 : nM). [10]. [8]. Next, the effect of introduction of a methoxy group at every position (methoxy scanning) was  investigated (18–24; Table 3) because many types of NR ligands possess a methoxy group(s) [20]. We  Next, the effect of introduction of a methoxy group at every position (methoxy scanning) was have reported that 3‐methoxy and 4‐methoxy analogs 19 and 20 showed more than 3‐fold and 2‐fold  investigated Table 3) because types of NR analog  ligands 12,  possess a methoxy group(s) [20]. enhanced  PR (18–24; activity  compared  with many the  unsubstituted  respectively  [10].  In  contrast,  We have reported that 3-methoxy and 4-methoxy analogs 19 and 20 showed more than 3-fold and 9‐methoxy  analog  23  showed  5‐fold  weaker  PR  activity  than  12.  In  the  case  of  RORs,  we  have  2-fold enhanced PR activity compared with the unsubstituted analog 12, respectively [10]. In contrast, reported that introduction of a methoxy group at the 9‐position (23) enhanced ROR activities [9]. The  9-methoxy analog 23 showed 5-fold weaker PR activity than 12. In the case of RORs, we have reported activities toward LXRs, AR and GR also depended on the position of the methoxy group. 1‐Methoxy  that introduction of a methoxy group at the 9-position (23) enhanced ROR activities [9]. The activities analog 18 showed decreased activity for all receptors tested. Enhanced activity was observed when a  toward LXRs, AR and GR also depended on the position of the methoxy group. 1-Methoxy analog 18 methoxy group was introduced at the 4‐, 9‐ or 10‐position for LXRα, 9‐ or 10‐position for LXRβ, 3‐  showed decreased activity for all receptors tested. Enhanced activity was observed when a methoxy and 8‐position for AR, and 3‐ or 4‐position for GR. Especially, 3‐methoxy analog 19 showed 5.7‐fold  group was GR  introduced the 4-, 9- orwith  10-position for LXRα, 9- or 10-position for LXRβ, 3- andresulted  8-position improved  activity atcompared  12.  Overall,  introduction  of  a  methoxy  group  in  for AR, and 3or 4-position for GR. Especially, 3-methoxy analog 19 showed 5.7-fold improved GR increased activity in almost all cases except RORβ, but the most suitable position depended on the  activity compared with 12. Overall, introduction of a methoxy group resulted in increased activity in NR (3‐position: PR and GR, 8‐position: AR, 9‐position: RORα, RORγ and LXRβ, 10‐position: LXRα).  almost all cases except RORβ, but the most suitable position depended on the NR (3-position: PR and The introduction of a substituent at every position is useful to investigate substituent effects. In this  GR, 8-position: AR, 9-position: RORα, RORγ and LXRβ, 10-position: LXRα). The introduction of a context, it is important to note that phenanthridin‐6(5H)‐one analogs bearing substituent(s) at any  substituent at every position is useful to investigate substituent effects. In this context, it is important position can be quite easily synthesized, and this represents a considerable advantage compared to  to note that phenanthridin-6(5H)-one analogs bearing substituent(s) at any position can be quite easily the steroid skeleton.  synthesized, and this represents a considerable advantage compared to the steroid skeleton. The results of methoxy scanning prompted us to investigate the effect of introduction of two  The results methoxy scanning prompted us to investigate theGR,  effect of introduction of two methoxy  groups of (25–31  Table  3).  In  the  cases  of  RORα,  PR,  AR  and  3,4‐dimethoxy  analog  25  methoxy groups (25–31 Table 3). In the cases of RORα, PR, AR and GR, 3,4-dimethoxy analog 25 exhibited similar or weaker activity to the 3‐methoxy and 4‐methoxy analogs 19 and 20. A possible  exhibited similar or weaker activity to the 3-methoxy and 4-methoxy analogs 19 and 20. A possible explanation might be the direction of the two methoxy groups, that is, one or both might occupy a  explanation might be the direction of the two methoxy groups, that is, one or both might occupy a space space not suitable for receptor interaction due to steric hindrance. This idea is supported by the fact 

that 3,4‐dioxolane analog 26 showed stronger activity than 25 toward PR, AR and GR. Compound 26  was  the  most  potent  GR  antagonist  with  an  IC50  value  of  0.76  μM,  although  this  compound  also 

Int. J. Mol. Sci. 2018, 19, 2090 Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW   

5 of 12 5 of 12 

showed PR and AR antagonistic activities with IC50 values of 0.23 and 0.54 μM, respectively. When  not suitable for receptor interaction due to steric hindrance. This idea is supported by the fact that two  methoxy  groups  were  introduced  at  distal  positions,  the  activity  was  improved.  Thus,  Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW    5 of 12  3,4-dioxolane analog 26 showed stronger activity than 25 toward PR, AR and GR. Compound 26 was 3,8‐dimethoxy analog 27 and 4,8‐dimethoxy analog 28 showed more potent PR‐antagonistic activity  the most potent GR antagonist with an IC50 value of 0.76 µM, although this compound also showed PR showed PR and AR antagonistic activities with IC 50 values of 0.23 and 0.54 μM, respectively. When  than monomethoxy analogs 19, 20, and 22, and 3,8‐dimethoxy analog 27 showed more potent AR  and AR antagonistic activities with IC50 values of 0.23 and 0.54 µM, respectively. When two methoxy two  methoxy  groups  were  introduced  at  distal  positions,  the  activity  was  improved.  Thus,  antagonistic activity than monomethoxy analogs 19 and 22.  groups were introduced at distal positions, the activity was improved. Thus, 3,8-dimethoxy analog 3,8‐dimethoxy analog 27 and 4,8‐dimethoxy analog 28 showed more potent PR‐antagonistic activity  27 and 4,8-dimethoxy analog 28 showed more potent PR-antagonistic activity than monomethoxy Table 3. SAR of substitution effect of alkoxy groups.  than monomethoxy analogs 19, 20, and 22, and 3,8‐dimethoxy analog 27 showed more potent AR  analogs 19, 20, and 22, and 3,8-dimethoxy analog 27 showed more potent AR antagonistic activity than antagonistic activity than monomethoxy analogs 19 and 22.  monomethoxy analogs 19 and 22. Table 3. SAR of substitution effect of alkoxy groups.  Table 3. SAR of substitution effect of alkoxy groups.   Compound 



RORα 1 

RORβ 1 

RORγ 1 

LXRα 2 

LXRβ 2 

PR 2,3 

AR 2 

GR 2 

18 

1‐OMe 

>20,000 

>20,000 

>20,000 

>20,000 

>20,000 

4000 

>20,000 

>20,000 

19 

3‐OMe 

8200 

8200 

7500 

8400   

9200 

410 

1100 

20  Compound  Compound 21  18  18 22 19 19  23 20 20  24 21 21  22 25 23 22  26 24 23  27 25 24  26 28  25  27 29 28 26  30 29 27  30 31  28  31 29  30 

2,3  2  4‐OMe  7500  1  6900  1  5400  1  6900 2  5500 2  560  2400  R  RORα  RORβ  RORγ  LXRα  LXRβ  PR  AR  R RORα 1 RORβ 1 RORγ 1 LXRα 2 LXRβ 2 PR 2,3 AR 2 7‐OMe  12,000  15,000  13,000  11,000  12,000  12,000  9400  1‐OMe  >20,000  >20,000  >20,000  >20,000  >20,000  4000  >20,000  1-OMe >20,000 >20,000 >20,000 >20,000 >20,000 4000 >20,000 8‐OMe  12,000  15,000  13,000  12,000  11,000  1100  1000  3‐OMe  8200  8200  7500  8400  9200  410  1100  3-OMe 8200 8200 7500 8400 9200 410 1100 9‐OMe  6600  7200  2700  7000  2400  5800  >20,000  4-OMe 7500 6900 5400 6900 5500 560 2400 4‐OMe  7500  6900  5400  6900  5500  560  2400  7-OMe 12,000 15,000 13,000 11,000 12,000 12,000 9400 10‐OMe  7700  >20,000  8500  4600  4300  2700  >20,000  7‐OMe  12,000  15,000  13,000  11,000  12,000  12,000  9400  8-OMe 12,000 15,000 13,000 12,000 11,000 1100 1000 3,4‐diOMe  >10,000  >10,000  8500  8500  9600  510  6100  8‐OMe  12,000  15,000  13,000  12,000  11,000  1100  1000  9-OMe 6600 7200 2700 7000 2400 5800 >20,000 3,4‐(OCH 2O)  >20,000  >20,000  >20,000  >20,000  >20,000  230  540  10-OMe 7700 >20,000 8500 4600 4300 2700 >20,000 9‐OMe  6600  7200  2700  7000  2400  5800  >20,000  3,4-diOMe >10,000 >10,000 8500 8500 9600 510 6100 3,8‐diOMe  9500  13,000  12,000  17,000  18,000  300  580  10‐OMe  7700  >20,000  8500  4600  4300  2700  >20,000  3,4-(OCH2 O) >20,000 >20,000 >20,000 >20,000 >20,000 230 540 4,8‐diOMe  11,000  11,000  9700  >10,000  >10,000  340  1700  3,4‐diOMe  >10,000  >10,000  8500  8500  9600  510  6100  3,8-diOMe 9500 13,000 12,000 17,000 18,000 300 580 7,8‐diOMe  7300  7700  8000  3200  3200  4200  4600  3,4‐(OCH 2O)  >20,000  >20,000  >20,000  >20,000  >10,000 >20,000  230  540  4,8-diOMe 11,000 11,000 9700 >10,000 340 1700 7,8-diOMe 7300 7700 8000 3200 3200 4200 4600 >20,000  7,9‐diOMe  >20,000  >20,000  >20,000  >20,000  >20,000  >20,000  3,8‐diOMe  9500  13,000  12,000  17,000  18,000  300  580  7,9-diOMe >20,000 >20,000 >20,000 >20,000 >20,000 >20,000 >20,000 8,9‐diOMe  18,000  16,000  19,000  8800  8900  9600  1600  4,8‐diOMe  11,000  11,000  9700  >10,000  >10,000  340  1700  8,9-diOMe 18,000 16,000 19,000 8800 8900 9600 1600 17,8‐diOMe  2 Antagonistic activity (IC 3 [10].   Inverse agonistic activity (IC 50 : nM) [9].  50 : nM).  7300  7700  8000  3200  3200  4200  4600  1 Inverse agonistic activity (IC : nM) [9]. 2 Antagonistic activity (IC : nM). 3 [10]. 50 50 >20,000  7,9‐diOMe  >20,000  >20,000  >20,000  >20,000  >20,000  >20,000 

1300  2  3900  GR  GR 2 14,000  >20,000  >20,000 8200  1300  1300

10,000  3900 3900  14,000 >20,000  14,000  8200 >20,000  8200  10,000 760  >20,000 10,000  >20,000 1700  >20,000  760 5200  >20,000  1700 7900  760  5200 7900 >20,000  1700  >20,000 17,000  5200  17,000 7900  >20,000 

We next examined the SAR of fluoro derivatives 32–35 (Table 4) to investigate the effect of this  31  8,9‐diOMe  18,000  16,000  19,000  8800  8900  9600  1600  17,000 

We next examined the SAR of fluoro derivatives 32–35 (Table 4) to investigate the effect of this 1 Inverse agonistic activity (IC 2 Antagonistic activity (IC electron‐withdrawing  substituent.  For  PR,  the  preferences  for  fluorine  substitution  50: nM) [9].  50: nM). 3 [10]. position  were  electron-withdrawing substituent. For PR, the preferences for fluorine substitution position were roughly consistent with the results of the methoxy scanning, that is, 4‐ and 8‐substitued analogs 32  roughly consistent with the results of the methoxy scanning, that is, 4- and 8-substitued analogs 32 and We next examined the SAR of fluoro derivatives 32–35 (Table 4) to investigate the effect of this  and 34 showed enhanced PR activity, whereas 9‐substituted analogs 35 showed weaker PR activity  34 showed enhanced PR activity, whereas analogs 35 showed weaker PR activitywere  [10]. electron‐withdrawing  substituent.  For  PR, 9-substituted the  preferences  for  fluorine  substitution  position  [10]. For AR, all fluoro analogs 32–35 showed enhanced activity compared with 12, suggesting that  For AR, all fluoro analogs 32–35 showed enhanced activity compared with 12, suggesting that an roughly consistent with the results of the methoxy scanning, that is, 4‐ and 8‐substitued analogs 32  an  electron‐withdrawing  effect  at  these  positions  is  important  for  AR  antagonistic  activity.  For  electron-withdrawing effect at these positions is important for AR antagonistic activity. For LXRα, and 34 showed enhanced PR activity, whereas 9‐substituted analogs 35 showed weaker PR activity  LXRα, 4‐ and 7‐fluoro analogs 32 and 33 showed enhanced activity compared with 12.  4- and 7-fluoro analogs 32 and 33 showed enhanced activity compared with 12. [10]. For AR, all fluoro analogs 32–35 showed enhanced activity compared with 12, suggesting that  Table 4. SAR of substitution effect of fluorine atom.  an  electron‐withdrawing  effect  at  these  positions  is  important  for  AR  antagonistic  activity.  For  Table 4. SAR of substitution effect of fluorine atom. LXRα, 4‐ and 7‐fluoro analogs 32 and 33 showed enhanced activity compared with 12.  Table 4. SAR of substitution effect of fluorine atom.    Compound 

Position 

Compound

Position

32 



4 77  Position  88  99  4 

32 33 33 34 34 Compound  35 35 32  33  34 

1

1 RORα  1  

RORα

15,000 

1 RORβ  1  

RORβ

14,000 

1 RORγ  1  

RORγ

18,000 

15,000 14,000 18,000 7900  9800  13,000  7900 9800 13,000 1  17,000 1  11,000 11,000 1  >20,000 >20,000  RORα  RORβ  RORγ  17,000 9800 8300 5000 9800  8300  5000  15,000  14,000  18,000 

2 LXRα  2  

LXRα

3100 

3100 3100    3100 7900 2  LXRα  7900 6400 6400  3100 

LXRβ 2 

LXRβ 2 4600 

4600 3100  3100 6000 2  LXRβ  6000 5400 5400  4600 

PR 2,3 

PR 2,3 130 

130 730  730 2,3  310  PR  310 1000 1000  130 

AR 2 

AR 2

390 

390 460  460 680 2  AR  680 920 920  390 

1 Inverse agonistic activity (IC : nM) [9]. 22 Antagonistic activity (IC : nM). 3 [10].  Inverse agonistic activity (IC 50 Antagonistic activity (IC 7  7900  9800  13,000  3100  3100  50 50: nM).  730  3 [10].  460  50: nM) [9]. 



17,000 

11,000 

>20,000 

7900 

6000 

310 

680 

GR 2 

GR 2

6900 

6900 9800  9800 >20,000  GR 2  >20,000 7000 7000  6900  9800  >20,000 

We  then  examined examined  various  substituents  at  the  9-position 9‐position  (Table  5). 1000  We  reported  that  35  9  9800  substituents 8300  6400  5400  5). 7000  We then various at5000  the (Table We have  have920  reported that 1 Inverse agonistic activity (IC 2 Antagonistic activity (IC 3 [10].  introduction  of  a  chlorine  atom  at  the  9‐position  (2)  enhanced  inverse  agonistic  activity  toward  50 : nM) [9].  50 : nM).  introduction of a chlorine atom at the 9-position (2) enhanced inverse agonistic activity toward RORγ [9]. The SARs of RORγ were roughly consistent with the results for LXRβ, and 2 also exhibited  We  then  examined  various  substituents  at  the  9‐position  (Table  5).  We  have  reported  that  introduction  of  a  chlorine  atom  at  the  9‐position  (2)  enhanced  inverse  agonistic  activity  toward  RORγ [9]. The SARs of RORγ were roughly consistent with the results for LXRβ, and 2 also exhibited 

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW    Int. J. Mol. Sci. 2018, 19, 2090

6 of 12  6 of 12

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW   

6 of 12 

potent  LXRβ  antagonistic  activity  with  the  IC50  value  of  0.88  μM.  Replacement  of  fluorine  at  the  RORγ [9]. The of RORγ (2)  were roughly consistent with the results for LXRβ, and 2but  alsodecreased  exhibited 9‐position  (35) SARs with  chlorine  caused  enhanced  activity  toward  RORs and LXRβ,  potent  LXRβ  antagonistic  activity  with  the  IC50  value  of  0.88  μM.  Replacement  of  fluorine  at  the  potent LXRβ antagonistic activity with the IC value of 0.88 µM. Replacement of fluorine at the activity toward PR, AR, and GR, suggesting that molecular modification at the 9‐position would be  50 9‐position  (35)  with  chlorine  (2)  caused  enhanced  activity  toward  RORs and LXRβ,  but  decreased  9-position (35) with chlorine (2) caused enhanced activity toward RORs and LXRβ, but decreased important to improve selectivity for metabolic NRs over steroid receptors.  activity toward PR, AR, and GR, suggesting that molecular modification at the 9‐position would be  activity toward PR, AR, and GR, suggesting that molecular modification at the 9-position would be important to improve selectivity for metabolic NRs over steroid receptors.  Table 5. SAR of substitution effect at 9‐posiiton.  important to improve selectivity for metabolic NRs over steroid receptors. Table 5. SAR of substitution effect at 9‐posiiton.  Table 5. SAR of substitution effect at 9-posiiton.

  Compound  36  Compound  Compound 2  36  37 36 2  38  2 37  37 38  38

R  Me  R 

RCl 

Me 

RORα 1 

RORβ 1 

RORγ 1 

LXRα 2 

LXRβ 2 

7600  RORα 1 

7100  RORβ 1 

1000  RORγ 1 

12,000  LXRα 2 

3000  LXRβ 2 

7600 

7100 

1000 

12,000 

3000 

 

1 1 1 2 2 RORα 5600  RORβ4900  RORγ690  LXRα9200  LXRβ880 

PR 2,3  3700  PR 2,3 

2,3 PR 4300 

3700 

AR 2  6400  AR 2 

2 AR5200 

6400 

Me 7600 5500  71005600  10002600  12,000 6400 7100  3000 4500  3700 4200  >20,000  CF3  Cl  4900  690  9200  880  4300  5200  Cl 5600 5600  5200 OH  6400  49005500  6904100  92007000  8805500  4300 5100  >3000  4500  4200  >20,000 >20,000  CF CF 5500 5500  56005600  26002600  71007100  4500 4200 3 3  1 Inverse agonistic activity (IC 50: nM) [9]. 2 Antagonistic activity (IC50: nM). 3 [10].  OH 6400 6400  55005500  41004100  70007000  5500 5100 OH  5500  5100  >3000 >3000  1

GR 2  16,000  GR 2 

2 GR 10,000 

16,000 

16,000 >20,000  10,000  10,000 >20,000  >20,000  >20,000 >20,000 >20,000 

1 Inverse agonistic activity (IC : nM) [9]. 22  Antagonistic activity (IC : nM). 3 [10].  Inverse agonistic activity (IC 50 50: nM) [9].  Antagonistic activity (IC 50 50: nM). 3 [10]. 

Next, we focused on the 4‐position (Table 6), because 4‐methoxy analog 20 showed enhanced  RORα, LXRα and PR activity, and 4‐fluoro analog 32 showed enhanced LXRα, PR and AR activity.  Next, we focused on the 4‐position (Table 6), because 4‐methoxy analog 20 showed enhanced  Next, we focused on the 4-position (Table 6), because 4-methoxy analog 20 showed enhanced Compounds  39–44  and  2  showed  weak  activity  toward  RORs  and  GR,  indicating  that  the  alkyl  RORα, LXRα and PR activity, and 4‐fluoro analog 32 showed enhanced LXRα, PR and AR activity.  RORα, LXRα and PR activity, and 4-fluoro analog 32 showed enhanced LXRα, PR and AR activity. group on the nitrogen atom is important for activity toward these receptors. We have reported that  Compounds  39–44 and and 22 showed showed  weak  activity  toward  RORs  indicating  that  the group alkyl  Compounds 39–44 weak activity toward RORs andand  GR, GR,  indicating that the alkyl 4‐alkyl  analogs  40–42  showed  greater  PR  activity  than  the  unsubstituted  analog  1,  and  4‐methyl  group on the nitrogen atom is important for activity toward these receptors. We have reported that  on the nitrogen atom is important for activity toward these receptors. We have reported that 4-alkyl analog  40  had  an  IC50  value  of  0.15  μM  [10].  As  for  LXRs  and  AR,  4‐alkyl  analogs  40–42  showed  4‐alkyl  40–42  showed  greater  PR than activity  the  unsubstituted  1,  and analog 4‐methyl  analogsanalogs  40–42 showed greater PR activity the than  unsubstituted analog 1, analog  and 4-methyl 40 decreased activity compared with the unsubstituted analog 1,  whereas 4‐fluoro analog 32 showed  analog  40  had  an  IC 50   value  of  0.15  μM  [10].  As  for  LXRs  and  AR,  4‐alkyl  analogs  40–42  showed  had an IC50 value of 0.15 µM [10]. As for LXRs and AR, 4-alkyl analogs 40–42 showed decreased greater  activity  than  1.  Based  on  the  reported  SARs  of  non‐steroidal  AR  antagonists,  an  decreased activity compared with the unsubstituted analog 1,  activity compared with the unsubstituted analog 1, whereas whereas 4‐fluoro analog 32 showed  4-fluoro analog 32 showed greater electron‐withdrawing  substituent  neighboring  the  amide  bond  is  expected  to  be  important  for  greater  activity  than  1.  Based  on  the  reported  SARs  of  non‐steroidal  AR  antagonists,  an  activity than 1. Based on the reported SARs of non-steroidal AR antagonists, an electron-withdrawing potent AR antagonism [21]. Therefore, 4‐chloro analog 43 was designed and synthesized as shown in  electron‐withdrawing  substituent  the  amide  bond  is  expected  important [21]. for  substituent neighboring the amideneighboring  bond is expected to be important for potentto  ARbe  antagonism Scheme 1. Interestingly, 43 showed greater AR activity and weaker RORs, LXRs, PR and GR activity  potent AR antagonism [21]. Therefore, 4‐chloro analog 43 was designed and synthesized as shown in  Therefore, 4-chloro analog 43 was designed and synthesized as shown in Scheme 1. Interestingly, than  4‐fluoro  analog  32.  Compound  43  showed  the  IC50  value  of  0.059  μM,  being  2.9‐fold  more  Scheme 1. Interestingly, 43 showed greater AR activity and weaker RORs, LXRs, PR and GR activity  43 showed greater AR activity and weaker RORs, LXRs, PR and GR activity than 4-fluoro analog 32. potent  than  clinically  used  OHF  under  our  assay  conditions.  Compound  43  showed  more  than  than  4‐fluoro  32.  Compound  the  IC50  2.9-fold value  of more 0.059 potent μM,  being  2.9‐fold  more  Compound 43analog  showed the IC50 value43  of showed  0.059 µM, being than clinically used 340‐fold  selectivity  over  RORs  and  LXRβ,  and  90‐fold  and  6‐fold  selectivity  over  LXRα  and  PR,  potent  than  clinically  used  OHF  under  our  assay  conditions.  Compound  43  showed  more  than  OHF under our assay conditions. Compound 43 showed more than 340-fold selectivity over RORs respectively.  This  result  indicates  that  molecular  modification  at  the  4‐position  can  increase  340‐fold  selectivity  over  RORs  LXRβ,  and  and  6‐fold  selectivity  LXRα  and  PR,  and LXRβ, and 90-fold and 6-foldand  selectivity over 90‐fold  LXRα and PR, respectively. Thisover  result indicates that selectivity for AR over the other NRs.  respectively.  This  result  indicates  that can molecular  modification  at  the  can  increase  molecular modification at the 4-position increase selectivity for AR over4‐position  the other NRs. selectivity for AR over the other NRs.  Table 6. SAR at 4‐posiiton and other substitution effects.  Table 6. SAR at 4-posiiton and other substitution effects. Table 6. SAR at 4‐posiiton and other substitution effects. 

  Compound  Compound 39  Compound  40 39 39  41 40 40  42 41 41  43 42 42 43 3  44  3 44 43  3 3    3 3 3 44    3 3 

R  R 4‐OMe  R  4-OMe 4‐Me  4‐OMe  4-Me 4‐Et  4-Et 4‐Me  4‐n‐Pr  4-n-Pr 4‐Et  4‐Cl  4-Cl 4‐n‐Pr  4‐Me, 8‐F  4-Me, 8-F 4‐Cl  ‐  4‐Me, 8‐F 

RORα 1  RORα 1 >20,000  RORα  >20,0001  >20,000  >20,000  >20,000 >20,000  >20,000 >20,000  >20,000  >20,000 >20,000  >20,000  >20,000 >20,000  >20,000  >20,000 >20,000  >20,000  >20,000 >20,000 

RORβ 1  RORγ 1  LXRα 2  LXRβ 2  PR 2,3  AR 2  RORβ 1 RORγ 1 LXRα  2 LXRβ 2 PR 2,3 AR 2 >20,000  9600  >20,000  >20,000  270  >20,000  1 2 2 2,3 RORβ  RORγ  LXRα  LXRβ  PR  AR 2  >20,000 9600 1  >20,000 270 >20,000   >20,000  >20,000   >20,000 >20,000   150    >20,000 >20,000  >20,000  9600  >20,000  >20,000  270  >20,000  >20,000 >20,000 >20,000 >20,000 150 >20,000 >20,000  >20,000  >20,000  >20,000  210  14,000  >20,000 >20,000 >20,000 210 14,000 >20,000  >20,000  >20,000  >20,000  150  >20,000  11,000  9900  >20,000  >20,000 20,000  360  5400  11,000 9900 >20,000 20,000 5400 >20,000  >20,000  >20,000  >20,000  210  14,000  >20,000  >20,000  5300  >20,000  360 350  59  >20,000 >20,000 5300 >20,000 350 59 11,000  9900  >20,000  20,000  360  5400  >20,000  >20,000  >20,000  >20,000  46  1700  >20,000 >20,000 >20,000 46 1700 >20,000  >20,000  5300  >20,000 >20,000  350  59  >20,000  >20,000  >20,000  >20,000  27  300  >20,000 >20,000 >20,000 >20,000 27 >20,000  >20,000  >20,000  >20,000  46  3 300 1700  1 Inverse agonistic activity (IC 2  Antagonistic activity (IC50: nM).   [10].  1 Inverse agonistic activity (IC50: nM) [9]  [9] 2 Antagonistic (IC50 : nM). ‐  >20,000  >20,000  >20,000  >20,000 activity >20,000  27 3 [10]. 300  50 : nM)

 Inverse agonistic activity (IC50: nM) [9] 2 Antagonistic activity (IC50: nM). 3 [10]. 

1

GR 2  GR 2 >20,000  GR 2  >20,000 >20,000  >20,000  >20,000 >20,000  >20,000 >20,000  16,000  16,000 >20,000  >20,000  >20,000 16,000  >20,000  >20,000 >20,000  >20,000  >20,000 >20,000  >20,000 

Int. J. Mol. Sci. 2018, 19, 2090 Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW     

7 of 12 7 of 12  7 of 12 

   Scheme  Reagents  and  conditions:  (a)  CF 33COCF 33 ∙1.5H 2O,  p‐TsOH∙H 2O,  reflux,  27%;  (b)  ·1.5H Scheme 1. Reagents and conditions: (a)CF COCF p-TsOH2·O,  H O,toluene,  toluene, reflux, 27%; 2 O, 2toluene,  Scheme  1. 1.  Reagents  and  conditions:  (a)  3COCF 3∙1.5H 2O,  p‐TsOH∙H reflux,  27%;  (b)  ◦ C; ◦°C (b) 2-iodobenzoic acid, EDC, DMAP, DMF, 100 (c) SEMCl, NaH, DMF, 0 C to RT; (d) Pd(OAc) 2‐iodobenzoic  acid,  EDC,  DMAP,  DMF,  100  °C ;  (c)  SEMCl,  NaH,  DMF,  0    to  RT;  (d)  Pd(OAc) 2 2‐iodobenzoic  acid,  EDC,  DMAP,  DMF,  100  °C;  (c)  SEMCl,  NaH,  DMF,  0  °C  to  RT;  (d)  Pd(OAc)2, ,2,  ◦ C, 24% in 2 steps; (e) TBAF, THF, reflux, 18%. PCy ·3HBF ,4, Cs Cs22CO DMA, 130°C PCy ∙HBF 2CO CO °C , 24% in 2 steps; (e) TBAF, THF, reflux, 18%.  33∙HBF 33,, DMA, 130  PCy 44, Cs 3, DMA, 130  , 24% in 2 steps; (e) TBAF, THF, reflux, 18%. 

Chronic administration administration of  AR antagonists  antagonists often  often leads  leads to  the development  development of  resistance.  Chronic  administration  Chronic ofof AR  AR antagonists often leads toto the  the development ofof resistance.  resistance. Mutations in the LBD of AR, such as T877A, have been identified in patients treated with flutamide  Mutations in the LBD of AR, such as T877A, have been identified in patients treated with flutamide  Mutations in the LBD of AR, such as T877A, have been identified in patients treated with flutamide (Figure 2), and the activated metabolite, hydroxyflutamide, is an agonist of AR bearing T877A [22].  (Figure 2), and the activated metabolite, hydroxyflutamide, is an agonist of AR bearing T877A [22].  (Figure 2), and the activated metabolite, hydroxyflutamide, is an agonist of AR bearing T877A [22]. In  contrast,  another  AR antagonist,  enzalutamide,  was  reported  to antagonize  antagonize  AR mutant  mutant  T877A  In  contrast,  another  AR antagonist,  enzalutamide,  was  reported  to  T877A  In contrast, another AR antagonist, enzalutamide, was reported to antagonize AR AR  mutant T877A [23]. [23].  Thus,  development  of  a  novel  chemical  class  of  AR  antagonists,  different  from  flutamide  [23].  Thus,  development  of  a  chemical novel  chemical  of  AR  antagonists,  from  flutamide  Thus, development of a novel class ofclass  AR antagonists, differentdifferent  from flutamide analogs analogs seems an attractive approach for the treatment of AR antagonist‐resistant cancer, providing  analogs seems an attractive approach for the treatment of AR antagonist‐resistant cancer, providing  seems an attractive approach for the treatment of AR antagonist-resistant cancer, providing further further motivation  motivation  to evaluate  evaluate  steroid surrogates.  surrogates.  Therefore,  we investigated  investigated  the antiandrogenic  antiandrogenic  further  to  steroid  we  the  motivation to evaluate steroid surrogates. Therefore,Therefore,  we investigated the antiandrogenic activity of activity  of  several  potent  AR  antagonists  by  means  of  PSA  (prostate‐specific  antigen,  an  activity potent of  several  potent  AR  by (prostate-specific means  of  PSA antigen, (prostate‐specific  antigen,  an  several AR antagonists by antagonists  means of PSA an AR-regulated gene) AR‐regulated gene) ELISA (enzyme‐linked immunosorbent assay) in human prostate cancer cell line  AR‐regulated gene) ELISA (enzyme‐linked immunosorbent assay) in human prostate cancer cell line  ELISA (enzyme-linked immunosorbent assay) in human prostate cancer cell line LNCaP, which has LNCaP,  which has  has  T877A  mutation  in  the  AR LBD.  LBD.  Potent  AR  antagonist  43 did  did activity not show  show  LNCaP,  which  T877A  mutation  the  AR  antagonist  43  not  T877A mutation in the AR LBD. Potentin  AR antagonist 43Potent  did notAR  show antiandrogenic in antiandrogenic activity in LNCaP, whereas several other AR antagonists including 33 decreased the  antiandrogenic activity in LNCaP, whereas several other AR antagonists including 33 decreased the  LNCaP, whereas several other AR antagonists including 33 decreased the PSA level with an IC50 of 50  of 190 nM (Table 7). This result suggests that the new non‐flutamide type AR  PSA level with an IC  of 190 nM (Table 7). This result suggests that the new non‐flutamide type AR  PSA level with an IC 190 nM (Table 7). This50result suggests that the new non-flutamide type AR antagonist 33 is a promising antagonist 33 is a promising candidate for antiandrogen therapy of prostate cancer.  antagonist 33 is a promising candidate for antiandrogen therapy of prostate cancer.  candidate for antiandrogen therapy of prostate cancer.

    Figure 2. Chemical structures of AR antagonists.  Figure 2. Chemical structures of AR antagonists.  Figure 2. Chemical structures of AR antagonists. Table 7. Antiandrogenic activity toward AR antagonist‐resistant cell line LNCaP.  Table 7. Antiandrogenic activity toward AR antagonist‐resistant cell line LNCaP.  Table 7. Antiandrogenic activity toward AR antagonist-resistant cell line LNCaP. Compound  AR Reporter Gene IC AR Reporter Gene IC 50 (nM)  LNCaP IC 50 (nM) ± SEM  Compound  50 (nM)  LNCaP IC 50 (nM) ± SEM  1  100  >10,000  100  IC50 (nM) >10,000  Compound1  AR Reporter Gene LNCaP IC50 (nM) ± SEM 13  500  >10,000  13  500  >10,000  1 100 540  >10,000 26  560 ± 260 (N = 2)  26  540  560 ± 260 (N = 2)  13 500 >10,000 32  390 ± 30 (N = 2)  490 ± 260 (N = 2)  32  390 ± 30 (N = 2)  490 ± 260 (N = 2)  26 540 560 ± 260 (N = 2) 33  460  190 ± 95 (N = 2)  33  460  190 ± 95 (N = 2)  32 390 ± 30680  (N = 2) 490 ± 260 (N = 2) 34  680  >10,000  34  >10,000  33 460 190 ± 95 (N = 2) 35  920  550 ± 110 (N = 2)  35  920  550 ± 110 (N = 2)  34 680 >10,000 43  59 ± 9.5 (N = 2)  >10,000  43  59 ± 9.5 (N = 2)  >10,000 

35 920 550 ± 110 (N = 2) Mean IC 50 values with standard error of mean (SEM) from 1 or N times independent experiments.  Mean IC 50 values with standard error of mean (SEM) from 1 or N times independent experiments.  43 59 ± 9.5 (N = 2) >10,000 Mean IC50 values with standard error of mean (SEM) from 1 or N times independent experiments. 3. Materials and Methods  3. Materials and Methods 

3.3.1. Chemistry  Materials and Methods 3.1. Chemistry  3.1. Chemistry 3.1.1. General  3.1.1. General  1H NMR spectra were recorded on a JNM‐ECA500 (500 MHz) spectrometer (JEOL Ltd., Tokyo,  3.1.1.1H NMR spectra were recorded on a JNM‐ECA500 (500 MHz) spectrometer (JEOL Ltd., Tokyo,  General Japan).  Chemical  shifts  (δ)  are reported  reported  in parts  parts per  per million.  million.  Flash  column chromatography  chromatography  was  1 H Chemical  Japan).  shifts  (δ)  are  Flash  column  was  NMR spectra were recorded on a in  JNM-ECA500 (500 MHz) spectrometer (JEOL Ltd., Tokyo, performed on silica gel 60N (40–50 mm) (Kanto Chemical Co., Inc., Tokyo, Japan). HPLC analyses to  performed on silica gel 60N (40–50 mm) (Kanto Chemical Co., Inc., Tokyo, Japan). HPLC analyses to  Japan). Chemical shifts (δ) are reported in parts per million. Flash column chromatography was check purity were performed on an analytical column (GL Science Inc., Tokyo, Japan) Inertsil ODS‐4  check purity were performed on an analytical column (GL Science Inc., Tokyo, Japan) Inertsil ODS‐4 

Int. J. Mol. Sci. 2018, 19, 2090

8 of 12

performed on silica gel 60N (40–50 mm) (Kanto Chemical Co., Inc., Tokyo, Japan). HPLC analyses to check purity were performed on an analytical column (GL Science Inc., Tokyo, Japan) Inertsil ODS-4 reversed-phase column, 5 µm, 4.6 mm × 150 mm) eluted with a mobile phase consisting of CH3 CN/water at a flow rate of 1.0 mL/min, with UV (ultraviolet) monitoring at 254 nm, at 37 ◦ C. 3.1.2. 2-(4-Amino-3-chlorophenyl)-1,1,1,3,3,3-hexafluoropropan-2-ol (46) To a solution of 2-chloroaniline (45) (1.58 mL, 15.0 mmol) in toluene (11 mL) were added hexafluoroacetone trihydrate (2.06 mL, 18.0 mmol) and p-TsOH (258 mg, 1.50 mmol). The mixture was stirred for 8.5 h at 110 ◦ C, and then cooled to room temperature. Water was added, and the resulting mixture was extracted with AcOEt. The combined organic layer was washed with brine, dried over Na2 SO4 , and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane/AcOEt = 10:1-3:1) to give 46 as a pink solid (9%). 1 H NMR (500 MHz, CDCl3 ) δ: 7.58 (s, 1H), 7.35 (d, J = 8.6 Hz, 1H), (d, J = 9.2 Hz, 1H). 3.1.3. N-(2-Chloro-4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl)-2-iodobenzamide (47) To a solution of EDC (742 mg, 3.87 mmol) and DMAP (473 mg, 3.87 mmol) in DMF (4.0 mL) was added 2-iodobenzoic acid (640 mg, 2.58 mmol) under an Ar atmosphere. The mixture was stirred for 30 min at room temperature, then 46 (379 mg, 1.29 mmol) was added to it, and stirring was continued at 100 ◦ C for 4 h. The resulting mixture was cooled, diluted with water, and extracted with AcOEt. The combined organic layer was washed with brine, dried over Na2 SO4 , and concentrated under reduced pressure. The residue was purified by column chromatography (n-hexane/AcOEt = 4:1) to give 47 (181 mg, 0.346 mmol, 27%) as a brown solid. 1 H NMR (500 MHz, DMSO-d6 ) δ: 7.94 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 1.7 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.52 (d, J = 4.6 Hz, 2H), 7.24 (td, J = 3.9, 1.3 Hz, 1H). 3.1.4. N-(2-Chloro-4-(1,1,1,3,3,3-hexafluoro-2-((2-(trimethylsilyl)ethoxy)methoxy)propan-2-yl)phenyl)2-iodo-N-((2-(trimethylsilyl)ethoxy)methyl)benzamide (48) Sodium hydride (41.6 mg, 1.04 mmol) was added to a solution of 47 (181 mg, 0.346 mmol) in DMF (1.5 mL) at 0 ◦ C. The mixture was stirred for 1 h at 0 ◦ C, then SEMCl (184 µL, 1.04 mmol) was added at 0 ◦ C, and stirring was continued for 6 h at room temperature. The resulting mixture was diluted with AcOEt, quenched with water, and extracted with AcOEt. The combined organic layer was washed with water, dried over Na2 SO4 , and concentrated. The residue was purified by column chromatography (n-hexane/AcOEt = 20:1 to 10:1) to give 48 (219 mg, 0.279 mmol) as a colorless oil. The compound was used for the next reaction without further purification. 3.1.5. 4-Chloro-2-(1,1,1,3,3,3-hexafluoro-2-((2-(trimethylsilyl)ethoxy)methoxy)propan-2-yl)-5((2-trimethylsilyl ethoxy)methyl)phenanthridin-6(5H)-one (49) To a solution of 48 (219 mg, 0.279 mmol) in DMA (1.0 mL) were added PCy3 ·HBF4 (63.7 mg, 0.173 mmol), Cs2 CO3 (620 mg, 1.90 mmol) and Pd(OAc)2 (12.0 mg, 0.0532 mmol) under an Ar atmosphere. The mixture was stirred for 3 h at 130 ◦ C, then cooled to room temperature, and water was added. The resulting mixture was extracted with AcOEt. The combined organic layer was washed with brine, dried over Na2 SO4 , and concentrated under reduced pressure. The residue was purified by column chromatography (n-hexane/AcOEt = 20:1) to give 49 as a brown oil (45.2 mg, 0.0824 mmol, 24% in 2 steps). 1 H NMR (500 MHz, CDCl3 ) δ: 8.56 (s, 1H), 8.53 (dd, J = 8.0, 1.1 Hz, 1H), 8.26 (d, J = 7.7, 1.5 Hz, 1H), 7.62 (t, J = 8.0 Hz, 1H), 7.47 (s, 1H), 5.85 (s, 2H), 4.95 (s, 2H), 3.88 (t, J = 8.6 Hz, 2H), 3.74 (t, J = 8.3 Hz, 2H), 1.02 (t, J = 8.3 Hz, 2H), 0.98 (m, 2H), 0.02 (s, 9H), −0.05 (s, 9H). 3.1.6. 4-Chloro-2-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenanthridin-6(5H)-one (43) TBAF (1 M in THF, 0.779 mL, 0.779 mmol) was added to a solution of 49 (42.7 mg, 0.0779 mmol) in THF (0.8 mL) at room temperature. The reaction mixture was stirred under reflux for 9 h, then diluted

Int. J. Mol. Sci. 2018, 19, 2090

9 of 12

with water, and extracted with AcOEt. The combined organic layer was washed with brine, dried over Na2 SO4 , and concentrated under reduced pressure. The residue was purified by column chromatography (CHCl3 /MeOH = 40:1) to give 43 as a pale yellow solid (18%). 1 H NMR (500 MHz, DMSO-d ) δ: 8.35 (d, J = 8.6 Hz, 1H), 8.27 (dd, J = 8.0, 1.1 Hz, 1H), 7.86–7.83 6 (m, 1H), 7.68 (d, J = 8.6 Hz, 1H), 7.63 (t, J = 7.4 Hz, 1H), 7.41 (d, J = 8.6 Hz, 1H). HLPC purity 97.0% (area %). 3.2. Biology 3.2.1. T-47D Alkaline Phosphatase Assay T-47D alkaline phosphatase assays were performed as described in the literature [10]. Briefly, human ductal breast epithelial tumor (T-47D) cells were treated with fresh medium containing test compound plus progesterone (final concentration 1 nM), and incubated for 24 h. The fixed cells were washed with PBS and assay buffer was added. After the reaction was terminated, the absorbance at 405 nm was measured. All data points were measured in triplicate. 3.2.2. Reporter Gene Assay Human embryonic kidney (HEK) 293 cells (RIKEN BRC, Ibaraki, Japan) were maintained in DMEM (Dulbecco’s Modified Eagle’s medium) containing 5% (v/v) fetal bovine serum, and penicillin/streptomycin at 37 ◦ C in a humidified atmosphere of 5% CO2 in air. Cells were seeded in clear-bottomed white 96-well plates at a density of 1 × 104 cells/well and incubated for 6 h prior to transfection. Cells were co-transfected with 30 ng of a NR expression plasmid, 50 ng of a luciferase reporter and 10 ng of CMX-β-galactosidase expression vector per well, using the calcium phosphate co-precipitation method. After 24 h, transfected cells were treated with dimethyl sulfoxide (DMSO) or DMSO solution of test compounds for 24 h. T0901317 (0.3 µM), T0901317 (0.1 µM), dihydrotestosterone (0.3 nM), and dexamethasone (1 nM) were used as agonists for LXRα, LXRβ, AR and GR, respectively. After addition of a luciferase substrate, luminescence was detected with a luminometer. The luciferase activity of each sample was normalized by β-galactosidase activity: 2-nitrophenyl-β-D-galactopyranoside was added, and the absorbance was measured at 405 nm. Each sample was carried out in triplicate. A six-point sigmoidal dose-response curve was generated for each compound. The IC50 value for each compound was calculated by linear approximation of two points adjacent to 50% inhibition with logarithmic scale. In Table S1, biological reproducibility are reported as the mean IC50 ± SEM. Nuclear receptor plasmids: GR (CMX-hGR), AR (CMX-hAR), ROR (pcDNA3.1(-)-hRORα1, pcDNA3.1(-)-hRORβ1, pcDNA3.1(-)-hRORγ1), LXR (CMX-GAL4N-hLXRα-LBD, CMX-GAL4NhLXRβ-LBD). Luciferase reporter plasmids: GR (MTV-Luc), AR (ARE-Luc), ROR (RORE-TK-Luc), LXR (TK-MH100x4-Luc). Plasmids for AR, GR and LXRs were provided by Prof. Dr. Makishima, and plasmids for RORs were provided by Itsuu Institute (Kanagawa, Japan). 3.2.3. PSA Level in LNCaP Cell Line The human prostate cancer cell line LNCaP (ECACC, London, UK) was routinely maintained in RPMI1640 containing 10% (v/v) fetal bovine serum, and penicillin/streptomycin at 37 ◦ C in a humidified atmosphere of 5% CO2 in air. Cells were cultured in RPMI1640 without phenol red containing 10% (v/v) charcoal-stripped fetal bovine serum, and penicillin/streptomycin at 37 ◦ C in a humidified atmosphere of 5% CO2 in air for 3 days. Then cells were plated in 96-well plates at 1 × 104 cells/well and incubated overnight. On the next day, cells were treated with fresh media containing test compound plus dihydrotestosterone (final concentration 10 nM), and incubated for 48 h. Then, PSA levels were measured in the culture supernatants, after 100-fold dilution with the

Int. J. Mol. Sci. 2018, 19, 2090

10 of 12

medium, using ELISA (Immunospec Corp., CA, USA Free prostate-specific antigen cat. #E29-212) according to the manufacturer’s instructions. All data points were carried out twice in triplicate. 4. Conclusions Development of non-steroidal NR ligands is desirable to obtain safer, more selective agents for clinical use. Here, non-steroidal antagonists for multiple target proteins including LXRβ (IC50 : 0.88 µM), AR (IC50 : 0.10 µM), GR (IC50 : 0.76 µM) were efficiently identified by exhaustive evaluation of a small steroid surrogate library. In addition, a potent AR antagonist 43 (IC50 : 0.059 µM) belonging to a new chemical class was developed. Further, AR antagonist 33 showed antiandrogenic activity toward AR antagonist-resistant cell line LNCaP with the IC50 value of 190 nM. Structure-activity relationship studies of phenanthridinone analogs revealed that (1) hydrogen at the nitrogen is important for AR and PR activity, and a longer alkyl group is favorable for RORs and GR activity, (2) molecular modification at the 9-position can increase selectivity for metabolic NRs over steroid receptors, and (3) an electron-withdrawing substituent on the phenyl group is important for AR antagonistic activity, while modification at the 4-position can increase selectivity for AR over other NRs. The phenanthridinone skeleton is more readily modifiable than the steroid skeleton. Thus, our strategy of efficient lead finding, activity enhancement and preliminary control of selectivity over other receptors should expand the utility of the multi-template approach, even though the compounds obtained here still require further optimization. Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/7/ 2090/s1. Author Contributions: Conceptualization, Y.H.; methodology, Y.N. and M.I.; validation, Y.N., S.F., Y.H. and M.I.; organic synthesis, Y.N.; plasmid preparation, M.M.; data curation, Y.N. and M.I.; writing—original draft preparation, M.I.; supervision, S.F., M.M., Y.H. and M.I.; funding acquisition, S.F., Y.H. and M.I. Funding: The work described in this Letter was partially supported by Grants-in Aid for Scientific Research from The Ministry of Education, Culture, Sports, Science and Technology, Japan, and the Japan Society for the Promotion of Science (KAKENHI Grant No. 17H03996 (Y.H.), No. 17H03997(S.F.) and No. 25293027 (M.I.)). Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations NR SAR PR LXR AR GR LBD ROR NPC1 NPC1L1 OHF Ts EDC DMAP DMF SEM Cy DMA TBAF THF

Nuclear receptors Structure-activity relationship Progesterone receptor Liver X receptor Androgen receptor Glucocorticoid receptor Ligand-binding domains retinoic acid receptor-related orphan receptors Niemann-Pick disease type C1 Niemann-Pick disease type C1-like 1 Hydroxyflutamide p-Toluenesulfonyl N-Ethyl-N’-(3-dimethylaminopropyl)carbodiimide 4-(N,N-Dimethylamino)pyridine Dimethylformamide 2-(Trimethylsilyl)ethoxymethyl Cyclohexyl Dimethylacetamide Tetrabutylammonium fluoride Tetrahydrofuran

Int. J. Mol. Sci. 2018, 19, 2090

11 of 12

References 1. 2.

3.

4.

5.

6. 7.

8.

9.

10.

11.

12.

13. 14.

15.

16. 17.

Rask-Andersen, M.; Almén, M.S.; Schiöth, H.B. Trends in the Exploitation of Novel Drug Targets. Nat. Rev. Drug Discov. 2011, 10, 579–590. [CrossRef] [PubMed] Hosoda, S.; Matsuda, D.; Tomoda, H.; Hashimoto, Y. Diphenylpentane Skeleton as a Multi-Template for Steroid Skeleton- Recognizing Receptors/Enzymes. Mini Rev. Med. Chem. 2009, 9, 572–580. [CrossRef] [PubMed] Kainuma, M.; Kasuga, J.; Hosoda, S.; Wakabayashi, K.; Tanatani, A.; Nagasawa, K.; Miyachi, H.; Makishima, M.; Hashimoto, Y. Diphenylmethane Skeleton as a Multi-Template for Nuclear Receptor Ligands: Preparation of FXR and PPAR Ligands. Bioorg. Med. Chem. Lett. 2006, 16, 3213–3218. [CrossRef] [PubMed] Motoshima, K.; Noguchi-Yachide, T.; Sugita, K.; Hashimoto, Y.; Ishikawa, M. Separation of α-GlucosidaseInhibitory and Liver X Receptor-Antagonistic Activities of Phenethylphenyl Phthalimide Analogs and Generation of LXRα-Selective Antagonists. Bioorg. Med. Chem. 2009, 17, 5001–5014. [CrossRef] [PubMed] Hosoda, S.; Tanatani, A.; Wakabayashi, K.-I.; Makishima, M.; Imai, K.; Miyachi, H.; Nagasawa, K.; Hashimoto, Y. Ligands with a 3,3-Diphenylpentane Skeleton for Nuclear Vitamin D and Androgen Receptors: Dual Activities and Metabolic Activation. Bioorg. Med. Chem. 2006, 14, 5489–5502. [CrossRef] [PubMed] Maruyama, K.; Noguchi-Yachide, T.; Sugita, K.; Hashimoto, Y.; Ishikawa, M. Novel Selective Anti-Androgens with a Diphenylpentane Skeleton. Bioorg. Med. Chem. Lett. 2010, 20, 6661–6666. [CrossRef] [PubMed] Maruyama, K.; Nakamura, M.; Tomoshige, S.; Sugita, K.; Makishima, M.; Hashimoto, Y.; Ishikawa, M. Structure-Activity Relationships of Bisphenol A Analogs at Estrogen Receptors (ERs): Discovery of an ERα-Selective Antagonist. Bioorg. Med. Chem. Lett. 2013, 23, 4031–4036. [CrossRef] [PubMed] Aoyama, A.; Aoyama, H.; Dodo, K.; Makishima, M.; Hashimoto, Y.; Hiroyuki, M. LXR Antagonists with a 5-Substituted Phenanthridin-6-one Skeleton: Synthesis and LXR Transrepression Activities of Conformationally Restricted Carba-T0901317 Analogs. Heterocycles 2008, 76, 137–142. [CrossRef] Nishiyama, Y.; Nakamura, M.; Misawa, T.; Nakagomi, M.; Makishima, M.; Ishikawa, M.; Hashimoto, Y. Structure-Activity Relationship-Guided Development of Retinoic Acid Receptor-Related Orphan Receptor Gamma (RORγ)-Selective Inverse Agonists with a Phenanthridin-6(5H)-one Skeleton from a Liver X Receptor Ligand. Bioorg. Med. Chem. 2014, 22, 2799–2808. [CrossRef] [PubMed] Nishiyama, Y.; Mori, S.; Makishima, M.; Fujii, S.; Kagechika, H.; Hashimoto, Y.; Ishikawa, M. Novel Non-Steroidal Progesterone Receptor (PR) Antagonists with a Phenanthridinone Skeleton. ACS Med. Chem. Lett. 2018, 9, 641–645. [CrossRef] Fukuda, H.; Karaki, F.; Dodo, K.; Noguchi-Yachide, T.; Ishikawa, M.; Hashimoto, Y.; Ohgane, K. Phenanthridin-6-one Derivatives as the First Class of Non-Steroidal Pharmacological Chaperones for Niemann-Pick Disease Type C1 Protein. Bioorg. Med. Chem. Lett. 2017, 27, 2781–2787. [CrossRef] [PubMed] Karaki, F.; Ohgane, K.; Fukuda, H.; Nakamura, M.; Dodo, K.; Hashimoto, Y. Structure–activity Relationship Study of Non-Steroidal NPC1L1 Ligands Identified through Cell-Based Assay Using Pharmacological Chaperone Effect as a Readout. Bioorg. Med. Chem. 2014, 22, 3587–3609. [CrossRef] [PubMed] Griffett, K.; Solt, L.A.; El-gendy, B.E.-D.M.; Kamenecka, T.M.; Burris, T.P. A Liver-Selective LXR Inverse Agonist That Suppresses Hepatic Steatosis. ACS Chem. Biol. 2013, 8, 559–567. [CrossRef] [PubMed] Nieman, L.K.; Chrousos, G.P.; Kellner, C.; Spitz, I.M.; Nisula, B.C.; Cutler, G.B.; Merriam, G.R.; Bardin, C.W.; Loriaux, D.L. Successful Treatment of Cushing’s Syndrome with the Glucocorticoid Antagonist RU 486. J. Clin. Endocrinol. Metab. 1985, 61, 536–540. [CrossRef] [PubMed] Aoyama, H.; Sugita, K.; Nakamura, M.; Aoyama, A.; Salim, M.T.; Okamoto, M.; Baba, M.; Hashimoto, Y. Fused Heterocyclic Amido Compounds as Anti-Hepatitis C Virus Agents. Bioorg. Med. Chem. 2011, 19, 2675–2687. [CrossRef] [PubMed] Di Lorenzo, D.; Albertini, A.; Zava, D. Progestin Regulation of Alkaline Phosphatase in the Human Breast Cancer Cell Line T47D. Cancer Res. 1991, 51, 4470–4475. [PubMed] Svensson, S.; Östberg, T.; Jacobsson, M.; Norström, C.; Stefansson, K.; Hallén, D.; Johansson, I.C.; Zachrisson, K.; Ogg, D.; Jendeberg, L. Crystal Structure of the Heterodimeric Complex of LXRα and RXRβ Ligand-Binding Domains in a Fully Agonistic Conformation. EMBO J. 2003, 22, 4625–4633. [CrossRef] [PubMed]

Int. J. Mol. Sci. 2018, 19, 2090

18.

19.

20.

21.

22.

23.

12 of 12

Williams, S.; Bledsoe, R.K.; Collins, J.L.; Boggs, S.; Lambert, M.H.; Miller, A.B.; Moore, J.; McKee, D.D.; Moore, L.; Nichols, J.; et al. X-Ray Crystal Structure of the Liver X Receptor β Ligand Binding Domain: Regulation by a Histidine-Tryptophan Switch. J. Biol. Chem. 2003, 278, 27138–27143. [CrossRef] [PubMed] Yang, T.; Liu, Q.; Cheng, Y.; Cai, W.; Ma, Y.; Yang, L.; Wu, Q.; Orband-Miller, L.A.; Zhou, L.; Xiang, Z.; et al. Discovery of Tertiary Amine and Indole Derivatives as Potent RORγt Inverse Agonists. ACS Med. Chem. Lett. 2014, 5, 65–68. [CrossRef] [PubMed] Nomura, S.; Endo-Umeda, K.; Aoyama, A.; Makishima, M.; Hashimoto, Y.; Ishikawa, M. Styrylphenylphthalimides as Novel Transrepression-Selective Liver X Receptor (LXR) Modulators. ACS Med. Chem. Lett. 2015, 6, 902–907. [CrossRef] [PubMed] Van Oeveren, A.; Motamedi, M.; Mani, N.S.; Marschke, K.B.; López, F.J.; Schrader, W.T.; Negro-Vilar, A.; Zhi, L. Discovery of 6-N,N-Bis(2,2,2-trifluoroethyl)amino-4-trifluoromethylquinolin-2(1H)-one as a Novel Selective Androgen Receptor Modulator. J. Med. Chem. 2006, 49, 6143–6146. [CrossRef] [PubMed] Steketee, K.; Timmerman, L.; Ziel-Van Der Made, A.C.J.; Doesburg, P.; Brinkmann, A.O.; Trapman, J. Broadened Ligand Responsiveness of Androgen Receptor Mutants Obtained by Random Amino Acid Substitution of H874 and Mutation Hot Spot T877 in Prostate Cancer. Int. J. Cancer 2002, 100, 309–317. [CrossRef] [PubMed] Tran, C.; Ouk, S.; Clegg, N.J.; Chen, Y.; Watson, P.A.; Arora, V.; Wongvipat, J.; Smith-Jones, P.M.; Yoo, D.; Kwon, A.; et al. Development of a Second-Generation Antiandrogen for Treatment of Advanced Prostate Cancer. Science 2009, 324, 787–790. [CrossRef] [PubMed] © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Suggest Documents