Electron Energy-loss Spectrometry & Energy-Filtering TEM

21 downloads 115 Views 8MB Size Report
Gatan Imaging Filter, 1991 better spectrometers. Cs correctors monochromators. Zeiss EM902 with. LEO EM911 with Omega filter, 1991. 2000. Zeiss EM902 ...
Electron Energy-loss Spectrometry & Energy-Filtering TEM Ferdinand Hofer

Institute for Electron Microscopy Graz University of Technology & Graz Centre for Electron Microscopy

www.felmi-zfe.at April, 19th, 2011, Belgrade 1

Outline

• Electron energy-loss spectrometry (EELS) • Energy-filtering TEM (EFTEM) • High Hi h energy resolution l ti EELS • Experiments with low energy-losses • New Developments: STEM-EELS-EDX

April, 19th, 2011, Belgrade 2

Microscopes & New Methods

„Environmental“ Scanning electron microscope FEI Quanta 600

2. Installation worldwide

Development of methods and applications HR-SEM

57 employees, 11 microscopes et al., ….. ~ 30 cooperations with research groups / year ~ 100 cooperations with ith industry i d t AFM ti VEECO 3500

Zeiss Ultra

+ glovebox

From basic to applied research in materials & biological sciences

Analytical HR-TEM Tecnai F20 FEI „„Focused ion beam“ microscope p NANOLAB Nova 200 FEI

1. Installation in Austria April, 19th, 2011, Belgrade 3

History y of EELS & EFTEM Gatan Imaging Filter, 1991

better spectrometers Cs correctors monochromators

LEO EM911 with Omega filter, 1991 Zeiss EM902 with Henry-Castaing filter, 1984 Gatan Ser. EELS, 1982

2000

1986 Gatan PEELS 1986 Shuman, post-column energy filter 1981-1991 Krahl & Rose, corr. :-filter 1974 Rose & Plies, proposal of magnetic :-filter

Hillier & Baker, EELS for microanalysis, 1945 1962 Henry & Castaing: double magnetic prism & electrostatic mirror Boersch with monochromator 1949 Möllenstedt with a retarding grid 1942 Ruthemann, 1. EELS spectrum April, 19th, 2011, Belgrade 4

Electron Specimen p Interactions in TEM Incident high energy electrons 60 300 kV 60-300

Auger electrons X-rays Secondary electrons

Thin specimen 10-200 nm

Elastically scattered electrons Inelastically scattered electrons

TEM, HREM, ED

EELS, EFTEM

April, 19th, 2011, Belgrade 5

Measurement of the EELS-Spectrum p Electrons Eo Specimen Eo - 'E

Energy-filter

EELS-spectrum

I Imaging i by bof selecting l ti electrons Spectrum inelastic 'E electrons = Electron with energy-loss spectrum = (EELS) energy-filtering TEM (EFTEM)

April, 19th, 2011, Belgrade 6

EELS & Energy-filtering gy g TEM Recording g of 1. energy-filtered images

EDX detector

Philips CM20 + Gatan Imaging Filterimprovement, (1993) thickness maps, contrast FEI2. Tecnai F20 + HR-Gatan IMaging FilterLi-U (2002) Elemental distribution maps,

3. Distribution of chemical bonding

R Recording di off energy-filtered filt d iimages For recording of EEL-spectra

In-Column-Filters: Zeiss-SMT, JEOL April, 19th, 2011, Belgrade 7

Electron Energy-loss gy Spectrometry p y (EELS) ( ) process

energy loss [eV] phonons 0.02 - 0.10 EELS spectrum of a 20 nm thin~TiC specimen inter-/intra-band transitions 5 - 25 plasmons ~ 5 - 25 4735x inner-shell ionizations ~ 30 - 1000 (5000) background

information content TE [mrad] 5 - 15 "heat" p p properties, p , band g gap p 5 - 10 optical < 0.1 free electron density 1-5 element, chemical bonding

Li - U Zero-loss peak intensity

Core excitations

Ti L23

CK

Valence excitations

0

100

Edge fine structures 200

300

400

500

600

Energy Loss (eV) April, 19th, 2011, Belgrade 8

EELS & EFTEM Information Content Low-loss region ('E < 50 eV) • Specimen S i thickness thi k • Valence and conduction electron density • Complex dielectric function High-loss region ('E > 50 eV) • Elemental composition Li Li-U U • Chemical bonding and electronic structure • Coordination numbers • Interatomic I t t i distances di t Some further advantages: • High signal collection efficiency (approaching 100%) • High spatial resolution (at limit of TEM/STEM probe size) • High energy resolution (at limit of TEM of beam energy spread & instrumental instabilities) April, 19th, 2011, Belgrade 9

Qualitative EELS Analysis y The simple case

Real world sample!!!! 165 eV = S L2,3 832 eV = La M5

532 eV = O K

227 eV = Mo M4,5 285 eV = C K 155 eV V=M Mo M3

779 eV = Co L3

= La-Co-Oxid

455 eV = Ti L2,3 532 eV =OK

= Mo-Sulfide with Ti-oxide inclusions April, 19th, 2011, Belgrade 10

Quantification Valid for very thin specimens, signal is integrated within integration window ' and collection angle E, useful for biological samples z e r o - lo s s peak

4735x

b a c k g ro u n d

(E ,' ) IAA(E, (E,') )

intensity

N

Ilow(E,') ' 0

50

' 200

300

400

e n e r g y - lo s s ( e V )

NA

I A E , ' E , ' ˜ V A E , ' I low l l loss

NA number of atoms per unit area Ilow(E,') intensity in low-loss region VA(E,') (E ') partial ionization cross cross-section section April, 19th, 2011, Belgrade 11

Quantitative EELS: Y-Ba-Cu-oxide YBa2Cu3O7, recorded at E0=200kV, E=7.6 mrad, D=1.5 mrad, t/O=0.20

Hofer & Kothleitner, Microsc.Microanal.Microstr. 7 (1996) 265 April, 19th, 2011, Belgrade 12

Chemical Bonding g and Band Structure ELNES = Electron Energy Loss Near Edge Structure a XANES = x-ray absorption near edge structure occupied

1s

bonding orbitals

unoccupied states

antibonding

„free“ electron states

B K edge

ELNES

EXELFS

April, 19th, 2011, Belgrade 13

Energy-filtering TEM ( (EFTEM) ) Electron spectroscopic p p imaging g g (ESI)

April, 19th, 2011, Belgrade 14

Zero-Loss Zero Loss Filtering Zero-loss filtering – removal of blurring effect of inelastic scattering U filt d bright Unfiltered b i ht field fi ld image i

Zero-loss filtered bright field image (0 ± 5) eV

200 nm

EFTEM zero loss imaging is essential for quantitative CBED F Hofer, P Warbichler; in “Transmission EELS in Materials Science”, eds. Disko & Ahn, Wiley (2004) April, 19th, 2011, Belgrade 15

Contrast Tuning by EFTEM Bright field image

Energy-filtered image @ (50 ± 2.5) eV

F Hofer, P Warbichler; in “Transmission EELS in Materials Science”, eds. Disko & Ahn, Wiley (2004) April, 19th, 2011, Belgrade 16

Energy-filtering TEM (EFTEM) Imaging of ionisation edges (elemental maps) 4735 4735x

zero-loss peak

background

core excitations

intensity

Ti L23 CK

valence excitations

0

100

200

300

400

500

600

Energy Loss (eV) EELS spectrum of a 20 nm thin TiC specimen April, 19th, 2011, Belgrade 17

Secondary Phases in Materials Ferritic-martensitic 10% Cr steel with W and Mo Type GX12CrMoWVNbN 10000 hours at 480oC

Fe M2,3 jump ratio image with rocking beam illumination

? Volume fraction of secondary phases

0.5 Pm TEM bright field image

Reduced diffraction features !

Hofer & Warbichler, Ultramicroscopy 63 (1996) 21 April, 19th, 2011, Belgrade 18

EFTEM & Steel Research Creep-resistant 10% Cr steel with W and Mo, 10000 hours at 480oC RGB-image: red = Mo, green = Cr, blue = V

Volume fraction of secondary

0.5 m phases = 7 vol%

0.5 µm

Fe2(Mo,W)

Particle size frequency curves measured d ffrom jump j ratio ti iimages

(Cr,Fe,Mo,W)23C6

VN

Hofer & Warbichler Warbichler, in: Transmission EELS in Materials Science, Springer (2004) April, 19th, 2011, Belgrade 19

EFTEM Concentration Maps p Quantitative phase distribution in a Ba-Nd-titanate ceramic

Nd2Ti2O7 0.01 r 0.04 BaNd titanate 0.31 r 0.07 0

0.3

Ba rich phase 500 nm

TEM image

Ba/Nd / atomic ratio map

-0.16 0 16

Ba/Nd

13 1.3

Reduction of diffraction effects & thickness variations F. Hofer et al., Ultramicroscopy 67 (1998) 63 April, 19th, 2011, Belgrade 20

Spatial Resolution EFTEM 2

d

'E 2 O 2 3 2 R  ((C C ˜ E ˜ )  ((C S ˜ D )  (0.6 ˜ ) E0 E 2

Delocalisation of inelastic scattering

• Diffraction limit

• important for low energies 'E