Gatan Imaging Filter, 1991 better spectrometers. Cs correctors monochromators.
Zeiss EM902 with. LEO EM911 with Omega filter, 1991. 2000. Zeiss EM902 ...
Electron Energy-loss Spectrometry & Energy-Filtering TEM Ferdinand Hofer
Institute for Electron Microscopy Graz University of Technology & Graz Centre for Electron Microscopy
www.felmi-zfe.at April, 19th, 2011, Belgrade 1
Outline
• Electron energy-loss spectrometry (EELS) • Energy-filtering TEM (EFTEM) • High Hi h energy resolution l ti EELS • Experiments with low energy-losses • New Developments: STEM-EELS-EDX
April, 19th, 2011, Belgrade 2
Microscopes & New Methods
„Environmental“ Scanning electron microscope FEI Quanta 600
2. Installation worldwide
Development of methods and applications HR-SEM
57 employees, 11 microscopes et al., ….. ~ 30 cooperations with research groups / year ~ 100 cooperations with ith industry i d t AFM ti VEECO 3500
Zeiss Ultra
+ glovebox
From basic to applied research in materials & biological sciences
Analytical HR-TEM Tecnai F20 FEI „„Focused ion beam“ microscope p NANOLAB Nova 200 FEI
1. Installation in Austria April, 19th, 2011, Belgrade 3
History y of EELS & EFTEM Gatan Imaging Filter, 1991
better spectrometers Cs correctors monochromators
LEO EM911 with Omega filter, 1991 Zeiss EM902 with Henry-Castaing filter, 1984 Gatan Ser. EELS, 1982
2000
1986 Gatan PEELS 1986 Shuman, post-column energy filter 1981-1991 Krahl & Rose, corr. :-filter 1974 Rose & Plies, proposal of magnetic :-filter
Hillier & Baker, EELS for microanalysis, 1945 1962 Henry & Castaing: double magnetic prism & electrostatic mirror Boersch with monochromator 1949 Möllenstedt with a retarding grid 1942 Ruthemann, 1. EELS spectrum April, 19th, 2011, Belgrade 4
Electron Specimen p Interactions in TEM Incident high energy electrons 60 300 kV 60-300
Auger electrons X-rays Secondary electrons
Thin specimen 10-200 nm
Elastically scattered electrons Inelastically scattered electrons
TEM, HREM, ED
EELS, EFTEM
April, 19th, 2011, Belgrade 5
Measurement of the EELS-Spectrum p Electrons Eo Specimen Eo - 'E
Energy-filter
EELS-spectrum
I Imaging i by bof selecting l ti electrons Spectrum inelastic 'E electrons = Electron with energy-loss spectrum = (EELS) energy-filtering TEM (EFTEM)
April, 19th, 2011, Belgrade 6
EELS & Energy-filtering gy g TEM Recording g of 1. energy-filtered images
EDX detector
Philips CM20 + Gatan Imaging Filterimprovement, (1993) thickness maps, contrast FEI2. Tecnai F20 + HR-Gatan IMaging FilterLi-U (2002) Elemental distribution maps,
3. Distribution of chemical bonding
R Recording di off energy-filtered filt d iimages For recording of EEL-spectra
In-Column-Filters: Zeiss-SMT, JEOL April, 19th, 2011, Belgrade 7
Electron Energy-loss gy Spectrometry p y (EELS) ( ) process
energy loss [eV] phonons 0.02 - 0.10 EELS spectrum of a 20 nm thin~TiC specimen inter-/intra-band transitions 5 - 25 plasmons ~ 5 - 25 4735x inner-shell ionizations ~ 30 - 1000 (5000) background
information content TE [mrad] 5 - 15 "heat" p p properties, p , band g gap p 5 - 10 optical < 0.1 free electron density 1-5 element, chemical bonding
Li - U Zero-loss peak intensity
Core excitations
Ti L23
CK
Valence excitations
0
100
Edge fine structures 200
300
400
500
600
Energy Loss (eV) April, 19th, 2011, Belgrade 8
EELS & EFTEM Information Content Low-loss region ('E < 50 eV) • Specimen S i thickness thi k • Valence and conduction electron density • Complex dielectric function High-loss region ('E > 50 eV) • Elemental composition Li Li-U U • Chemical bonding and electronic structure • Coordination numbers • Interatomic I t t i distances di t Some further advantages: • High signal collection efficiency (approaching 100%) • High spatial resolution (at limit of TEM/STEM probe size) • High energy resolution (at limit of TEM of beam energy spread & instrumental instabilities) April, 19th, 2011, Belgrade 9
Qualitative EELS Analysis y The simple case
Real world sample!!!! 165 eV = S L2,3 832 eV = La M5
532 eV = O K
227 eV = Mo M4,5 285 eV = C K 155 eV V=M Mo M3
779 eV = Co L3
= La-Co-Oxid
455 eV = Ti L2,3 532 eV =OK
= Mo-Sulfide with Ti-oxide inclusions April, 19th, 2011, Belgrade 10
Quantification Valid for very thin specimens, signal is integrated within integration window ' and collection angle E, useful for biological samples z e r o - lo s s peak
4735x
b a c k g ro u n d
(E ,' ) IAA(E, (E,') )
intensity
N
Ilow(E,') ' 0
50
' 200
300
400
e n e r g y - lo s s ( e V )
NA
I A E , ' E , ' V A E , ' I low l l loss
NA number of atoms per unit area Ilow(E,') intensity in low-loss region VA(E,') (E ') partial ionization cross cross-section section April, 19th, 2011, Belgrade 11
Quantitative EELS: Y-Ba-Cu-oxide YBa2Cu3O7, recorded at E0=200kV, E=7.6 mrad, D=1.5 mrad, t/O=0.20
Hofer & Kothleitner, Microsc.Microanal.Microstr. 7 (1996) 265 April, 19th, 2011, Belgrade 12
Chemical Bonding g and Band Structure ELNES = Electron Energy Loss Near Edge Structure a XANES = x-ray absorption near edge structure occupied
1s
bonding orbitals
unoccupied states
antibonding
„free“ electron states
B K edge
ELNES
EXELFS
April, 19th, 2011, Belgrade 13
Energy-filtering TEM ( (EFTEM) ) Electron spectroscopic p p imaging g g (ESI)
April, 19th, 2011, Belgrade 14
Zero-Loss Zero Loss Filtering Zero-loss filtering – removal of blurring effect of inelastic scattering U filt d bright Unfiltered b i ht field fi ld image i
Zero-loss filtered bright field image (0 ± 5) eV
200 nm
EFTEM zero loss imaging is essential for quantitative CBED F Hofer, P Warbichler; in “Transmission EELS in Materials Science”, eds. Disko & Ahn, Wiley (2004) April, 19th, 2011, Belgrade 15
Contrast Tuning by EFTEM Bright field image
Energy-filtered image @ (50 ± 2.5) eV
F Hofer, P Warbichler; in “Transmission EELS in Materials Science”, eds. Disko & Ahn, Wiley (2004) April, 19th, 2011, Belgrade 16
Energy-filtering TEM (EFTEM) Imaging of ionisation edges (elemental maps) 4735 4735x
zero-loss peak
background
core excitations
intensity
Ti L23 CK
valence excitations
0
100
200
300
400
500
600
Energy Loss (eV) EELS spectrum of a 20 nm thin TiC specimen April, 19th, 2011, Belgrade 17
Secondary Phases in Materials Ferritic-martensitic 10% Cr steel with W and Mo Type GX12CrMoWVNbN 10000 hours at 480oC
Fe M2,3 jump ratio image with rocking beam illumination
? Volume fraction of secondary phases
0.5 Pm TEM bright field image
Reduced diffraction features !
Hofer & Warbichler, Ultramicroscopy 63 (1996) 21 April, 19th, 2011, Belgrade 18
EFTEM & Steel Research Creep-resistant 10% Cr steel with W and Mo, 10000 hours at 480oC RGB-image: red = Mo, green = Cr, blue = V
Volume fraction of secondary
0.5 m phases = 7 vol%
0.5 µm
Fe2(Mo,W)
Particle size frequency curves measured d ffrom jump j ratio ti iimages
(Cr,Fe,Mo,W)23C6
VN
Hofer & Warbichler Warbichler, in: Transmission EELS in Materials Science, Springer (2004) April, 19th, 2011, Belgrade 19
EFTEM Concentration Maps p Quantitative phase distribution in a Ba-Nd-titanate ceramic
Nd2Ti2O7 0.01 r 0.04 BaNd titanate 0.31 r 0.07 0
0.3
Ba rich phase 500 nm
TEM image
Ba/Nd / atomic ratio map
-0.16 0 16
Ba/Nd
13 1.3
Reduction of diffraction effects & thickness variations F. Hofer et al., Ultramicroscopy 67 (1998) 63 April, 19th, 2011, Belgrade 20
Spatial Resolution EFTEM 2
d
'E 2 O 2 3 2 R ((C C E ) ((C S D ) (0.6 ) E0 E 2
Delocalisation of inelastic scattering
• Diffraction limit
• important for low energies 'E