Binuclear and oligonuclear complexes of platinum group elements have met enormous interest in this decade due to their numerous potential applications.
SPECIAL ISSUE ON PLATINUM GROUP CHEMISTRY, PART I
ELECTRONIC STRUCTURE OF BINUCLEAR PLATINUM COMPLEXES Axel Klein Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany CONTENTS Abstract 1. Introduction 2. Electrochemistry 3. ESR spectroscopy 4. Optical spectroscopy 5. UV/Vis/NIR spectroelectrochemistry 6. Conclusion 7. References
283 283 288 293 294 296 298 299
ABSTRACT Reports on investigations on the electronic structure of binuclear platinum complexes were reviewed over the past decade, focusing on compounds with organic bridging ligands that separate the metal centers but are potentially able to mediate metal-metal interaction.
1. INTRODUCTION Binuclear and oligonuclear complexes of platinum group elements have met enormous interest in this decade due to their numerous potential applications. Their well established photophysical and photochemical properties determine such molecules as potential antenna molecules for light harvesting, light induced catalysis or electrocatalysis.1"5 A quite efficient way to assemble polynuclear complexes is the use of defined bridging ligands.
283 Bereitgestellt von | Universitaets- und Stadtbibliothek Koeln Angemeldet | 134.95.205.81 Heruntergeladen am | 23.11.12 12:46
Vol. 20, No. 4, 2000
mainly
of
Electronic Structure of Binuclear Platinum
the
multinuclear
polyimine
complexes
type1'6"'Extensive
of
studies
are
reported
1 3 710 12
ruthenium,
osmium, " ·
Complexes
"
rhodium
on and
iridium. 1314 In contrast, much less work has been devoted to comparable platinum or palladium complexes. Interest in platinum complexes of that type is fed by their interesting properties found in cancer research15"21 or catalysis.22'23 The present review focuses on homobinuclear complexes of platinum and their electronic structure as determined by various techniques. Heterobimetallic compounds24"31 that have met some interest in the last few years are not discussed here. The interesting class of homobimetallic or oligometallic compounds showing direct Pt Pt interaction will be reviewed only briefly in this introduction. It is well known that compounds like [(bpy)Pt(X)2]
(X
thienyl)pyridine), 40
=
CI,
CN),32"39
Br,
[Pt(thpy)2]
(thpy
[Pt(terpy)X]+,41"43 or [Pt(quaterpy)]2+
44
=
2-(2-
form
inler-
molecular stacks in the solid state and also in solution at high concentrations, as can be seen from characteristical spectroscopic phenomena e.g. excimer emission.45"47 These w/ermolecular Pt Pt distances range approximately from 3 to 4.5 A. Molecules with short /Miramolecular Pt Pt contacts are formed using bridging anions like X", RO", RS" or RSe" (R = H, alky I or aryl),48-56 small nitrogen triazenido. bridging
containing 58,59
bridging
ligands
like pyrazolato, 57
amidinato
or
Also new complexes with alkinyl or phosphinoalkyne
ligands,60"62
bidentate
bis(diphenylphosphino)methane)
63 64
phosphines
like
dppm
(dppm
=
or the well studied phosphonates have
been reported.65"67 In addition, biorelevant molecules like arginine or nucleobases are able to bridge two or more platinum centers.68"74 The Pt Pt distances for these compounds range between 2.8 and 3.5 A. Another interesting molecule is formed by two para-benzoquinones
and 4,5-
diazafIuoren-9-one, all three of which bridge two platinum(O) centers forming a binuclear complex. The palladium derivative was structurally characterized and a Pd-Pd distance of 2.775 A was found. 75 A dative Pt-Pt bond in the solid state (d Pt-Pt = 2.723 Ä) but non-bonding interaction in fluid solution,
as seen
from NMR experiments,
is reported
diphenylphosphinocyclopentadienyl bridged binuclear complex.
76
for a Shorter
Pt Pt distances are found in compounds where a real Pt-Pt bond has to be discussed.77"79 In contrast to the compounds mentioned above, this paper will deal with homobinuclear platinum complexes, where a bridging ligand separates the platinum centres by at least 5 A, but is potentially able to mediate the
284 Bereitgestellt von | Universitaets- und Stadtbibliothek Koeln Angemeldet | 134.95.205.81 Heruntergeladen am | 23.11.12 12:46
Axel Klein
Reviews in Inorganic Chemistry
interaction of the two platinum centers via its unsaturated π system. The ligands used were mainly nitrogen containing aromatic or iminic ligands. The design of the ligands allows not only to vary the Pt Pt distance and connectivity but also the Pt-ligand interaction (Scheme 1).
tdidien
bpip
Scheme 1: Schematic representation of the bridging ligands used in this work, bpym = 2,2'-bipyrimidine, bptz = 3,6-bis(2-pyridyl)-l,2,4,5-tetrazine tdidien = l,4-bis(l-(N,N'-dimethylaminoethyl)iminoethyl)benzene (Bis(N,N-dimethylaminoethyl)terephthaldiimide), bpip = 2,5-bis(l-phenyliminoethyl)pyrazine,.
Results will be presented from various electrochemical and spectroscopic methods that have been used to probe for interactions of the metal centers and the bridging ligand and also for the interaction between the metal centres. The synthesis and characterization of the platinum compounds shown in Scheme 2 were previously described. 80 " 84 For 5 the molecular structure could be determined from single crystal X-ray diffraction; the Pt-Pt distance is 5.751 A. 83
285 Bereitgestellt von | Universitaets- und Stadtbibliothek Koeln Angemeldet | 134.95.205.81 Heruntergeladen am | 23.11.12 12:46
Vol. 20, No. 4, 2000
Electronic Structure of Binuclear Platinum
Φ
Complexes
V)
ω Έ
Φ 2
α.
/\
mK3 ν
σ>ΐ
/ α.
/ \ α>
V) 0) Έ
bpip > tdidien, parallel to decreasing nitrogen content and increasing electron density in the central phenyl-type core.
4. OPTICAL SPECTROSCOPY One of the typical properties of binuclear platinum complexes of that type is the appearance of low-energy optical transitions. If the bridging ligands possess low-lying π*-orbitals they are usually assigned to charge transfer transitions. Due to the coordination of two electrophilic platinum centres they are found at very low energies (often in the NIR region). Table 4 lists some absorption data.
Table 4 UV/Vis/NIR absorption data of parent complexes a compound
CT (3)
CT (2)
CT(1)
1 2 3 4 5 7 8 9
374 309 301 362, 375 372sh 370sh, 398sh
482sh 410 395 432 402 428sh, 511sh 348 690 465sh 557, 603, 654 510sh 471 411 334
588 535, 595 520, 576 627 623 600 461, 477sh 852 588sh, 641sh, 698 765 670sh, 734, 805sh 534 473 447
Μ 11 11 13 Μ 15 a
440 414 418 400 372 328 243
Absorption maxima (in nm) as measured in CH2C12.
294 Bereitgestellt von | Universitaets- und Stadtbibliothek Koeln Angemeldet | 134.95.205.81 Heruntergeladen am | 23.11.12 12:46
Axel Klein
Reviews in Inorganic
Chemistry
The energy of the lowest transition decreases along the series tdidien > bpym > bpip > bptz. Hence the optical transition simply reflects the relative energy of the π* LUMO of the bridging ligand. Such a comparison for complexes with various Pt fragments is not so straightforward, since the transitions are not necessarily of the same character. For the platinum(II) complexes at least two d(Pt)-7i* (MLCT) transitions are observed. For the PtMe4 complexes the long-wavelength absorption has σ(Με-Ρί-Με)-π* (SBLCT) character, the compounds are therefore photolabile. The transitions at higher energies are of MLCT type. The character of the low-energy absorption in PtMe3X complexes is assigned to a ρπ(Χ)-π* (LLCT) • ·
94
transition. For the mixed complex 7 the absorption spectrum (Figure 1) is the exact superposition of the spectra of the two homoleptic complexes 4 and 5. So the chromophores seem to be isolated from each other.
300
400
500 600 λ [nm]
700
800
Fig. 1: Absorption spectra of 4 (upper), 7 (middle) and 5 (lower) in CH2C12
295 Bereitgestellt von | Universitaets- und Stadtbibliothek Koeln Angemeldet | 134.95.205.81 Heruntergeladen am | 23.11.12 12:46
Vol. 20, No. 4, 2000
Electronic Structure of Binuclear Platinum
Complexes
A similar behaviour was reported by Eisenberg et al. for the dipyridocatecholate bridged complex 18 shown in Scheme 6.95 96
18 Scheme 6: Schematic representation of complex 18. Although the absorption spectrum appears to arise from overlapping, independent transitions of separate isolated chromophores, the authors assume some interaction between the platinum centres because the expected emission of the [(tdt)Pt(dbcat)] chromophore is quenched. For the binuclear complex [Ph2Pt(dpp)PtCl2] (dpp = 2,3-bis(2-pyridyl)pyrazine) also no emission was found, whereas both monomelic complexes are luminescent.6 Whether this is a hint for a platinum-platinum interaction, or whether the excited state structure and dynamics have simply changed from the mononuclear to the dinuclear complex, is still unclear. So far, we have not observed luminescence for any of the binuclear complexes presented here. The main reason for this failure might be that the spectroscopic range for such emissions would lie beyond 900 nm and such emissions are assumed to be quite weak.
5. UV/VIS/NIR SPECTROELECTROCHEMISTRY The UV/Vis/NIR spectra of the reduced forms of the dinuclear platinum complexes have been recorded using spectroelectrochemical techniques, that is the in situ electrolysis in an optical transparent ihin-/ayer electrochemical (OTTLE) cell.97 First of all, this technique provides an excellent tool to probe for long-term reversibility of electrochemical processes. It was shown for the present complexes that the first reduction is fully reversible for all the
296 Bereitgestellt von | Universitaets- und Stadtbibliothek Koeln Angemeldet | 134.95.205.81 Heruntergeladen am | 23.11.12 12:46
Reviews in Inorganic Chemistry
Axel Klein
complexes but 13. Also many of the (ligand-based) second reductions were reversible under these conditions. The oxidized forms of the Pt mesityl complexes, however, are stable for some minutes at ambient temperature. Table 5 shows some selected data for some in situ prepared radical anionic complexes. Table 5 UV/Vis/NIR absorption data of radical anionic ligands and platinum complexes 3 compound b
IL (3)
IL (2)
IL(1)
369
517, 548
819, 930
{2}-
373
501
892
{4}" -
469
580
872
376 375
507
912
503
954, 1124
373
492, 525
959, 1128
280
460
700
{10}"
375
468, 596
735, 840
{11}' {12}' {bptz} °
313 398
540 475
630
240
353, 482sh
{9}'
290
553, 613sh d
{tdidien}
416
540
{bpym}
(5>{7}" {bpip}
c
1056
673
539 682 895 {UK 408 538 634 {15}" a Generated by in situ electrolysis in THF/0.1 Μ Bu 4 NPF 6 . MeCN. d Residual MLCT.
b
In DMF.
c
In
The data confirm that the reduction occurs mainly at the bridging ligands. Thus, the absorption spectra of the radicals anions are very similar to those of the free ligands. The long-wavelength absorptions are assigned to transitions from the Tt*(SOMO) to higher LUMOs. From MO calculations it should be anticipated that the energy of the lowest transition for both the platinum complexes and the free ligands should decrease in the series tdidien > bpip > bpym > bptz. 98 ' 99 This is exactly what is found for the first three systems. The bptz system, however, does not show the expected transition at very lowenergy that should be anticipated from the very close lying second LUMO of the same symmetry. 99 We can explain this speculatively by assuming that
297
Bereitgestellt von | Universitaets- und Stadtbibliothek Koeln Angemeldet | 134.95.205.81 Heruntergeladen am | 23.11.12 12:46
Vol. 20, No. 4, 2000
Electronic Structure of Binuclear Platinum
Complexes
either this transition lies in the IR region of the spectrum, or that the two MO levels have become degenerate in the platinum complex. Investigations on this subject are ongoing. At present we cannot correlate the observed transition energies with the influences from the platinum fragments. More detailed assignments based on theoretical calculations are warranted. A good probe for the metal-metal interaction in mixed-valent species is the observation of a intervalence charge transfer band (IVCT). The energy, line-width and intensity allows to classifiy mixed-valent species according to Marcus and Hush's theory.100"102 For the above binuclear complex 16 (Scheme 4) an IVCT band at 704 nm (ε = 700 Μ"1 cm"1) was found. 91 For the mixed-valent species {9}+ a IVCT band could not be observed due to the lability of this species but further efforts are ongoing.
6. CONCLUSION The systematic investigation of the electronic properties of binuclear platinum(II) or platinum(IV) complexes with a number of unsaturated nitrogen containing bridging ligands has revealed specific interactions between the bridging ligand and the platinum fragments, as well as metalmetal interactions mediated by the bridging ligands. Electrochemical data reflect
both
types
of
interactions
very
well.
Spectroelectrochemical
techniques (UV/Vis/NIR or ESR) have allowed to locate the redox sites for the individual processes, e.g ligand-based reductions and platinum-based oxidations. Also, they gave further evidence on the reversiblity of these reactions. Futhermore, ESR spectroscopy showed that, apart from the coupling constant of the platinum centers to the unpaired electron, the g anisotropy is also a means to determine the extent of mixing between metal and ligand orbitals and thus enables to probe for the ligand-metal interaction. All
binuclear
complexes
exhibit
several
long-wavelength
electronic
absorptions. They can be assigned to charge transfer transitions (CT), their character (MLCT, SBLCT, LLCT etc.) depends on the nature of the Pt fragment. The consequences of ligand-metal or metal-metal interaction on the optical properties (absorption or emission) are more difficult to understand and require additional detailed studies.
298
Bereitgestellt von | Universitaets- und Stadtbibliothek Koeln Angemeldet | 134.95.205.81 Heruntergeladen am | 23.11.12 12:46
Axel Klein
Reviews in Inorganic Chemistry
ACKNOWLEDGEMENTS Prof. W. Kaim (University of Stuttgart) is thanked for financial support, Rainer F. Winter is acknowledged for helpful comments.
7. REFERENCES 1. 2. 3.
4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.
V. Balzani, S. Campagna, G. Denti, A. Juris, S. Serroni and M. Venturi, Acc. Chem. Res. 31, 26 (1998). V. Balzani and F. Scandola, Supramolecular Photochemistry, Ellis Horwood, Chichester, UK, 1991. F. Scandola, R. Argazzi, C. A. Bignozzi, C. Chiorboli, Μ. T. Indelli and M. A. Rampi, Antenna Effects and Photoinduced Electron Transfer in Polynuclear Metal Complexes, in Supramolecular Chemistry (L. de Cola and V. Balzani, Eds.), Vol. 371, NATO ASI Series C, 1993; 235. G.J. Kubas, Acc. Chem. Res. 21, 120 (1988). U. Kölle, New J. Chem. 16, 157 (1992). Y.-Y. Ng, C.-M. Che and S.-M. Peng, New J. Chem. 20, 781 (1996). E C. Constable, Macromol. Symp. 98, 503 (1995). J.W.M. Van Outersterp, D.J. Stufkens, J. Fraanje, K. Goubitz and A.J. Vlcek, Inorg. Chem. 34, 4756 (1995). P.J. Steel, Coord. Chem. Rev. 106, 227 (1990). V. Balzani, F. Barigelletti, P. Belser, S. Bernhard, L. De Cola and L. Flamigni, J. Phys. Chem. 100, 16786 (1996). A. Juris, F. Barigelletti, V. Balzani, P. Belser and A. Von Zelewsky, J. Chem. Soc., Faraday Trans. 2, 83, 2295 (1987). F. Baumann, A. Stange and W. Kaim, Inorg. Chem. Comm. 1, 305 (1998). W. Kaim, S. Berger, S. Greulich, R. Reinhardt and J. Fiedler, J. Organomet. Chem. 582, 153 (1999). W. Kaim, R. Reinhardt and J. Fiedler, Angew. Chem. Int. Ed. Engl. 36, 2493 (1997). M. Kodaka, H. Okuno and Y. Dohta, Rev. Inorg. Chem. 19, 211 (1999). A.J. Kraker, W.L. Hoeschele, W.L. Elliot, H.D.H. Showalter, A.D. Sercel and N.P. Farrell, J. Med. Chem. 35, 4526 (1992).
299 Bereitgestellt von | Universitaets- und Stadtbibliothek Koeln Angemeldet | 134.95.205.81 Heruntergeladen am | 23.11.12 12:46
Vol. 20, No. 4, 2000
17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38.
Electronic Structure of Binuclear Platinum Complexes
N. Farrell, Y. Qu and M.P. Hacker, J. Med. Chem. 33, 2179 (1990). N. Farrell, Y. Qu, L. Feng and B. Van Houten, Biochemistry 29, 9522 (1990). D.J. Aitken, H.-P. Husson, D. Nguyen-Huy, S. Ongeri, F. Vergne and B. Viossat, Inorg. Chem. Commun. 1, 314 (1998). Y. Zou, B. Van Houten and N. Farrell, Biochemistry 33, 5404 (1994). J.A. Broomhead and M.J. Lynch, Inorg. Chim. Acta 240, 13 (1995) C.R. Baar, M.C. Jennings and R.J. Puddephatt, Organometallics 18, 4373 (1999). M.S. Davies and T.W. Hambley, Inorg. Chem. 37, 5408 (1998). M. Milkevitch, B.W. Shirley and K.J. Brewer, Inorg. Chim. Acta 264, 249(1997). M. Milkevitch, H. Storrie, E. Brauns, K.J. Brewer and B.W. Shirley, Inorg. Chem. 36, 4534 (1997). R. Sahai and D.P. Rillema, J. Chem. Soc., Chem. Commun. 1986, 1133. R. Sahai and D.P. Rillema, Inorg. Chim. Acta 118, L35 (1986). A.M. Barthram, M.D. Ward, A. Gessi, N. Armaroli, L. Flamigni and F. Barigelletti, New J. Chem. 1998, 913. V.W.-W. Yam, V.W.-M. Lee and K.-K. Cheung, Organometallics 16, 2833 (1997). V.W.-W. Yam, V.W.-M. Lee and K.-K. Cheung, J. Chem. Soc., Chem. Commun. 1994, 2075. A.D. Shukla, B. Whittle, H.C. Bajaj, A. Das and M.D. Ward, Inorg. Chim. Acta 285, 89 (1999). W.B. Connick, R.E. Marsh, W.P. Schaefer and H.B. Gray, Inorg. Chem. 36, 913 (1997). V.M. Miskowski and V.H. Houlding, Inorg. Chem. 30, 4446 (1991). V.M. Miskowski, V.H. Houlding, C.-M. Che and Y. Wang, Inorg. Chem. 32, 2618(1993). V.H. Houlding and V.M. Miskowski, Coord. Chem. Rev. I l l , 145 (1991). J. Biedermann, Μ. Wallfahrer and G. Gliemann, J. Lumin. 37, 323 (1987). R. Schwarz, Μ. Lindner and G. Gliemann, Ber. Bunsen-Ges. Phys. Chem. 91, 1233 (1987). J. Biedermann, G. Gliemann, U. Klement, K.-J. Range and M. Zabel, Inorg. Chem. 29, 1884 (1990).
300 Bereitgestellt von | Universitaets- und Stadtbibliothek Koeln Angemeldet | 134.95.205.81 Heruntergeladen am | 23.11.12 12:46
Axel Klein
39. 40. 41. 42. 43. 44. 45.
Reviews in Inorganic Chemistry
J. Biedermann, G. Gliemann, U. Klement, K.-J. Range and M. Zabel, Inorg. Chim. Acta 169, 63 (1990). R. Schwarz, G. Gliemann, L. Chassot, P. Jolliet and A. Von Zelewski, Helv. Chim. Acta 72, 224 (1989). H.-K. Yip, L.-K. Cheng, Cheung Kung-Kai and C.-M. Che, J. Chem. Soc., Dalton Trans. 1993, 2933. J.A. Bailey, M.G. Hill, R.E. Marsh, V.M. Miskowski, W.P. Schaefer and H.B. Gray, Inorg. Chem. 34, 4591 (1995). M.G. Hill, I.A. Bailey, V.M. Miskowski and H.B. Gray, Inorg. Chem. 35, 4585 (1996). C.-W. Chan, C.-M. Che, M.-C. Cheng and Y. Wang, Inorg. Chem. 31, 4874 (1992). J.A. Bailey, V.M. Miskowski and H.B. Gray, Inorg. Chem. 32, 369 (1993).
46.
S.-W. Lai, M.C.W. Chan, K.-K. Cheung, S.-M. Peng and C.-M. Che, Organometallics 18, 3991 (1999).
47.
L.-Z. Wu, T.-C. Cheung, C.-M. Che, K.-K. Cheung and M.H.W. Lam, J. Chem. Soc., Chem. Commun. 1998, 1127. V.W.-W. Yam, P.K.-Y. Yeung and K.-K. Cheung, J. Chem. Soc., Chem. Commun. 1995, 267. I. Ara, J.M. Casas, J. Fornies and A.J. Rueda, Inorg. Chem. 35, 7345 (1996). L.R. Falvello, J. Fornies, C.G.-S.M.A. Fortuno, B. Menjon, A.J. Rueda and M. Tomas, Inorg. Chim. Acta 264, 219 (1997). J.M. Casas, L.R. Falvello, J. Fornies and A. Martin, Inorg. Chem. 35, 7867 (1996). V.E. Marquez and J.R. Anacona, Polyhedron 16, 1931 (1997). S. Narajan, V.K. Jain and B. Varghese, J. Chem. Soc., Dalton Trans. 1998, 2359. K. Dillinger, W. Oberhauser, C. Bachmann and P. Briiggeller, Inorg. Chim. Acta 223, 13 (1994).
48. 49. 50. 51. 52. 53. 54. 55. 56. 57.
W. Oberhauser, C. Bachmann, Τ. Stampfl, R. Haid, C. Langes, Α. Rieder and P. Brüggeller, Inorg. Chim. Acta 274, 143 (1998). M. Rashidi, Z. Fakhroeian and R.J. Puddephatt, J. Organomet. Chem. 406, 261 (1990). V.K. Jain, S. Kannan and E.R.T. Tiekink, J. Chem. Soc., Dalton Trans. 1993, 3625.
301
Bereitgestellt von | Universitaets- und Stadtbibliothek Koeln Angemeldet | 134.95.205.81 Heruntergeladen am | 23.11.12 12:46
Vol. 20, No. 4, 2000
58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75.
76. 77.
302
Electronic Structure of Binuclear Platinum Complexes
A. Singhai, V.K. Jain, M. Nethaji, A.G. Samuelson, D. Jayaprakash and R.J. Butcher, Polyhedron 17, 3531 (1998). F.A. Cotton, J.M. Matonic and C.A. Murillo, Inorg. Chem. 35, 498 (1996). J.R. Berenguer, J. Fornies, E. Lalinde, F. Martinez, L. Sanchez and B. Serrano, Organometallics 17, 1640 (1998). I. Ara, L.R. Falvello, S. Fernandez, J. Fornies, E. Lalinde, A. Martin and M.T. Moreno, Organometallics 16, 5923 (1997). W. Oberhauser, C. Bachmann, Τ. Stampfl and P. Brüggeller, Inorg. Chim. Acta 256, 223 (1997). W.M. Kwok, D.L. Phillips, P.K.-Y. Yeung and V.W.-W. Yam, Chem. Phys. Lett. 262, 699 (1996). M. Rashidi, A.R. Esmaeilbeig, N. Shahabadi, S. Tangestaninejad and RJ. Puddephatt, J. Organomet. Chem. 568, 53 (1998). G.A. Crosby and K.R. Kendrick, Coord. Chem. Rev. 171, 407 (1998). D.R. Striplin and G.A. Crosby, J. Phys. Chem. 99, 7977 (1995). R. Contreras, M. Valderrama, A. Nettle and D. Boys, J. Organomet. Chem. 527, 125 (1997). N. Paschke, A. Röndigs, Η. Poppenborg, J.E.A. Wolffand Β. Krebs, Inorg. Chim. Acta 264, 239 (1997). Η. Engelking and Β. Krebs, J. Chem. Soc., Dalton Trans. 1996, 2409. L. Schenetti, A. Mucci and B. Longato, J. Chem. Soc., Dalton Trans. 1996, 299. E.M.A. Ratilla, B.K. Scott, M.S. Moxness and N.M. Kostic, Inorg. Chem. 29,918(1990). H.-K. Yip, C.-M. Che, Z.-Y. Zhou and T.C.W. Mak, J. Chem. Soc., Chem. Commun. 1992, 1369. G. Lowe and T. Vilaivan, J. Chem. Soc., Perkin Trans. 1 1996, 1499. G. Lowe, J.A. McCloskey, J. Ni and T. Vilaivan, Bioorg. Med. Chem. 4, 1007(1996). RA. Klein, P. Witte, R. Van Beizen, J. Fraanje, K. Goubitz, M. Numan, H. Schenk, J.M. Ernsting and C.J. Elsevier, Eur. J. Inorg. Chem. 1998,319. M. Lin, K.A. Fallis, G.K. Anderson, N.P. Rath and M.Y. Chiang, J. Am. Chem. Soc. 114, 4687 (1992). R. Uson, J. Fornies, M. Tomas, J.M. Casas, F.A. Cotton, L.R. Falvello and X. Feng, J. Am. Chem. Soc. 115, 4145 (1993).
Bereitgestellt von | Universitaets- und Stadtbibliothek Koeln Angemeldet | 134.95.205.81 Heruntergeladen am | 23.11.12 12:46
Axel Klein
78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97.
Reviews in Inorganic Chemistry
M. Peilert, S. Weißbach, Ε. Freisinger, V.l. Korsonsky and Β. Lippert, Inorg. Chim. Acta 265, 187 (1997). S. Cosar, M.B.L. Janik, M. Flock, E. Freisinger, Ε. Farkas and B. Lippert, J. Chem. Soc., Dalton Trans. 1999,2329. A. Klein, E.J.L. Mclnnes, T. Scheiring and S. Zalis, J. Chem. Soc., Faraday Trans. 1998, 2979. M. Crespo, C. Grande and A. Klein, J. Chem. Soc., Dalton Trans. 1999, 1629. A. Klein, S. Hasenzahl and W. Kaim, Organometallics 17, 3532 (1998). A. Klein, W. Kaim, F.M. Hornung, J. Fiedler and S. Zalis, Inorg. Chim. Acta 264, 269 (1997). P.S. Braterman, J.-I. Song, C. Vogler and W. Kaim, Inorg. Chem. 31, 222 (1992). L. Johansson, O.B. Ryan, C. Romming and M. Tilset, Organometallics 17, 3957 (1998). C. Vogler. Β. Schwederski, A. Klein and W. Kaim, J. Organomet. Chem. 436, 367 (1992). W. Kaim and A. Klein, Organometallics 14, 1176 (1995). J. Poppe, Μ. Moscherosch and W. Kaim, Inorg. Chem. 32, 2640 (1993). F. Baumann, W. Kaim, M. Garcia Posse and N.E. Katz, Inorg. Chem. 37, 658(1998). W. Kaim, A. Klein and M. Glöckle, Acc. Chem. Res. 33, 755 (2000). P.-W. Wang and M.A. Fox, Inorg. Chem. 33,2938 (1994). N.G. Connelly and W.E. Geiger, Chem. Rev. 96, 877 (1996). J.M. Casas, L.R. Falvello, J. Fornies, G. Mansilla and A. Martin, Polyhedron 18, 403 (1998). W. Kaim, A. Klein, S. Hasenzahl, Η. Stoll, S. Zalis and J. Fiedler, Organometallics 17,237 (1998). Y.-Q. Gong, Y.-F. Cheng, J.-M. Gu and X.-R. Hu, Polyhedron 16, 3743 (1997). W. Paw, W.B. Connick and R. Eisenberg, Inorg. Chem. 37, 3919 (1998). M. Krejcik, M. Danek and F. Hartl, J. Electroanal. Chem. 317, 179 (1991).
303 Bereitgestellt von | Universitaets- und Stadtbibliothek Koeln Angemeldet | 134.95.205.81 Heruntergeladen am | 23.11.12 12:46
Bereitgestellt von | Universitaets- und Stadtbibliothek Koeln Angemeldet | 134.95.205.81 Heruntergeladen am | 23.11.12 12:46