Electronic Supplementary Information (ESI)

8 downloads 2976 Views 2MB Size Report
The images in each stack were uniformly masked to include information with an ... software package (Apple, Inc.) and the movies were compiled to show images ...
Electronic  Supplementary  Information  (ESI)   Experimental  Methods   DLP  preparation.  Simian  rotavirus  (strain  SA11-­‐4F)  DLPs  were  purified  as  previously   described11.  Transcription  reactions  (25-­‐μl  each)  were  in  carried  out  in  eppendorf  tubes   incubated  for  ~30  minutes  at  37°C.6  Briefly,  each  mixture  contained  the  following:  1  μg   DLPs  prepared  in  100  mM  Tris-­‐HCl  pH  7.5,  6  mM  MgAc,  4  mM  DTT,  2  mM  each  of  ATP,  GTP,   CTP,  UTP,  and  1μl  RNasin  (Promega  Corp.,  Madison,  WI).  Following  the  30-­‐minute   incubation  period,  3-­‐μl  aliquots  of  the  reaction  mixtures  were  applied  to  antibody-­‐ decorated  SiN  chips  used  for  subsequent  experiments.     Antibody-­‐tethering  procedures  for  DLPs.  SiN  microchips  containing  integrated   microwells  (Protochips,  Inc.)  were  coated  with  Nickel-­‐nitrilotriacetic  acid  (Ni-­‐NTA)  lipid   monolayers  as  previously  described.10  The  Ni-­‐NTA  lipid  coatings  were  comprised  of  25%   Ni-­‐NTA  lipids  and  75%  1,2-­‐dilauryl-­‐phosphatidylcholine  (DLPC)  filler  lipids  (Avanti  Polar   Lipids).  Adaptor  proteins  were  added  sequentially  to  the  Ni-­‐NTA  coated  microchips  and   included  His-­‐tagged  Protein  A  (3-­‐μl  aliquots  of  0.01  mg  ml-­‐1;  Abcam)  in  buffer  solution   containing  50  mM  HEPES,  pH  7.5,  150  mM  NaCl,  10  mM  MgCl2  and  10  mM  CaCl2.  The   protein  A  aliquots  were  incubated  for  1  minute  on  each  microchip  prior  to  removing  the   excess  solution  by  blotting  with  filter  paper.  Next,  we  added  VP6-­‐specific  guinea  pig   polyclonal  antisera  (#53963)  (3-­‐μl  aliquots  of  0.01  mg  ml-­‐1)  prepared  in  50  mM  HEPES,  pH   7.5,  150  mM  NaCl,  10  mM  MgCl2  and  10  mM  CaCl2  buffer  solution.  Following  a  1-­‐minute   incubation  step,  the  excess  solution  was  removed  using  a  Hamilton  syringe.  Enzymatically   active  DLPs  (2-­‐μl  aliquots  of  0.1  mg  ml-­‐1)  were  added  to  the  antibody-­‐decorated  microchips    

1  

for  a  2-­‐minute  incubation.  Microchips  containing  the  tethered  DLPs  were  then  loaded  into   the  Poseidon  200  liquid  specimen  holder  (Protochips,  Inc.)  as  described  below.  Antibody-­‐ tethered  grids  for  cryo-­‐EM  control  experiments  were  performed  using  the  same   procedures,  but  using  holey  carbon  grids  (C-­‐flat  -­‐  2/1  grids;  Protochips,  Inc.)  rather  than   microchips.  Frozen-­‐hydrated  specimens  were  prepared  by  plunge-­‐freezing  the  antibody-­‐ tethered  DLPs  into  a  liquid  ethane  slurry  using  a  Gatan  Cryoplunge™  3  equipped  with   GentleBlot  capabilities  (Gatan,  Inc.)  and  employing  a  one-­‐sided  blotting  step  for   approximately  8  seconds.     Electron  Microscopy.    All  specimens  were  examined  using  a  FEI  Spirit  BioTwin  TEM  (FEI   Company,  Hillsboro,  OR,  USA)  equipped  with  a  LaB6  filament  operating  at  120kV  under   low-­‐dose  conditions  (<  1  electron  per  Å2).  Images  were  recorded  using  a  FEI  Eagle  2k  HS   CCD  camera  having  a  pixel  size  of  30  μm.  Images  of  DLPs  in  liquid  and  in  ice  were  recorded   at  a  nominal  magnification  of  60,000  ×  with  a  final  sampling  of  ~5  Å  per  pixel  using  a   defocus  range  of    -­‐1.5  to  -­‐3  μm.  For  image  series  acquisition,  we  collected  sequential  images   at  intervals  ranging  from  0.25  –  1  s-­‐1.  For  the  image  series  analyzed  here,  we  selected   representative  DLPs  from  the  images  using  the  PARTICLE  software  package   (http://www.image-­‐analysis.net/EM/).  For  cryo-­‐EM  imaging,  we  employed  the  same  TEM   and  imaging  parameters.     Cinematography.  Intact  particles  sufficiently  distanced  from  each  other  were  boxed  out  to   create  an  image  stack  through  the  acquired  image  series  using  the  PARTICLE  software   package.  The  images  in  each  stack  were  uniformly  masked  to  include  information  with  an  

 

2  

80-­‐nm  diameter  then  colorized  for  visualization  purposes  and  movie  production  (Movies   S1  –  S3).  Images  within  each  stack  were  also  subjected  to  a  density  threshold  using  a   significance  level  cutoff  of  3σ  as  described  in  other  work.12,  15  Contour  maps  of  the   remaining  density  were  compiled  for  movie  production  (Movies  S4  –  S6)  and  quantitative   analysis.  Images  sequences  and  contour  maps  were  imported  into  the  iMovie  10.0.7   software  package  (Apple,  Inc.)  and  the  movies  were  compiled  to  show  images  cycling  at   0.5-­‐second  intervals.  The  movies  were  exported  .mov  format.       3D  reconstructions.  Individual  DLPs  were  selected  from  cryo-­‐EM  images  using  the   PARTICLE  software  package  utilizing  a  box  size  of  120  nm.  The  selected  particles  were   output  as  MRC  image  stacks  and  imported  into  the  RELION  software  package13  for  3D   reconstruction  calculations.  Within  the  RELION  package  we  used  refinement  parameters   included  a  pixel  size  of  5  Å,  a  reference  model  low-­‐pass  filtered  to  50  Å,  and  a   regularization  parameter  of  T=  4.  We  enforced  icosahedral  symmetry  over  an  angular   search  space  of  7.5°  while  implementing  refinement  procedures  for  25  cycles  outputting   the  reconstructions  in  Figure  3a  and  3b  with  a  resolution  of  ~2.8  and  ~2.5  nm,   respectively.  Slices  through  each  of  the  reconstructions  revealed  internal  densities  of  the   particles.  The  slices  were  taken  at  ~20  nm  intervals  ending  at  the  midsection  of  each   structure.    

 

3  

Fig.  S1.  (a)  Purified  rotavirus  DLPs  characterized  by  SDS-­‐PAGE  and  silver  stain  analysis   indicate  the  presence  of  viral  proteins  (VP1,  VP2,  VP3,  and  VP6).  Purified  DLPs  were   enzymatically  activated  upon  the  addition  of  nucleotides,  including  ATP,  to  produce  [32P]-­‐ labeled  mRNA  transcripts.  Reaction  mixtures  lacking  ATP  fail  to  produce  appreciable  levels   of  mRNA  transcripts.  (b)  Schematic  to  indicate  the  immunocapture  procedure  used  to   tether  asynchronously  transcribing  DLPs  to  antibody  (IgG)-­‐decorated  surfaces  via  protein   A  adaptors.  (c)  Transcribing  DLPs  tethered  to  EM  grids  in  the  presence  of  VP6-­‐specific  IgGs   show  varying  lengths  of  associated  mRNA  transcripts  (white  arrows)  in  cryo-­‐EM  images.   (d)  DLPs  prepared  in  the  absence  of  nucleotides  needed  for  transcription  do  not  show   associated  mRNA  in  cryo-­‐EM  images.  (e)  EM  specimens  prepared  in  the  absence  of  IgGs   generally  failed  to  recruit  DLPs.  Scale  bar  is  100  nm.  Information  in  panels  (a)  and  (b)  are   adapted  from  previous  work.6    

4  

Fig.  S2.    Representative  particle  images  of  DLPs  contained  in  liquid  were  selected  from  the   image  series  recorded  over  10  seconds.  The  selected  particles  were  then  contrast-­‐inverted,   and  colorized  for  visualization  purposes.  Scale  bar  is  30  nm.  Please  see  associated  Movies   S1  –  S3.          

 

5  

Movie  S1.  Time-­‐resolved  movie  of  a  rotavirus  DLP  in  liquid.  Representative  particle   images  of  DLPs  in  liquid  were  uniformly  masked  and  colorized  blue  to  include  information   with  an  80-­‐nm  diameter.  Image  sequences  were  imported  into  the  iMovie  10.0.7  software   package  (Apple,  Inc.)  and  the  movie  was  compiled  to  show  images  cycling  at  0.5  s  intervals.   The  movie  was  looped  for  a  uniform  time  of  15  s  and  exported  using  .mov  format.       Movie  S2.  Time-­‐resolved  movie  of  a  rotavirus  DLP  in  liquid.  Representative  particle   images  of  DLPs  in  liquid  were  uniformly  masked  and  colorized  gray  to  include  information   with  an  80-­‐nm  diameter.  Image  sequences  were  imported  into  the  iMovie  10.0.7  software   package  (Apple,  Inc.)  and  the  movie  was  compiled  to  show  images  cycling  at  0.5  s  intervals.   The  movie  was  looped  for  a  uniform  time  of  15  s  and  exported  using  .mov  format.       Movie  S3.  Time-­‐resolved  movie  of  a  rotavirus  DLP  in  liquid.  Representative  particle   images  of  DLPs  in  liquid  were  uniformly  masked  and  colorized  green  to  include   information  with  an  80-­‐nm  diameter.  Image  sequences  were  imported  into  the  iMovie   10.0.7  software  package  (Apple,  Inc.)  and  the  movie  was  compiled  to  show  images  cycling   at  0.5  s  intervals.  The  movie  was  looped  for  a  uniform  time  of  15  s  and  exported  using  .mov   format.       Movie  S4.  Movie  to  indicate  the  mobile  units  of  Particle  1  (blue)  in  liquid.   Representative  particle  images  of  DLPs  in  liquid  were  selected  (zoomed  in)  and  subjected   to  a  density  threshold  filter  using  a  significance  level  cutoff  of  3σ.  Contour  maps  of  the   resulting  particles  components  composed  of  genomic  RNA  and  associated  proteins  were  

 

6  

uniformly  masked  and  imported  as  image  sequences  into  the  iMovie  10.0.7  software   package  (Apple,  Inc.).  The  movie  was  compiled  to  show  images  cycling  at  0.5  s  intervals  and   exported  using  .mov  format.  Additional  quantitative  analysis  of  these  images  (Fig.  2b)   revealed  that  this  particle  series  exhibited  the  greatest  number  of  pixel  displacements  in   comparison  to  the  other  analyzed  particles.     Movie  S5.  Movie  to  indicate  the  mobile  units  of  Particle  2  (gray)  in  liquid.   Representative  particle  images  of  DLPs  in  liquid  were  selected  (zoomed  in)  and  subjected   to  a  density  threshold  filter  using  a  significance  level  cutoff  of  3σ.  Contour  maps  of  the   resulting  particles  components  composed  of  genomic  RNA  and  associated  proteins  were   uniformly  masked  and  imported  as  image  sequences  into  the  iMovie  10.0.7  software   package  (Apple,  Inc.).  The  movie  was  compiled  to  show  images  cycling  at  0.5  s  intervals  and   exported  using  .mov  format.  Additional  quantitative  analysis  of  these  images  (Fig.  2b)   revealed  that  this  particle  series  exhibited  the  fewest  pixel  displacements  in  comparison  to   the  other  analyzed  particles.     Movie  S6.  Movie  to  indicate  the  mobile  units  of  Particle  3  (green)  in  liquid.   Representative  particle  images  of  DLPs  in  liquid  were  selected  (zoomed  in)  and  subjected   to  a  density  threshold  filter  using  a  significance  level  cutoff  of  3σ.  Contour  maps  of  the   resulting  internal  particles  components,  primarily  composed  of  genomic  RNA  and   associated  proteins,  were  uniformly  masked  and  imported  as  image  sequences  into  the   iMovie  10.0.7  software  package  (Apple,  Inc.).  The  movie  was  compiled  to  show  images   cycling  at  0.5  s  intervals  and  exported  using  .mov  format.  Additional  quantitative  analysis  

 

7  

of  these  images  (Fig.  2b)  revealed  that  this  particle  series  exhibited  an  intermediate   number  of  pixel  displacements  in  comparison  to  the  other  analyzed  particles.  

 

8