Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018
Electronic Supplementary Information Chiral protic imidazolium salts with (–)-menthol fragment in the cation – synthesis, properties and use in the Diels-Alder reaction Ewa Janusa*, Marcin Ganoa, Joanna Feder-Kubisb, Jacek Sośnickic a
West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering,
Institute of Chemical Organic Technology, Pułaski Str. 10, 70-322 Szczecin, Poland b
Wrocław University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370
Wrocław, Poland c
West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering,
Department of Organic and Physical Chemistry, Al. Piastów 42, 71-065 Szczecin Poland *Corresponding author: Ewa Janus, e-mail:
[email protected]; phone: +48 91 4494584
1
ESI Contents S1. Experimental. Materials. Analytical methods. Synthesis methods of substrates and chiral aprotic salts S2. Reaction yield, HRMS analyses and elemental analyses of 1-(1R,2S,5R)-(–)menthoxymethylimidazole, (±)-menthoxymethylimidazole and chiral aprotic salts
page 3-5 page 6-7
S3. Copies of HRMS spectra of aprotic salts
page 7-15
S4. Copies of 1H NMR, 13C NMR and HRMS spectra of 1-H-3-[(1R,2S,5R)-(–)menthoxymethyl]imidazolium chloride, (–)[H-Ment-Im][Cl]
page 16-17
S5. Copies of 1H and 13C NMR spectra of chiral protic imidazolium salts
page 18-21
S6. Curves from thermogravimetric analysis of chiral protic imidazolium salts
page 22-23
S7. MDSC analysis for 1-H-3-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium bis(trifluoromethanylsulfonyl)imide, (–)[H-Ment-Im][NTf2]
page 24-25
S8. 1H NMR spectra of protic and aprotic chiral salts with Δ-TRISPHAT tetrabutylammonium salt
page 26-32
S9. The representative chromatogram registered on chiral RT-BetaDEXsa GC column for the sample (hexane extract) taken after reaction of cyclopentadiene with ethyl-vinyl ketone
page 33
S10. The representative chromatogram registered on chiral RT-BetaDEXsa GC column for the sample (hexane extract) taken after reaction of cyclopentadiene with methyl acrylate
page 34
References
page 35
2
S1. Experimental. Materials. Analytical methods. Synthesis methods of substrates and chiral aprotic salts Experimental Materials (1R,2S,5R)-(–)-Menthol (Aldrich, ³99%), (1S,2R,5S)-(+)-Menthol (Aldrich, ³99%), (±)-Menthol (Aldrich, ³98%),
paraformaldehyde
(Sigma-Aldrich,
95%),
imidazole
(Sigma-Aldrich,
³99,5%),
lithium
bis(trifluoromethanesulfonyl)imide, LiNTf2 (IoLiTec, 99%), potassium hexafluorophosphate, KPF6 (Sigma, ³99%), sodium trifluoromethanesulfonate, NaOTf (Sigma-Aldrich, 98%), triethylamine anhydrous (Avantor Performance Materials Poland, min. 99.5%), hydrochloric acid (37%) were used to the synthesis of protic salts. 1Methylimidazole (99%), 1-butylimidazole (98%), 1-bromodecane (98%), 1-hexanol (≥99%), sodium (cubes, contains mineral oil, 99.9% trace metals basis), sulfuric acid (≥96%) were used for the preparation of quaternary agents and aprotic ionic liquids and were purchased from Sigma-Aldrich. [Tetrabutylammonium][Δtris(tetrachloro-1,2-benzenediolato)phosphate(V)], in brief Δ-TRISPHAT tetrabutylammonium salt was supplied by Sigma-Aldrich. Solvents such as hexane, toluene, acetone, methanol, ethanol, 1-propanol, DMSO, DMF, dichloromethane, chloroform, diethyl ether, ethyl acetate, 1,2-dichloroethane and acetonitrile were generally available products with high purity. Some of them before use were dried with commonly known methods. The drying agents, such as sodium sulphate (anhydrous, pure) and phosphorus pentoxide (powder, anhydrous, ≥98%) were provided by P.O.Ch (Gliwice, Poland). Analytical methods 1
H NMR and 13C NMR spectra were recorded in CDCl3 as the solvent on a Bruker DPX spectrometer (400.13
MHz for 1H NMR and 100.62 MHz for 13C NMR) or Bruker DRX spectrometer (600 MHz for 1H and 75 MHz for 13
C) or Varian VNMRS spectrometer (600 MHz for 1H and 150 MHz for 13C). The chemical shifts were referred
to TMS as the internal standard. Elemental analyses were carried out for all synthesized salts and ionic liquids using VARIO EL-III. Highresolution mass spectra (HRMS) were recorded on a LCT Premier XE Waters spectrometer in positive ESI+ and negative ESI– ionization mode (TOF MS ES+/ TOF MS ES–). Sample was introduced through a standard electrospray ion source into the instrument. The water content in the chiral ionic liquids was determined by Karl-Fischer titration using 831 KF Coulometer (Metrohm). The concentration of water in the chiral ionic liquids was below 150 ppm. The concentration of the proper metal (Na, K, Li) in the prepared salts was determined by inductively coupled plasma optical emission spectrometry (ICP-OES) with Perkin-Elmer Optima 5300 DV instrument. Solutions were prepared by microwaveoven digestion of samples (125 mg) with Suprapur® nitric acid (3 ml) for 24 h. These were then diluted with deionized water to 25 ml. Standard solutions of Na, K or Li (0.5, 0.75 and 1.0 mg/L) were used for calibration. The metal concentrations in the synthesized salts were below 50 ppm based on the weight of the sample and the volume of the reconstituted solution. The
refractive
index
at
1000
mbar,
nD,
for
the
studied
new
protic
ionic
liquid
with
bis(trifluoromethylsulfonyl)imide anion was measured on an Automatic Digital Refractometer RX-5000α (Atago
3
company) with an uncertainty of ± 0.00004 nD units and a temperature probe measurement accuracy ± 0.1 °C. The testes were performed over a wide temperature range, from 20 °C till 60 °C. Before each measurement, the refractive index of pure distilled water was measured and compared with known literature values. The specific rotation [α]20D was measured on a AUTOPOL IV (Rudolph Research Analytical) polarimeter for solutions in ethanol. Thermogravimetric analyses used a thermobalance TG 209 F1 Libra (Netzsch). The sample was loaded in an Al2O3 crucible and heated from 25 ºC to 1000 ºC at 5 ºC/min in air (25 ml/min) with nitrogen (10 ml/min) as the purge gas. The TGA temperature calibration used five calibration standards (indium, bismuth, zinc, aluminium and silver; each was over > 99.999% pure) in nitrogen atmosphere. Modulated differential scanning calorimetry (MDSC) was performed using a TA Instruments model Q100 DSC. The sample was loaded on an aluminium pan sealed with pinhole cap. The liquid salt data was collected at a constant cooling/heating rate of 5 ºC·min-1 in nitrogen atmosphere. This was first cooled from 20 ºC to -90 ºC and then heated from -90 ºC to 150 ºC. The second cooling mode was from 150 ºC to -90 ºC. The modulation period was 60 s, and the modulation amplitude was ±0.8 ºC. Phase transition temperatures were determined according to ISO 11357-1:2009(E) using the midpoint temperature. Indium and mercury were used as standards to calibrate the temperature. Heat calibration used indium. Synthesis of substrates Chloromethyl (1R,2S,5R)-(–)-menthyl ether was obtained by passing HCl through a mixture of paraformaldehyde and (1R,2S,5R)-(–)-menthol similar to Pernak et al.1 In the same way chloromethyl (1S,2R,5S)-(+)-menthyl ether and chloromethyl (±)-menthyl ether were prepared from (+)-menthol and (±)-menthol as starting material respectively. Imidazole was freshly recrystallized from benzene (mp 90-91 ºC). The 1-methylimidazole and 1butylimidazole were purchased, and 1-decylimidazole was obtained following published method2. Triethylamine was distilled twice - the first from phthalic anhydride to remove lower amines resulting from autoxidation during storage. Chloromethyl hexyl ether was prepared by passing HCl through a mixture of formaldehyde and decanol as described previously3 and then with 1-hexyloxymethylimidazole. The 1-pyridine was dried by azeotropic distillation with chloroform. Those substrates were freshly distilled each time before using them. The 1-(1R,2S,5R)-(–)-menthoxymethylimidazole (–)[Ment-Im] and (±)-menthoxymethylimidazole (±)[MentIm] were synthesized through a two-step reaction using trimethylamine, chloromethyl (1R,2S,5R)-(–)-menthyl ether or chloromethyl (±)-menthyl ether and imidazole following the method of Feder-Kubis et al.4 The crude product was crystallized from hexane-acetone to form long needles with the same melting point (48-50 ºC) as reported previously. Synthesis of aprotic imidazolium salts Synthesis of aprotic ionic liquids with (1R,2S,5R)-(–)-menthol moiety having 1-alkylimidazoles, or 1alkoxymethylimidazole or pyridinium part in the cation were obtained according the procedures described previously: 1-[(1R,2S,5R)-(–)-menthoxymethyl]pyridinium bis(trifluoromethanesulfonyl)imide (–)[Ment-Py][NTf2],5
4
3-alkyl-1-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium bis(trifluoromethanesulfonyl)imides (with alkyl chain: methyl, butyl and decyl) (–)[C1-Ment-Im][NTf2], (–)[C4-Ment-Im][NTf2], (–)[C10-Ment-Im][NTf2],2 3hexyloxymethyl-1-(1R,2S,5R)-(–)-menthoxymethylimidazolium bis(trifluoromethanesulfonyl)imide (–)[C6O-MentIm][NTf2].3 3-butyl-1-[(1S,2R,5S)-(+)-menthoxymethyl]imidazolium
bis(trifluoromethanesulfonyl)imide,
(+)[C4-Ment-
Im][NTf2], as representative of aprotic chiral ionic liquid with (+)-menthol moiety in the cation, was prepared in analogous way to other aprotic salts. Solubility The solubility of the salts was determined according to Vogel's Textbook of Practical Organic Chemistry.6 The analyses were performed for all of the new protic salts ((–)[H-Ment-Im][Cl], (–)[H-Ment-Im][NTf2], (–)[H-MentIm][OTf], (–)[H-Ment-Im][PF6]) at 25 oC and at 50 oC under ambient pressure using commonly used solvents. The phrase complete solubility describes salts that are soluble (0.1 g in 1 mL of solvent); limited solubility describes salts in which 0.1 g of salt is soluble in 3 mL of a solvent. The phrase insoluble describes insolubility (less than 0.1 g of the salt in 3 mL of a solvent).
5
S2. Reaction yield, HRMS analyses and elemental analyses of 1-(1R,2S,5R)-(–)-menthoxymethylimidazole, (±)menthoxymethylimidazole and chiral aprotic salts 1-(1R,2S,5R)-(–)-Menthoxymethylimidazole (–)[Ment-Im]. Yield: 97.5%. Elemental analysis calc. (%) for [C14H24N2O+H]+ (236.35): C 71.14, H 10.23, N 11.85, found: C 71.22, H 10.34, N 11.73. (±)-Menthoxymethylimidazole (±)[Ment-Im]. Yield: 87%. Spectroscopic data were the same as for (–)[Ment-Im]4. 1-[(1R,2S,5R)-(–)-Menthoxymethyl]pyridinium bis(trifluoromethanesulfonyl)imide (–)[Ment-Py][NTf2]. Yield: 93.5%. Elemental analysis calc. (%) for C18H26F6N2O5S2 (528.53): C 40.90, H 4.96, N 5.30, found: C 40.82, H 5.09, N 5.33. HRMS (ESI+): m/z (%) calcd for [C16H26NO]+: 248.2014, found: 248.2014. 1-[(1R,2S,5R)-(–)-Menthoxymethyl]-3-methylimidazolium
bis(trifluoromethanesulfonyl)imide
(–)[C1-
Ment-Im][NTf2] Yield: 99.0%. Elemental analysis calc. (%) for C17H27F6N3O5S2 (531.53): C 38.41, H 5.12, N 7.905, found: C 38.50, H 5.23, N 7.82. HRMS (ESI+): m/z (%) calcd for [C15H27N2O]+: 251.2123, found: 251.2118. HRMS (ESI–): m/z (%) calcd for [C2F6NO4S2]-: 279.9173, found: 279.9178. 3-Butyl-1-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium bis(trifluoromethanesulfonyl)imide (–)[C4-MentIm][NTf2] Yield: 99.0%. Elemental analysis calc. (%) for C20H33F6N3O5S2 (573.61): C 41.88, H 5.80, N 7.325, found: C 41.95, H 5.91, N 7.20. HRMS (ESI+): m/z (%) calcd for [C18H33N2O]+: 293.2593, found: 293.2608. HRMS (ESI–): m/z (%) calcd for [C2F6NO4S2]-: 279.9173, found: 279.9177. 3-Butyl-1-[(1S,2R,5S)-(–)-menthoxymethyl]imidazolium bis(trifluoromethanesulfonyl)imide (+)[C4-MentIm][NTf2] Yield: 97.0; [α]20D = +53.07 Elemental analysis calc. (%) for C20H33F6N3O5S2 (573.61): C 41.88, H 5.80, N 7.325, found: C 41.99, H 5.93, N 7.17 3-decyl-1-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium bis(trifluoromethanesulfonyl)imide (–)[C10-Ment-
6
Im][NTf2] Yield: 98.0%. Elemental analysis calc. (%) for C26H45F6N3O5S2 (657.27): C 47.47, H 6.90, N 6.39, found: C 47.35, H 7.03, N 6.49. HRMS (ESI+): m/z (%) calcd for [C24H45N2O]+: 377.3532, found: 377.3531. HRMS (ESI–): m/z (%) calcd for [C2F6NO4S2]-: 279.9173, found: 279.9179. 3-Hexyloxymethyl-1-(1R,2S,5R)-(–)-menthoxymethylimidazolium bis(trifluoromethanesulfonyl)imide (–)[C6O-Ment-Im][NTf2] Yield: 94.5%. Elemental analysis calc. (%) for C23H39F6N3O6S2 (631.69): C 43.73, H 6.22, N 6.65, found: C 43.81, H 6.35, N 6.49. HRMS (ESI+): m/z (%) calcd for [C21H39N2O2]+: 351.3011, found: 351.3001.
7
S3. Copies of HRMS spectra of aprotic salts HRMS spectrum of 1-[(1R,2S,5R)-(–)-menthoxymethyl]pyridinium bis(trifluoromethanesulfonyl)imide, (–)[Ment-Py][NTf2]
HRMS (ESI +) of (–)[Ment-Py][NTf2]
8
HRMS spectrum of 1-[(1R,2S,5R)-(–)-menthoxymethyl]-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, (–)[C1-Ment-Im][NTf2]
HRMS (ESI +) of (–)[C1-Ment-Im][NTf2]
9
HRMS (ESI –) of (–)[C1-Ment-Im][NTf2]
10
HRMS spectrum of 3-butyl-1-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium bis(trifluoromethanesulfonyl)imide, (–)[C4-Ment-Im][NTf2]
HRMS (ESI +) of (–)[C4-Ment-Im][NTf2]
11
HRMS (ESI –) of (–)[C4-Ment-Im][NTf2]
12
HRMS spectrum of 3-decyl-1-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium bis(trifluoromethanesulfonyl)imide, (–)[C10-Ment-Im][NTf2]
HRMS (ESI +) of (–)[C10-Ment-Im][NTf2]
13
HRMS (ESI –) of (–)[C10-Ment-Im][NTf2]
14
HRMS spectrum of 3-hexyloxymethyl-1-(1R,2S,5R)-(–)-menthoxymethylimidazolium bis(trifluoromethanesulfonyl)imide, (–)[C6O-Ment-Im][NTf2]
HRMS (ESI +) of (–)[C6O-Ment-Im][NTf2]
15
2300
3.380 3.370 3.354 3.343 3.328 3.317 2.113 2.083 1.999 1.992 1.981 1.975 1.964 1.958 1.946 1.940 1.929 1.923 1.666 1.634 1.599 1.592 1.427 1.277 1.249 1.222 0.956 0.914 0.867 0.849 0.813 0.502 0.485
5.907 5.880 5.667 5.641
7.433 7.429 7.425 7.337 7.333 7.329 7.288
10.002
S4. Copies of 1H NMR, 13C NMR and HRMS spectra of 1-H-3-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium chloride, (–)[H-Ment-Im][Cl] 1 H NMR spectrum of (–)[H-Ment-Im][Cl] (400 MHz,CDCl3) 2200 2100 2000 1900 1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100
8.0
6.5
6.0
5.5 5.0 f1 (ppm)
4.5
4.0
3.5
3.0
2.5
2.0
1.5
-100
3.02
9.08
2.05 1.04 1.03
1.02 1.03
1.00
1.00
1.00
7.0
1.0
-200
0.5
0.0
C NMR spectrum of (–)[H-Ment-Im][Cl] (100 MHz,CDCl3) 650
15.674
120.324 119.946
135.834
13
7.5
25.528 22.910 22.247 21.051
8.5
31.313
9.0
34.140
9.5
40.303
10.0
47.867
10.5
79.583 77.478 77.160 76.843 76.640
11.0
0.99 0.96
1.01
0
600 550 500 450 400 350 300 250 200 150 100 50 0 -50 140 135 130 125 120 115 110 105 100
95
90
85
80
75
70 65 f1 (ppm)
60
55
50
45
40
35
30
25
20
15
10
5
0
16
HRMS (ESI +) of (–)[H-Ment-Im][Cl]
17
1.997 1.966 1.913 1.675 1.640 1.606 1.384 1.290 1.262 1.235 0.977 0.947 0.928 0.912 0.877 0.859 0.507 0.490
3.304 3.293 3.277 3.267 3.251 3.240
5.681 5.654 5.582 5.555
7.501 7.359
9.119
S5. Copies of 1H and 13C NMR spectra of chiral protic imidazolium salts 1 H NMR spectrum of 1-H-3-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium trifluoromethanesulfonate, (–)[H-Ment-Im][OTf] (400 MHz,CDCl3) 340 320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20
9.5
8.5
8.0
7.5
6.5
6.0
5.5
5.0 f1 (ppm)
4.5
4.0
3.5
3.0
2.5
2.0
1.5
3.05
9.19
2.01 1.02 1.04
1.99
1.02
2.01
7.0
-20
1.0
0.5
0.0
0.000
15.374
25.430 22.782 22.006 20.898
31.195
33.973
40.063
47.702
76.898
120.880 120.198
C NMR spectrum of 1-H-3-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium trifluoromethanesulfonate, (–)[H-Ment-Im][OTf] (100 MHz, CDCl3)
135.309
13
9.0
79.959
10.0
1.01 1.03
1.00
0
600
550
500
450
400
350
300
250
200
150
100
50
0
-50 140
130
120
110
100
90
80
70
60
50
40
30
20
10
0
-10
f1 (ppm)
18
3.299 3.281 3.256 1.965 1.949 1.669 1.645 1.616 1.378 1.289 1.269 1.251 0.970 0.950 0.931 0.916 0.905 0.874 0.862 0.517 0.505 0.000
7.450
8.755
5.627 5.609 5.579 5.562
H NMR spectrum of 1-H-3-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium bis(trifluoromethylsulfonyl)imide, (–)[H-Ment-Im][NTf2] (600 MHz,CDCl3) 12.483
1
55
50
45
40
35
30
25
20
15
10
5
14
12
11
10
8
7 f1 (ppm)
6
5
4
3
2
3.01
10.38
2.18 2.27 1.16 1.07
1.00
2.02
1.98
9
-5
1
0
190
15.418
25.582 22.927 22.046 20.962
31.323
34.103
40.198
47.834
80.404
122.947 121.036 120.820 120.751 118.695 116.571
C NMR spectrum of 1-H-3-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium bis(trifluoromethylsulfonyl)imide, (–)[H-Ment-Im][NTf2] (150 MHz,CDCl3)
134.489
13
13
0.99
1.00
0
170
116.571
118.695
121.036 120.820 120.751
122.947
180
160
150
150 100
140 130
50
120 0 110 125 124 123 122 121 120 119 118 117 116 115 f1 (ppm)
100 90 80 70 60 50 40 30 20 10 0 -10 -20
140 135 130 125 120 115 110 105 100
95
90
85
80
75
70 65 f1 (ppm)
60
55
50
45
40
35
30
25
20
15
10
5
0
19
1
H(15N) HMBCAD spectrum of 1-H-3-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium bis(trifluoromethylsulfonyl)imide, (–)[H-Ment-Im][NTf2] -260 -250 -240 -230 -220 {12.376,-208.616}
{12.546,-208.615}
{8.725,-208.615}
{7.434,-208.619}
{8.725,-188.913}
{7.433,-188.914}
-210 -200 -190 -180
f1 (ppm)
{5.588,-188.918}
-170 -160 -150 -140 -130 -120 -110 -100 13.0
12.0
11.5
11.0
10.5
10.0
9.5
9.0
8.5 8.0 f2 (ppm)
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
360
1.630 1.399 1.285 1.257 1.230 0.922 0.905 0.874 0.857 0.511 0.493
7.458 7.375
1.959
H NMR spectrum of 1-H-3-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium hexafluorophosphate, (–)[H-Ment-Im][PF6] (400 MHz,CDCl3) 8.694
1
12.5
3.305 3.294 3.278 3.268 3.252 3.241
13.5
5.621 5.594 5.559 5.532
14.0
340 320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0 4.5 f1 (ppm)
4.0
3.5
3.0
2.5
2.0
1.5
1.0
3.11
9.46
2.06 1.06 1.08
2.04
1.04
2.05
1.00 1.01
1.02
0
0.5
-20 0.0
20
15.365
25.408 22.765 22.025 20.912
31.132
33.986
47.742
79.951 77.211
134.789
40.023
C NMR spectrum of 1-H-3-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium hexafluorophosphate, (–)[H-Ment-Im][PF6] (100 MHz,CDCl3) 120.993 120.350
13
300
250
200
150
100
50
0
140
130
120
110
100
90
80
70
60
50
40
30
20
10
0
-10
f1 (ppm)
21
S6. Curves from thermogravimetric analysis of chiral protic imidazolium salts TG, DTG and c-DTA curves for 1-H-3-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium chloride, (–)[H-Ment-Im][Cl] c-DTA® /K DTG /(%/min)
TG /% % Temp. Search: 95.00 % 167.6 °C
100
↑ exo 2.0
0
1.5
80
[1]
1.0
% Temp. Search: 50.00 % 206.4 °C
60
-5
0.5 0.0
40
-10 [1]
20
Peak: 212.9 °C, -14.46 %/min Peak: 133.5 °C, -0.5 K
[1]
-1.0
[Ment-H-Im][Cl]
TG c-DTA® DTG
0
-0.5
-1.5
-15
[1]
-2.0 100 Main
2017-10-31 11:40
200
300
User: Marcin Gano
400 500 600 Temperature /°C
700
800
900 Created with NETZSCH Proteus software
TG, DTG and c-DTA curves for 1-H-3-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium trifluoromethanesulfonate, (–)[H-Ment-Im][OTf] c-DTA® /K DTG /(%/min)
TG /% Onset: 199.3 °C
↑ exo 2.5
1
2.0
0
1.5
-1
1.0
-2
Mass Change: -41.50 %
100
[1]
80
% Temp. Search: 95.00 % 199.4 °C
[1]
60
0.5 0.0
Mass Change: -59.08 %
40
-0.5
TG c-DTA® DTG
Peak: 107.5 °C, -0.5 K
2017-08-23 10:17
-7 [1]
-1.5 -8
Peak: 213.7 °C, -7.16 %/min
100 Main
User: Marcin Gano
200
300
400 500 600 Temperature /°C
-5
-1.0
[1] [Ment-H-Im][[OTf]
0
-4
-6
Peak: 374.5 °C, -4.79 %/min
20
-3
700
800
900
-2.0
Created with NETZSCH Proteus software
22
TG, DTG and c-DTA curves for 1-H-3-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium bis(trifluoromethanylsulfonyl)imide, (–)[H-Ment-Im][NTf2] c-DTA® /K DTG /(%/min)
TG /%
↑ exo
Onset: 220.5 °C
100
[1]
Mass Change: -30.77 %
2.5
0
2.0 % Temp. Search: 95.00 % 222.0 °C
80
-1 1.5
[1]
60
1.0 0.5
-2
-3
Mass Change: -69.38 %
40
0.0
-4
-0.5 20
TG c-DTA® DTG
-1.0
[1]
0
Peak: 233.0 °C, -5.63 %/min
100 Main
-5
[1] [Ment-H-Im][NTf2]
2017-08-23 10:38
200
-1.5
Peak: 409.9 °C, -5.87 %/min
300
User: Marcin Gano
400 500 600 Temperature /°C
700
800
-6
900 Created with NETZSCH Proteus software
TG, DTG and c-DTA curves for 1-H-3-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium hexafluorophosphate, (–)[H-Ment-Im][PF6] c-DTA® /K DTG /(%/min)
TG /%
↑ exo
Onset: 221.6 °C
2.0
100
[1]
1.5 80
[1]
% Temp. Search: 95.00 % 200.9 °C
1.0
-2
0.5
60 0.0 40
0
-0.5
Peak: 136.8 °C, -0.2 K
-4
-6
-1.0 20
[1] [Ment-H-Im][PF6] TG c-DTA® DTG
Peak: 244.6 °C, -9.84 %/min
0 100 Main
2017-08-23 10:23
User: Marcin Gano
200
300
400 500 600 Temperature /°C
700
800
-8 -1.5 [1]
-2.0
-10
900 Created with NETZSCH Proteus software
23
File: 1_72 HL modulowany 2 cykl 1 chlodzeni... S7.Sample: 1_72 HL MDSC measurements for 1-H-3-[(1R,2S,5R)-(–)-menthoxymethyl]imidazolium bis(trifluoromethanylsulfonyl)imide, DSC Size: 9.1300 mg Operator: kg (–)[H-Ment-Im][NTf ] 2 Method: Conventional MDSC Run Date: 26Oct2017 14:18 MDSC in 1st cooling mode from 20 ºC to Instrument: DSC Q100 V9.9 Build 303 -90 ºC Comment: z suszeniem, z otworem 0.3
Nonrev Heat Flow (W/g)
0.0 30.92°C 35.99°C(H) 0.2793J/(g·°C)
0.1
0.2 100
41.05°C
80
60
40
Exo Up
20
0.2
0.0
0.1
0.1
0.0
20
40
File: 1_72 HL modulowany 2 cykl2 grzanie.001
DSC Operator: kg MDSC in heating mode from -90 ºC to 150 ºC Run Date: 26Oct2017 14:18
Instrument: DSC Q100 V9.9 Build 303
0.0
0.2
Nonrev Heat Flow (W/g)
Heat Flow (W/g)
0.1
0.2
34.02°C 31.07°C(H) 0.2639J/(g·°C)
28.11°C
0.3
0.4 100 Exo Up
0.1
Universal V4.7A TA Instruments
Temperature (°C)
Sample: 1_72 HL Size: 9.1300 mg Method: Conventional MDSC Comment: z suszeniem, z otworem
0
0.1
50
0
50
Temperature (°C)
100
0.0
0.1
0.1
0.0
0.2
0.1
150
Rev Heat Flow (W/g)
Heat Flow (W/g)
0.1
Rev Heat Flow (W/g)
0.2
0.2
Universal V4.7A TA Instruments
24
Sample: 1_72 HL Size: 9.1300 mg Method: Conventional MDSC Comment: z suszeniem, z otworem
File: 1_72 HL modulowany 2 cykl 3 chlodzeni...
DSC Operator: kg MDSC in 2 cooling mode from 150 ºC toRun Date: 26Oct2017 14:18 -90 ºC nd
Instrument: DSC Q100 V9.9 Build 303
0.2
0.275
0.0
0.1
32.60°C(H) 0.3525J/(g·°C)
0.175 0.0
0.075
26.63°C
0.1
0.025
38.47°C
0.2 100 Exo Up
50
Rev Heat Flow (W/g)
0.1
Nonrev Heat Flow (W/g)
Heat Flow (W/g)
0.1
0
50
Temperature (°C)
100
150 Universal V4.7A TA Instruments
25
S8. 1H NMR spectra of chiral protic and aprotic salts with chiral shift reagent Δ-TRISPHAT tetrabutylammonium salt
26
(rac)[HMent-Im][NTf2] : TRISPHAT (1 : 1)
3
(-)[HMent-Im][NTf2] : TRISPHAT (1 : 1)
2
(-)[HMent-Im][NTf2]
1
1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50 0.45 f1 (ppm)
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
27
28
29
9.5E+07
(-)[H-Ment-IM][OTf] : TRISPHAT (1 : 1)
9.0E+07 8.5E+07 8.0E+07 7.5E+07 7.0E+07 6.5E+07 6.0E+07 5.5E+07 5.0E+07 4.5E+07 4.0E+07
9.1
9.0 8.9 f1 (ppm)
8.8
0.65 0.60 0.55 0.50 0.45 0.40 0.35 f1 (ppm)
3.5E+07 3.0E+07 2.5E+07 2.0E+07 1.5E+07 1.0E+07 5.0E+06 0.0E+00
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5 4.0 f1 (ppm)
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
4.2E+07 4.0E+07
(-)[H-Ment-Im][PF6] : TRISPHAT (1 : 1)
3.8E+07 3.6E+07 3.4E+07 3.2E+07 3.0E+07 2.8E+07 2.6E+07 2.4E+07 2.2E+07 2.0E+07 1.8E+07 1.6E+07 1.4E+07 1.2E+07
9.5
9.4 f1 (ppm)
9.3
0.55
0.50 f1 (ppm)
1.0E+07
0.45
8.0E+06 6.0E+06 4.0E+06 2.0E+06 0.0E+00
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0 4.5 f1 (ppm)
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
30
(-)[C1-Ment-Im][NTf2] : TRISPHAT (1 : 1)
4.5E+07
4.0E+07
3.5E+07
3.0E+07
2.5E+07
impurity
0.09
1.00
2.0E+07
1.5E+07 0.55
9.25 9.20 9.15 9.10 9.05 9.00 f1 (ppm)
0.50 0.45 f1 (ppm)
0.40
1.0E+07
5.0E+06
0.0E+00 9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5 f1 (ppm)
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
4.0E+07
(-)[C6O-Ment-Im][NTf2] : TRISPHAT (1 : 1)
3.8E+07 3.6E+07 3.4E+07 3.2E+07 3.0E+07 2.8E+07 2.6E+07 2.4E+07 2.2E+07 2.0E+07 1.8E+07 1.6E+07
impurity 1.4E+07 1.2E+07 1.0E+07 9.6
9.5
9.4 f1 (ppm)
0.60 0.55 0.50 0.45 0.40 0.35 f1 (ppm)
9.3
8.0E+06 6.0E+06 4.0E+06 2.0E+06 0.0E+00
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0 4.5 f1 (ppm)
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
31
4.5E+07
(-)[C10-Ment-Im][NTf2] : TRISPHAT (1 : 1)
4.0E+07
3.5E+07
3.0E+07
2.5E+07
2.0E+07
9.40
9.35
9.30 9.25 f1 (ppm)
9.20
0.56
0.54
2.62
0.24
1.00
0.09
1.5E+07
0.52
0.50
0.48 f1 (ppm)
0.46
0.44
0.42
1.0E+07
0.40
5.0E+06
0.0E+00 10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0 4.5 f1 (ppm)
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
3.4E+07
(-)[Ment-Py][NTf2] : TRISPHAT (1 : 1) 3.2E+07 3.0E+07 2.8E+07 2.6E+07 2.4E+07 2.2E+07 2.0E+07 1.8E+07 1.6E+07 1.4E+07 1.2E+07 1.0E+07 8.0E+06 9.4 9.3 9.2 9.1 f1 (ppm)
0.55
0.50 0.45 f1 (ppm)
0.40 6.0E+06 4.0E+06 2.0E+06 0.0E+00
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0 4.5 f1 (ppm)
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
32
S9. The representative chromatogram registered on chiral RT-BetaDEXsa GC column for the sample (hexane extract) taken after reaction of cyclopentadiene with ethyl-vinyl ketone.
Peaks with retention time 21.41 min and 21.95 min, correspond to two enantiomers of 2-egzo-ethylcarbonyl-5norbornene; peaks with retention time 26.01 min and 27.09 min correspond to two enantiomers of 2-endoethylcarbonyl-5-norbornene;
33
S10. The representative chromatogram registered on chiral RT-BetaDEXsa GC column for the sample (hexane extract) taken after reaction of cyclopentadiene with methyl acrylate
Peaks with retention time 37.44 min and 38.02 min, correspond to two enantiomers of 2-egzo-methoxycarbonyl5-norbornene; peaks with retention time 42.24 min and 43.72 min correspond to two enantiomers of 2-endomethoxycarbonyl-5-norbornene;
34
References 1 J. Pernak, J. Feder-Kubis, Synthesis and properties of chiral ammonium-based ionic liquids, Chem. Eur. J., 2005, 11, 4441, DOI:10.1002/chem.200500026. 2 J. Pernak, J. Feder-Kubis, A. Cieniecka-Rosłonkiewicz, C. Fischmeister, S. T. Griffin, R. D. Rogers, Synthesis and properties of chiral imidazolium ionic liquids with a (1R,2S,5R)-(–)-menthoxymethyl substituent, New J. Chem., 2007, 31, 879–892, DOI:10.1039/b616215k. 3 J. Feder-Kubis, M. Kubicki, J. Pernak, 3-Alkoxymethyl-1(1R,2S,5R)-(–)-menthoxymethylimidazolium saltsbased chiral ionic liquids, Tetrahedron: Asymmetry, 2010, 21, 2709–2718, DOI:10.1016/j.tetasy.2010.10.029. 4 J. Feder-Kubis, B. Szefczyk, M. Kubicki, Symmetrical Imidazolium Chloride Based on (−)-Menthol: Synthesis, Characterization, and Theoretical Model of the Reaction, J. Org. Chem., 2015, 80, 1, 237-246, DOI: dx.doi.org/10.1021/jo502317m. 5 J. Pernak, J. Feder-Kubis, Chiral pyridinium-based ionic liquids containing the (1R,2S,5R)-(–)-menthyl group, Tetrahedron: Asymmetry, 2006, 17, 1728-1737, DOI: 10.1016/j.tetasy.2006.06.014. 6 A.I. Vogel, A. R. Tatchell, B. S. Furnis, A. J. Hannaford, P. W. G. Smith, Vogel's Textbook of Practical Organic Chemistry, 5th ed., Longman, 1989; ISBN: 978-0-582-46236-6.
35
36